1 | //! Constants for the `f32` single-precision floating point type. |
2 | //! |
3 | //! *[See also the `f32` primitive type](primitive@f32).* |
4 | //! |
5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
6 | //! |
7 | //! For the constants defined directly in this module |
8 | //! (as distinct from those defined in the `consts` sub-module), |
9 | //! new code should instead use the associated constants |
10 | //! defined directly on the `f32` type. |
11 | |
12 | #![stable (feature = "rust1" , since = "1.0.0" )] |
13 | #![allow (missing_docs)] |
14 | |
15 | #[stable (feature = "rust1" , since = "1.0.0" )] |
16 | #[allow (deprecated, deprecated_in_future)] |
17 | pub use core::f32::{ |
18 | DIGITS, EPSILON, INFINITY, MANTISSA_DIGITS, MAX, MAX_10_EXP, MAX_EXP, MIN, MIN_10_EXP, MIN_EXP, |
19 | MIN_POSITIVE, NAN, NEG_INFINITY, RADIX, consts, |
20 | }; |
21 | |
22 | #[cfg (not(test))] |
23 | use crate::intrinsics; |
24 | #[cfg (not(test))] |
25 | use crate::sys::cmath; |
26 | |
27 | #[cfg (not(test))] |
28 | impl f32 { |
29 | /// Returns the largest integer less than or equal to `self`. |
30 | /// |
31 | /// This function always returns the precise result. |
32 | /// |
33 | /// # Examples |
34 | /// |
35 | /// ``` |
36 | /// let f = 3.7_f32; |
37 | /// let g = 3.0_f32; |
38 | /// let h = -3.7_f32; |
39 | /// |
40 | /// assert_eq!(f.floor(), 3.0); |
41 | /// assert_eq!(g.floor(), 3.0); |
42 | /// assert_eq!(h.floor(), -4.0); |
43 | /// ``` |
44 | #[rustc_allow_incoherent_impl ] |
45 | #[must_use = "method returns a new number and does not mutate the original value" ] |
46 | #[stable (feature = "rust1" , since = "1.0.0" )] |
47 | #[inline ] |
48 | pub fn floor(self) -> f32 { |
49 | unsafe { intrinsics::floorf32(self) } |
50 | } |
51 | |
52 | /// Returns the smallest integer greater than or equal to `self`. |
53 | /// |
54 | /// This function always returns the precise result. |
55 | /// |
56 | /// # Examples |
57 | /// |
58 | /// ``` |
59 | /// let f = 3.01_f32; |
60 | /// let g = 4.0_f32; |
61 | /// |
62 | /// assert_eq!(f.ceil(), 4.0); |
63 | /// assert_eq!(g.ceil(), 4.0); |
64 | /// ``` |
65 | #[doc (alias = "ceiling" )] |
66 | #[rustc_allow_incoherent_impl ] |
67 | #[must_use = "method returns a new number and does not mutate the original value" ] |
68 | #[stable (feature = "rust1" , since = "1.0.0" )] |
69 | #[inline ] |
70 | pub fn ceil(self) -> f32 { |
71 | unsafe { intrinsics::ceilf32(self) } |
72 | } |
73 | |
74 | /// Returns the nearest integer to `self`. If a value is half-way between two |
75 | /// integers, round away from `0.0`. |
76 | /// |
77 | /// This function always returns the precise result. |
78 | /// |
79 | /// # Examples |
80 | /// |
81 | /// ``` |
82 | /// let f = 3.3_f32; |
83 | /// let g = -3.3_f32; |
84 | /// let h = -3.7_f32; |
85 | /// let i = 3.5_f32; |
86 | /// let j = 4.5_f32; |
87 | /// |
88 | /// assert_eq!(f.round(), 3.0); |
89 | /// assert_eq!(g.round(), -3.0); |
90 | /// assert_eq!(h.round(), -4.0); |
91 | /// assert_eq!(i.round(), 4.0); |
92 | /// assert_eq!(j.round(), 5.0); |
93 | /// ``` |
94 | #[rustc_allow_incoherent_impl ] |
95 | #[must_use = "method returns a new number and does not mutate the original value" ] |
96 | #[stable (feature = "rust1" , since = "1.0.0" )] |
97 | #[inline ] |
98 | pub fn round(self) -> f32 { |
99 | unsafe { intrinsics::roundf32(self) } |
100 | } |
101 | |
102 | /// Returns the nearest integer to a number. Rounds half-way cases to the number |
103 | /// with an even least significant digit. |
104 | /// |
105 | /// This function always returns the precise result. |
106 | /// |
107 | /// # Examples |
108 | /// |
109 | /// ``` |
110 | /// let f = 3.3_f32; |
111 | /// let g = -3.3_f32; |
112 | /// let h = 3.5_f32; |
113 | /// let i = 4.5_f32; |
114 | /// |
115 | /// assert_eq!(f.round_ties_even(), 3.0); |
116 | /// assert_eq!(g.round_ties_even(), -3.0); |
117 | /// assert_eq!(h.round_ties_even(), 4.0); |
118 | /// assert_eq!(i.round_ties_even(), 4.0); |
119 | /// ``` |
120 | #[rustc_allow_incoherent_impl ] |
121 | #[must_use = "method returns a new number and does not mutate the original value" ] |
122 | #[stable (feature = "round_ties_even" , since = "1.77.0" )] |
123 | #[inline ] |
124 | pub fn round_ties_even(self) -> f32 { |
125 | intrinsics::round_ties_even_f32(self) |
126 | } |
127 | |
128 | /// Returns the integer part of `self`. |
129 | /// This means that non-integer numbers are always truncated towards zero. |
130 | /// |
131 | /// This function always returns the precise result. |
132 | /// |
133 | /// # Examples |
134 | /// |
135 | /// ``` |
136 | /// let f = 3.7_f32; |
137 | /// let g = 3.0_f32; |
138 | /// let h = -3.7_f32; |
139 | /// |
140 | /// assert_eq!(f.trunc(), 3.0); |
141 | /// assert_eq!(g.trunc(), 3.0); |
142 | /// assert_eq!(h.trunc(), -3.0); |
143 | /// ``` |
144 | #[doc (alias = "truncate" )] |
145 | #[rustc_allow_incoherent_impl ] |
146 | #[must_use = "method returns a new number and does not mutate the original value" ] |
147 | #[stable (feature = "rust1" , since = "1.0.0" )] |
148 | #[inline ] |
149 | pub fn trunc(self) -> f32 { |
150 | unsafe { intrinsics::truncf32(self) } |
151 | } |
152 | |
153 | /// Returns the fractional part of `self`. |
154 | /// |
155 | /// This function always returns the precise result. |
156 | /// |
157 | /// # Examples |
158 | /// |
159 | /// ``` |
160 | /// let x = 3.6_f32; |
161 | /// let y = -3.6_f32; |
162 | /// let abs_difference_x = (x.fract() - 0.6).abs(); |
163 | /// let abs_difference_y = (y.fract() - (-0.6)).abs(); |
164 | /// |
165 | /// assert!(abs_difference_x <= f32::EPSILON); |
166 | /// assert!(abs_difference_y <= f32::EPSILON); |
167 | /// ``` |
168 | #[rustc_allow_incoherent_impl ] |
169 | #[must_use = "method returns a new number and does not mutate the original value" ] |
170 | #[stable (feature = "rust1" , since = "1.0.0" )] |
171 | #[inline ] |
172 | pub fn fract(self) -> f32 { |
173 | self - self.trunc() |
174 | } |
175 | |
176 | /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
177 | /// error, yielding a more accurate result than an unfused multiply-add. |
178 | /// |
179 | /// Using `mul_add` *may* be more performant than an unfused multiply-add if |
180 | /// the target architecture has a dedicated `fma` CPU instruction. However, |
181 | /// this is not always true, and will be heavily dependant on designing |
182 | /// algorithms with specific target hardware in mind. |
183 | /// |
184 | /// # Precision |
185 | /// |
186 | /// The result of this operation is guaranteed to be the rounded |
187 | /// infinite-precision result. It is specified by IEEE 754 as |
188 | /// `fusedMultiplyAdd` and guaranteed not to change. |
189 | /// |
190 | /// # Examples |
191 | /// |
192 | /// ``` |
193 | /// let m = 10.0_f32; |
194 | /// let x = 4.0_f32; |
195 | /// let b = 60.0_f32; |
196 | /// |
197 | /// assert_eq!(m.mul_add(x, b), 100.0); |
198 | /// assert_eq!(m * x + b, 100.0); |
199 | /// |
200 | /// let one_plus_eps = 1.0_f32 + f32::EPSILON; |
201 | /// let one_minus_eps = 1.0_f32 - f32::EPSILON; |
202 | /// let minus_one = -1.0_f32; |
203 | /// |
204 | /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. |
205 | /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f32::EPSILON * f32::EPSILON); |
206 | /// // Different rounding with the non-fused multiply and add. |
207 | /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); |
208 | /// ``` |
209 | #[rustc_allow_incoherent_impl ] |
210 | #[doc (alias = "fmaf" , alias = "fusedMultiplyAdd" )] |
211 | #[must_use = "method returns a new number and does not mutate the original value" ] |
212 | #[stable (feature = "rust1" , since = "1.0.0" )] |
213 | #[inline ] |
214 | pub fn mul_add(self, a: f32, b: f32) -> f32 { |
215 | unsafe { intrinsics::fmaf32(self, a, b) } |
216 | } |
217 | |
218 | /// Calculates Euclidean division, the matching method for `rem_euclid`. |
219 | /// |
220 | /// This computes the integer `n` such that |
221 | /// `self = n * rhs + self.rem_euclid(rhs)`. |
222 | /// In other words, the result is `self / rhs` rounded to the integer `n` |
223 | /// such that `self >= n * rhs`. |
224 | /// |
225 | /// # Precision |
226 | /// |
227 | /// The result of this operation is guaranteed to be the rounded |
228 | /// infinite-precision result. |
229 | /// |
230 | /// # Examples |
231 | /// |
232 | /// ``` |
233 | /// let a: f32 = 7.0; |
234 | /// let b = 4.0; |
235 | /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 |
236 | /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 |
237 | /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 |
238 | /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 |
239 | /// ``` |
240 | #[rustc_allow_incoherent_impl ] |
241 | #[must_use = "method returns a new number and does not mutate the original value" ] |
242 | #[inline ] |
243 | #[stable (feature = "euclidean_division" , since = "1.38.0" )] |
244 | pub fn div_euclid(self, rhs: f32) -> f32 { |
245 | let q = (self / rhs).trunc(); |
246 | if self % rhs < 0.0 { |
247 | return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; |
248 | } |
249 | q |
250 | } |
251 | |
252 | /// Calculates the least nonnegative remainder of `self (mod rhs)`. |
253 | /// |
254 | /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in |
255 | /// most cases. However, due to a floating point round-off error it can |
256 | /// result in `r == rhs.abs()`, violating the mathematical definition, if |
257 | /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. |
258 | /// This result is not an element of the function's codomain, but it is the |
259 | /// closest floating point number in the real numbers and thus fulfills the |
260 | /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` |
261 | /// approximately. |
262 | /// |
263 | /// # Precision |
264 | /// |
265 | /// The result of this operation is guaranteed to be the rounded |
266 | /// infinite-precision result. |
267 | /// |
268 | /// # Examples |
269 | /// |
270 | /// ``` |
271 | /// let a: f32 = 7.0; |
272 | /// let b = 4.0; |
273 | /// assert_eq!(a.rem_euclid(b), 3.0); |
274 | /// assert_eq!((-a).rem_euclid(b), 1.0); |
275 | /// assert_eq!(a.rem_euclid(-b), 3.0); |
276 | /// assert_eq!((-a).rem_euclid(-b), 1.0); |
277 | /// // limitation due to round-off error |
278 | /// assert!((-f32::EPSILON).rem_euclid(3.0) != 0.0); |
279 | /// ``` |
280 | #[doc (alias = "modulo" , alias = "mod" )] |
281 | #[rustc_allow_incoherent_impl ] |
282 | #[must_use = "method returns a new number and does not mutate the original value" ] |
283 | #[inline ] |
284 | #[stable (feature = "euclidean_division" , since = "1.38.0" )] |
285 | pub fn rem_euclid(self, rhs: f32) -> f32 { |
286 | let r = self % rhs; |
287 | if r < 0.0 { r + rhs.abs() } else { r } |
288 | } |
289 | |
290 | /// Raises a number to an integer power. |
291 | /// |
292 | /// Using this function is generally faster than using `powf`. |
293 | /// It might have a different sequence of rounding operations than `powf`, |
294 | /// so the results are not guaranteed to agree. |
295 | /// |
296 | /// # Unspecified precision |
297 | /// |
298 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
299 | /// can even differ within the same execution from one invocation to the next. |
300 | /// |
301 | /// # Examples |
302 | /// |
303 | /// ``` |
304 | /// let x = 2.0_f32; |
305 | /// let abs_difference = (x.powi(2) - (x * x)).abs(); |
306 | /// assert!(abs_difference <= f32::EPSILON); |
307 | /// |
308 | /// assert_eq!(f32::powi(f32::NAN, 0), 1.0); |
309 | /// ``` |
310 | #[rustc_allow_incoherent_impl ] |
311 | #[must_use = "method returns a new number and does not mutate the original value" ] |
312 | #[stable (feature = "rust1" , since = "1.0.0" )] |
313 | #[inline ] |
314 | pub fn powi(self, n: i32) -> f32 { |
315 | unsafe { intrinsics::powif32(self, n) } |
316 | } |
317 | |
318 | /// Raises a number to a floating point power. |
319 | /// |
320 | /// # Unspecified precision |
321 | /// |
322 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
323 | /// can even differ within the same execution from one invocation to the next. |
324 | /// |
325 | /// # Examples |
326 | /// |
327 | /// ``` |
328 | /// let x = 2.0_f32; |
329 | /// let abs_difference = (x.powf(2.0) - (x * x)).abs(); |
330 | /// assert!(abs_difference <= f32::EPSILON); |
331 | /// |
332 | /// assert_eq!(f32::powf(1.0, f32::NAN), 1.0); |
333 | /// assert_eq!(f32::powf(f32::NAN, 0.0), 1.0); |
334 | /// ``` |
335 | #[rustc_allow_incoherent_impl ] |
336 | #[must_use = "method returns a new number and does not mutate the original value" ] |
337 | #[stable (feature = "rust1" , since = "1.0.0" )] |
338 | #[inline ] |
339 | pub fn powf(self, n: f32) -> f32 { |
340 | unsafe { intrinsics::powf32(self, n) } |
341 | } |
342 | |
343 | /// Returns the square root of a number. |
344 | /// |
345 | /// Returns NaN if `self` is a negative number other than `-0.0`. |
346 | /// |
347 | /// # Precision |
348 | /// |
349 | /// The result of this operation is guaranteed to be the rounded |
350 | /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` |
351 | /// and guaranteed not to change. |
352 | /// |
353 | /// # Examples |
354 | /// |
355 | /// ``` |
356 | /// let positive = 4.0_f32; |
357 | /// let negative = -4.0_f32; |
358 | /// let negative_zero = -0.0_f32; |
359 | /// |
360 | /// assert_eq!(positive.sqrt(), 2.0); |
361 | /// assert!(negative.sqrt().is_nan()); |
362 | /// assert!(negative_zero.sqrt() == negative_zero); |
363 | /// ``` |
364 | #[doc (alias = "squareRoot" )] |
365 | #[rustc_allow_incoherent_impl ] |
366 | #[must_use = "method returns a new number and does not mutate the original value" ] |
367 | #[stable (feature = "rust1" , since = "1.0.0" )] |
368 | #[inline ] |
369 | pub fn sqrt(self) -> f32 { |
370 | unsafe { intrinsics::sqrtf32(self) } |
371 | } |
372 | |
373 | /// Returns `e^(self)`, (the exponential function). |
374 | /// |
375 | /// # Unspecified precision |
376 | /// |
377 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
378 | /// can even differ within the same execution from one invocation to the next. |
379 | /// |
380 | /// # Examples |
381 | /// |
382 | /// ``` |
383 | /// let one = 1.0f32; |
384 | /// // e^1 |
385 | /// let e = one.exp(); |
386 | /// |
387 | /// // ln(e) - 1 == 0 |
388 | /// let abs_difference = (e.ln() - 1.0).abs(); |
389 | /// |
390 | /// assert!(abs_difference <= f32::EPSILON); |
391 | /// ``` |
392 | #[rustc_allow_incoherent_impl ] |
393 | #[must_use = "method returns a new number and does not mutate the original value" ] |
394 | #[stable (feature = "rust1" , since = "1.0.0" )] |
395 | #[inline ] |
396 | pub fn exp(self) -> f32 { |
397 | unsafe { intrinsics::expf32(self) } |
398 | } |
399 | |
400 | /// Returns `2^(self)`. |
401 | /// |
402 | /// # Unspecified precision |
403 | /// |
404 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
405 | /// can even differ within the same execution from one invocation to the next. |
406 | /// |
407 | /// # Examples |
408 | /// |
409 | /// ``` |
410 | /// let f = 2.0f32; |
411 | /// |
412 | /// // 2^2 - 4 == 0 |
413 | /// let abs_difference = (f.exp2() - 4.0).abs(); |
414 | /// |
415 | /// assert!(abs_difference <= f32::EPSILON); |
416 | /// ``` |
417 | #[rustc_allow_incoherent_impl ] |
418 | #[must_use = "method returns a new number and does not mutate the original value" ] |
419 | #[stable (feature = "rust1" , since = "1.0.0" )] |
420 | #[inline ] |
421 | pub fn exp2(self) -> f32 { |
422 | unsafe { intrinsics::exp2f32(self) } |
423 | } |
424 | |
425 | /// Returns the natural logarithm of the number. |
426 | /// |
427 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
428 | /// |
429 | /// # Unspecified precision |
430 | /// |
431 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
432 | /// can even differ within the same execution from one invocation to the next. |
433 | /// |
434 | /// # Examples |
435 | /// |
436 | /// ``` |
437 | /// let one = 1.0f32; |
438 | /// // e^1 |
439 | /// let e = one.exp(); |
440 | /// |
441 | /// // ln(e) - 1 == 0 |
442 | /// let abs_difference = (e.ln() - 1.0).abs(); |
443 | /// |
444 | /// assert!(abs_difference <= f32::EPSILON); |
445 | /// ``` |
446 | /// |
447 | /// Non-positive values: |
448 | /// ``` |
449 | /// assert_eq!(0_f32.ln(), f32::NEG_INFINITY); |
450 | /// assert!((-42_f32).ln().is_nan()); |
451 | /// ``` |
452 | #[rustc_allow_incoherent_impl ] |
453 | #[must_use = "method returns a new number and does not mutate the original value" ] |
454 | #[stable (feature = "rust1" , since = "1.0.0" )] |
455 | #[inline ] |
456 | pub fn ln(self) -> f32 { |
457 | unsafe { intrinsics::logf32(self) } |
458 | } |
459 | |
460 | /// Returns the logarithm of the number with respect to an arbitrary base. |
461 | /// |
462 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
463 | /// |
464 | /// The result might not be correctly rounded owing to implementation details; |
465 | /// `self.log2()` can produce more accurate results for base 2, and |
466 | /// `self.log10()` can produce more accurate results for base 10. |
467 | /// |
468 | /// # Unspecified precision |
469 | /// |
470 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
471 | /// can even differ within the same execution from one invocation to the next. |
472 | /// |
473 | /// # Examples |
474 | /// |
475 | /// ``` |
476 | /// let five = 5.0f32; |
477 | /// |
478 | /// // log5(5) - 1 == 0 |
479 | /// let abs_difference = (five.log(5.0) - 1.0).abs(); |
480 | /// |
481 | /// assert!(abs_difference <= f32::EPSILON); |
482 | /// ``` |
483 | /// |
484 | /// Non-positive values: |
485 | /// ``` |
486 | /// assert_eq!(0_f32.log(10.0), f32::NEG_INFINITY); |
487 | /// assert!((-42_f32).log(10.0).is_nan()); |
488 | /// ``` |
489 | #[rustc_allow_incoherent_impl ] |
490 | #[must_use = "method returns a new number and does not mutate the original value" ] |
491 | #[stable (feature = "rust1" , since = "1.0.0" )] |
492 | #[inline ] |
493 | pub fn log(self, base: f32) -> f32 { |
494 | self.ln() / base.ln() |
495 | } |
496 | |
497 | /// Returns the base 2 logarithm of the number. |
498 | /// |
499 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
500 | /// |
501 | /// # Unspecified precision |
502 | /// |
503 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
504 | /// can even differ within the same execution from one invocation to the next. |
505 | /// |
506 | /// # Examples |
507 | /// |
508 | /// ``` |
509 | /// let two = 2.0f32; |
510 | /// |
511 | /// // log2(2) - 1 == 0 |
512 | /// let abs_difference = (two.log2() - 1.0).abs(); |
513 | /// |
514 | /// assert!(abs_difference <= f32::EPSILON); |
515 | /// ``` |
516 | /// |
517 | /// Non-positive values: |
518 | /// ``` |
519 | /// assert_eq!(0_f32.log2(), f32::NEG_INFINITY); |
520 | /// assert!((-42_f32).log2().is_nan()); |
521 | /// ``` |
522 | #[rustc_allow_incoherent_impl ] |
523 | #[must_use = "method returns a new number and does not mutate the original value" ] |
524 | #[stable (feature = "rust1" , since = "1.0.0" )] |
525 | #[inline ] |
526 | pub fn log2(self) -> f32 { |
527 | unsafe { intrinsics::log2f32(self) } |
528 | } |
529 | |
530 | /// Returns the base 10 logarithm of the number. |
531 | /// |
532 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
533 | /// |
534 | /// # Unspecified precision |
535 | /// |
536 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
537 | /// can even differ within the same execution from one invocation to the next. |
538 | /// |
539 | /// # Examples |
540 | /// |
541 | /// ``` |
542 | /// let ten = 10.0f32; |
543 | /// |
544 | /// // log10(10) - 1 == 0 |
545 | /// let abs_difference = (ten.log10() - 1.0).abs(); |
546 | /// |
547 | /// assert!(abs_difference <= f32::EPSILON); |
548 | /// ``` |
549 | /// |
550 | /// Non-positive values: |
551 | /// ``` |
552 | /// assert_eq!(0_f32.log10(), f32::NEG_INFINITY); |
553 | /// assert!((-42_f32).log10().is_nan()); |
554 | /// ``` |
555 | #[rustc_allow_incoherent_impl ] |
556 | #[must_use = "method returns a new number and does not mutate the original value" ] |
557 | #[stable (feature = "rust1" , since = "1.0.0" )] |
558 | #[inline ] |
559 | pub fn log10(self) -> f32 { |
560 | unsafe { intrinsics::log10f32(self) } |
561 | } |
562 | |
563 | /// The positive difference of two numbers. |
564 | /// |
565 | /// * If `self <= other`: `0.0` |
566 | /// * Else: `self - other` |
567 | /// |
568 | /// # Unspecified precision |
569 | /// |
570 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
571 | /// can even differ within the same execution from one invocation to the next. |
572 | /// This function currently corresponds to the `fdimf` from libc on Unix |
573 | /// and Windows. Note that this might change in the future. |
574 | /// |
575 | /// # Examples |
576 | /// |
577 | /// ``` |
578 | /// let x = 3.0f32; |
579 | /// let y = -3.0f32; |
580 | /// |
581 | /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); |
582 | /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); |
583 | /// |
584 | /// assert!(abs_difference_x <= f32::EPSILON); |
585 | /// assert!(abs_difference_y <= f32::EPSILON); |
586 | /// ``` |
587 | #[rustc_allow_incoherent_impl ] |
588 | #[must_use = "method returns a new number and does not mutate the original value" ] |
589 | #[stable (feature = "rust1" , since = "1.0.0" )] |
590 | #[inline ] |
591 | #[deprecated ( |
592 | since = "1.10.0" , |
593 | note = "you probably meant `(self - other).abs()`: \ |
594 | this operation is `(self - other).max(0.0)` \ |
595 | except that `abs_sub` also propagates NaNs (also \ |
596 | known as `fdimf` in C). If you truly need the positive \ |
597 | difference, consider using that expression or the C function \ |
598 | `fdimf`, depending on how you wish to handle NaN (please consider \ |
599 | filing an issue describing your use-case too)." |
600 | )] |
601 | pub fn abs_sub(self, other: f32) -> f32 { |
602 | unsafe { cmath::fdimf(self, other) } |
603 | } |
604 | |
605 | /// Returns the cube root of a number. |
606 | /// |
607 | /// # Unspecified precision |
608 | /// |
609 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
610 | /// can even differ within the same execution from one invocation to the next. |
611 | /// This function currently corresponds to the `cbrtf` from libc on Unix |
612 | /// and Windows. Note that this might change in the future. |
613 | /// |
614 | /// # Examples |
615 | /// |
616 | /// ``` |
617 | /// let x = 8.0f32; |
618 | /// |
619 | /// // x^(1/3) - 2 == 0 |
620 | /// let abs_difference = (x.cbrt() - 2.0).abs(); |
621 | /// |
622 | /// assert!(abs_difference <= f32::EPSILON); |
623 | /// ``` |
624 | #[rustc_allow_incoherent_impl ] |
625 | #[must_use = "method returns a new number and does not mutate the original value" ] |
626 | #[stable (feature = "rust1" , since = "1.0.0" )] |
627 | #[inline ] |
628 | pub fn cbrt(self) -> f32 { |
629 | unsafe { cmath::cbrtf(self) } |
630 | } |
631 | |
632 | /// Compute the distance between the origin and a point (`x`, `y`) on the |
633 | /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a |
634 | /// right-angle triangle with other sides having length `x.abs()` and |
635 | /// `y.abs()`. |
636 | /// |
637 | /// # Unspecified precision |
638 | /// |
639 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
640 | /// can even differ within the same execution from one invocation to the next. |
641 | /// This function currently corresponds to the `hypotf` from libc on Unix |
642 | /// and Windows. Note that this might change in the future. |
643 | /// |
644 | /// # Examples |
645 | /// |
646 | /// ``` |
647 | /// let x = 2.0f32; |
648 | /// let y = 3.0f32; |
649 | /// |
650 | /// // sqrt(x^2 + y^2) |
651 | /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); |
652 | /// |
653 | /// assert!(abs_difference <= f32::EPSILON); |
654 | /// ``` |
655 | #[rustc_allow_incoherent_impl ] |
656 | #[must_use = "method returns a new number and does not mutate the original value" ] |
657 | #[stable (feature = "rust1" , since = "1.0.0" )] |
658 | #[inline ] |
659 | pub fn hypot(self, other: f32) -> f32 { |
660 | unsafe { cmath::hypotf(self, other) } |
661 | } |
662 | |
663 | /// Computes the sine of a number (in radians). |
664 | /// |
665 | /// # Unspecified precision |
666 | /// |
667 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
668 | /// can even differ within the same execution from one invocation to the next. |
669 | /// |
670 | /// # Examples |
671 | /// |
672 | /// ``` |
673 | /// let x = std::f32::consts::FRAC_PI_2; |
674 | /// |
675 | /// let abs_difference = (x.sin() - 1.0).abs(); |
676 | /// |
677 | /// assert!(abs_difference <= f32::EPSILON); |
678 | /// ``` |
679 | #[rustc_allow_incoherent_impl ] |
680 | #[must_use = "method returns a new number and does not mutate the original value" ] |
681 | #[stable (feature = "rust1" , since = "1.0.0" )] |
682 | #[inline ] |
683 | pub fn sin(self) -> f32 { |
684 | unsafe { intrinsics::sinf32(self) } |
685 | } |
686 | |
687 | /// Computes the cosine of a number (in radians). |
688 | /// |
689 | /// # Unspecified precision |
690 | /// |
691 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
692 | /// can even differ within the same execution from one invocation to the next. |
693 | /// |
694 | /// # Examples |
695 | /// |
696 | /// ``` |
697 | /// let x = 2.0 * std::f32::consts::PI; |
698 | /// |
699 | /// let abs_difference = (x.cos() - 1.0).abs(); |
700 | /// |
701 | /// assert!(abs_difference <= f32::EPSILON); |
702 | /// ``` |
703 | #[rustc_allow_incoherent_impl ] |
704 | #[must_use = "method returns a new number and does not mutate the original value" ] |
705 | #[stable (feature = "rust1" , since = "1.0.0" )] |
706 | #[inline ] |
707 | pub fn cos(self) -> f32 { |
708 | unsafe { intrinsics::cosf32(self) } |
709 | } |
710 | |
711 | /// Computes the tangent of a number (in radians). |
712 | /// |
713 | /// # Unspecified precision |
714 | /// |
715 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
716 | /// can even differ within the same execution from one invocation to the next. |
717 | /// This function currently corresponds to the `tanf` from libc on Unix and |
718 | /// Windows. Note that this might change in the future. |
719 | /// |
720 | /// # Examples |
721 | /// |
722 | /// ``` |
723 | /// let x = std::f32::consts::FRAC_PI_4; |
724 | /// let abs_difference = (x.tan() - 1.0).abs(); |
725 | /// |
726 | /// assert!(abs_difference <= f32::EPSILON); |
727 | /// ``` |
728 | #[rustc_allow_incoherent_impl ] |
729 | #[must_use = "method returns a new number and does not mutate the original value" ] |
730 | #[stable (feature = "rust1" , since = "1.0.0" )] |
731 | #[inline ] |
732 | pub fn tan(self) -> f32 { |
733 | unsafe { cmath::tanf(self) } |
734 | } |
735 | |
736 | /// Computes the arcsine of a number. Return value is in radians in |
737 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
738 | /// [-1, 1]. |
739 | /// |
740 | /// # Unspecified precision |
741 | /// |
742 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
743 | /// can even differ within the same execution from one invocation to the next. |
744 | /// This function currently corresponds to the `asinf` from libc on Unix |
745 | /// and Windows. Note that this might change in the future. |
746 | /// |
747 | /// # Examples |
748 | /// |
749 | /// ``` |
750 | /// let f = std::f32::consts::FRAC_PI_2; |
751 | /// |
752 | /// // asin(sin(pi/2)) |
753 | /// let abs_difference = (f.sin().asin() - std::f32::consts::FRAC_PI_2).abs(); |
754 | /// |
755 | /// assert!(abs_difference <= f32::EPSILON); |
756 | /// ``` |
757 | #[doc (alias = "arcsin" )] |
758 | #[rustc_allow_incoherent_impl ] |
759 | #[must_use = "method returns a new number and does not mutate the original value" ] |
760 | #[stable (feature = "rust1" , since = "1.0.0" )] |
761 | #[inline ] |
762 | pub fn asin(self) -> f32 { |
763 | unsafe { cmath::asinf(self) } |
764 | } |
765 | |
766 | /// Computes the arccosine of a number. Return value is in radians in |
767 | /// the range [0, pi] or NaN if the number is outside the range |
768 | /// [-1, 1]. |
769 | /// |
770 | /// # Unspecified precision |
771 | /// |
772 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
773 | /// can even differ within the same execution from one invocation to the next. |
774 | /// This function currently corresponds to the `acosf` from libc on Unix |
775 | /// and Windows. Note that this might change in the future. |
776 | /// |
777 | /// # Examples |
778 | /// |
779 | /// ``` |
780 | /// let f = std::f32::consts::FRAC_PI_4; |
781 | /// |
782 | /// // acos(cos(pi/4)) |
783 | /// let abs_difference = (f.cos().acos() - std::f32::consts::FRAC_PI_4).abs(); |
784 | /// |
785 | /// assert!(abs_difference <= f32::EPSILON); |
786 | /// ``` |
787 | #[doc (alias = "arccos" )] |
788 | #[rustc_allow_incoherent_impl ] |
789 | #[must_use = "method returns a new number and does not mutate the original value" ] |
790 | #[stable (feature = "rust1" , since = "1.0.0" )] |
791 | #[inline ] |
792 | pub fn acos(self) -> f32 { |
793 | unsafe { cmath::acosf(self) } |
794 | } |
795 | |
796 | /// Computes the arctangent of a number. Return value is in radians in the |
797 | /// range [-pi/2, pi/2]; |
798 | /// |
799 | /// # Unspecified precision |
800 | /// |
801 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
802 | /// can even differ within the same execution from one invocation to the next. |
803 | /// This function currently corresponds to the `atanf` from libc on Unix |
804 | /// and Windows. Note that this might change in the future. |
805 | /// |
806 | /// # Examples |
807 | /// |
808 | /// ``` |
809 | /// let f = 1.0f32; |
810 | /// |
811 | /// // atan(tan(1)) |
812 | /// let abs_difference = (f.tan().atan() - 1.0).abs(); |
813 | /// |
814 | /// assert!(abs_difference <= f32::EPSILON); |
815 | /// ``` |
816 | #[doc (alias = "arctan" )] |
817 | #[rustc_allow_incoherent_impl ] |
818 | #[must_use = "method returns a new number and does not mutate the original value" ] |
819 | #[stable (feature = "rust1" , since = "1.0.0" )] |
820 | #[inline ] |
821 | pub fn atan(self) -> f32 { |
822 | unsafe { cmath::atanf(self) } |
823 | } |
824 | |
825 | /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. |
826 | /// |
827 | /// * `x = 0`, `y = 0`: `0` |
828 | /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` |
829 | /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` |
830 | /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` |
831 | /// |
832 | /// # Unspecified precision |
833 | /// |
834 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
835 | /// can even differ within the same execution from one invocation to the next. |
836 | /// This function currently corresponds to the `atan2f` from libc on Unix |
837 | /// and Windows. Note that this might change in the future. |
838 | /// |
839 | /// # Examples |
840 | /// |
841 | /// ``` |
842 | /// // Positive angles measured counter-clockwise |
843 | /// // from positive x axis |
844 | /// // -pi/4 radians (45 deg clockwise) |
845 | /// let x1 = 3.0f32; |
846 | /// let y1 = -3.0f32; |
847 | /// |
848 | /// // 3pi/4 radians (135 deg counter-clockwise) |
849 | /// let x2 = -3.0f32; |
850 | /// let y2 = 3.0f32; |
851 | /// |
852 | /// let abs_difference_1 = (y1.atan2(x1) - (-std::f32::consts::FRAC_PI_4)).abs(); |
853 | /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f32::consts::FRAC_PI_4)).abs(); |
854 | /// |
855 | /// assert!(abs_difference_1 <= f32::EPSILON); |
856 | /// assert!(abs_difference_2 <= f32::EPSILON); |
857 | /// ``` |
858 | #[rustc_allow_incoherent_impl ] |
859 | #[must_use = "method returns a new number and does not mutate the original value" ] |
860 | #[stable (feature = "rust1" , since = "1.0.0" )] |
861 | #[inline ] |
862 | pub fn atan2(self, other: f32) -> f32 { |
863 | unsafe { cmath::atan2f(self, other) } |
864 | } |
865 | |
866 | /// Simultaneously computes the sine and cosine of the number, `x`. Returns |
867 | /// `(sin(x), cos(x))`. |
868 | /// |
869 | /// # Unspecified precision |
870 | /// |
871 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
872 | /// can even differ within the same execution from one invocation to the next. |
873 | /// This function currently corresponds to the `(f32::sin(x), |
874 | /// f32::cos(x))`. Note that this might change in the future. |
875 | /// |
876 | /// # Examples |
877 | /// |
878 | /// ``` |
879 | /// let x = std::f32::consts::FRAC_PI_4; |
880 | /// let f = x.sin_cos(); |
881 | /// |
882 | /// let abs_difference_0 = (f.0 - x.sin()).abs(); |
883 | /// let abs_difference_1 = (f.1 - x.cos()).abs(); |
884 | /// |
885 | /// assert!(abs_difference_0 <= f32::EPSILON); |
886 | /// assert!(abs_difference_1 <= f32::EPSILON); |
887 | /// ``` |
888 | #[doc (alias = "sincos" )] |
889 | #[rustc_allow_incoherent_impl ] |
890 | #[stable (feature = "rust1" , since = "1.0.0" )] |
891 | #[inline ] |
892 | pub fn sin_cos(self) -> (f32, f32) { |
893 | (self.sin(), self.cos()) |
894 | } |
895 | |
896 | /// Returns `e^(self) - 1` in a way that is accurate even if the |
897 | /// number is close to zero. |
898 | /// |
899 | /// # Unspecified precision |
900 | /// |
901 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
902 | /// can even differ within the same execution from one invocation to the next. |
903 | /// This function currently corresponds to the `expm1f` from libc on Unix |
904 | /// and Windows. Note that this might change in the future. |
905 | /// |
906 | /// # Examples |
907 | /// |
908 | /// ``` |
909 | /// let x = 1e-8_f32; |
910 | /// |
911 | /// // for very small x, e^x is approximately 1 + x + x^2 / 2 |
912 | /// let approx = x + x * x / 2.0; |
913 | /// let abs_difference = (x.exp_m1() - approx).abs(); |
914 | /// |
915 | /// assert!(abs_difference < 1e-10); |
916 | /// ``` |
917 | #[rustc_allow_incoherent_impl ] |
918 | #[must_use = "method returns a new number and does not mutate the original value" ] |
919 | #[stable (feature = "rust1" , since = "1.0.0" )] |
920 | #[inline ] |
921 | pub fn exp_m1(self) -> f32 { |
922 | unsafe { cmath::expm1f(self) } |
923 | } |
924 | |
925 | /// Returns `ln(1+n)` (natural logarithm) more accurately than if |
926 | /// the operations were performed separately. |
927 | /// |
928 | /// This returns NaN when `n < -1.0`, and negative infinity when `n == -1.0`. |
929 | /// |
930 | /// # Unspecified precision |
931 | /// |
932 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
933 | /// can even differ within the same execution from one invocation to the next. |
934 | /// This function currently corresponds to the `log1pf` from libc on Unix |
935 | /// and Windows. Note that this might change in the future. |
936 | /// |
937 | /// # Examples |
938 | /// |
939 | /// ``` |
940 | /// let x = 1e-8_f32; |
941 | /// |
942 | /// // for very small x, ln(1 + x) is approximately x - x^2 / 2 |
943 | /// let approx = x - x * x / 2.0; |
944 | /// let abs_difference = (x.ln_1p() - approx).abs(); |
945 | /// |
946 | /// assert!(abs_difference < 1e-10); |
947 | /// ``` |
948 | /// |
949 | /// Out-of-range values: |
950 | /// ``` |
951 | /// assert_eq!((-1.0_f32).ln_1p(), f32::NEG_INFINITY); |
952 | /// assert!((-2.0_f32).ln_1p().is_nan()); |
953 | /// ``` |
954 | #[doc (alias = "log1p" )] |
955 | #[rustc_allow_incoherent_impl ] |
956 | #[must_use = "method returns a new number and does not mutate the original value" ] |
957 | #[stable (feature = "rust1" , since = "1.0.0" )] |
958 | #[inline ] |
959 | pub fn ln_1p(self) -> f32 { |
960 | unsafe { cmath::log1pf(self) } |
961 | } |
962 | |
963 | /// Hyperbolic sine function. |
964 | /// |
965 | /// # Unspecified precision |
966 | /// |
967 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
968 | /// can even differ within the same execution from one invocation to the next. |
969 | /// This function currently corresponds to the `sinhf` from libc on Unix |
970 | /// and Windows. Note that this might change in the future. |
971 | /// |
972 | /// # Examples |
973 | /// |
974 | /// ``` |
975 | /// let e = std::f32::consts::E; |
976 | /// let x = 1.0f32; |
977 | /// |
978 | /// let f = x.sinh(); |
979 | /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` |
980 | /// let g = ((e * e) - 1.0) / (2.0 * e); |
981 | /// let abs_difference = (f - g).abs(); |
982 | /// |
983 | /// assert!(abs_difference <= f32::EPSILON); |
984 | /// ``` |
985 | #[rustc_allow_incoherent_impl ] |
986 | #[must_use = "method returns a new number and does not mutate the original value" ] |
987 | #[stable (feature = "rust1" , since = "1.0.0" )] |
988 | #[inline ] |
989 | pub fn sinh(self) -> f32 { |
990 | unsafe { cmath::sinhf(self) } |
991 | } |
992 | |
993 | /// Hyperbolic cosine function. |
994 | /// |
995 | /// # Unspecified precision |
996 | /// |
997 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
998 | /// can even differ within the same execution from one invocation to the next. |
999 | /// This function currently corresponds to the `coshf` from libc on Unix |
1000 | /// and Windows. Note that this might change in the future. |
1001 | /// |
1002 | /// # Examples |
1003 | /// |
1004 | /// ``` |
1005 | /// let e = std::f32::consts::E; |
1006 | /// let x = 1.0f32; |
1007 | /// let f = x.cosh(); |
1008 | /// // Solving cosh() at 1 gives this result |
1009 | /// let g = ((e * e) + 1.0) / (2.0 * e); |
1010 | /// let abs_difference = (f - g).abs(); |
1011 | /// |
1012 | /// // Same result |
1013 | /// assert!(abs_difference <= f32::EPSILON); |
1014 | /// ``` |
1015 | #[rustc_allow_incoherent_impl ] |
1016 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1017 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1018 | #[inline ] |
1019 | pub fn cosh(self) -> f32 { |
1020 | unsafe { cmath::coshf(self) } |
1021 | } |
1022 | |
1023 | /// Hyperbolic tangent function. |
1024 | /// |
1025 | /// # Unspecified precision |
1026 | /// |
1027 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
1028 | /// can even differ within the same execution from one invocation to the next. |
1029 | /// This function currently corresponds to the `tanhf` from libc on Unix |
1030 | /// and Windows. Note that this might change in the future. |
1031 | /// |
1032 | /// # Examples |
1033 | /// |
1034 | /// ``` |
1035 | /// let e = std::f32::consts::E; |
1036 | /// let x = 1.0f32; |
1037 | /// |
1038 | /// let f = x.tanh(); |
1039 | /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` |
1040 | /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); |
1041 | /// let abs_difference = (f - g).abs(); |
1042 | /// |
1043 | /// assert!(abs_difference <= f32::EPSILON); |
1044 | /// ``` |
1045 | #[rustc_allow_incoherent_impl ] |
1046 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1047 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1048 | #[inline ] |
1049 | pub fn tanh(self) -> f32 { |
1050 | unsafe { cmath::tanhf(self) } |
1051 | } |
1052 | |
1053 | /// Inverse hyperbolic sine function. |
1054 | /// |
1055 | /// # Unspecified precision |
1056 | /// |
1057 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
1058 | /// can even differ within the same execution from one invocation to the next. |
1059 | /// |
1060 | /// # Examples |
1061 | /// |
1062 | /// ``` |
1063 | /// let x = 1.0f32; |
1064 | /// let f = x.sinh().asinh(); |
1065 | /// |
1066 | /// let abs_difference = (f - x).abs(); |
1067 | /// |
1068 | /// assert!(abs_difference <= f32::EPSILON); |
1069 | /// ``` |
1070 | #[doc (alias = "arcsinh" )] |
1071 | #[rustc_allow_incoherent_impl ] |
1072 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1073 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1074 | #[inline ] |
1075 | pub fn asinh(self) -> f32 { |
1076 | let ax = self.abs(); |
1077 | let ix = 1.0 / ax; |
1078 | (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self) |
1079 | } |
1080 | |
1081 | /// Inverse hyperbolic cosine function. |
1082 | /// |
1083 | /// # Unspecified precision |
1084 | /// |
1085 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
1086 | /// can even differ within the same execution from one invocation to the next. |
1087 | /// |
1088 | /// # Examples |
1089 | /// |
1090 | /// ``` |
1091 | /// let x = 1.0f32; |
1092 | /// let f = x.cosh().acosh(); |
1093 | /// |
1094 | /// let abs_difference = (f - x).abs(); |
1095 | /// |
1096 | /// assert!(abs_difference <= f32::EPSILON); |
1097 | /// ``` |
1098 | #[doc (alias = "arccosh" )] |
1099 | #[rustc_allow_incoherent_impl ] |
1100 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1101 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1102 | #[inline ] |
1103 | pub fn acosh(self) -> f32 { |
1104 | if self < 1.0 { |
1105 | Self::NAN |
1106 | } else { |
1107 | (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln() |
1108 | } |
1109 | } |
1110 | |
1111 | /// Inverse hyperbolic tangent function. |
1112 | /// |
1113 | /// # Unspecified precision |
1114 | /// |
1115 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
1116 | /// can even differ within the same execution from one invocation to the next. |
1117 | /// |
1118 | /// # Examples |
1119 | /// |
1120 | /// ``` |
1121 | /// let e = std::f32::consts::E; |
1122 | /// let f = e.tanh().atanh(); |
1123 | /// |
1124 | /// let abs_difference = (f - e).abs(); |
1125 | /// |
1126 | /// assert!(abs_difference <= 1e-5); |
1127 | /// ``` |
1128 | #[doc (alias = "arctanh" )] |
1129 | #[rustc_allow_incoherent_impl ] |
1130 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1131 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1132 | #[inline ] |
1133 | pub fn atanh(self) -> f32 { |
1134 | 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() |
1135 | } |
1136 | |
1137 | /// Gamma function. |
1138 | /// |
1139 | /// # Unspecified precision |
1140 | /// |
1141 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
1142 | /// can even differ within the same execution from one invocation to the next. |
1143 | /// This function currently corresponds to the `tgammaf` from libc on Unix |
1144 | /// and Windows. Note that this might change in the future. |
1145 | /// |
1146 | /// # Examples |
1147 | /// |
1148 | /// ``` |
1149 | /// #![feature(float_gamma)] |
1150 | /// let x = 5.0f32; |
1151 | /// |
1152 | /// let abs_difference = (x.gamma() - 24.0).abs(); |
1153 | /// |
1154 | /// assert!(abs_difference <= f32::EPSILON); |
1155 | /// ``` |
1156 | #[rustc_allow_incoherent_impl ] |
1157 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1158 | #[unstable (feature = "float_gamma" , issue = "99842" )] |
1159 | #[inline ] |
1160 | pub fn gamma(self) -> f32 { |
1161 | unsafe { cmath::tgammaf(self) } |
1162 | } |
1163 | |
1164 | /// Natural logarithm of the absolute value of the gamma function |
1165 | /// |
1166 | /// The integer part of the tuple indicates the sign of the gamma function. |
1167 | /// |
1168 | /// # Unspecified precision |
1169 | /// |
1170 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
1171 | /// can even differ within the same execution from one invocation to the next. |
1172 | /// This function currently corresponds to the `lgamma_r` from libc on Unix |
1173 | /// and Windows. Note that this might change in the future. |
1174 | /// |
1175 | /// # Examples |
1176 | /// |
1177 | /// ``` |
1178 | /// #![feature(float_gamma)] |
1179 | /// let x = 2.0f32; |
1180 | /// |
1181 | /// let abs_difference = (x.ln_gamma().0 - 0.0).abs(); |
1182 | /// |
1183 | /// assert!(abs_difference <= f32::EPSILON); |
1184 | /// ``` |
1185 | #[rustc_allow_incoherent_impl ] |
1186 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1187 | #[unstable (feature = "float_gamma" , issue = "99842" )] |
1188 | #[inline ] |
1189 | pub fn ln_gamma(self) -> (f32, i32) { |
1190 | let mut signgamp: i32 = 0; |
1191 | let x = unsafe { cmath::lgammaf_r(self, &mut signgamp) }; |
1192 | (x, signgamp) |
1193 | } |
1194 | |
1195 | /// Error function. |
1196 | /// |
1197 | /// # Unspecified precision |
1198 | /// |
1199 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1200 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1201 | /// |
1202 | /// This function currently corresponds to the `erff` from libc on Unix |
1203 | /// and Windows. Note that this might change in the future. |
1204 | /// |
1205 | /// # Examples |
1206 | /// |
1207 | /// ``` |
1208 | /// #![feature(float_erf)] |
1209 | /// /// The error function relates what percent of a normal distribution lies |
1210 | /// /// within `x` standard deviations (scaled by `1/sqrt(2)`). |
1211 | /// fn within_standard_deviations(x: f32) -> f32 { |
1212 | /// (x * std::f32::consts::FRAC_1_SQRT_2).erf() * 100.0 |
1213 | /// } |
1214 | /// |
1215 | /// // 68% of a normal distribution is within one standard deviation |
1216 | /// assert!((within_standard_deviations(1.0) - 68.269).abs() < 0.01); |
1217 | /// // 95% of a normal distribution is within two standard deviations |
1218 | /// assert!((within_standard_deviations(2.0) - 95.450).abs() < 0.01); |
1219 | /// // 99.7% of a normal distribution is within three standard deviations |
1220 | /// assert!((within_standard_deviations(3.0) - 99.730).abs() < 0.01); |
1221 | /// ``` |
1222 | #[rustc_allow_incoherent_impl ] |
1223 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1224 | #[unstable (feature = "float_erf" , issue = "136321" )] |
1225 | #[inline ] |
1226 | pub fn erf(self) -> f32 { |
1227 | unsafe { cmath::erff(self) } |
1228 | } |
1229 | |
1230 | /// Complementary error function. |
1231 | /// |
1232 | /// # Unspecified precision |
1233 | /// |
1234 | /// The precision of this function is non-deterministic. This means it varies by platform, |
1235 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
1236 | /// |
1237 | /// This function currently corresponds to the `erfcf` from libc on Unix |
1238 | /// and Windows. Note that this might change in the future. |
1239 | /// |
1240 | /// # Examples |
1241 | /// |
1242 | /// ``` |
1243 | /// #![feature(float_erf)] |
1244 | /// let x: f32 = 0.123; |
1245 | /// |
1246 | /// let one = x.erf() + x.erfc(); |
1247 | /// let abs_difference = (one - 1.0).abs(); |
1248 | /// |
1249 | /// assert!(abs_difference <= f32::EPSILON); |
1250 | /// ``` |
1251 | #[rustc_allow_incoherent_impl ] |
1252 | #[must_use = "method returns a new number and does not mutate the original value" ] |
1253 | #[unstable (feature = "float_erf" , issue = "136321" )] |
1254 | #[inline ] |
1255 | pub fn erfc(self) -> f32 { |
1256 | unsafe { cmath::erfcf(self) } |
1257 | } |
1258 | } |
1259 | |