1 | #![stable (feature = "duration_core" , since = "1.25.0" )] |
2 | |
3 | //! Temporal quantification. |
4 | //! |
5 | //! # Examples: |
6 | //! |
7 | //! There are multiple ways to create a new [`Duration`]: |
8 | //! |
9 | //! ``` |
10 | //! # use std::time::Duration; |
11 | //! let five_seconds = Duration::from_secs(5); |
12 | //! assert_eq!(five_seconds, Duration::from_millis(5_000)); |
13 | //! assert_eq!(five_seconds, Duration::from_micros(5_000_000)); |
14 | //! assert_eq!(five_seconds, Duration::from_nanos(5_000_000_000)); |
15 | //! |
16 | //! let ten_seconds = Duration::from_secs(10); |
17 | //! let seven_nanos = Duration::from_nanos(7); |
18 | //! let total = ten_seconds + seven_nanos; |
19 | //! assert_eq!(total, Duration::new(10, 7)); |
20 | //! ``` |
21 | |
22 | use crate::fmt; |
23 | use crate::iter::Sum; |
24 | use crate::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign}; |
25 | |
26 | const NANOS_PER_SEC: u32 = 1_000_000_000; |
27 | const NANOS_PER_MILLI: u32 = 1_000_000; |
28 | const NANOS_PER_MICRO: u32 = 1_000; |
29 | const MILLIS_PER_SEC: u64 = 1_000; |
30 | const MICROS_PER_SEC: u64 = 1_000_000; |
31 | |
32 | #[derive (Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] |
33 | #[repr (transparent)] |
34 | #[rustc_layout_scalar_valid_range_start (0)] |
35 | #[rustc_layout_scalar_valid_range_end (999_999_999)] |
36 | struct Nanoseconds(u32); |
37 | |
38 | impl Default for Nanoseconds { |
39 | #[inline ] |
40 | fn default() -> Self { |
41 | // SAFETY: 0 is within the valid range |
42 | unsafe { Nanoseconds(0) } |
43 | } |
44 | } |
45 | |
46 | /// A `Duration` type to represent a span of time, typically used for system |
47 | /// timeouts. |
48 | /// |
49 | /// Each `Duration` is composed of a whole number of seconds and a fractional part |
50 | /// represented in nanoseconds. If the underlying system does not support |
51 | /// nanosecond-level precision, APIs binding a system timeout will typically round up |
52 | /// the number of nanoseconds. |
53 | /// |
54 | /// [`Duration`]s implement many common traits, including [`Add`], [`Sub`], and other |
55 | /// [`ops`] traits. It implements [`Default`] by returning a zero-length `Duration`. |
56 | /// |
57 | /// [`ops`]: crate::ops |
58 | /// |
59 | /// # Examples |
60 | /// |
61 | /// ``` |
62 | /// use std::time::Duration; |
63 | /// |
64 | /// let five_seconds = Duration::new(5, 0); |
65 | /// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5); |
66 | /// |
67 | /// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5); |
68 | /// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5); |
69 | /// |
70 | /// let ten_millis = Duration::from_millis(10); |
71 | /// ``` |
72 | /// |
73 | /// # Formatting `Duration` values |
74 | /// |
75 | /// `Duration` intentionally does not have a `Display` impl, as there are a |
76 | /// variety of ways to format spans of time for human readability. `Duration` |
77 | /// provides a `Debug` impl that shows the full precision of the value. |
78 | /// |
79 | /// The `Debug` output uses the non-ASCII "µs" suffix for microseconds. If your |
80 | /// program output may appear in contexts that cannot rely on full Unicode |
81 | /// compatibility, you may wish to format `Duration` objects yourself or use a |
82 | /// crate to do so. |
83 | #[stable (feature = "duration" , since = "1.3.0" )] |
84 | #[derive (Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)] |
85 | #[cfg_attr (not(test), rustc_diagnostic_item = "Duration" )] |
86 | pub struct Duration { |
87 | secs: u64, |
88 | nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC |
89 | } |
90 | |
91 | impl Duration { |
92 | /// The duration of one second. |
93 | /// |
94 | /// # Examples |
95 | /// |
96 | /// ``` |
97 | /// #![feature(duration_constants)] |
98 | /// use std::time::Duration; |
99 | /// |
100 | /// assert_eq!(Duration::SECOND, Duration::from_secs(1)); |
101 | /// ``` |
102 | #[unstable (feature = "duration_constants" , issue = "57391" )] |
103 | pub const SECOND: Duration = Duration::from_secs(1); |
104 | |
105 | /// The duration of one millisecond. |
106 | /// |
107 | /// # Examples |
108 | /// |
109 | /// ``` |
110 | /// #![feature(duration_constants)] |
111 | /// use std::time::Duration; |
112 | /// |
113 | /// assert_eq!(Duration::MILLISECOND, Duration::from_millis(1)); |
114 | /// ``` |
115 | #[unstable (feature = "duration_constants" , issue = "57391" )] |
116 | pub const MILLISECOND: Duration = Duration::from_millis(1); |
117 | |
118 | /// The duration of one microsecond. |
119 | /// |
120 | /// # Examples |
121 | /// |
122 | /// ``` |
123 | /// #![feature(duration_constants)] |
124 | /// use std::time::Duration; |
125 | /// |
126 | /// assert_eq!(Duration::MICROSECOND, Duration::from_micros(1)); |
127 | /// ``` |
128 | #[unstable (feature = "duration_constants" , issue = "57391" )] |
129 | pub const MICROSECOND: Duration = Duration::from_micros(1); |
130 | |
131 | /// The duration of one nanosecond. |
132 | /// |
133 | /// # Examples |
134 | /// |
135 | /// ``` |
136 | /// #![feature(duration_constants)] |
137 | /// use std::time::Duration; |
138 | /// |
139 | /// assert_eq!(Duration::NANOSECOND, Duration::from_nanos(1)); |
140 | /// ``` |
141 | #[unstable (feature = "duration_constants" , issue = "57391" )] |
142 | pub const NANOSECOND: Duration = Duration::from_nanos(1); |
143 | |
144 | /// A duration of zero time. |
145 | /// |
146 | /// # Examples |
147 | /// |
148 | /// ``` |
149 | /// use std::time::Duration; |
150 | /// |
151 | /// let duration = Duration::ZERO; |
152 | /// assert!(duration.is_zero()); |
153 | /// assert_eq!(duration.as_nanos(), 0); |
154 | /// ``` |
155 | #[stable (feature = "duration_zero" , since = "1.53.0" )] |
156 | pub const ZERO: Duration = Duration::from_nanos(0); |
157 | |
158 | /// The maximum duration. |
159 | /// |
160 | /// May vary by platform as necessary. Must be able to contain the difference between |
161 | /// two instances of [`Instant`] or two instances of [`SystemTime`]. |
162 | /// This constraint gives it a value of about 584,942,417,355 years in practice, |
163 | /// which is currently used on all platforms. |
164 | /// |
165 | /// # Examples |
166 | /// |
167 | /// ``` |
168 | /// use std::time::Duration; |
169 | /// |
170 | /// assert_eq!(Duration::MAX, Duration::new(u64::MAX, 1_000_000_000 - 1)); |
171 | /// ``` |
172 | /// [`Instant`]: ../../std/time/struct.Instant.html |
173 | /// [`SystemTime`]: ../../std/time/struct.SystemTime.html |
174 | #[stable (feature = "duration_saturating_ops" , since = "1.53.0" )] |
175 | pub const MAX: Duration = Duration::new(u64::MAX, NANOS_PER_SEC - 1); |
176 | |
177 | /// Creates a new `Duration` from the specified number of whole seconds and |
178 | /// additional nanoseconds. |
179 | /// |
180 | /// If the number of nanoseconds is greater than 1 billion (the number of |
181 | /// nanoseconds in a second), then it will carry over into the seconds provided. |
182 | /// |
183 | /// # Panics |
184 | /// |
185 | /// This constructor will panic if the carry from the nanoseconds overflows |
186 | /// the seconds counter. |
187 | /// |
188 | /// # Examples |
189 | /// |
190 | /// ``` |
191 | /// use std::time::Duration; |
192 | /// |
193 | /// let five_seconds = Duration::new(5, 0); |
194 | /// ``` |
195 | #[stable (feature = "duration" , since = "1.3.0" )] |
196 | #[inline ] |
197 | #[must_use ] |
198 | #[rustc_const_stable (feature = "duration_consts_2" , since = "1.58.0" )] |
199 | pub const fn new(secs: u64, nanos: u32) -> Duration { |
200 | let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) { |
201 | Some(secs) => secs, |
202 | None => panic!("overflow in Duration::new" ), |
203 | }; |
204 | let nanos = nanos % NANOS_PER_SEC; |
205 | // SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range |
206 | Duration { secs, nanos: unsafe { Nanoseconds(nanos) } } |
207 | } |
208 | |
209 | /// Creates a new `Duration` from the specified number of whole seconds. |
210 | /// |
211 | /// # Examples |
212 | /// |
213 | /// ``` |
214 | /// use std::time::Duration; |
215 | /// |
216 | /// let duration = Duration::from_secs(5); |
217 | /// |
218 | /// assert_eq!(5, duration.as_secs()); |
219 | /// assert_eq!(0, duration.subsec_nanos()); |
220 | /// ``` |
221 | #[stable (feature = "duration" , since = "1.3.0" )] |
222 | #[must_use ] |
223 | #[inline ] |
224 | #[rustc_const_stable (feature = "duration_consts" , since = "1.32.0" )] |
225 | pub const fn from_secs(secs: u64) -> Duration { |
226 | Duration::new(secs, 0) |
227 | } |
228 | |
229 | /// Creates a new `Duration` from the specified number of milliseconds. |
230 | /// |
231 | /// # Examples |
232 | /// |
233 | /// ``` |
234 | /// use std::time::Duration; |
235 | /// |
236 | /// let duration = Duration::from_millis(2569); |
237 | /// |
238 | /// assert_eq!(2, duration.as_secs()); |
239 | /// assert_eq!(569_000_000, duration.subsec_nanos()); |
240 | /// ``` |
241 | #[stable (feature = "duration" , since = "1.3.0" )] |
242 | #[must_use ] |
243 | #[inline ] |
244 | #[rustc_const_stable (feature = "duration_consts" , since = "1.32.0" )] |
245 | pub const fn from_millis(millis: u64) -> Duration { |
246 | Duration::new(millis / MILLIS_PER_SEC, ((millis % MILLIS_PER_SEC) as u32) * NANOS_PER_MILLI) |
247 | } |
248 | |
249 | /// Creates a new `Duration` from the specified number of microseconds. |
250 | /// |
251 | /// # Examples |
252 | /// |
253 | /// ``` |
254 | /// use std::time::Duration; |
255 | /// |
256 | /// let duration = Duration::from_micros(1_000_002); |
257 | /// |
258 | /// assert_eq!(1, duration.as_secs()); |
259 | /// assert_eq!(2000, duration.subsec_nanos()); |
260 | /// ``` |
261 | #[stable (feature = "duration_from_micros" , since = "1.27.0" )] |
262 | #[must_use ] |
263 | #[inline ] |
264 | #[rustc_const_stable (feature = "duration_consts" , since = "1.32.0" )] |
265 | pub const fn from_micros(micros: u64) -> Duration { |
266 | Duration::new(micros / MICROS_PER_SEC, ((micros % MICROS_PER_SEC) as u32) * NANOS_PER_MICRO) |
267 | } |
268 | |
269 | /// Creates a new `Duration` from the specified number of nanoseconds. |
270 | /// |
271 | /// # Examples |
272 | /// |
273 | /// ``` |
274 | /// use std::time::Duration; |
275 | /// |
276 | /// let duration = Duration::from_nanos(1_000_000_123); |
277 | /// |
278 | /// assert_eq!(1, duration.as_secs()); |
279 | /// assert_eq!(123, duration.subsec_nanos()); |
280 | /// ``` |
281 | #[stable (feature = "duration_extras" , since = "1.27.0" )] |
282 | #[must_use ] |
283 | #[inline ] |
284 | #[rustc_const_stable (feature = "duration_consts" , since = "1.32.0" )] |
285 | pub const fn from_nanos(nanos: u64) -> Duration { |
286 | Duration::new(nanos / (NANOS_PER_SEC as u64), (nanos % (NANOS_PER_SEC as u64)) as u32) |
287 | } |
288 | |
289 | /// Returns true if this `Duration` spans no time. |
290 | /// |
291 | /// # Examples |
292 | /// |
293 | /// ``` |
294 | /// use std::time::Duration; |
295 | /// |
296 | /// assert!(Duration::ZERO.is_zero()); |
297 | /// assert!(Duration::new(0, 0).is_zero()); |
298 | /// assert!(Duration::from_nanos(0).is_zero()); |
299 | /// assert!(Duration::from_secs(0).is_zero()); |
300 | /// |
301 | /// assert!(!Duration::new(1, 1).is_zero()); |
302 | /// assert!(!Duration::from_nanos(1).is_zero()); |
303 | /// assert!(!Duration::from_secs(1).is_zero()); |
304 | /// ``` |
305 | #[must_use ] |
306 | #[stable (feature = "duration_zero" , since = "1.53.0" )] |
307 | #[rustc_const_stable (feature = "duration_zero" , since = "1.53.0" )] |
308 | #[inline ] |
309 | pub const fn is_zero(&self) -> bool { |
310 | self.secs == 0 && self.nanos.0 == 0 |
311 | } |
312 | |
313 | /// Returns the number of _whole_ seconds contained by this `Duration`. |
314 | /// |
315 | /// The returned value does not include the fractional (nanosecond) part of the |
316 | /// duration, which can be obtained using [`subsec_nanos`]. |
317 | /// |
318 | /// # Examples |
319 | /// |
320 | /// ``` |
321 | /// use std::time::Duration; |
322 | /// |
323 | /// let duration = Duration::new(5, 730023852); |
324 | /// assert_eq!(duration.as_secs(), 5); |
325 | /// ``` |
326 | /// |
327 | /// To determine the total number of seconds represented by the `Duration` |
328 | /// including the fractional part, use [`as_secs_f64`] or [`as_secs_f32`] |
329 | /// |
330 | /// [`as_secs_f64`]: Duration::as_secs_f64 |
331 | /// [`as_secs_f32`]: Duration::as_secs_f32 |
332 | /// [`subsec_nanos`]: Duration::subsec_nanos |
333 | #[stable (feature = "duration" , since = "1.3.0" )] |
334 | #[rustc_const_stable (feature = "duration_consts" , since = "1.32.0" )] |
335 | #[must_use ] |
336 | #[inline ] |
337 | pub const fn as_secs(&self) -> u64 { |
338 | self.secs |
339 | } |
340 | |
341 | /// Returns the fractional part of this `Duration`, in whole milliseconds. |
342 | /// |
343 | /// This method does **not** return the length of the duration when |
344 | /// represented by milliseconds. The returned number always represents a |
345 | /// fractional portion of a second (i.e., it is less than one thousand). |
346 | /// |
347 | /// # Examples |
348 | /// |
349 | /// ``` |
350 | /// use std::time::Duration; |
351 | /// |
352 | /// let duration = Duration::from_millis(5432); |
353 | /// assert_eq!(duration.as_secs(), 5); |
354 | /// assert_eq!(duration.subsec_millis(), 432); |
355 | /// ``` |
356 | #[stable (feature = "duration_extras" , since = "1.27.0" )] |
357 | #[rustc_const_stable (feature = "duration_consts" , since = "1.32.0" )] |
358 | #[must_use ] |
359 | #[inline ] |
360 | pub const fn subsec_millis(&self) -> u32 { |
361 | self.nanos.0 / NANOS_PER_MILLI |
362 | } |
363 | |
364 | /// Returns the fractional part of this `Duration`, in whole microseconds. |
365 | /// |
366 | /// This method does **not** return the length of the duration when |
367 | /// represented by microseconds. The returned number always represents a |
368 | /// fractional portion of a second (i.e., it is less than one million). |
369 | /// |
370 | /// # Examples |
371 | /// |
372 | /// ``` |
373 | /// use std::time::Duration; |
374 | /// |
375 | /// let duration = Duration::from_micros(1_234_567); |
376 | /// assert_eq!(duration.as_secs(), 1); |
377 | /// assert_eq!(duration.subsec_micros(), 234_567); |
378 | /// ``` |
379 | #[stable (feature = "duration_extras" , since = "1.27.0" )] |
380 | #[rustc_const_stable (feature = "duration_consts" , since = "1.32.0" )] |
381 | #[must_use ] |
382 | #[inline ] |
383 | pub const fn subsec_micros(&self) -> u32 { |
384 | self.nanos.0 / NANOS_PER_MICRO |
385 | } |
386 | |
387 | /// Returns the fractional part of this `Duration`, in nanoseconds. |
388 | /// |
389 | /// This method does **not** return the length of the duration when |
390 | /// represented by nanoseconds. The returned number always represents a |
391 | /// fractional portion of a second (i.e., it is less than one billion). |
392 | /// |
393 | /// # Examples |
394 | /// |
395 | /// ``` |
396 | /// use std::time::Duration; |
397 | /// |
398 | /// let duration = Duration::from_millis(5010); |
399 | /// assert_eq!(duration.as_secs(), 5); |
400 | /// assert_eq!(duration.subsec_nanos(), 10_000_000); |
401 | /// ``` |
402 | #[stable (feature = "duration" , since = "1.3.0" )] |
403 | #[rustc_const_stable (feature = "duration_consts" , since = "1.32.0" )] |
404 | #[must_use ] |
405 | #[inline ] |
406 | pub const fn subsec_nanos(&self) -> u32 { |
407 | self.nanos.0 |
408 | } |
409 | |
410 | /// Returns the total number of whole milliseconds contained by this `Duration`. |
411 | /// |
412 | /// # Examples |
413 | /// |
414 | /// ``` |
415 | /// use std::time::Duration; |
416 | /// |
417 | /// let duration = Duration::new(5, 730023852); |
418 | /// assert_eq!(duration.as_millis(), 5730); |
419 | /// ``` |
420 | #[stable (feature = "duration_as_u128" , since = "1.33.0" )] |
421 | #[rustc_const_stable (feature = "duration_as_u128" , since = "1.33.0" )] |
422 | #[must_use ] |
423 | #[inline ] |
424 | pub const fn as_millis(&self) -> u128 { |
425 | self.secs as u128 * MILLIS_PER_SEC as u128 + (self.nanos.0 / NANOS_PER_MILLI) as u128 |
426 | } |
427 | |
428 | /// Returns the total number of whole microseconds contained by this `Duration`. |
429 | /// |
430 | /// # Examples |
431 | /// |
432 | /// ``` |
433 | /// use std::time::Duration; |
434 | /// |
435 | /// let duration = Duration::new(5, 730023852); |
436 | /// assert_eq!(duration.as_micros(), 5730023); |
437 | /// ``` |
438 | #[stable (feature = "duration_as_u128" , since = "1.33.0" )] |
439 | #[rustc_const_stable (feature = "duration_as_u128" , since = "1.33.0" )] |
440 | #[must_use ] |
441 | #[inline ] |
442 | pub const fn as_micros(&self) -> u128 { |
443 | self.secs as u128 * MICROS_PER_SEC as u128 + (self.nanos.0 / NANOS_PER_MICRO) as u128 |
444 | } |
445 | |
446 | /// Returns the total number of nanoseconds contained by this `Duration`. |
447 | /// |
448 | /// # Examples |
449 | /// |
450 | /// ``` |
451 | /// use std::time::Duration; |
452 | /// |
453 | /// let duration = Duration::new(5, 730023852); |
454 | /// assert_eq!(duration.as_nanos(), 5730023852); |
455 | /// ``` |
456 | #[stable (feature = "duration_as_u128" , since = "1.33.0" )] |
457 | #[rustc_const_stable (feature = "duration_as_u128" , since = "1.33.0" )] |
458 | #[must_use ] |
459 | #[inline ] |
460 | pub const fn as_nanos(&self) -> u128 { |
461 | self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos.0 as u128 |
462 | } |
463 | |
464 | /// Computes the absolute difference between `self` and `other`. |
465 | /// |
466 | /// # Examples |
467 | /// |
468 | /// Basic usage: |
469 | /// |
470 | /// ``` |
471 | /// #![feature(duration_abs_diff)] |
472 | /// use std::time::Duration; |
473 | /// |
474 | /// assert_eq!(Duration::new(100, 0).abs_diff(Duration::new(80, 0)), Duration::new(20, 0)); |
475 | /// assert_eq!(Duration::new(100, 400_000_000).abs_diff(Duration::new(110, 0)), Duration::new(9, 600_000_000)); |
476 | /// ``` |
477 | #[unstable (feature = "duration_abs_diff" , issue = "117618" )] |
478 | #[must_use = "this returns the result of the operation, \ |
479 | without modifying the original" ] |
480 | #[inline ] |
481 | pub const fn abs_diff(self, other: Duration) -> Duration { |
482 | if let Some(res) = self.checked_sub(other) { res } else { other.checked_sub(self).unwrap() } |
483 | } |
484 | |
485 | /// Checked `Duration` addition. Computes `self + other`, returning [`None`] |
486 | /// if overflow occurred. |
487 | /// |
488 | /// # Examples |
489 | /// |
490 | /// Basic usage: |
491 | /// |
492 | /// ``` |
493 | /// use std::time::Duration; |
494 | /// |
495 | /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1))); |
496 | /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(u64::MAX, 0)), None); |
497 | /// ``` |
498 | #[stable (feature = "duration_checked_ops" , since = "1.16.0" )] |
499 | #[must_use = "this returns the result of the operation, \ |
500 | without modifying the original" ] |
501 | #[inline ] |
502 | #[rustc_const_stable (feature = "duration_consts_2" , since = "1.58.0" )] |
503 | pub const fn checked_add(self, rhs: Duration) -> Option<Duration> { |
504 | if let Some(mut secs) = self.secs.checked_add(rhs.secs) { |
505 | let mut nanos = self.nanos.0 + rhs.nanos.0; |
506 | if nanos >= NANOS_PER_SEC { |
507 | nanos -= NANOS_PER_SEC; |
508 | if let Some(new_secs) = secs.checked_add(1) { |
509 | secs = new_secs; |
510 | } else { |
511 | return None; |
512 | } |
513 | } |
514 | debug_assert!(nanos < NANOS_PER_SEC); |
515 | Some(Duration::new(secs, nanos)) |
516 | } else { |
517 | None |
518 | } |
519 | } |
520 | |
521 | /// Saturating `Duration` addition. Computes `self + other`, returning [`Duration::MAX`] |
522 | /// if overflow occurred. |
523 | /// |
524 | /// # Examples |
525 | /// |
526 | /// ``` |
527 | /// #![feature(duration_constants)] |
528 | /// use std::time::Duration; |
529 | /// |
530 | /// assert_eq!(Duration::new(0, 0).saturating_add(Duration::new(0, 1)), Duration::new(0, 1)); |
531 | /// assert_eq!(Duration::new(1, 0).saturating_add(Duration::new(u64::MAX, 0)), Duration::MAX); |
532 | /// ``` |
533 | #[stable (feature = "duration_saturating_ops" , since = "1.53.0" )] |
534 | #[must_use = "this returns the result of the operation, \ |
535 | without modifying the original" ] |
536 | #[inline ] |
537 | #[rustc_const_stable (feature = "duration_consts_2" , since = "1.58.0" )] |
538 | pub const fn saturating_add(self, rhs: Duration) -> Duration { |
539 | match self.checked_add(rhs) { |
540 | Some(res) => res, |
541 | None => Duration::MAX, |
542 | } |
543 | } |
544 | |
545 | /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`] |
546 | /// if the result would be negative or if overflow occurred. |
547 | /// |
548 | /// # Examples |
549 | /// |
550 | /// Basic usage: |
551 | /// |
552 | /// ``` |
553 | /// use std::time::Duration; |
554 | /// |
555 | /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1))); |
556 | /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None); |
557 | /// ``` |
558 | #[stable (feature = "duration_checked_ops" , since = "1.16.0" )] |
559 | #[must_use = "this returns the result of the operation, \ |
560 | without modifying the original" ] |
561 | #[inline ] |
562 | #[rustc_const_stable (feature = "duration_consts_2" , since = "1.58.0" )] |
563 | pub const fn checked_sub(self, rhs: Duration) -> Option<Duration> { |
564 | if let Some(mut secs) = self.secs.checked_sub(rhs.secs) { |
565 | let nanos = if self.nanos.0 >= rhs.nanos.0 { |
566 | self.nanos.0 - rhs.nanos.0 |
567 | } else if let Some(sub_secs) = secs.checked_sub(1) { |
568 | secs = sub_secs; |
569 | self.nanos.0 + NANOS_PER_SEC - rhs.nanos.0 |
570 | } else { |
571 | return None; |
572 | }; |
573 | debug_assert!(nanos < NANOS_PER_SEC); |
574 | Some(Duration::new(secs, nanos)) |
575 | } else { |
576 | None |
577 | } |
578 | } |
579 | |
580 | /// Saturating `Duration` subtraction. Computes `self - other`, returning [`Duration::ZERO`] |
581 | /// if the result would be negative or if overflow occurred. |
582 | /// |
583 | /// # Examples |
584 | /// |
585 | /// ``` |
586 | /// use std::time::Duration; |
587 | /// |
588 | /// assert_eq!(Duration::new(0, 1).saturating_sub(Duration::new(0, 0)), Duration::new(0, 1)); |
589 | /// assert_eq!(Duration::new(0, 0).saturating_sub(Duration::new(0, 1)), Duration::ZERO); |
590 | /// ``` |
591 | #[stable (feature = "duration_saturating_ops" , since = "1.53.0" )] |
592 | #[must_use = "this returns the result of the operation, \ |
593 | without modifying the original" ] |
594 | #[inline ] |
595 | #[rustc_const_stable (feature = "duration_consts_2" , since = "1.58.0" )] |
596 | pub const fn saturating_sub(self, rhs: Duration) -> Duration { |
597 | match self.checked_sub(rhs) { |
598 | Some(res) => res, |
599 | None => Duration::ZERO, |
600 | } |
601 | } |
602 | |
603 | /// Checked `Duration` multiplication. Computes `self * other`, returning |
604 | /// [`None`] if overflow occurred. |
605 | /// |
606 | /// # Examples |
607 | /// |
608 | /// Basic usage: |
609 | /// |
610 | /// ``` |
611 | /// use std::time::Duration; |
612 | /// |
613 | /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2))); |
614 | /// assert_eq!(Duration::new(u64::MAX - 1, 0).checked_mul(2), None); |
615 | /// ``` |
616 | #[stable (feature = "duration_checked_ops" , since = "1.16.0" )] |
617 | #[must_use = "this returns the result of the operation, \ |
618 | without modifying the original" ] |
619 | #[inline ] |
620 | #[rustc_const_stable (feature = "duration_consts_2" , since = "1.58.0" )] |
621 | pub const fn checked_mul(self, rhs: u32) -> Option<Duration> { |
622 | // Multiply nanoseconds as u64, because it cannot overflow that way. |
623 | let total_nanos = self.nanos.0 as u64 * rhs as u64; |
624 | let extra_secs = total_nanos / (NANOS_PER_SEC as u64); |
625 | let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32; |
626 | if let Some(s) = self.secs.checked_mul(rhs as u64) { |
627 | if let Some(secs) = s.checked_add(extra_secs) { |
628 | debug_assert!(nanos < NANOS_PER_SEC); |
629 | return Some(Duration::new(secs, nanos)); |
630 | } |
631 | } |
632 | None |
633 | } |
634 | |
635 | /// Saturating `Duration` multiplication. Computes `self * other`, returning |
636 | /// [`Duration::MAX`] if overflow occurred. |
637 | /// |
638 | /// # Examples |
639 | /// |
640 | /// ``` |
641 | /// #![feature(duration_constants)] |
642 | /// use std::time::Duration; |
643 | /// |
644 | /// assert_eq!(Duration::new(0, 500_000_001).saturating_mul(2), Duration::new(1, 2)); |
645 | /// assert_eq!(Duration::new(u64::MAX - 1, 0).saturating_mul(2), Duration::MAX); |
646 | /// ``` |
647 | #[stable (feature = "duration_saturating_ops" , since = "1.53.0" )] |
648 | #[must_use = "this returns the result of the operation, \ |
649 | without modifying the original" ] |
650 | #[inline ] |
651 | #[rustc_const_stable (feature = "duration_consts_2" , since = "1.58.0" )] |
652 | pub const fn saturating_mul(self, rhs: u32) -> Duration { |
653 | match self.checked_mul(rhs) { |
654 | Some(res) => res, |
655 | None => Duration::MAX, |
656 | } |
657 | } |
658 | |
659 | /// Checked `Duration` division. Computes `self / other`, returning [`None`] |
660 | /// if `other == 0`. |
661 | /// |
662 | /// # Examples |
663 | /// |
664 | /// Basic usage: |
665 | /// |
666 | /// ``` |
667 | /// use std::time::Duration; |
668 | /// |
669 | /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0))); |
670 | /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000))); |
671 | /// assert_eq!(Duration::new(2, 0).checked_div(0), None); |
672 | /// ``` |
673 | #[stable (feature = "duration_checked_ops" , since = "1.16.0" )] |
674 | #[must_use = "this returns the result of the operation, \ |
675 | without modifying the original" ] |
676 | #[inline ] |
677 | #[rustc_const_stable (feature = "duration_consts_2" , since = "1.58.0" )] |
678 | pub const fn checked_div(self, rhs: u32) -> Option<Duration> { |
679 | if rhs != 0 { |
680 | let (secs, extra_secs) = (self.secs / (rhs as u64), self.secs % (rhs as u64)); |
681 | let (mut nanos, extra_nanos) = (self.nanos.0 / rhs, self.nanos.0 % rhs); |
682 | nanos += |
683 | ((extra_secs * (NANOS_PER_SEC as u64) + extra_nanos as u64) / (rhs as u64)) as u32; |
684 | debug_assert!(nanos < NANOS_PER_SEC); |
685 | Some(Duration::new(secs, nanos)) |
686 | } else { |
687 | None |
688 | } |
689 | } |
690 | |
691 | /// Returns the number of seconds contained by this `Duration` as `f64`. |
692 | /// |
693 | /// The returned value does include the fractional (nanosecond) part of the duration. |
694 | /// |
695 | /// # Examples |
696 | /// ``` |
697 | /// use std::time::Duration; |
698 | /// |
699 | /// let dur = Duration::new(2, 700_000_000); |
700 | /// assert_eq!(dur.as_secs_f64(), 2.7); |
701 | /// ``` |
702 | #[stable (feature = "duration_float" , since = "1.38.0" )] |
703 | #[must_use ] |
704 | #[inline ] |
705 | #[rustc_const_unstable (feature = "duration_consts_float" , issue = "72440" )] |
706 | pub const fn as_secs_f64(&self) -> f64 { |
707 | (self.secs as f64) + (self.nanos.0 as f64) / (NANOS_PER_SEC as f64) |
708 | } |
709 | |
710 | /// Returns the number of seconds contained by this `Duration` as `f32`. |
711 | /// |
712 | /// The returned value does include the fractional (nanosecond) part of the duration. |
713 | /// |
714 | /// # Examples |
715 | /// ``` |
716 | /// use std::time::Duration; |
717 | /// |
718 | /// let dur = Duration::new(2, 700_000_000); |
719 | /// assert_eq!(dur.as_secs_f32(), 2.7); |
720 | /// ``` |
721 | #[stable (feature = "duration_float" , since = "1.38.0" )] |
722 | #[must_use ] |
723 | #[inline ] |
724 | #[rustc_const_unstable (feature = "duration_consts_float" , issue = "72440" )] |
725 | pub const fn as_secs_f32(&self) -> f32 { |
726 | (self.secs as f32) + (self.nanos.0 as f32) / (NANOS_PER_SEC as f32) |
727 | } |
728 | |
729 | /// Creates a new `Duration` from the specified number of seconds represented |
730 | /// as `f64`. |
731 | /// |
732 | /// # Panics |
733 | /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite. |
734 | /// |
735 | /// # Examples |
736 | /// ``` |
737 | /// use std::time::Duration; |
738 | /// |
739 | /// let res = Duration::from_secs_f64(0.0); |
740 | /// assert_eq!(res, Duration::new(0, 0)); |
741 | /// let res = Duration::from_secs_f64(1e-20); |
742 | /// assert_eq!(res, Duration::new(0, 0)); |
743 | /// let res = Duration::from_secs_f64(4.2e-7); |
744 | /// assert_eq!(res, Duration::new(0, 420)); |
745 | /// let res = Duration::from_secs_f64(2.7); |
746 | /// assert_eq!(res, Duration::new(2, 700_000_000)); |
747 | /// let res = Duration::from_secs_f64(3e10); |
748 | /// assert_eq!(res, Duration::new(30_000_000_000, 0)); |
749 | /// // subnormal float |
750 | /// let res = Duration::from_secs_f64(f64::from_bits(1)); |
751 | /// assert_eq!(res, Duration::new(0, 0)); |
752 | /// // conversion uses rounding |
753 | /// let res = Duration::from_secs_f64(0.999e-9); |
754 | /// assert_eq!(res, Duration::new(0, 1)); |
755 | /// ``` |
756 | #[stable (feature = "duration_float" , since = "1.38.0" )] |
757 | #[must_use ] |
758 | #[inline ] |
759 | pub fn from_secs_f64(secs: f64) -> Duration { |
760 | match Duration::try_from_secs_f64(secs) { |
761 | Ok(v) => v, |
762 | Err(e) => panic!("{}" , e.description()), |
763 | } |
764 | } |
765 | |
766 | /// Creates a new `Duration` from the specified number of seconds represented |
767 | /// as `f32`. |
768 | /// |
769 | /// # Panics |
770 | /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite. |
771 | /// |
772 | /// # Examples |
773 | /// ``` |
774 | /// use std::time::Duration; |
775 | /// |
776 | /// let res = Duration::from_secs_f32(0.0); |
777 | /// assert_eq!(res, Duration::new(0, 0)); |
778 | /// let res = Duration::from_secs_f32(1e-20); |
779 | /// assert_eq!(res, Duration::new(0, 0)); |
780 | /// let res = Duration::from_secs_f32(4.2e-7); |
781 | /// assert_eq!(res, Duration::new(0, 420)); |
782 | /// let res = Duration::from_secs_f32(2.7); |
783 | /// assert_eq!(res, Duration::new(2, 700_000_048)); |
784 | /// let res = Duration::from_secs_f32(3e10); |
785 | /// assert_eq!(res, Duration::new(30_000_001_024, 0)); |
786 | /// // subnormal float |
787 | /// let res = Duration::from_secs_f32(f32::from_bits(1)); |
788 | /// assert_eq!(res, Duration::new(0, 0)); |
789 | /// // conversion uses rounding |
790 | /// let res = Duration::from_secs_f32(0.999e-9); |
791 | /// assert_eq!(res, Duration::new(0, 1)); |
792 | /// ``` |
793 | #[stable (feature = "duration_float" , since = "1.38.0" )] |
794 | #[must_use ] |
795 | #[inline ] |
796 | pub fn from_secs_f32(secs: f32) -> Duration { |
797 | match Duration::try_from_secs_f32(secs) { |
798 | Ok(v) => v, |
799 | Err(e) => panic!("{}" , e.description()), |
800 | } |
801 | } |
802 | |
803 | /// Multiplies `Duration` by `f64`. |
804 | /// |
805 | /// # Panics |
806 | /// This method will panic if result is negative, overflows `Duration` or not finite. |
807 | /// |
808 | /// # Examples |
809 | /// ``` |
810 | /// use std::time::Duration; |
811 | /// |
812 | /// let dur = Duration::new(2, 700_000_000); |
813 | /// assert_eq!(dur.mul_f64(3.14), Duration::new(8, 478_000_000)); |
814 | /// assert_eq!(dur.mul_f64(3.14e5), Duration::new(847_800, 0)); |
815 | /// ``` |
816 | #[stable (feature = "duration_float" , since = "1.38.0" )] |
817 | #[must_use = "this returns the result of the operation, \ |
818 | without modifying the original" ] |
819 | #[inline ] |
820 | pub fn mul_f64(self, rhs: f64) -> Duration { |
821 | Duration::from_secs_f64(rhs * self.as_secs_f64()) |
822 | } |
823 | |
824 | /// Multiplies `Duration` by `f32`. |
825 | /// |
826 | /// # Panics |
827 | /// This method will panic if result is negative, overflows `Duration` or not finite. |
828 | /// |
829 | /// # Examples |
830 | /// ``` |
831 | /// use std::time::Duration; |
832 | /// |
833 | /// let dur = Duration::new(2, 700_000_000); |
834 | /// assert_eq!(dur.mul_f32(3.14), Duration::new(8, 478_000_641)); |
835 | /// assert_eq!(dur.mul_f32(3.14e5), Duration::new(847800, 0)); |
836 | /// ``` |
837 | #[stable (feature = "duration_float" , since = "1.38.0" )] |
838 | #[must_use = "this returns the result of the operation, \ |
839 | without modifying the original" ] |
840 | #[inline ] |
841 | pub fn mul_f32(self, rhs: f32) -> Duration { |
842 | Duration::from_secs_f32(rhs * self.as_secs_f32()) |
843 | } |
844 | |
845 | /// Divide `Duration` by `f64`. |
846 | /// |
847 | /// # Panics |
848 | /// This method will panic if result is negative, overflows `Duration` or not finite. |
849 | /// |
850 | /// # Examples |
851 | /// ``` |
852 | /// use std::time::Duration; |
853 | /// |
854 | /// let dur = Duration::new(2, 700_000_000); |
855 | /// assert_eq!(dur.div_f64(3.14), Duration::new(0, 859_872_611)); |
856 | /// assert_eq!(dur.div_f64(3.14e5), Duration::new(0, 8_599)); |
857 | /// ``` |
858 | #[stable (feature = "duration_float" , since = "1.38.0" )] |
859 | #[must_use = "this returns the result of the operation, \ |
860 | without modifying the original" ] |
861 | #[inline ] |
862 | pub fn div_f64(self, rhs: f64) -> Duration { |
863 | Duration::from_secs_f64(self.as_secs_f64() / rhs) |
864 | } |
865 | |
866 | /// Divide `Duration` by `f32`. |
867 | /// |
868 | /// # Panics |
869 | /// This method will panic if result is negative, overflows `Duration` or not finite. |
870 | /// |
871 | /// # Examples |
872 | /// ``` |
873 | /// use std::time::Duration; |
874 | /// |
875 | /// let dur = Duration::new(2, 700_000_000); |
876 | /// // note that due to rounding errors result is slightly |
877 | /// // different from 0.859_872_611 |
878 | /// assert_eq!(dur.div_f32(3.14), Duration::new(0, 859_872_580)); |
879 | /// assert_eq!(dur.div_f32(3.14e5), Duration::new(0, 8_599)); |
880 | /// ``` |
881 | #[stable (feature = "duration_float" , since = "1.38.0" )] |
882 | #[must_use = "this returns the result of the operation, \ |
883 | without modifying the original" ] |
884 | #[inline ] |
885 | pub fn div_f32(self, rhs: f32) -> Duration { |
886 | Duration::from_secs_f32(self.as_secs_f32() / rhs) |
887 | } |
888 | |
889 | /// Divide `Duration` by `Duration` and return `f64`. |
890 | /// |
891 | /// # Examples |
892 | /// ``` |
893 | /// #![feature(div_duration)] |
894 | /// use std::time::Duration; |
895 | /// |
896 | /// let dur1 = Duration::new(2, 700_000_000); |
897 | /// let dur2 = Duration::new(5, 400_000_000); |
898 | /// assert_eq!(dur1.div_duration_f64(dur2), 0.5); |
899 | /// ``` |
900 | #[unstable (feature = "div_duration" , issue = "63139" )] |
901 | #[must_use = "this returns the result of the operation, \ |
902 | without modifying the original" ] |
903 | #[inline ] |
904 | #[rustc_const_unstable (feature = "duration_consts_float" , issue = "72440" )] |
905 | pub const fn div_duration_f64(self, rhs: Duration) -> f64 { |
906 | self.as_secs_f64() / rhs.as_secs_f64() |
907 | } |
908 | |
909 | /// Divide `Duration` by `Duration` and return `f32`. |
910 | /// |
911 | /// # Examples |
912 | /// ``` |
913 | /// #![feature(div_duration)] |
914 | /// use std::time::Duration; |
915 | /// |
916 | /// let dur1 = Duration::new(2, 700_000_000); |
917 | /// let dur2 = Duration::new(5, 400_000_000); |
918 | /// assert_eq!(dur1.div_duration_f32(dur2), 0.5); |
919 | /// ``` |
920 | #[unstable (feature = "div_duration" , issue = "63139" )] |
921 | #[must_use = "this returns the result of the operation, \ |
922 | without modifying the original" ] |
923 | #[inline ] |
924 | #[rustc_const_unstable (feature = "duration_consts_float" , issue = "72440" )] |
925 | pub const fn div_duration_f32(self, rhs: Duration) -> f32 { |
926 | self.as_secs_f32() / rhs.as_secs_f32() |
927 | } |
928 | } |
929 | |
930 | #[stable (feature = "duration" , since = "1.3.0" )] |
931 | impl Add for Duration { |
932 | type Output = Duration; |
933 | |
934 | #[inline ] |
935 | fn add(self, rhs: Duration) -> Duration { |
936 | self.checked_add(rhs).expect(msg:"overflow when adding durations" ) |
937 | } |
938 | } |
939 | |
940 | #[stable (feature = "time_augmented_assignment" , since = "1.9.0" )] |
941 | impl AddAssign for Duration { |
942 | #[inline ] |
943 | fn add_assign(&mut self, rhs: Duration) { |
944 | *self = *self + rhs; |
945 | } |
946 | } |
947 | |
948 | #[stable (feature = "duration" , since = "1.3.0" )] |
949 | impl Sub for Duration { |
950 | type Output = Duration; |
951 | |
952 | #[inline ] |
953 | fn sub(self, rhs: Duration) -> Duration { |
954 | self.checked_sub(rhs).expect(msg:"overflow when subtracting durations" ) |
955 | } |
956 | } |
957 | |
958 | #[stable (feature = "time_augmented_assignment" , since = "1.9.0" )] |
959 | impl SubAssign for Duration { |
960 | #[inline ] |
961 | fn sub_assign(&mut self, rhs: Duration) { |
962 | *self = *self - rhs; |
963 | } |
964 | } |
965 | |
966 | #[stable (feature = "duration" , since = "1.3.0" )] |
967 | impl Mul<u32> for Duration { |
968 | type Output = Duration; |
969 | |
970 | #[inline ] |
971 | fn mul(self, rhs: u32) -> Duration { |
972 | self.checked_mul(rhs).expect(msg:"overflow when multiplying duration by scalar" ) |
973 | } |
974 | } |
975 | |
976 | #[stable (feature = "symmetric_u32_duration_mul" , since = "1.31.0" )] |
977 | impl Mul<Duration> for u32 { |
978 | type Output = Duration; |
979 | |
980 | #[inline ] |
981 | fn mul(self, rhs: Duration) -> Duration { |
982 | rhs * self |
983 | } |
984 | } |
985 | |
986 | #[stable (feature = "time_augmented_assignment" , since = "1.9.0" )] |
987 | impl MulAssign<u32> for Duration { |
988 | #[inline ] |
989 | fn mul_assign(&mut self, rhs: u32) { |
990 | *self = *self * rhs; |
991 | } |
992 | } |
993 | |
994 | #[stable (feature = "duration" , since = "1.3.0" )] |
995 | impl Div<u32> for Duration { |
996 | type Output = Duration; |
997 | |
998 | #[inline ] |
999 | fn div(self, rhs: u32) -> Duration { |
1000 | self.checked_div(rhs).expect(msg:"divide by zero error when dividing duration by scalar" ) |
1001 | } |
1002 | } |
1003 | |
1004 | #[stable (feature = "time_augmented_assignment" , since = "1.9.0" )] |
1005 | impl DivAssign<u32> for Duration { |
1006 | #[inline ] |
1007 | fn div_assign(&mut self, rhs: u32) { |
1008 | *self = *self / rhs; |
1009 | } |
1010 | } |
1011 | |
1012 | macro_rules! sum_durations { |
1013 | ($iter:expr) => {{ |
1014 | let mut total_secs: u64 = 0; |
1015 | let mut total_nanos: u64 = 0; |
1016 | |
1017 | for entry in $iter { |
1018 | total_secs = |
1019 | total_secs.checked_add(entry.secs).expect("overflow in iter::sum over durations" ); |
1020 | total_nanos = match total_nanos.checked_add(entry.nanos.0 as u64) { |
1021 | Some(n) => n, |
1022 | None => { |
1023 | total_secs = total_secs |
1024 | .checked_add(total_nanos / NANOS_PER_SEC as u64) |
1025 | .expect("overflow in iter::sum over durations" ); |
1026 | (total_nanos % NANOS_PER_SEC as u64) + entry.nanos.0 as u64 |
1027 | } |
1028 | }; |
1029 | } |
1030 | total_secs = total_secs |
1031 | .checked_add(total_nanos / NANOS_PER_SEC as u64) |
1032 | .expect("overflow in iter::sum over durations" ); |
1033 | total_nanos = total_nanos % NANOS_PER_SEC as u64; |
1034 | Duration::new(total_secs, total_nanos as u32) |
1035 | }}; |
1036 | } |
1037 | |
1038 | #[stable (feature = "duration_sum" , since = "1.16.0" )] |
1039 | impl Sum for Duration { |
1040 | fn sum<I: Iterator<Item = Duration>>(iter: I) -> Duration { |
1041 | sum_durations!(iter) |
1042 | } |
1043 | } |
1044 | |
1045 | #[stable (feature = "duration_sum" , since = "1.16.0" )] |
1046 | impl<'a> Sum<&'a Duration> for Duration { |
1047 | fn sum<I: Iterator<Item = &'a Duration>>(iter: I) -> Duration { |
1048 | sum_durations!(iter) |
1049 | } |
1050 | } |
1051 | |
1052 | #[stable (feature = "duration_debug_impl" , since = "1.27.0" )] |
1053 | impl fmt::Debug for Duration { |
1054 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1055 | /// Formats a floating point number in decimal notation. |
1056 | /// |
1057 | /// The number is given as the `integer_part` and a fractional part. |
1058 | /// The value of the fractional part is `fractional_part / divisor`. So |
1059 | /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100 |
1060 | /// represents the number `3.012`. Trailing zeros are omitted. |
1061 | /// |
1062 | /// `divisor` must not be above 100_000_000. It also should be a power |
1063 | /// of 10, everything else doesn't make sense. `fractional_part` has |
1064 | /// to be less than `10 * divisor`! |
1065 | /// |
1066 | /// A prefix and postfix may be added. The whole thing is padded |
1067 | /// to the formatter's `width`, if specified. |
1068 | fn fmt_decimal( |
1069 | f: &mut fmt::Formatter<'_>, |
1070 | integer_part: u64, |
1071 | mut fractional_part: u32, |
1072 | mut divisor: u32, |
1073 | prefix: &str, |
1074 | postfix: &str, |
1075 | ) -> fmt::Result { |
1076 | // Encode the fractional part into a temporary buffer. The buffer |
1077 | // only need to hold 9 elements, because `fractional_part` has to |
1078 | // be smaller than 10^9. The buffer is prefilled with '0' digits |
1079 | // to simplify the code below. |
1080 | let mut buf = [b'0' ; 9]; |
1081 | |
1082 | // The next digit is written at this position |
1083 | let mut pos = 0; |
1084 | |
1085 | // We keep writing digits into the buffer while there are non-zero |
1086 | // digits left and we haven't written enough digits yet. |
1087 | while fractional_part > 0 && pos < f.precision().unwrap_or(9) { |
1088 | // Write new digit into the buffer |
1089 | buf[pos] = b'0' + (fractional_part / divisor) as u8; |
1090 | |
1091 | fractional_part %= divisor; |
1092 | divisor /= 10; |
1093 | pos += 1; |
1094 | } |
1095 | |
1096 | // If a precision < 9 was specified, there may be some non-zero |
1097 | // digits left that weren't written into the buffer. In that case we |
1098 | // need to perform rounding to match the semantics of printing |
1099 | // normal floating point numbers. However, we only need to do work |
1100 | // when rounding up. This happens if the first digit of the |
1101 | // remaining ones is >= 5. |
1102 | let integer_part = if fractional_part > 0 && fractional_part >= divisor * 5 { |
1103 | // Round up the number contained in the buffer. We go through |
1104 | // the buffer backwards and keep track of the carry. |
1105 | let mut rev_pos = pos; |
1106 | let mut carry = true; |
1107 | while carry && rev_pos > 0 { |
1108 | rev_pos -= 1; |
1109 | |
1110 | // If the digit in the buffer is not '9', we just need to |
1111 | // increment it and can stop then (since we don't have a |
1112 | // carry anymore). Otherwise, we set it to '0' (overflow) |
1113 | // and continue. |
1114 | if buf[rev_pos] < b'9' { |
1115 | buf[rev_pos] += 1; |
1116 | carry = false; |
1117 | } else { |
1118 | buf[rev_pos] = b'0' ; |
1119 | } |
1120 | } |
1121 | |
1122 | // If we still have the carry bit set, that means that we set |
1123 | // the whole buffer to '0's and need to increment the integer |
1124 | // part. |
1125 | if carry { |
1126 | // If `integer_part == u64::MAX` and precision < 9, any |
1127 | // carry of the overflow during rounding of the |
1128 | // `fractional_part` into the `integer_part` will cause the |
1129 | // `integer_part` itself to overflow. Avoid this by using an |
1130 | // `Option<u64>`, with `None` representing `u64::MAX + 1`. |
1131 | integer_part.checked_add(1) |
1132 | } else { |
1133 | Some(integer_part) |
1134 | } |
1135 | } else { |
1136 | Some(integer_part) |
1137 | }; |
1138 | |
1139 | // Determine the end of the buffer: if precision is set, we just |
1140 | // use as many digits from the buffer (capped to 9). If it isn't |
1141 | // set, we only use all digits up to the last non-zero one. |
1142 | let end = f.precision().map(|p| crate::cmp::min(p, 9)).unwrap_or(pos); |
1143 | |
1144 | // This closure emits the formatted duration without emitting any |
1145 | // padding (padding is calculated below). |
1146 | let emit_without_padding = |f: &mut fmt::Formatter<'_>| { |
1147 | if let Some(integer_part) = integer_part { |
1148 | write!(f, " {}{}" , prefix, integer_part)?; |
1149 | } else { |
1150 | // u64::MAX + 1 == 18446744073709551616 |
1151 | write!(f, " {}18446744073709551616" , prefix)?; |
1152 | } |
1153 | |
1154 | // Write the decimal point and the fractional part (if any). |
1155 | if end > 0 { |
1156 | // SAFETY: We are only writing ASCII digits into the buffer and |
1157 | // it was initialized with '0's, so it contains valid UTF8. |
1158 | let s = unsafe { crate::str::from_utf8_unchecked(&buf[..end]) }; |
1159 | |
1160 | // If the user request a precision > 9, we pad '0's at the end. |
1161 | let w = f.precision().unwrap_or(pos); |
1162 | write!(f, ". {:0<width$}" , s, width = w)?; |
1163 | } |
1164 | |
1165 | write!(f, " {}" , postfix) |
1166 | }; |
1167 | |
1168 | match f.width() { |
1169 | None => { |
1170 | // No `width` specified. There's no need to calculate the |
1171 | // length of the output in this case, just emit it. |
1172 | emit_without_padding(f) |
1173 | } |
1174 | Some(requested_w) => { |
1175 | // A `width` was specified. Calculate the actual width of |
1176 | // the output in order to calculate the required padding. |
1177 | // It consists of 4 parts: |
1178 | // 1. The prefix: is either "+" or "", so we can just use len(). |
1179 | // 2. The postfix: can be "µs" so we have to count UTF8 characters. |
1180 | let mut actual_w = prefix.len() + postfix.chars().count(); |
1181 | // 3. The integer part: |
1182 | if let Some(integer_part) = integer_part { |
1183 | if let Some(log) = integer_part.checked_ilog10() { |
1184 | // integer_part is > 0, so has length log10(x)+1 |
1185 | actual_w += 1 + log as usize; |
1186 | } else { |
1187 | // integer_part is 0, so has length 1. |
1188 | actual_w += 1; |
1189 | } |
1190 | } else { |
1191 | // integer_part is u64::MAX + 1, so has length 20 |
1192 | actual_w += 20; |
1193 | } |
1194 | // 4. The fractional part (if any): |
1195 | if end > 0 { |
1196 | let frac_part_w = f.precision().unwrap_or(pos); |
1197 | actual_w += 1 + frac_part_w; |
1198 | } |
1199 | |
1200 | if requested_w <= actual_w { |
1201 | // Output is already longer than `width`, so don't pad. |
1202 | emit_without_padding(f) |
1203 | } else { |
1204 | // We need to add padding. Use the `Formatter::padding` helper function. |
1205 | let default_align = fmt::Alignment::Left; |
1206 | let post_padding = f.padding(requested_w - actual_w, default_align)?; |
1207 | emit_without_padding(f)?; |
1208 | post_padding.write(f) |
1209 | } |
1210 | } |
1211 | } |
1212 | } |
1213 | |
1214 | // Print leading '+' sign if requested |
1215 | let prefix = if f.sign_plus() { "+" } else { "" }; |
1216 | |
1217 | if self.secs > 0 { |
1218 | fmt_decimal(f, self.secs, self.nanos.0, NANOS_PER_SEC / 10, prefix, "s" ) |
1219 | } else if self.nanos.0 >= NANOS_PER_MILLI { |
1220 | fmt_decimal( |
1221 | f, |
1222 | (self.nanos.0 / NANOS_PER_MILLI) as u64, |
1223 | self.nanos.0 % NANOS_PER_MILLI, |
1224 | NANOS_PER_MILLI / 10, |
1225 | prefix, |
1226 | "ms" , |
1227 | ) |
1228 | } else if self.nanos.0 >= NANOS_PER_MICRO { |
1229 | fmt_decimal( |
1230 | f, |
1231 | (self.nanos.0 / NANOS_PER_MICRO) as u64, |
1232 | self.nanos.0 % NANOS_PER_MICRO, |
1233 | NANOS_PER_MICRO / 10, |
1234 | prefix, |
1235 | "µs" , |
1236 | ) |
1237 | } else { |
1238 | fmt_decimal(f, self.nanos.0 as u64, 0, 1, prefix, "ns" ) |
1239 | } |
1240 | } |
1241 | } |
1242 | |
1243 | /// An error which can be returned when converting a floating-point value of seconds |
1244 | /// into a [`Duration`]. |
1245 | /// |
1246 | /// This error is used as the error type for [`Duration::try_from_secs_f32`] and |
1247 | /// [`Duration::try_from_secs_f64`]. |
1248 | /// |
1249 | /// # Example |
1250 | /// |
1251 | /// ``` |
1252 | /// use std::time::Duration; |
1253 | /// |
1254 | /// if let Err(e) = Duration::try_from_secs_f32(-1.0) { |
1255 | /// println!("Failed conversion to Duration: {e}" ); |
1256 | /// } |
1257 | /// ``` |
1258 | #[derive (Debug, Clone, PartialEq, Eq)] |
1259 | #[stable (feature = "duration_checked_float" , since = "1.66.0" )] |
1260 | pub struct TryFromFloatSecsError { |
1261 | kind: TryFromFloatSecsErrorKind, |
1262 | } |
1263 | |
1264 | impl TryFromFloatSecsError { |
1265 | const fn description(&self) -> &'static str { |
1266 | match self.kind { |
1267 | TryFromFloatSecsErrorKind::Negative => { |
1268 | "can not convert float seconds to Duration: value is negative" |
1269 | } |
1270 | TryFromFloatSecsErrorKind::OverflowOrNan => { |
1271 | "can not convert float seconds to Duration: value is either too big or NaN" |
1272 | } |
1273 | } |
1274 | } |
1275 | } |
1276 | |
1277 | #[stable (feature = "duration_checked_float" , since = "1.66.0" )] |
1278 | impl fmt::Display for TryFromFloatSecsError { |
1279 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1280 | self.description().fmt(f) |
1281 | } |
1282 | } |
1283 | |
1284 | #[derive (Debug, Clone, PartialEq, Eq)] |
1285 | enum TryFromFloatSecsErrorKind { |
1286 | // Value is negative. |
1287 | Negative, |
1288 | // Value is either too big to be represented as `Duration` or `NaN`. |
1289 | OverflowOrNan, |
1290 | } |
1291 | |
1292 | macro_rules! try_from_secs { |
1293 | ( |
1294 | secs = $secs: expr, |
1295 | mantissa_bits = $mant_bits: literal, |
1296 | exponent_bits = $exp_bits: literal, |
1297 | offset = $offset: literal, |
1298 | bits_ty = $bits_ty:ty, |
1299 | double_ty = $double_ty:ty, |
1300 | ) => {{ |
1301 | const MIN_EXP: i16 = 1 - (1i16 << $exp_bits) / 2; |
1302 | const MANT_MASK: $bits_ty = (1 << $mant_bits) - 1; |
1303 | const EXP_MASK: $bits_ty = (1 << $exp_bits) - 1; |
1304 | |
1305 | if $secs < 0.0 { |
1306 | return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::Negative }); |
1307 | } |
1308 | |
1309 | let bits = $secs.to_bits(); |
1310 | let mant = (bits & MANT_MASK) | (MANT_MASK + 1); |
1311 | let exp = ((bits >> $mant_bits) & EXP_MASK) as i16 + MIN_EXP; |
1312 | |
1313 | let (secs, nanos) = if exp < -31 { |
1314 | // the input represents less than 1ns and can not be rounded to it |
1315 | (0u64, 0u32) |
1316 | } else if exp < 0 { |
1317 | // the input is less than 1 second |
1318 | let t = <$double_ty>::from(mant) << ($offset + exp); |
1319 | let nanos_offset = $mant_bits + $offset; |
1320 | let nanos_tmp = u128::from(NANOS_PER_SEC) * u128::from(t); |
1321 | let nanos = (nanos_tmp >> nanos_offset) as u32; |
1322 | |
1323 | let rem_mask = (1 << nanos_offset) - 1; |
1324 | let rem_msb_mask = 1 << (nanos_offset - 1); |
1325 | let rem = nanos_tmp & rem_mask; |
1326 | let is_tie = rem == rem_msb_mask; |
1327 | let is_even = (nanos & 1) == 0; |
1328 | let rem_msb = nanos_tmp & rem_msb_mask == 0; |
1329 | let add_ns = !(rem_msb || (is_even && is_tie)); |
1330 | |
1331 | // f32 does not have enough precision to trigger the second branch |
1332 | // since it can not represent numbers between 0.999_999_940_395 and 1.0. |
1333 | let nanos = nanos + add_ns as u32; |
1334 | if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { (0, nanos) } else { (1, 0) } |
1335 | } else if exp < $mant_bits { |
1336 | let secs = u64::from(mant >> ($mant_bits - exp)); |
1337 | let t = <$double_ty>::from((mant << exp) & MANT_MASK); |
1338 | let nanos_offset = $mant_bits; |
1339 | let nanos_tmp = <$double_ty>::from(NANOS_PER_SEC) * t; |
1340 | let nanos = (nanos_tmp >> nanos_offset) as u32; |
1341 | |
1342 | let rem_mask = (1 << nanos_offset) - 1; |
1343 | let rem_msb_mask = 1 << (nanos_offset - 1); |
1344 | let rem = nanos_tmp & rem_mask; |
1345 | let is_tie = rem == rem_msb_mask; |
1346 | let is_even = (nanos & 1) == 0; |
1347 | let rem_msb = nanos_tmp & rem_msb_mask == 0; |
1348 | let add_ns = !(rem_msb || (is_even && is_tie)); |
1349 | |
1350 | // f32 does not have enough precision to trigger the second branch. |
1351 | // For example, it can not represent numbers between 1.999_999_880... |
1352 | // and 2.0. Bigger values result in even smaller precision of the |
1353 | // fractional part. |
1354 | let nanos = nanos + add_ns as u32; |
1355 | if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { |
1356 | (secs, nanos) |
1357 | } else { |
1358 | (secs + 1, 0) |
1359 | } |
1360 | } else if exp < 64 { |
1361 | // the input has no fractional part |
1362 | let secs = u64::from(mant) << (exp - $mant_bits); |
1363 | (secs, 0) |
1364 | } else { |
1365 | return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::OverflowOrNan }); |
1366 | }; |
1367 | |
1368 | Ok(Duration::new(secs, nanos)) |
1369 | }}; |
1370 | } |
1371 | |
1372 | impl Duration { |
1373 | /// The checked version of [`from_secs_f32`]. |
1374 | /// |
1375 | /// [`from_secs_f32`]: Duration::from_secs_f32 |
1376 | /// |
1377 | /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite. |
1378 | /// |
1379 | /// # Examples |
1380 | /// ``` |
1381 | /// use std::time::Duration; |
1382 | /// |
1383 | /// let res = Duration::try_from_secs_f32(0.0); |
1384 | /// assert_eq!(res, Ok(Duration::new(0, 0))); |
1385 | /// let res = Duration::try_from_secs_f32(1e-20); |
1386 | /// assert_eq!(res, Ok(Duration::new(0, 0))); |
1387 | /// let res = Duration::try_from_secs_f32(4.2e-7); |
1388 | /// assert_eq!(res, Ok(Duration::new(0, 420))); |
1389 | /// let res = Duration::try_from_secs_f32(2.7); |
1390 | /// assert_eq!(res, Ok(Duration::new(2, 700_000_048))); |
1391 | /// let res = Duration::try_from_secs_f32(3e10); |
1392 | /// assert_eq!(res, Ok(Duration::new(30_000_001_024, 0))); |
1393 | /// // subnormal float: |
1394 | /// let res = Duration::try_from_secs_f32(f32::from_bits(1)); |
1395 | /// assert_eq!(res, Ok(Duration::new(0, 0))); |
1396 | /// |
1397 | /// let res = Duration::try_from_secs_f32(-5.0); |
1398 | /// assert!(res.is_err()); |
1399 | /// let res = Duration::try_from_secs_f32(f32::NAN); |
1400 | /// assert!(res.is_err()); |
1401 | /// let res = Duration::try_from_secs_f32(2e19); |
1402 | /// assert!(res.is_err()); |
1403 | /// |
1404 | /// // the conversion uses rounding with tie resolution to even |
1405 | /// let res = Duration::try_from_secs_f32(0.999e-9); |
1406 | /// assert_eq!(res, Ok(Duration::new(0, 1))); |
1407 | /// |
1408 | /// // this float represents exactly 976562.5e-9 |
1409 | /// let val = f32::from_bits(0x3A80_0000); |
1410 | /// let res = Duration::try_from_secs_f32(val); |
1411 | /// assert_eq!(res, Ok(Duration::new(0, 976_562))); |
1412 | /// |
1413 | /// // this float represents exactly 2929687.5e-9 |
1414 | /// let val = f32::from_bits(0x3B40_0000); |
1415 | /// let res = Duration::try_from_secs_f32(val); |
1416 | /// assert_eq!(res, Ok(Duration::new(0, 2_929_688))); |
1417 | /// |
1418 | /// // this float represents exactly 1.000_976_562_5 |
1419 | /// let val = f32::from_bits(0x3F802000); |
1420 | /// let res = Duration::try_from_secs_f32(val); |
1421 | /// assert_eq!(res, Ok(Duration::new(1, 976_562))); |
1422 | /// |
1423 | /// // this float represents exactly 1.002_929_687_5 |
1424 | /// let val = f32::from_bits(0x3F806000); |
1425 | /// let res = Duration::try_from_secs_f32(val); |
1426 | /// assert_eq!(res, Ok(Duration::new(1, 2_929_688))); |
1427 | /// ``` |
1428 | #[stable (feature = "duration_checked_float" , since = "1.66.0" )] |
1429 | #[inline ] |
1430 | pub fn try_from_secs_f32(secs: f32) -> Result<Duration, TryFromFloatSecsError> { |
1431 | try_from_secs!( |
1432 | secs = secs, |
1433 | mantissa_bits = 23, |
1434 | exponent_bits = 8, |
1435 | offset = 41, |
1436 | bits_ty = u32, |
1437 | double_ty = u64, |
1438 | ) |
1439 | } |
1440 | |
1441 | /// The checked version of [`from_secs_f64`]. |
1442 | /// |
1443 | /// [`from_secs_f64`]: Duration::from_secs_f64 |
1444 | /// |
1445 | /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite. |
1446 | /// |
1447 | /// # Examples |
1448 | /// ``` |
1449 | /// use std::time::Duration; |
1450 | /// |
1451 | /// let res = Duration::try_from_secs_f64(0.0); |
1452 | /// assert_eq!(res, Ok(Duration::new(0, 0))); |
1453 | /// let res = Duration::try_from_secs_f64(1e-20); |
1454 | /// assert_eq!(res, Ok(Duration::new(0, 0))); |
1455 | /// let res = Duration::try_from_secs_f64(4.2e-7); |
1456 | /// assert_eq!(res, Ok(Duration::new(0, 420))); |
1457 | /// let res = Duration::try_from_secs_f64(2.7); |
1458 | /// assert_eq!(res, Ok(Duration::new(2, 700_000_000))); |
1459 | /// let res = Duration::try_from_secs_f64(3e10); |
1460 | /// assert_eq!(res, Ok(Duration::new(30_000_000_000, 0))); |
1461 | /// // subnormal float |
1462 | /// let res = Duration::try_from_secs_f64(f64::from_bits(1)); |
1463 | /// assert_eq!(res, Ok(Duration::new(0, 0))); |
1464 | /// |
1465 | /// let res = Duration::try_from_secs_f64(-5.0); |
1466 | /// assert!(res.is_err()); |
1467 | /// let res = Duration::try_from_secs_f64(f64::NAN); |
1468 | /// assert!(res.is_err()); |
1469 | /// let res = Duration::try_from_secs_f64(2e19); |
1470 | /// assert!(res.is_err()); |
1471 | /// |
1472 | /// // the conversion uses rounding with tie resolution to even |
1473 | /// let res = Duration::try_from_secs_f64(0.999e-9); |
1474 | /// assert_eq!(res, Ok(Duration::new(0, 1))); |
1475 | /// let res = Duration::try_from_secs_f64(0.999_999_999_499); |
1476 | /// assert_eq!(res, Ok(Duration::new(0, 999_999_999))); |
1477 | /// let res = Duration::try_from_secs_f64(0.999_999_999_501); |
1478 | /// assert_eq!(res, Ok(Duration::new(1, 0))); |
1479 | /// let res = Duration::try_from_secs_f64(42.999_999_999_499); |
1480 | /// assert_eq!(res, Ok(Duration::new(42, 999_999_999))); |
1481 | /// let res = Duration::try_from_secs_f64(42.999_999_999_501); |
1482 | /// assert_eq!(res, Ok(Duration::new(43, 0))); |
1483 | /// |
1484 | /// // this float represents exactly 976562.5e-9 |
1485 | /// let val = f64::from_bits(0x3F50_0000_0000_0000); |
1486 | /// let res = Duration::try_from_secs_f64(val); |
1487 | /// assert_eq!(res, Ok(Duration::new(0, 976_562))); |
1488 | /// |
1489 | /// // this float represents exactly 2929687.5e-9 |
1490 | /// let val = f64::from_bits(0x3F68_0000_0000_0000); |
1491 | /// let res = Duration::try_from_secs_f64(val); |
1492 | /// assert_eq!(res, Ok(Duration::new(0, 2_929_688))); |
1493 | /// |
1494 | /// // this float represents exactly 1.000_976_562_5 |
1495 | /// let val = f64::from_bits(0x3FF0_0400_0000_0000); |
1496 | /// let res = Duration::try_from_secs_f64(val); |
1497 | /// assert_eq!(res, Ok(Duration::new(1, 976_562))); |
1498 | /// |
1499 | /// // this float represents exactly 1.002_929_687_5 |
1500 | /// let val = f64::from_bits(0x3_FF00_C000_0000_000); |
1501 | /// let res = Duration::try_from_secs_f64(val); |
1502 | /// assert_eq!(res, Ok(Duration::new(1, 2_929_688))); |
1503 | /// ``` |
1504 | #[stable (feature = "duration_checked_float" , since = "1.66.0" )] |
1505 | #[inline ] |
1506 | pub fn try_from_secs_f64(secs: f64) -> Result<Duration, TryFromFloatSecsError> { |
1507 | try_from_secs!( |
1508 | secs = secs, |
1509 | mantissa_bits = 52, |
1510 | exponent_bits = 11, |
1511 | offset = 44, |
1512 | bits_ty = u64, |
1513 | double_ty = u128, |
1514 | ) |
1515 | } |
1516 | } |
1517 | |