1 | //! Constants for the `f128` quadruple-precision floating point type. |
2 | //! |
3 | //! *[See also the `f128` primitive type](primitive@f128).* |
4 | //! |
5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
6 | |
7 | #[unstable (feature = "f128" , issue = "116909" )] |
8 | pub use core::f128::consts; |
9 | |
10 | #[cfg (not(test))] |
11 | use crate::intrinsics; |
12 | #[cfg (not(test))] |
13 | use crate::sys::cmath; |
14 | |
15 | #[cfg (not(test))] |
16 | impl f128 { |
17 | /// Returns the largest integer less than or equal to `self`. |
18 | /// |
19 | /// This function always returns the precise result. |
20 | /// |
21 | /// # Examples |
22 | /// |
23 | /// ``` |
24 | /// #![feature(f128)] |
25 | /// # #[cfg (reliable_f128_math)] { |
26 | /// |
27 | /// let f = 3.7_f128; |
28 | /// let g = 3.0_f128; |
29 | /// let h = -3.7_f128; |
30 | /// |
31 | /// assert_eq!(f.floor(), 3.0); |
32 | /// assert_eq!(g.floor(), 3.0); |
33 | /// assert_eq!(h.floor(), -4.0); |
34 | /// # } |
35 | /// ``` |
36 | #[inline ] |
37 | #[rustc_allow_incoherent_impl ] |
38 | #[unstable (feature = "f128" , issue = "116909" )] |
39 | #[must_use = "method returns a new number and does not mutate the original value" ] |
40 | pub fn floor(self) -> f128 { |
41 | unsafe { intrinsics::floorf128(self) } |
42 | } |
43 | |
44 | /// Returns the smallest integer greater than or equal to `self`. |
45 | /// |
46 | /// This function always returns the precise result. |
47 | /// |
48 | /// # Examples |
49 | /// |
50 | /// ``` |
51 | /// #![feature(f128)] |
52 | /// # #[cfg (reliable_f128_math)] { |
53 | /// |
54 | /// let f = 3.01_f128; |
55 | /// let g = 4.0_f128; |
56 | /// |
57 | /// assert_eq!(f.ceil(), 4.0); |
58 | /// assert_eq!(g.ceil(), 4.0); |
59 | /// # } |
60 | /// ``` |
61 | #[inline ] |
62 | #[doc (alias = "ceiling" )] |
63 | #[rustc_allow_incoherent_impl ] |
64 | #[unstable (feature = "f128" , issue = "116909" )] |
65 | #[must_use = "method returns a new number and does not mutate the original value" ] |
66 | pub fn ceil(self) -> f128 { |
67 | unsafe { intrinsics::ceilf128(self) } |
68 | } |
69 | |
70 | /// Returns the nearest integer to `self`. If a value is half-way between two |
71 | /// integers, round away from `0.0`. |
72 | /// |
73 | /// This function always returns the precise result. |
74 | /// |
75 | /// # Examples |
76 | /// |
77 | /// ``` |
78 | /// #![feature(f128)] |
79 | /// # #[cfg (reliable_f128_math)] { |
80 | /// |
81 | /// let f = 3.3_f128; |
82 | /// let g = -3.3_f128; |
83 | /// let h = -3.7_f128; |
84 | /// let i = 3.5_f128; |
85 | /// let j = 4.5_f128; |
86 | /// |
87 | /// assert_eq!(f.round(), 3.0); |
88 | /// assert_eq!(g.round(), -3.0); |
89 | /// assert_eq!(h.round(), -4.0); |
90 | /// assert_eq!(i.round(), 4.0); |
91 | /// assert_eq!(j.round(), 5.0); |
92 | /// # } |
93 | /// ``` |
94 | #[inline ] |
95 | #[rustc_allow_incoherent_impl ] |
96 | #[unstable (feature = "f128" , issue = "116909" )] |
97 | #[must_use = "method returns a new number and does not mutate the original value" ] |
98 | pub fn round(self) -> f128 { |
99 | unsafe { intrinsics::roundf128(self) } |
100 | } |
101 | |
102 | /// Returns the nearest integer to a number. Rounds half-way cases to the number |
103 | /// with an even least significant digit. |
104 | /// |
105 | /// This function always returns the precise result. |
106 | /// |
107 | /// # Examples |
108 | /// |
109 | /// ``` |
110 | /// #![feature(f128)] |
111 | /// # #[cfg (reliable_f128_math)] { |
112 | /// |
113 | /// let f = 3.3_f128; |
114 | /// let g = -3.3_f128; |
115 | /// let h = 3.5_f128; |
116 | /// let i = 4.5_f128; |
117 | /// |
118 | /// assert_eq!(f.round_ties_even(), 3.0); |
119 | /// assert_eq!(g.round_ties_even(), -3.0); |
120 | /// assert_eq!(h.round_ties_even(), 4.0); |
121 | /// assert_eq!(i.round_ties_even(), 4.0); |
122 | /// # } |
123 | /// ``` |
124 | #[inline ] |
125 | #[rustc_allow_incoherent_impl ] |
126 | #[unstable (feature = "f128" , issue = "116909" )] |
127 | #[must_use = "method returns a new number and does not mutate the original value" ] |
128 | pub fn round_ties_even(self) -> f128 { |
129 | intrinsics::round_ties_even_f128(self) |
130 | } |
131 | |
132 | /// Returns the integer part of `self`. |
133 | /// This means that non-integer numbers are always truncated towards zero. |
134 | /// |
135 | /// This function always returns the precise result. |
136 | /// |
137 | /// # Examples |
138 | /// |
139 | /// ``` |
140 | /// #![feature(f128)] |
141 | /// # #[cfg (reliable_f128_math)] { |
142 | /// |
143 | /// let f = 3.7_f128; |
144 | /// let g = 3.0_f128; |
145 | /// let h = -3.7_f128; |
146 | /// |
147 | /// assert_eq!(f.trunc(), 3.0); |
148 | /// assert_eq!(g.trunc(), 3.0); |
149 | /// assert_eq!(h.trunc(), -3.0); |
150 | /// # } |
151 | /// ``` |
152 | #[inline ] |
153 | #[doc (alias = "truncate" )] |
154 | #[rustc_allow_incoherent_impl ] |
155 | #[unstable (feature = "f128" , issue = "116909" )] |
156 | #[must_use = "method returns a new number and does not mutate the original value" ] |
157 | pub fn trunc(self) -> f128 { |
158 | unsafe { intrinsics::truncf128(self) } |
159 | } |
160 | |
161 | /// Returns the fractional part of `self`. |
162 | /// |
163 | /// This function always returns the precise result. |
164 | /// |
165 | /// # Examples |
166 | /// |
167 | /// ``` |
168 | /// #![feature(f128)] |
169 | /// # #[cfg (reliable_f128_math)] { |
170 | /// |
171 | /// let x = 3.6_f128; |
172 | /// let y = -3.6_f128; |
173 | /// let abs_difference_x = (x.fract() - 0.6).abs(); |
174 | /// let abs_difference_y = (y.fract() - (-0.6)).abs(); |
175 | /// |
176 | /// assert!(abs_difference_x <= f128::EPSILON); |
177 | /// assert!(abs_difference_y <= f128::EPSILON); |
178 | /// # } |
179 | /// ``` |
180 | #[inline ] |
181 | #[rustc_allow_incoherent_impl ] |
182 | #[unstable (feature = "f128" , issue = "116909" )] |
183 | #[must_use = "method returns a new number and does not mutate the original value" ] |
184 | pub fn fract(self) -> f128 { |
185 | self - self.trunc() |
186 | } |
187 | |
188 | /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
189 | /// error, yielding a more accurate result than an unfused multiply-add. |
190 | /// |
191 | /// Using `mul_add` *may* be more performant than an unfused multiply-add if |
192 | /// the target architecture has a dedicated `fma` CPU instruction. However, |
193 | /// this is not always true, and will be heavily dependant on designing |
194 | /// algorithms with specific target hardware in mind. |
195 | /// |
196 | /// # Precision |
197 | /// |
198 | /// The result of this operation is guaranteed to be the rounded |
199 | /// infinite-precision result. It is specified by IEEE 754 as |
200 | /// `fusedMultiplyAdd` and guaranteed not to change. |
201 | /// |
202 | /// # Examples |
203 | /// |
204 | /// ``` |
205 | /// #![feature(f128)] |
206 | /// # #[cfg (reliable_f128_math)] { |
207 | /// |
208 | /// let m = 10.0_f128; |
209 | /// let x = 4.0_f128; |
210 | /// let b = 60.0_f128; |
211 | /// |
212 | /// assert_eq!(m.mul_add(x, b), 100.0); |
213 | /// assert_eq!(m * x + b, 100.0); |
214 | /// |
215 | /// let one_plus_eps = 1.0_f128 + f128::EPSILON; |
216 | /// let one_minus_eps = 1.0_f128 - f128::EPSILON; |
217 | /// let minus_one = -1.0_f128; |
218 | /// |
219 | /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. |
220 | /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON); |
221 | /// // Different rounding with the non-fused multiply and add. |
222 | /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); |
223 | /// # } |
224 | /// ``` |
225 | #[inline ] |
226 | #[rustc_allow_incoherent_impl ] |
227 | #[doc (alias = "fmaf128" , alias = "fusedMultiplyAdd" )] |
228 | #[unstable (feature = "f128" , issue = "116909" )] |
229 | #[must_use = "method returns a new number and does not mutate the original value" ] |
230 | pub fn mul_add(self, a: f128, b: f128) -> f128 { |
231 | unsafe { intrinsics::fmaf128(self, a, b) } |
232 | } |
233 | |
234 | /// Calculates Euclidean division, the matching method for `rem_euclid`. |
235 | /// |
236 | /// This computes the integer `n` such that |
237 | /// `self = n * rhs + self.rem_euclid(rhs)`. |
238 | /// In other words, the result is `self / rhs` rounded to the integer `n` |
239 | /// such that `self >= n * rhs`. |
240 | /// |
241 | /// # Precision |
242 | /// |
243 | /// The result of this operation is guaranteed to be the rounded |
244 | /// infinite-precision result. |
245 | /// |
246 | /// # Examples |
247 | /// |
248 | /// ``` |
249 | /// #![feature(f128)] |
250 | /// # #[cfg (reliable_f128_math)] { |
251 | /// |
252 | /// let a: f128 = 7.0; |
253 | /// let b = 4.0; |
254 | /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 |
255 | /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 |
256 | /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 |
257 | /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 |
258 | /// # } |
259 | /// ``` |
260 | #[inline ] |
261 | #[rustc_allow_incoherent_impl ] |
262 | #[unstable (feature = "f128" , issue = "116909" )] |
263 | #[must_use = "method returns a new number and does not mutate the original value" ] |
264 | pub fn div_euclid(self, rhs: f128) -> f128 { |
265 | let q = (self / rhs).trunc(); |
266 | if self % rhs < 0.0 { |
267 | return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; |
268 | } |
269 | q |
270 | } |
271 | |
272 | /// Calculates the least nonnegative remainder of `self (mod rhs)`. |
273 | /// |
274 | /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in |
275 | /// most cases. However, due to a floating point round-off error it can |
276 | /// result in `r == rhs.abs()`, violating the mathematical definition, if |
277 | /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. |
278 | /// This result is not an element of the function's codomain, but it is the |
279 | /// closest floating point number in the real numbers and thus fulfills the |
280 | /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` |
281 | /// approximately. |
282 | /// |
283 | /// # Precision |
284 | /// |
285 | /// The result of this operation is guaranteed to be the rounded |
286 | /// infinite-precision result. |
287 | /// |
288 | /// # Examples |
289 | /// |
290 | /// ``` |
291 | /// #![feature(f128)] |
292 | /// # #[cfg (reliable_f128_math)] { |
293 | /// |
294 | /// let a: f128 = 7.0; |
295 | /// let b = 4.0; |
296 | /// assert_eq!(a.rem_euclid(b), 3.0); |
297 | /// assert_eq!((-a).rem_euclid(b), 1.0); |
298 | /// assert_eq!(a.rem_euclid(-b), 3.0); |
299 | /// assert_eq!((-a).rem_euclid(-b), 1.0); |
300 | /// // limitation due to round-off error |
301 | /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0); |
302 | /// # } |
303 | /// ``` |
304 | #[inline ] |
305 | #[rustc_allow_incoherent_impl ] |
306 | #[doc (alias = "modulo" , alias = "mod" )] |
307 | #[unstable (feature = "f128" , issue = "116909" )] |
308 | #[must_use = "method returns a new number and does not mutate the original value" ] |
309 | pub fn rem_euclid(self, rhs: f128) -> f128 { |
310 | let r = self % rhs; |
311 | if r < 0.0 { r + rhs.abs() } else { r } |
312 | } |
313 | |
314 | /// Raises a number to an integer power. |
315 | /// |
316 | /// Using this function is generally faster than using `powf`. |
317 | /// It might have a different sequence of rounding operations than `powf`, |
318 | /// so the results are not guaranteed to agree. |
319 | /// |
320 | /// # Unspecified precision |
321 | /// |
322 | /// The precision of this function is non-deterministic. This means it varies by platform, |
323 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
324 | /// |
325 | /// # Examples |
326 | /// |
327 | /// ``` |
328 | /// #![feature(f128)] |
329 | /// # #[cfg (reliable_f128_math)] { |
330 | /// |
331 | /// let x = 2.0_f128; |
332 | /// let abs_difference = (x.powi(2) - (x * x)).abs(); |
333 | /// assert!(abs_difference <= f128::EPSILON); |
334 | /// |
335 | /// assert_eq!(f128::powi(f128::NAN, 0), 1.0); |
336 | /// # } |
337 | /// ``` |
338 | #[inline ] |
339 | #[rustc_allow_incoherent_impl ] |
340 | #[unstable (feature = "f128" , issue = "116909" )] |
341 | #[must_use = "method returns a new number and does not mutate the original value" ] |
342 | pub fn powi(self, n: i32) -> f128 { |
343 | unsafe { intrinsics::powif128(self, n) } |
344 | } |
345 | |
346 | /// Raises a number to a floating point power. |
347 | /// |
348 | /// # Unspecified precision |
349 | /// |
350 | /// The precision of this function is non-deterministic. This means it varies by platform, |
351 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
352 | /// |
353 | /// # Examples |
354 | /// |
355 | /// ``` |
356 | /// #![feature(f128)] |
357 | /// # #[cfg (reliable_f128_math)] { |
358 | /// |
359 | /// let x = 2.0_f128; |
360 | /// let abs_difference = (x.powf(2.0) - (x * x)).abs(); |
361 | /// assert!(abs_difference <= f128::EPSILON); |
362 | /// |
363 | /// assert_eq!(f128::powf(1.0, f128::NAN), 1.0); |
364 | /// assert_eq!(f128::powf(f128::NAN, 0.0), 1.0); |
365 | /// # } |
366 | /// ``` |
367 | #[inline ] |
368 | #[rustc_allow_incoherent_impl ] |
369 | #[unstable (feature = "f128" , issue = "116909" )] |
370 | #[must_use = "method returns a new number and does not mutate the original value" ] |
371 | pub fn powf(self, n: f128) -> f128 { |
372 | unsafe { intrinsics::powf128(self, n) } |
373 | } |
374 | |
375 | /// Returns the square root of a number. |
376 | /// |
377 | /// Returns NaN if `self` is a negative number other than `-0.0`. |
378 | /// |
379 | /// # Precision |
380 | /// |
381 | /// The result of this operation is guaranteed to be the rounded |
382 | /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` |
383 | /// and guaranteed not to change. |
384 | /// |
385 | /// # Examples |
386 | /// |
387 | /// ``` |
388 | /// #![feature(f128)] |
389 | /// # #[cfg (reliable_f128_math)] { |
390 | /// |
391 | /// let positive = 4.0_f128; |
392 | /// let negative = -4.0_f128; |
393 | /// let negative_zero = -0.0_f128; |
394 | /// |
395 | /// assert_eq!(positive.sqrt(), 2.0); |
396 | /// assert!(negative.sqrt().is_nan()); |
397 | /// assert!(negative_zero.sqrt() == negative_zero); |
398 | /// # } |
399 | /// ``` |
400 | #[inline ] |
401 | #[doc (alias = "squareRoot" )] |
402 | #[rustc_allow_incoherent_impl ] |
403 | #[unstable (feature = "f128" , issue = "116909" )] |
404 | #[must_use = "method returns a new number and does not mutate the original value" ] |
405 | pub fn sqrt(self) -> f128 { |
406 | unsafe { intrinsics::sqrtf128(self) } |
407 | } |
408 | |
409 | /// Returns `e^(self)`, (the exponential function). |
410 | /// |
411 | /// # Unspecified precision |
412 | /// |
413 | /// The precision of this function is non-deterministic. This means it varies by platform, |
414 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
415 | /// |
416 | /// # Examples |
417 | /// |
418 | /// ``` |
419 | /// #![feature(f128)] |
420 | /// # #[cfg (reliable_f128_math)] { |
421 | /// |
422 | /// let one = 1.0f128; |
423 | /// // e^1 |
424 | /// let e = one.exp(); |
425 | /// |
426 | /// // ln(e) - 1 == 0 |
427 | /// let abs_difference = (e.ln() - 1.0).abs(); |
428 | /// |
429 | /// assert!(abs_difference <= f128::EPSILON); |
430 | /// # } |
431 | /// ``` |
432 | #[inline ] |
433 | #[rustc_allow_incoherent_impl ] |
434 | #[unstable (feature = "f128" , issue = "116909" )] |
435 | #[must_use = "method returns a new number and does not mutate the original value" ] |
436 | pub fn exp(self) -> f128 { |
437 | unsafe { intrinsics::expf128(self) } |
438 | } |
439 | |
440 | /// Returns `2^(self)`. |
441 | /// |
442 | /// # Unspecified precision |
443 | /// |
444 | /// The precision of this function is non-deterministic. This means it varies by platform, |
445 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
446 | /// |
447 | /// # Examples |
448 | /// |
449 | /// ``` |
450 | /// #![feature(f128)] |
451 | /// # #[cfg (reliable_f128_math)] { |
452 | /// |
453 | /// let f = 2.0f128; |
454 | /// |
455 | /// // 2^2 - 4 == 0 |
456 | /// let abs_difference = (f.exp2() - 4.0).abs(); |
457 | /// |
458 | /// assert!(abs_difference <= f128::EPSILON); |
459 | /// # } |
460 | /// ``` |
461 | #[inline ] |
462 | #[rustc_allow_incoherent_impl ] |
463 | #[unstable (feature = "f128" , issue = "116909" )] |
464 | #[must_use = "method returns a new number and does not mutate the original value" ] |
465 | pub fn exp2(self) -> f128 { |
466 | unsafe { intrinsics::exp2f128(self) } |
467 | } |
468 | |
469 | /// Returns the natural logarithm of the number. |
470 | /// |
471 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
472 | /// |
473 | /// # Unspecified precision |
474 | /// |
475 | /// The precision of this function is non-deterministic. This means it varies by platform, |
476 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
477 | /// |
478 | /// # Examples |
479 | /// |
480 | /// ``` |
481 | /// #![feature(f128)] |
482 | /// # #[cfg (reliable_f128_math)] { |
483 | /// |
484 | /// let one = 1.0f128; |
485 | /// // e^1 |
486 | /// let e = one.exp(); |
487 | /// |
488 | /// // ln(e) - 1 == 0 |
489 | /// let abs_difference = (e.ln() - 1.0).abs(); |
490 | /// |
491 | /// assert!(abs_difference <= f128::EPSILON); |
492 | /// # } |
493 | /// ``` |
494 | /// |
495 | /// Non-positive values: |
496 | /// ``` |
497 | /// #![feature(f128)] |
498 | /// # #[cfg (reliable_f128_math)] { |
499 | /// |
500 | /// assert_eq!(0_f128.ln(), f128::NEG_INFINITY); |
501 | /// assert!((-42_f128).ln().is_nan()); |
502 | /// # } |
503 | /// ``` |
504 | #[inline ] |
505 | #[rustc_allow_incoherent_impl ] |
506 | #[unstable (feature = "f128" , issue = "116909" )] |
507 | #[must_use = "method returns a new number and does not mutate the original value" ] |
508 | pub fn ln(self) -> f128 { |
509 | unsafe { intrinsics::logf128(self) } |
510 | } |
511 | |
512 | /// Returns the logarithm of the number with respect to an arbitrary base. |
513 | /// |
514 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
515 | /// |
516 | /// The result might not be correctly rounded owing to implementation details; |
517 | /// `self.log2()` can produce more accurate results for base 2, and |
518 | /// `self.log10()` can produce more accurate results for base 10. |
519 | /// |
520 | /// # Unspecified precision |
521 | /// |
522 | /// The precision of this function is non-deterministic. This means it varies by platform, |
523 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
524 | /// |
525 | /// # Examples |
526 | /// |
527 | /// ``` |
528 | /// #![feature(f128)] |
529 | /// # #[cfg (reliable_f128_math)] { |
530 | /// |
531 | /// let five = 5.0f128; |
532 | /// |
533 | /// // log5(5) - 1 == 0 |
534 | /// let abs_difference = (five.log(5.0) - 1.0).abs(); |
535 | /// |
536 | /// assert!(abs_difference <= f128::EPSILON); |
537 | /// # } |
538 | /// ``` |
539 | /// |
540 | /// Non-positive values: |
541 | /// ``` |
542 | /// #![feature(f128)] |
543 | /// # #[cfg (reliable_f128_math)] { |
544 | /// |
545 | /// assert_eq!(0_f128.log(10.0), f128::NEG_INFINITY); |
546 | /// assert!((-42_f128).log(10.0).is_nan()); |
547 | /// # } |
548 | /// ``` |
549 | #[inline ] |
550 | #[rustc_allow_incoherent_impl ] |
551 | #[unstable (feature = "f128" , issue = "116909" )] |
552 | #[must_use = "method returns a new number and does not mutate the original value" ] |
553 | pub fn log(self, base: f128) -> f128 { |
554 | self.ln() / base.ln() |
555 | } |
556 | |
557 | /// Returns the base 2 logarithm of the number. |
558 | /// |
559 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
560 | /// |
561 | /// # Unspecified precision |
562 | /// |
563 | /// The precision of this function is non-deterministic. This means it varies by platform, |
564 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
565 | /// |
566 | /// # Examples |
567 | /// |
568 | /// ``` |
569 | /// #![feature(f128)] |
570 | /// # #[cfg (reliable_f128_math)] { |
571 | /// |
572 | /// let two = 2.0f128; |
573 | /// |
574 | /// // log2(2) - 1 == 0 |
575 | /// let abs_difference = (two.log2() - 1.0).abs(); |
576 | /// |
577 | /// assert!(abs_difference <= f128::EPSILON); |
578 | /// # } |
579 | /// ``` |
580 | /// |
581 | /// Non-positive values: |
582 | /// ``` |
583 | /// #![feature(f128)] |
584 | /// # #[cfg (reliable_f128_math)] { |
585 | /// |
586 | /// assert_eq!(0_f128.log2(), f128::NEG_INFINITY); |
587 | /// assert!((-42_f128).log2().is_nan()); |
588 | /// # } |
589 | /// ``` |
590 | #[inline ] |
591 | #[rustc_allow_incoherent_impl ] |
592 | #[unstable (feature = "f128" , issue = "116909" )] |
593 | #[must_use = "method returns a new number and does not mutate the original value" ] |
594 | pub fn log2(self) -> f128 { |
595 | unsafe { intrinsics::log2f128(self) } |
596 | } |
597 | |
598 | /// Returns the base 10 logarithm of the number. |
599 | /// |
600 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
601 | /// |
602 | /// # Unspecified precision |
603 | /// |
604 | /// The precision of this function is non-deterministic. This means it varies by platform, |
605 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
606 | /// |
607 | /// # Examples |
608 | /// |
609 | /// ``` |
610 | /// #![feature(f128)] |
611 | /// # #[cfg (reliable_f128_math)] { |
612 | /// |
613 | /// let ten = 10.0f128; |
614 | /// |
615 | /// // log10(10) - 1 == 0 |
616 | /// let abs_difference = (ten.log10() - 1.0).abs(); |
617 | /// |
618 | /// assert!(abs_difference <= f128::EPSILON); |
619 | /// # } |
620 | /// ``` |
621 | /// |
622 | /// Non-positive values: |
623 | /// ``` |
624 | /// #![feature(f128)] |
625 | /// # #[cfg (reliable_f128_math)] { |
626 | /// |
627 | /// assert_eq!(0_f128.log10(), f128::NEG_INFINITY); |
628 | /// assert!((-42_f128).log10().is_nan()); |
629 | /// # } |
630 | /// ``` |
631 | #[inline ] |
632 | #[rustc_allow_incoherent_impl ] |
633 | #[unstable (feature = "f128" , issue = "116909" )] |
634 | #[must_use = "method returns a new number and does not mutate the original value" ] |
635 | pub fn log10(self) -> f128 { |
636 | unsafe { intrinsics::log10f128(self) } |
637 | } |
638 | |
639 | /// Returns the cube root of a number. |
640 | /// |
641 | /// # Unspecified precision |
642 | /// |
643 | /// The precision of this function is non-deterministic. This means it varies by platform, |
644 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
645 | /// |
646 | /// |
647 | /// This function currently corresponds to the `cbrtf128` from libc on Unix |
648 | /// and Windows. Note that this might change in the future. |
649 | /// |
650 | /// # Examples |
651 | /// |
652 | /// ``` |
653 | /// #![feature(f128)] |
654 | /// # #[cfg (reliable_f128_math)] { |
655 | /// |
656 | /// let x = 8.0f128; |
657 | /// |
658 | /// // x^(1/3) - 2 == 0 |
659 | /// let abs_difference = (x.cbrt() - 2.0).abs(); |
660 | /// |
661 | /// assert!(abs_difference <= f128::EPSILON); |
662 | /// # } |
663 | /// ``` |
664 | #[inline ] |
665 | #[rustc_allow_incoherent_impl ] |
666 | #[unstable (feature = "f128" , issue = "116909" )] |
667 | #[must_use = "method returns a new number and does not mutate the original value" ] |
668 | pub fn cbrt(self) -> f128 { |
669 | unsafe { cmath::cbrtf128(self) } |
670 | } |
671 | |
672 | /// Compute the distance between the origin and a point (`x`, `y`) on the |
673 | /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a |
674 | /// right-angle triangle with other sides having length `x.abs()` and |
675 | /// `y.abs()`. |
676 | /// |
677 | /// # Unspecified precision |
678 | /// |
679 | /// The precision of this function is non-deterministic. This means it varies by platform, |
680 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
681 | /// |
682 | /// |
683 | /// This function currently corresponds to the `hypotf128` from libc on Unix |
684 | /// and Windows. Note that this might change in the future. |
685 | /// |
686 | /// # Examples |
687 | /// |
688 | /// ``` |
689 | /// #![feature(f128)] |
690 | /// # #[cfg (reliable_f128_math)] { |
691 | /// |
692 | /// let x = 2.0f128; |
693 | /// let y = 3.0f128; |
694 | /// |
695 | /// // sqrt(x^2 + y^2) |
696 | /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); |
697 | /// |
698 | /// assert!(abs_difference <= f128::EPSILON); |
699 | /// # } |
700 | /// ``` |
701 | #[inline ] |
702 | #[rustc_allow_incoherent_impl ] |
703 | #[unstable (feature = "f128" , issue = "116909" )] |
704 | #[must_use = "method returns a new number and does not mutate the original value" ] |
705 | pub fn hypot(self, other: f128) -> f128 { |
706 | unsafe { cmath::hypotf128(self, other) } |
707 | } |
708 | |
709 | /// Computes the sine of a number (in radians). |
710 | /// |
711 | /// # Unspecified precision |
712 | /// |
713 | /// The precision of this function is non-deterministic. This means it varies by platform, |
714 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
715 | /// |
716 | /// # Examples |
717 | /// |
718 | /// ``` |
719 | /// #![feature(f128)] |
720 | /// # #[cfg (reliable_f128_math)] { |
721 | /// |
722 | /// let x = std::f128::consts::FRAC_PI_2; |
723 | /// |
724 | /// let abs_difference = (x.sin() - 1.0).abs(); |
725 | /// |
726 | /// assert!(abs_difference <= f128::EPSILON); |
727 | /// # } |
728 | /// ``` |
729 | #[inline ] |
730 | #[rustc_allow_incoherent_impl ] |
731 | #[unstable (feature = "f128" , issue = "116909" )] |
732 | #[must_use = "method returns a new number and does not mutate the original value" ] |
733 | pub fn sin(self) -> f128 { |
734 | unsafe { intrinsics::sinf128(self) } |
735 | } |
736 | |
737 | /// Computes the cosine of a number (in radians). |
738 | /// |
739 | /// # Unspecified precision |
740 | /// |
741 | /// The precision of this function is non-deterministic. This means it varies by platform, |
742 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
743 | /// |
744 | /// # Examples |
745 | /// |
746 | /// ``` |
747 | /// #![feature(f128)] |
748 | /// # #[cfg (reliable_f128_math)] { |
749 | /// |
750 | /// let x = 2.0 * std::f128::consts::PI; |
751 | /// |
752 | /// let abs_difference = (x.cos() - 1.0).abs(); |
753 | /// |
754 | /// assert!(abs_difference <= f128::EPSILON); |
755 | /// # } |
756 | /// ``` |
757 | #[inline ] |
758 | #[rustc_allow_incoherent_impl ] |
759 | #[unstable (feature = "f128" , issue = "116909" )] |
760 | #[must_use = "method returns a new number and does not mutate the original value" ] |
761 | pub fn cos(self) -> f128 { |
762 | unsafe { intrinsics::cosf128(self) } |
763 | } |
764 | |
765 | /// Computes the tangent of a number (in radians). |
766 | /// |
767 | /// # Unspecified precision |
768 | /// |
769 | /// The precision of this function is non-deterministic. This means it varies by platform, |
770 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
771 | /// |
772 | /// This function currently corresponds to the `tanf128` from libc on Unix and |
773 | /// Windows. Note that this might change in the future. |
774 | /// |
775 | /// # Examples |
776 | /// |
777 | /// ``` |
778 | /// #![feature(f128)] |
779 | /// # #[cfg (reliable_f128_math)] { |
780 | /// |
781 | /// let x = std::f128::consts::FRAC_PI_4; |
782 | /// let abs_difference = (x.tan() - 1.0).abs(); |
783 | /// |
784 | /// assert!(abs_difference <= f128::EPSILON); |
785 | /// # } |
786 | /// ``` |
787 | #[inline ] |
788 | #[rustc_allow_incoherent_impl ] |
789 | #[unstable (feature = "f128" , issue = "116909" )] |
790 | #[must_use = "method returns a new number and does not mutate the original value" ] |
791 | pub fn tan(self) -> f128 { |
792 | unsafe { cmath::tanf128(self) } |
793 | } |
794 | |
795 | /// Computes the arcsine of a number. Return value is in radians in |
796 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
797 | /// [-1, 1]. |
798 | /// |
799 | /// # Unspecified precision |
800 | /// |
801 | /// The precision of this function is non-deterministic. This means it varies by platform, |
802 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
803 | /// |
804 | /// This function currently corresponds to the `asinf128` from libc on Unix |
805 | /// and Windows. Note that this might change in the future. |
806 | /// |
807 | /// # Examples |
808 | /// |
809 | /// ``` |
810 | /// #![feature(f128)] |
811 | /// # #[cfg (reliable_f128_math)] { |
812 | /// |
813 | /// let f = std::f128::consts::FRAC_PI_2; |
814 | /// |
815 | /// // asin(sin(pi/2)) |
816 | /// let abs_difference = (f.sin().asin() - std::f128::consts::FRAC_PI_2).abs(); |
817 | /// |
818 | /// assert!(abs_difference <= f128::EPSILON); |
819 | /// # } |
820 | /// ``` |
821 | #[inline ] |
822 | #[doc (alias = "arcsin" )] |
823 | #[rustc_allow_incoherent_impl ] |
824 | #[unstable (feature = "f128" , issue = "116909" )] |
825 | #[must_use = "method returns a new number and does not mutate the original value" ] |
826 | pub fn asin(self) -> f128 { |
827 | unsafe { cmath::asinf128(self) } |
828 | } |
829 | |
830 | /// Computes the arccosine of a number. Return value is in radians in |
831 | /// the range [0, pi] or NaN if the number is outside the range |
832 | /// [-1, 1]. |
833 | /// |
834 | /// # Unspecified precision |
835 | /// |
836 | /// The precision of this function is non-deterministic. This means it varies by platform, |
837 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
838 | /// |
839 | /// This function currently corresponds to the `acosf128` from libc on Unix |
840 | /// and Windows. Note that this might change in the future. |
841 | /// |
842 | /// # Examples |
843 | /// |
844 | /// ``` |
845 | /// #![feature(f128)] |
846 | /// # #[cfg (reliable_f128_math)] { |
847 | /// |
848 | /// let f = std::f128::consts::FRAC_PI_4; |
849 | /// |
850 | /// // acos(cos(pi/4)) |
851 | /// let abs_difference = (f.cos().acos() - std::f128::consts::FRAC_PI_4).abs(); |
852 | /// |
853 | /// assert!(abs_difference <= f128::EPSILON); |
854 | /// # } |
855 | /// ``` |
856 | #[inline ] |
857 | #[doc (alias = "arccos" )] |
858 | #[rustc_allow_incoherent_impl ] |
859 | #[unstable (feature = "f128" , issue = "116909" )] |
860 | #[must_use = "method returns a new number and does not mutate the original value" ] |
861 | pub fn acos(self) -> f128 { |
862 | unsafe { cmath::acosf128(self) } |
863 | } |
864 | |
865 | /// Computes the arctangent of a number. Return value is in radians in the |
866 | /// range [-pi/2, pi/2]; |
867 | /// |
868 | /// # Unspecified precision |
869 | /// |
870 | /// The precision of this function is non-deterministic. This means it varies by platform, |
871 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
872 | /// |
873 | /// This function currently corresponds to the `atanf128` from libc on Unix |
874 | /// and Windows. Note that this might change in the future. |
875 | /// |
876 | /// # Examples |
877 | /// |
878 | /// ``` |
879 | /// #![feature(f128)] |
880 | /// # #[cfg (reliable_f128_math)] { |
881 | /// |
882 | /// let f = 1.0f128; |
883 | /// |
884 | /// // atan(tan(1)) |
885 | /// let abs_difference = (f.tan().atan() - 1.0).abs(); |
886 | /// |
887 | /// assert!(abs_difference <= f128::EPSILON); |
888 | /// # } |
889 | /// ``` |
890 | #[inline ] |
891 | #[doc (alias = "arctan" )] |
892 | #[rustc_allow_incoherent_impl ] |
893 | #[unstable (feature = "f128" , issue = "116909" )] |
894 | #[must_use = "method returns a new number and does not mutate the original value" ] |
895 | pub fn atan(self) -> f128 { |
896 | unsafe { cmath::atanf128(self) } |
897 | } |
898 | |
899 | /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. |
900 | /// |
901 | /// * `x = 0`, `y = 0`: `0` |
902 | /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` |
903 | /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` |
904 | /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` |
905 | /// |
906 | /// # Unspecified precision |
907 | /// |
908 | /// The precision of this function is non-deterministic. This means it varies by platform, |
909 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
910 | /// |
911 | /// This function currently corresponds to the `atan2f128` from libc on Unix |
912 | /// and Windows. Note that this might change in the future. |
913 | /// |
914 | /// # Examples |
915 | /// |
916 | /// ``` |
917 | /// #![feature(f128)] |
918 | /// # #[cfg (reliable_f128_math)] { |
919 | /// |
920 | /// // Positive angles measured counter-clockwise |
921 | /// // from positive x axis |
922 | /// // -pi/4 radians (45 deg clockwise) |
923 | /// let x1 = 3.0f128; |
924 | /// let y1 = -3.0f128; |
925 | /// |
926 | /// // 3pi/4 radians (135 deg counter-clockwise) |
927 | /// let x2 = -3.0f128; |
928 | /// let y2 = 3.0f128; |
929 | /// |
930 | /// let abs_difference_1 = (y1.atan2(x1) - (-std::f128::consts::FRAC_PI_4)).abs(); |
931 | /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f128::consts::FRAC_PI_4)).abs(); |
932 | /// |
933 | /// assert!(abs_difference_1 <= f128::EPSILON); |
934 | /// assert!(abs_difference_2 <= f128::EPSILON); |
935 | /// # } |
936 | /// ``` |
937 | #[inline ] |
938 | #[rustc_allow_incoherent_impl ] |
939 | #[unstable (feature = "f128" , issue = "116909" )] |
940 | #[must_use = "method returns a new number and does not mutate the original value" ] |
941 | pub fn atan2(self, other: f128) -> f128 { |
942 | unsafe { cmath::atan2f128(self, other) } |
943 | } |
944 | |
945 | /// Simultaneously computes the sine and cosine of the number, `x`. Returns |
946 | /// `(sin(x), cos(x))`. |
947 | /// |
948 | /// # Unspecified precision |
949 | /// |
950 | /// The precision of this function is non-deterministic. This means it varies by platform, |
951 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
952 | /// |
953 | /// This function currently corresponds to the `(f128::sin(x), |
954 | /// f128::cos(x))`. Note that this might change in the future. |
955 | /// |
956 | /// # Examples |
957 | /// |
958 | /// ``` |
959 | /// #![feature(f128)] |
960 | /// # #[cfg (reliable_f128_math)] { |
961 | /// |
962 | /// let x = std::f128::consts::FRAC_PI_4; |
963 | /// let f = x.sin_cos(); |
964 | /// |
965 | /// let abs_difference_0 = (f.0 - x.sin()).abs(); |
966 | /// let abs_difference_1 = (f.1 - x.cos()).abs(); |
967 | /// |
968 | /// assert!(abs_difference_0 <= f128::EPSILON); |
969 | /// assert!(abs_difference_1 <= f128::EPSILON); |
970 | /// # } |
971 | /// ``` |
972 | #[inline ] |
973 | #[doc (alias = "sincos" )] |
974 | #[rustc_allow_incoherent_impl ] |
975 | #[unstable (feature = "f128" , issue = "116909" )] |
976 | pub fn sin_cos(self) -> (f128, f128) { |
977 | (self.sin(), self.cos()) |
978 | } |
979 | |
980 | /// Returns `e^(self) - 1` in a way that is accurate even if the |
981 | /// number is close to zero. |
982 | /// |
983 | /// # Unspecified precision |
984 | /// |
985 | /// The precision of this function is non-deterministic. This means it varies by platform, |
986 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
987 | /// |
988 | /// This function currently corresponds to the `expm1f128` from libc on Unix |
989 | /// and Windows. Note that this might change in the future. |
990 | /// |
991 | /// # Examples |
992 | /// |
993 | /// ``` |
994 | /// #![feature(f128)] |
995 | /// # #[cfg (reliable_f128_math)] { |
996 | /// |
997 | /// let x = 1e-8_f128; |
998 | /// |
999 | /// // for very small x, e^x is approximately 1 + x + x^2 / 2 |
1000 | /// let approx = x + x * x / 2.0; |
1001 | /// let abs_difference = (x.exp_m1() - approx).abs(); |
1002 | /// |
1003 | /// assert!(abs_difference < 1e-10); |
1004 | /// # } |
1005 | /// ``` |
1006 | #[inline ] |
1007 | #[rustc_allow_incoherent_impl ] |
1008 | #[unstable (feature = "f128" , issue = "116909" )] |
1009 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1010 | pub fn exp_m1(self) -> f128 { |
1011 | unsafe { cmath::expm1f128(self) } |
1012 | } |
1013 | |
1014 | /// Returns `ln(1+n)` (natural logarithm) more accurately than if |
1015 | /// the operations were performed separately. |
1016 | /// |
1017 | /// This returns NaN when `n < -1.0`, and negative infinity when `n == -1.0`. |
1018 | /// |
1019 | /// # Unspecified precision |
1020 | /// |
1021 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1022 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1023 | /// |
1024 | /// This function currently corresponds to the `log1pf128` from libc on Unix |
1025 | /// and Windows. Note that this might change in the future. |
1026 | /// |
1027 | /// # Examples |
1028 | /// |
1029 | /// ``` |
1030 | /// #![feature(f128)] |
1031 | /// # #[cfg (reliable_f128_math)] { |
1032 | /// |
1033 | /// let x = 1e-8_f128; |
1034 | /// |
1035 | /// // for very small x, ln(1 + x) is approximately x - x^2 / 2 |
1036 | /// let approx = x - x * x / 2.0; |
1037 | /// let abs_difference = (x.ln_1p() - approx).abs(); |
1038 | /// |
1039 | /// assert!(abs_difference < 1e-10); |
1040 | /// # } |
1041 | /// ``` |
1042 | /// |
1043 | /// Out-of-range values: |
1044 | /// ``` |
1045 | /// #![feature(f128)] |
1046 | /// # #[cfg (reliable_f128_math)] { |
1047 | /// |
1048 | /// assert_eq!((-1.0_f128).ln_1p(), f128::NEG_INFINITY); |
1049 | /// assert!((-2.0_f128).ln_1p().is_nan()); |
1050 | /// # } |
1051 | /// ``` |
1052 | #[inline ] |
1053 | #[doc (alias = "log1p" )] |
1054 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1055 | #[rustc_allow_incoherent_impl ] |
1056 | #[unstable (feature = "f128" , issue = "116909" )] |
1057 | pub fn ln_1p(self) -> f128 { |
1058 | unsafe { cmath::log1pf128(self) } |
1059 | } |
1060 | |
1061 | /// Hyperbolic sine function. |
1062 | /// |
1063 | /// # Unspecified precision |
1064 | /// |
1065 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1066 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1067 | /// |
1068 | /// This function currently corresponds to the `sinhf128` from libc on Unix |
1069 | /// and Windows. Note that this might change in the future. |
1070 | /// |
1071 | /// # Examples |
1072 | /// |
1073 | /// ``` |
1074 | /// #![feature(f128)] |
1075 | /// # #[cfg (reliable_f128_math)] { |
1076 | /// |
1077 | /// let e = std::f128::consts::E; |
1078 | /// let x = 1.0f128; |
1079 | /// |
1080 | /// let f = x.sinh(); |
1081 | /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` |
1082 | /// let g = ((e * e) - 1.0) / (2.0 * e); |
1083 | /// let abs_difference = (f - g).abs(); |
1084 | /// |
1085 | /// assert!(abs_difference <= f128::EPSILON); |
1086 | /// # } |
1087 | /// ``` |
1088 | #[inline ] |
1089 | #[rustc_allow_incoherent_impl ] |
1090 | #[unstable (feature = "f128" , issue = "116909" )] |
1091 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1092 | pub fn sinh(self) -> f128 { |
1093 | unsafe { cmath::sinhf128(self) } |
1094 | } |
1095 | |
1096 | /// Hyperbolic cosine function. |
1097 | /// |
1098 | /// # Unspecified precision |
1099 | /// |
1100 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1101 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1102 | /// |
1103 | /// This function currently corresponds to the `coshf128` from libc on Unix |
1104 | /// and Windows. Note that this might change in the future. |
1105 | /// |
1106 | /// # Examples |
1107 | /// |
1108 | /// ``` |
1109 | /// #![feature(f128)] |
1110 | /// # #[cfg (reliable_f128_math)] { |
1111 | /// |
1112 | /// let e = std::f128::consts::E; |
1113 | /// let x = 1.0f128; |
1114 | /// let f = x.cosh(); |
1115 | /// // Solving cosh() at 1 gives this result |
1116 | /// let g = ((e * e) + 1.0) / (2.0 * e); |
1117 | /// let abs_difference = (f - g).abs(); |
1118 | /// |
1119 | /// // Same result |
1120 | /// assert!(abs_difference <= f128::EPSILON); |
1121 | /// # } |
1122 | /// ``` |
1123 | #[inline ] |
1124 | #[rustc_allow_incoherent_impl ] |
1125 | #[unstable (feature = "f128" , issue = "116909" )] |
1126 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1127 | pub fn cosh(self) -> f128 { |
1128 | unsafe { cmath::coshf128(self) } |
1129 | } |
1130 | |
1131 | /// Hyperbolic tangent function. |
1132 | /// |
1133 | /// # Unspecified precision |
1134 | /// |
1135 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1136 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1137 | /// |
1138 | /// This function currently corresponds to the `tanhf128` from libc on Unix |
1139 | /// and Windows. Note that this might change in the future. |
1140 | /// |
1141 | /// # Examples |
1142 | /// |
1143 | /// ``` |
1144 | /// #![feature(f128)] |
1145 | /// # #[cfg (reliable_f128_math)] { |
1146 | /// |
1147 | /// let e = std::f128::consts::E; |
1148 | /// let x = 1.0f128; |
1149 | /// |
1150 | /// let f = x.tanh(); |
1151 | /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` |
1152 | /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); |
1153 | /// let abs_difference = (f - g).abs(); |
1154 | /// |
1155 | /// assert!(abs_difference <= f128::EPSILON); |
1156 | /// # } |
1157 | /// ``` |
1158 | #[inline ] |
1159 | #[rustc_allow_incoherent_impl ] |
1160 | #[unstable (feature = "f128" , issue = "116909" )] |
1161 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1162 | pub fn tanh(self) -> f128 { |
1163 | unsafe { cmath::tanhf128(self) } |
1164 | } |
1165 | |
1166 | /// Inverse hyperbolic sine function. |
1167 | /// |
1168 | /// # Unspecified precision |
1169 | /// |
1170 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1171 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1172 | /// |
1173 | /// # Examples |
1174 | /// |
1175 | /// ``` |
1176 | /// #![feature(f128)] |
1177 | /// # #[cfg (reliable_f128_math)] { |
1178 | /// |
1179 | /// let x = 1.0f128; |
1180 | /// let f = x.sinh().asinh(); |
1181 | /// |
1182 | /// let abs_difference = (f - x).abs(); |
1183 | /// |
1184 | /// assert!(abs_difference <= f128::EPSILON); |
1185 | /// # } |
1186 | /// ``` |
1187 | #[inline ] |
1188 | #[doc (alias = "arcsinh" )] |
1189 | #[rustc_allow_incoherent_impl ] |
1190 | #[unstable (feature = "f128" , issue = "116909" )] |
1191 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1192 | pub fn asinh(self) -> f128 { |
1193 | let ax = self.abs(); |
1194 | let ix = 1.0 / ax; |
1195 | (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self) |
1196 | } |
1197 | |
1198 | /// Inverse hyperbolic cosine function. |
1199 | /// |
1200 | /// # Unspecified precision |
1201 | /// |
1202 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1203 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1204 | /// |
1205 | /// # Examples |
1206 | /// |
1207 | /// ``` |
1208 | /// #![feature(f128)] |
1209 | /// # #[cfg (reliable_f128_math)] { |
1210 | /// |
1211 | /// let x = 1.0f128; |
1212 | /// let f = x.cosh().acosh(); |
1213 | /// |
1214 | /// let abs_difference = (f - x).abs(); |
1215 | /// |
1216 | /// assert!(abs_difference <= f128::EPSILON); |
1217 | /// # } |
1218 | /// ``` |
1219 | #[inline ] |
1220 | #[doc (alias = "arccosh" )] |
1221 | #[rustc_allow_incoherent_impl ] |
1222 | #[unstable (feature = "f128" , issue = "116909" )] |
1223 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1224 | pub fn acosh(self) -> f128 { |
1225 | if self < 1.0 { |
1226 | Self::NAN |
1227 | } else { |
1228 | (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln() |
1229 | } |
1230 | } |
1231 | |
1232 | /// Inverse hyperbolic tangent function. |
1233 | /// |
1234 | /// # Unspecified precision |
1235 | /// |
1236 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1237 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1238 | /// |
1239 | /// # Examples |
1240 | /// |
1241 | /// ``` |
1242 | /// #![feature(f128)] |
1243 | /// # #[cfg (reliable_f128_math)] { |
1244 | /// |
1245 | /// let e = std::f128::consts::E; |
1246 | /// let f = e.tanh().atanh(); |
1247 | /// |
1248 | /// let abs_difference = (f - e).abs(); |
1249 | /// |
1250 | /// assert!(abs_difference <= 1e-5); |
1251 | /// # } |
1252 | /// ``` |
1253 | #[inline ] |
1254 | #[doc (alias = "arctanh" )] |
1255 | #[rustc_allow_incoherent_impl ] |
1256 | #[unstable (feature = "f128" , issue = "116909" )] |
1257 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1258 | pub fn atanh(self) -> f128 { |
1259 | 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() |
1260 | } |
1261 | |
1262 | /// Gamma function. |
1263 | /// |
1264 | /// # Unspecified precision |
1265 | /// |
1266 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1267 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1268 | /// |
1269 | /// This function currently corresponds to the `tgammaf128` from libc on Unix |
1270 | /// and Windows. Note that this might change in the future. |
1271 | /// |
1272 | /// # Examples |
1273 | /// |
1274 | /// ``` |
1275 | /// #![feature(f128)] |
1276 | /// #![feature(float_gamma)] |
1277 | /// # #[cfg (reliable_f128_math)] { |
1278 | /// |
1279 | /// let x = 5.0f128; |
1280 | /// |
1281 | /// let abs_difference = (x.gamma() - 24.0).abs(); |
1282 | /// |
1283 | /// assert!(abs_difference <= f128::EPSILON); |
1284 | /// # } |
1285 | /// ``` |
1286 | #[inline ] |
1287 | #[rustc_allow_incoherent_impl ] |
1288 | #[unstable (feature = "f128" , issue = "116909" )] |
1289 | // #[unstable(feature = "float_gamma", issue = "99842")] |
1290 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1291 | pub fn gamma(self) -> f128 { |
1292 | unsafe { cmath::tgammaf128(self) } |
1293 | } |
1294 | |
1295 | /// Natural logarithm of the absolute value of the gamma function |
1296 | /// |
1297 | /// The integer part of the tuple indicates the sign of the gamma function. |
1298 | /// |
1299 | /// # Unspecified precision |
1300 | /// |
1301 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1302 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1303 | /// |
1304 | /// This function currently corresponds to the `lgammaf128_r` from libc on Unix |
1305 | /// and Windows. Note that this might change in the future. |
1306 | /// |
1307 | /// # Examples |
1308 | /// |
1309 | /// ``` |
1310 | /// #![feature(f128)] |
1311 | /// #![feature(float_gamma)] |
1312 | /// # #[cfg (reliable_f128_math)] { |
1313 | /// |
1314 | /// let x = 2.0f128; |
1315 | /// |
1316 | /// let abs_difference = (x.ln_gamma().0 - 0.0).abs(); |
1317 | /// |
1318 | /// assert!(abs_difference <= f128::EPSILON); |
1319 | /// # } |
1320 | /// ``` |
1321 | #[inline ] |
1322 | #[rustc_allow_incoherent_impl ] |
1323 | #[unstable (feature = "f128" , issue = "116909" )] |
1324 | // #[unstable(feature = "float_gamma", issue = "99842")] |
1325 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1326 | pub fn ln_gamma(self) -> (f128, i32) { |
1327 | let mut signgamp: i32 = 0; |
1328 | let x = unsafe { cmath::lgammaf128_r(self, &mut signgamp) }; |
1329 | (x, signgamp) |
1330 | } |
1331 | |
1332 | /// Error function. |
1333 | /// |
1334 | /// # Unspecified precision |
1335 | /// |
1336 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1337 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1338 | /// |
1339 | /// This function currently corresponds to the `erff128` from libc on Unix |
1340 | /// and Windows. Note that this might change in the future. |
1341 | /// |
1342 | /// # Examples |
1343 | /// |
1344 | /// ``` |
1345 | /// #![feature(f128)] |
1346 | /// #![feature(float_erf)] |
1347 | /// # #[cfg (reliable_f128_math)] { |
1348 | /// /// The error function relates what percent of a normal distribution lies |
1349 | /// /// within `x` standard deviations (scaled by `1/sqrt(2)`). |
1350 | /// fn within_standard_deviations(x: f128) -> f128 { |
1351 | /// (x * std::f128::consts::FRAC_1_SQRT_2).erf() * 100.0 |
1352 | /// } |
1353 | /// |
1354 | /// // 68% of a normal distribution is within one standard deviation |
1355 | /// assert!((within_standard_deviations(1.0) - 68.269).abs() < 0.01); |
1356 | /// // 95% of a normal distribution is within two standard deviations |
1357 | /// assert!((within_standard_deviations(2.0) - 95.450).abs() < 0.01); |
1358 | /// // 99.7% of a normal distribution is within three standard deviations |
1359 | /// assert!((within_standard_deviations(3.0) - 99.730).abs() < 0.01); |
1360 | /// # } |
1361 | /// ``` |
1362 | #[rustc_allow_incoherent_impl ] |
1363 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1364 | #[unstable (feature = "f128" , issue = "116909" )] |
1365 | // #[unstable(feature = "float_erf", issue = "136321")] |
1366 | #[inline ] |
1367 | pub fn erf(self) -> f128 { |
1368 | unsafe { cmath::erff128(self) } |
1369 | } |
1370 | |
1371 | /// Complementary error function. |
1372 | /// |
1373 | /// # Unspecified precision |
1374 | /// |
1375 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1376 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1377 | /// |
1378 | /// This function currently corresponds to the `erfcf128` from libc on Unix |
1379 | /// and Windows. Note that this might change in the future. |
1380 | /// |
1381 | /// # Examples |
1382 | /// |
1383 | /// ``` |
1384 | /// #![feature(f128)] |
1385 | /// #![feature(float_erf)] |
1386 | /// # #[cfg (reliable_f128_math)] { |
1387 | /// let x: f128 = 0.123; |
1388 | /// |
1389 | /// let one = x.erf() + x.erfc(); |
1390 | /// let abs_difference = (one - 1.0).abs(); |
1391 | /// |
1392 | /// assert!(abs_difference <= f128::EPSILON); |
1393 | /// # } |
1394 | /// ``` |
1395 | #[rustc_allow_incoherent_impl ] |
1396 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1397 | #[unstable (feature = "f128" , issue = "116909" )] |
1398 | // #[unstable(feature = "float_erf", issue = "136321")] |
1399 | #[inline ] |
1400 | pub fn erfc(self) -> f128 { |
1401 | unsafe { cmath::erfcf128(self) } |
1402 | } |
1403 | } |
1404 | |