| 1 | use crate::fmt; |
| 2 | use crate::sync::poison::{self, LockResult, MutexGuard, PoisonError, mutex}; |
| 3 | use crate::sys::sync as sys; |
| 4 | use crate::time::{Duration, Instant}; |
| 5 | |
| 6 | /// A type indicating whether a timed wait on a condition variable returned |
| 7 | /// due to a time out or not. |
| 8 | /// |
| 9 | /// It is returned by the [`wait_timeout`] method. |
| 10 | /// |
| 11 | /// [`wait_timeout`]: Condvar::wait_timeout |
| 12 | #[derive (Debug, PartialEq, Eq, Copy, Clone)] |
| 13 | #[stable (feature = "wait_timeout" , since = "1.5.0" )] |
| 14 | pub struct WaitTimeoutResult(bool); |
| 15 | |
| 16 | // FIXME(sync_nonpoison): `WaitTimeoutResult` is actually poisoning-agnostic, it seems. |
| 17 | // Should we take advantage of this fact? |
| 18 | impl WaitTimeoutResult { |
| 19 | /// Returns `true` if the wait was known to have timed out. |
| 20 | /// |
| 21 | /// # Examples |
| 22 | /// |
| 23 | /// This example spawns a thread which will sleep 20 milliseconds before |
| 24 | /// updating a boolean value and then notifying the condvar. |
| 25 | /// |
| 26 | /// The main thread will wait with a 10 millisecond timeout on the condvar |
| 27 | /// and will leave the loop upon timeout. |
| 28 | /// |
| 29 | /// ``` |
| 30 | /// use std::sync::{Arc, Condvar, Mutex}; |
| 31 | /// use std::thread; |
| 32 | /// use std::time::Duration; |
| 33 | /// |
| 34 | /// let pair = Arc::new((Mutex::new(false), Condvar::new())); |
| 35 | /// let pair2 = Arc::clone(&pair); |
| 36 | /// |
| 37 | /// # let handle = |
| 38 | /// thread::spawn(move || { |
| 39 | /// let (lock, cvar) = &*pair2; |
| 40 | /// |
| 41 | /// // Let's wait 20 milliseconds before notifying the condvar. |
| 42 | /// thread::sleep(Duration::from_millis(20)); |
| 43 | /// |
| 44 | /// let mut started = lock.lock().unwrap(); |
| 45 | /// // We update the boolean value. |
| 46 | /// *started = true; |
| 47 | /// cvar.notify_one(); |
| 48 | /// }); |
| 49 | /// |
| 50 | /// // Wait for the thread to start up. |
| 51 | /// let (lock, cvar) = &*pair; |
| 52 | /// loop { |
| 53 | /// // Let's put a timeout on the condvar's wait. |
| 54 | /// let result = cvar.wait_timeout(lock.lock().unwrap(), Duration::from_millis(10)).unwrap(); |
| 55 | /// // 10 milliseconds have passed. |
| 56 | /// if result.1.timed_out() { |
| 57 | /// // timed out now and we can leave. |
| 58 | /// break |
| 59 | /// } |
| 60 | /// } |
| 61 | /// # // Prevent leaks for Miri. |
| 62 | /// # let _ = handle.join(); |
| 63 | /// ``` |
| 64 | #[must_use ] |
| 65 | #[stable (feature = "wait_timeout" , since = "1.5.0" )] |
| 66 | pub fn timed_out(&self) -> bool { |
| 67 | self.0 |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | /// A Condition Variable |
| 72 | /// |
| 73 | /// Condition variables represent the ability to block a thread such that it |
| 74 | /// consumes no CPU time while waiting for an event to occur. Condition |
| 75 | /// variables are typically associated with a boolean predicate (a condition) |
| 76 | /// and a mutex. The predicate is always verified inside of the mutex before |
| 77 | /// determining that a thread must block. |
| 78 | /// |
| 79 | /// Functions in this module will block the current **thread** of execution. |
| 80 | /// Note that any attempt to use multiple mutexes on the same condition |
| 81 | /// variable may result in a runtime panic. |
| 82 | /// |
| 83 | /// # Examples |
| 84 | /// |
| 85 | /// ``` |
| 86 | /// use std::sync::{Arc, Mutex, Condvar}; |
| 87 | /// use std::thread; |
| 88 | /// |
| 89 | /// let pair = Arc::new((Mutex::new(false), Condvar::new())); |
| 90 | /// let pair2 = Arc::clone(&pair); |
| 91 | /// |
| 92 | /// // Inside of our lock, spawn a new thread, and then wait for it to start. |
| 93 | /// thread::spawn(move || { |
| 94 | /// let (lock, cvar) = &*pair2; |
| 95 | /// let mut started = lock.lock().unwrap(); |
| 96 | /// *started = true; |
| 97 | /// // We notify the condvar that the value has changed. |
| 98 | /// cvar.notify_one(); |
| 99 | /// }); |
| 100 | /// |
| 101 | /// // Wait for the thread to start up. |
| 102 | /// let (lock, cvar) = &*pair; |
| 103 | /// let mut started = lock.lock().unwrap(); |
| 104 | /// while !*started { |
| 105 | /// started = cvar.wait(started).unwrap(); |
| 106 | /// } |
| 107 | /// ``` |
| 108 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 109 | pub struct Condvar { |
| 110 | inner: sys::Condvar, |
| 111 | } |
| 112 | |
| 113 | impl Condvar { |
| 114 | /// Creates a new condition variable which is ready to be waited on and |
| 115 | /// notified. |
| 116 | /// |
| 117 | /// # Examples |
| 118 | /// |
| 119 | /// ``` |
| 120 | /// use std::sync::Condvar; |
| 121 | /// |
| 122 | /// let condvar = Condvar::new(); |
| 123 | /// ``` |
| 124 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 125 | #[rustc_const_stable (feature = "const_locks" , since = "1.63.0" )] |
| 126 | #[must_use ] |
| 127 | #[inline ] |
| 128 | pub const fn new() -> Condvar { |
| 129 | Condvar { inner: sys::Condvar::new() } |
| 130 | } |
| 131 | |
| 132 | /// Blocks the current thread until this condition variable receives a |
| 133 | /// notification. |
| 134 | /// |
| 135 | /// This function will atomically unlock the mutex specified (represented by |
| 136 | /// `guard`) and block the current thread. This means that any calls |
| 137 | /// to [`notify_one`] or [`notify_all`] which happen logically after the |
| 138 | /// mutex is unlocked are candidates to wake this thread up. When this |
| 139 | /// function call returns, the lock specified will have been re-acquired. |
| 140 | /// |
| 141 | /// Note that this function is susceptible to spurious wakeups. Condition |
| 142 | /// variables normally have a boolean predicate associated with them, and |
| 143 | /// the predicate must always be checked each time this function returns to |
| 144 | /// protect against spurious wakeups. |
| 145 | /// |
| 146 | /// # Errors |
| 147 | /// |
| 148 | /// This function will return an error if the mutex being waited on is |
| 149 | /// poisoned when this thread re-acquires the lock. For more information, |
| 150 | /// see information about [poisoning] on the [`Mutex`] type. |
| 151 | /// |
| 152 | /// # Panics |
| 153 | /// |
| 154 | /// This function may [`panic!`] if it is used with more than one mutex |
| 155 | /// over time. |
| 156 | /// |
| 157 | /// [`notify_one`]: Self::notify_one |
| 158 | /// [`notify_all`]: Self::notify_all |
| 159 | /// [poisoning]: super::Mutex#poisoning |
| 160 | /// [`Mutex`]: super::Mutex |
| 161 | /// |
| 162 | /// # Examples |
| 163 | /// |
| 164 | /// ``` |
| 165 | /// use std::sync::{Arc, Mutex, Condvar}; |
| 166 | /// use std::thread; |
| 167 | /// |
| 168 | /// let pair = Arc::new((Mutex::new(false), Condvar::new())); |
| 169 | /// let pair2 = Arc::clone(&pair); |
| 170 | /// |
| 171 | /// thread::spawn(move || { |
| 172 | /// let (lock, cvar) = &*pair2; |
| 173 | /// let mut started = lock.lock().unwrap(); |
| 174 | /// *started = true; |
| 175 | /// // We notify the condvar that the value has changed. |
| 176 | /// cvar.notify_one(); |
| 177 | /// }); |
| 178 | /// |
| 179 | /// // Wait for the thread to start up. |
| 180 | /// let (lock, cvar) = &*pair; |
| 181 | /// let mut started = lock.lock().unwrap(); |
| 182 | /// // As long as the value inside the `Mutex<bool>` is `false`, we wait. |
| 183 | /// while !*started { |
| 184 | /// started = cvar.wait(started).unwrap(); |
| 185 | /// } |
| 186 | /// ``` |
| 187 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 188 | pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>) -> LockResult<MutexGuard<'a, T>> { |
| 189 | let poisoned = unsafe { |
| 190 | let lock = mutex::guard_lock(&guard); |
| 191 | self.inner.wait(lock); |
| 192 | mutex::guard_poison(&guard).get() |
| 193 | }; |
| 194 | if poisoned { Err(PoisonError::new(guard)) } else { Ok(guard) } |
| 195 | } |
| 196 | |
| 197 | /// Blocks the current thread until the provided condition becomes false. |
| 198 | /// |
| 199 | /// `condition` is checked immediately; if not met (returns `true`), this |
| 200 | /// will [`wait`] for the next notification then check again. This repeats |
| 201 | /// until `condition` returns `false`, in which case this function returns. |
| 202 | /// |
| 203 | /// This function will atomically unlock the mutex specified (represented by |
| 204 | /// `guard`) and block the current thread. This means that any calls |
| 205 | /// to [`notify_one`] or [`notify_all`] which happen logically after the |
| 206 | /// mutex is unlocked are candidates to wake this thread up. When this |
| 207 | /// function call returns, the lock specified will have been re-acquired. |
| 208 | /// |
| 209 | /// # Errors |
| 210 | /// |
| 211 | /// This function will return an error if the mutex being waited on is |
| 212 | /// poisoned when this thread re-acquires the lock. For more information, |
| 213 | /// see information about [poisoning] on the [`Mutex`] type. |
| 214 | /// |
| 215 | /// [`wait`]: Self::wait |
| 216 | /// [`notify_one`]: Self::notify_one |
| 217 | /// [`notify_all`]: Self::notify_all |
| 218 | /// [poisoning]: super::Mutex#poisoning |
| 219 | /// [`Mutex`]: super::Mutex |
| 220 | /// |
| 221 | /// # Examples |
| 222 | /// |
| 223 | /// ``` |
| 224 | /// use std::sync::{Arc, Mutex, Condvar}; |
| 225 | /// use std::thread; |
| 226 | /// |
| 227 | /// let pair = Arc::new((Mutex::new(true), Condvar::new())); |
| 228 | /// let pair2 = Arc::clone(&pair); |
| 229 | /// |
| 230 | /// thread::spawn(move || { |
| 231 | /// let (lock, cvar) = &*pair2; |
| 232 | /// let mut pending = lock.lock().unwrap(); |
| 233 | /// *pending = false; |
| 234 | /// // We notify the condvar that the value has changed. |
| 235 | /// cvar.notify_one(); |
| 236 | /// }); |
| 237 | /// |
| 238 | /// // Wait for the thread to start up. |
| 239 | /// let (lock, cvar) = &*pair; |
| 240 | /// // As long as the value inside the `Mutex<bool>` is `true`, we wait. |
| 241 | /// let _guard = cvar.wait_while(lock.lock().unwrap(), |pending| { *pending }).unwrap(); |
| 242 | /// ``` |
| 243 | #[stable (feature = "wait_until" , since = "1.42.0" )] |
| 244 | pub fn wait_while<'a, T, F>( |
| 245 | &self, |
| 246 | mut guard: MutexGuard<'a, T>, |
| 247 | mut condition: F, |
| 248 | ) -> LockResult<MutexGuard<'a, T>> |
| 249 | where |
| 250 | F: FnMut(&mut T) -> bool, |
| 251 | { |
| 252 | while condition(&mut *guard) { |
| 253 | guard = self.wait(guard)?; |
| 254 | } |
| 255 | Ok(guard) |
| 256 | } |
| 257 | |
| 258 | /// Waits on this condition variable for a notification, timing out after a |
| 259 | /// specified duration. |
| 260 | /// |
| 261 | /// The semantics of this function are equivalent to [`wait`] |
| 262 | /// except that the thread will be blocked for roughly no longer |
| 263 | /// than `ms` milliseconds. This method should not be used for |
| 264 | /// precise timing due to anomalies such as preemption or platform |
| 265 | /// differences that might not cause the maximum amount of time |
| 266 | /// waited to be precisely `ms`. |
| 267 | /// |
| 268 | /// Note that the best effort is made to ensure that the time waited is |
| 269 | /// measured with a monotonic clock, and not affected by the changes made to |
| 270 | /// the system time. |
| 271 | /// |
| 272 | /// The returned boolean is `false` only if the timeout is known |
| 273 | /// to have elapsed. |
| 274 | /// |
| 275 | /// Like [`wait`], the lock specified will be re-acquired when this function |
| 276 | /// returns, regardless of whether the timeout elapsed or not. |
| 277 | /// |
| 278 | /// [`wait`]: Self::wait |
| 279 | /// |
| 280 | /// # Examples |
| 281 | /// |
| 282 | /// ``` |
| 283 | /// use std::sync::{Arc, Mutex, Condvar}; |
| 284 | /// use std::thread; |
| 285 | /// |
| 286 | /// let pair = Arc::new((Mutex::new(false), Condvar::new())); |
| 287 | /// let pair2 = Arc::clone(&pair); |
| 288 | /// |
| 289 | /// thread::spawn(move || { |
| 290 | /// let (lock, cvar) = &*pair2; |
| 291 | /// let mut started = lock.lock().unwrap(); |
| 292 | /// *started = true; |
| 293 | /// // We notify the condvar that the value has changed. |
| 294 | /// cvar.notify_one(); |
| 295 | /// }); |
| 296 | /// |
| 297 | /// // Wait for the thread to start up. |
| 298 | /// let (lock, cvar) = &*pair; |
| 299 | /// let mut started = lock.lock().unwrap(); |
| 300 | /// // As long as the value inside the `Mutex<bool>` is `false`, we wait. |
| 301 | /// loop { |
| 302 | /// let result = cvar.wait_timeout_ms(started, 10).unwrap(); |
| 303 | /// // 10 milliseconds have passed, or maybe the value changed! |
| 304 | /// started = result.0; |
| 305 | /// if *started == true { |
| 306 | /// // We received the notification and the value has been updated, we can leave. |
| 307 | /// break |
| 308 | /// } |
| 309 | /// } |
| 310 | /// ``` |
| 311 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 312 | #[deprecated (since = "1.6.0" , note = "replaced by `std::sync::Condvar::wait_timeout`" )] |
| 313 | pub fn wait_timeout_ms<'a, T>( |
| 314 | &self, |
| 315 | guard: MutexGuard<'a, T>, |
| 316 | ms: u32, |
| 317 | ) -> LockResult<(MutexGuard<'a, T>, bool)> { |
| 318 | let res = self.wait_timeout(guard, Duration::from_millis(ms as u64)); |
| 319 | poison::map_result(res, |(a, b)| (a, !b.timed_out())) |
| 320 | } |
| 321 | |
| 322 | /// Waits on this condition variable for a notification, timing out after a |
| 323 | /// specified duration. |
| 324 | /// |
| 325 | /// The semantics of this function are equivalent to [`wait`] except that |
| 326 | /// the thread will be blocked for roughly no longer than `dur`. This |
| 327 | /// method should not be used for precise timing due to anomalies such as |
| 328 | /// preemption or platform differences that might not cause the maximum |
| 329 | /// amount of time waited to be precisely `dur`. |
| 330 | /// |
| 331 | /// Note that the best effort is made to ensure that the time waited is |
| 332 | /// measured with a monotonic clock, and not affected by the changes made to |
| 333 | /// the system time. This function is susceptible to spurious wakeups. |
| 334 | /// Condition variables normally have a boolean predicate associated with |
| 335 | /// them, and the predicate must always be checked each time this function |
| 336 | /// returns to protect against spurious wakeups. Additionally, it is |
| 337 | /// typically desirable for the timeout to not exceed some duration in |
| 338 | /// spite of spurious wakes, thus the sleep-duration is decremented by the |
| 339 | /// amount slept. Alternatively, use the `wait_timeout_while` method |
| 340 | /// to wait with a timeout while a predicate is true. |
| 341 | /// |
| 342 | /// The returned [`WaitTimeoutResult`] value indicates if the timeout is |
| 343 | /// known to have elapsed. |
| 344 | /// |
| 345 | /// Like [`wait`], the lock specified will be re-acquired when this function |
| 346 | /// returns, regardless of whether the timeout elapsed or not. |
| 347 | /// |
| 348 | /// [`wait`]: Self::wait |
| 349 | /// [`wait_timeout_while`]: Self::wait_timeout_while |
| 350 | /// |
| 351 | /// # Examples |
| 352 | /// |
| 353 | /// ``` |
| 354 | /// use std::sync::{Arc, Mutex, Condvar}; |
| 355 | /// use std::thread; |
| 356 | /// use std::time::Duration; |
| 357 | /// |
| 358 | /// let pair = Arc::new((Mutex::new(false), Condvar::new())); |
| 359 | /// let pair2 = Arc::clone(&pair); |
| 360 | /// |
| 361 | /// thread::spawn(move || { |
| 362 | /// let (lock, cvar) = &*pair2; |
| 363 | /// let mut started = lock.lock().unwrap(); |
| 364 | /// *started = true; |
| 365 | /// // We notify the condvar that the value has changed. |
| 366 | /// cvar.notify_one(); |
| 367 | /// }); |
| 368 | /// |
| 369 | /// // wait for the thread to start up |
| 370 | /// let (lock, cvar) = &*pair; |
| 371 | /// let mut started = lock.lock().unwrap(); |
| 372 | /// // as long as the value inside the `Mutex<bool>` is `false`, we wait |
| 373 | /// loop { |
| 374 | /// let result = cvar.wait_timeout(started, Duration::from_millis(10)).unwrap(); |
| 375 | /// // 10 milliseconds have passed, or maybe the value changed! |
| 376 | /// started = result.0; |
| 377 | /// if *started == true { |
| 378 | /// // We received the notification and the value has been updated, we can leave. |
| 379 | /// break |
| 380 | /// } |
| 381 | /// } |
| 382 | /// ``` |
| 383 | #[stable (feature = "wait_timeout" , since = "1.5.0" )] |
| 384 | pub fn wait_timeout<'a, T>( |
| 385 | &self, |
| 386 | guard: MutexGuard<'a, T>, |
| 387 | dur: Duration, |
| 388 | ) -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)> { |
| 389 | let (poisoned, result) = unsafe { |
| 390 | let lock = mutex::guard_lock(&guard); |
| 391 | let success = self.inner.wait_timeout(lock, dur); |
| 392 | (mutex::guard_poison(&guard).get(), WaitTimeoutResult(!success)) |
| 393 | }; |
| 394 | if poisoned { Err(PoisonError::new((guard, result))) } else { Ok((guard, result)) } |
| 395 | } |
| 396 | |
| 397 | /// Waits on this condition variable for a notification, timing out after a |
| 398 | /// specified duration. |
| 399 | /// |
| 400 | /// The semantics of this function are equivalent to [`wait_while`] except |
| 401 | /// that the thread will be blocked for roughly no longer than `dur`. This |
| 402 | /// method should not be used for precise timing due to anomalies such as |
| 403 | /// preemption or platform differences that might not cause the maximum |
| 404 | /// amount of time waited to be precisely `dur`. |
| 405 | /// |
| 406 | /// Note that the best effort is made to ensure that the time waited is |
| 407 | /// measured with a monotonic clock, and not affected by the changes made to |
| 408 | /// the system time. |
| 409 | /// |
| 410 | /// The returned [`WaitTimeoutResult`] value indicates if the timeout is |
| 411 | /// known to have elapsed without the condition being met. |
| 412 | /// |
| 413 | /// Like [`wait_while`], the lock specified will be re-acquired when this |
| 414 | /// function returns, regardless of whether the timeout elapsed or not. |
| 415 | /// |
| 416 | /// [`wait_while`]: Self::wait_while |
| 417 | /// [`wait_timeout`]: Self::wait_timeout |
| 418 | /// |
| 419 | /// # Examples |
| 420 | /// |
| 421 | /// ``` |
| 422 | /// use std::sync::{Arc, Mutex, Condvar}; |
| 423 | /// use std::thread; |
| 424 | /// use std::time::Duration; |
| 425 | /// |
| 426 | /// let pair = Arc::new((Mutex::new(true), Condvar::new())); |
| 427 | /// let pair2 = Arc::clone(&pair); |
| 428 | /// |
| 429 | /// thread::spawn(move || { |
| 430 | /// let (lock, cvar) = &*pair2; |
| 431 | /// let mut pending = lock.lock().unwrap(); |
| 432 | /// *pending = false; |
| 433 | /// // We notify the condvar that the value has changed. |
| 434 | /// cvar.notify_one(); |
| 435 | /// }); |
| 436 | /// |
| 437 | /// // wait for the thread to start up |
| 438 | /// let (lock, cvar) = &*pair; |
| 439 | /// let result = cvar.wait_timeout_while( |
| 440 | /// lock.lock().unwrap(), |
| 441 | /// Duration::from_millis(100), |
| 442 | /// |&mut pending| pending, |
| 443 | /// ).unwrap(); |
| 444 | /// if result.1.timed_out() { |
| 445 | /// // timed-out without the condition ever evaluating to false. |
| 446 | /// } |
| 447 | /// // access the locked mutex via result.0 |
| 448 | /// ``` |
| 449 | #[stable (feature = "wait_timeout_until" , since = "1.42.0" )] |
| 450 | pub fn wait_timeout_while<'a, T, F>( |
| 451 | &self, |
| 452 | mut guard: MutexGuard<'a, T>, |
| 453 | dur: Duration, |
| 454 | mut condition: F, |
| 455 | ) -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)> |
| 456 | where |
| 457 | F: FnMut(&mut T) -> bool, |
| 458 | { |
| 459 | let start = Instant::now(); |
| 460 | loop { |
| 461 | if !condition(&mut *guard) { |
| 462 | return Ok((guard, WaitTimeoutResult(false))); |
| 463 | } |
| 464 | let timeout = match dur.checked_sub(start.elapsed()) { |
| 465 | Some(timeout) => timeout, |
| 466 | None => return Ok((guard, WaitTimeoutResult(true))), |
| 467 | }; |
| 468 | guard = self.wait_timeout(guard, timeout)?.0; |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | /// Wakes up one blocked thread on this condvar. |
| 473 | /// |
| 474 | /// If there is a blocked thread on this condition variable, then it will |
| 475 | /// be woken up from its call to [`wait`] or [`wait_timeout`]. Calls to |
| 476 | /// `notify_one` are not buffered in any way. |
| 477 | /// |
| 478 | /// To wake up all threads, see [`notify_all`]. |
| 479 | /// |
| 480 | /// [`wait`]: Self::wait |
| 481 | /// [`wait_timeout`]: Self::wait_timeout |
| 482 | /// [`notify_all`]: Self::notify_all |
| 483 | /// |
| 484 | /// # Examples |
| 485 | /// |
| 486 | /// ``` |
| 487 | /// use std::sync::{Arc, Mutex, Condvar}; |
| 488 | /// use std::thread; |
| 489 | /// |
| 490 | /// let pair = Arc::new((Mutex::new(false), Condvar::new())); |
| 491 | /// let pair2 = Arc::clone(&pair); |
| 492 | /// |
| 493 | /// thread::spawn(move || { |
| 494 | /// let (lock, cvar) = &*pair2; |
| 495 | /// let mut started = lock.lock().unwrap(); |
| 496 | /// *started = true; |
| 497 | /// // We notify the condvar that the value has changed. |
| 498 | /// cvar.notify_one(); |
| 499 | /// }); |
| 500 | /// |
| 501 | /// // Wait for the thread to start up. |
| 502 | /// let (lock, cvar) = &*pair; |
| 503 | /// let mut started = lock.lock().unwrap(); |
| 504 | /// // As long as the value inside the `Mutex<bool>` is `false`, we wait. |
| 505 | /// while !*started { |
| 506 | /// started = cvar.wait(started).unwrap(); |
| 507 | /// } |
| 508 | /// ``` |
| 509 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 510 | pub fn notify_one(&self) { |
| 511 | self.inner.notify_one() |
| 512 | } |
| 513 | |
| 514 | /// Wakes up all blocked threads on this condvar. |
| 515 | /// |
| 516 | /// This method will ensure that any current waiters on the condition |
| 517 | /// variable are awoken. Calls to `notify_all()` are not buffered in any |
| 518 | /// way. |
| 519 | /// |
| 520 | /// To wake up only one thread, see [`notify_one`]. |
| 521 | /// |
| 522 | /// [`notify_one`]: Self::notify_one |
| 523 | /// |
| 524 | /// # Examples |
| 525 | /// |
| 526 | /// ``` |
| 527 | /// use std::sync::{Arc, Mutex, Condvar}; |
| 528 | /// use std::thread; |
| 529 | /// |
| 530 | /// let pair = Arc::new((Mutex::new(false), Condvar::new())); |
| 531 | /// let pair2 = Arc::clone(&pair); |
| 532 | /// |
| 533 | /// thread::spawn(move || { |
| 534 | /// let (lock, cvar) = &*pair2; |
| 535 | /// let mut started = lock.lock().unwrap(); |
| 536 | /// *started = true; |
| 537 | /// // We notify the condvar that the value has changed. |
| 538 | /// cvar.notify_all(); |
| 539 | /// }); |
| 540 | /// |
| 541 | /// // Wait for the thread to start up. |
| 542 | /// let (lock, cvar) = &*pair; |
| 543 | /// let mut started = lock.lock().unwrap(); |
| 544 | /// // As long as the value inside the `Mutex<bool>` is `false`, we wait. |
| 545 | /// while !*started { |
| 546 | /// started = cvar.wait(started).unwrap(); |
| 547 | /// } |
| 548 | /// ``` |
| 549 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 550 | pub fn notify_all(&self) { |
| 551 | self.inner.notify_all() |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | #[stable (feature = "std_debug" , since = "1.16.0" )] |
| 556 | impl fmt::Debug for Condvar { |
| 557 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 558 | f.debug_struct(name:"Condvar" ).finish_non_exhaustive() |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | #[stable (feature = "condvar_default" , since = "1.10.0" )] |
| 563 | impl Default for Condvar { |
| 564 | /// Creates a `Condvar` which is ready to be waited on and notified. |
| 565 | fn default() -> Condvar { |
| 566 | Condvar::new() |
| 567 | } |
| 568 | } |
| 569 | |