1//! Implementation of panics backed by libgcc/libunwind (in some form).
2//!
3//! For background on exception handling and stack unwinding please see
4//! "Exception Handling in LLVM" (llvm.org/docs/ExceptionHandling.html) and
5//! documents linked from it.
6//! These are also good reads:
7//! * <https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html>
8//! * <https://monoinfinito.wordpress.com/series/exception-handling-in-c/>
9//! * <https://www.airs.com/blog/index.php?s=exception+frames>
10//!
11//! ## A brief summary
12//!
13//! Exception handling happens in two phases: a search phase and a cleanup
14//! phase.
15//!
16//! In both phases the unwinder walks stack frames from top to bottom using
17//! information from the stack frame unwind sections of the current process's
18//! modules ("module" here refers to an OS module, i.e., an executable or a
19//! dynamic library).
20//!
21//! For each stack frame, it invokes the associated "personality routine", whose
22//! address is also stored in the unwind info section.
23//!
24//! In the search phase, the job of a personality routine is to examine
25//! exception object being thrown, and to decide whether it should be caught at
26//! that stack frame. Once the handler frame has been identified, cleanup phase
27//! begins.
28//!
29//! In the cleanup phase, the unwinder invokes each personality routine again.
30//! This time it decides which (if any) cleanup code needs to be run for
31//! the current stack frame. If so, the control is transferred to a special
32//! branch in the function body, the "landing pad", which invokes destructors,
33//! frees memory, etc. At the end of the landing pad, control is transferred
34//! back to the unwinder and unwinding resumes.
35//!
36//! Once stack has been unwound down to the handler frame level, unwinding stops
37//! and the last personality routine transfers control to the catch block.
38
39use super::dwarf::eh::{self, EHAction, EHContext};
40use crate::ffi::c_int;
41use unwind as uw;
42
43// Register ids were lifted from LLVM's TargetLowering::getExceptionPointerRegister()
44// and TargetLowering::getExceptionSelectorRegister() for each architecture,
45// then mapped to DWARF register numbers via register definition tables
46// (typically <arch>RegisterInfo.td, search for "DwarfRegNum").
47// See also https://llvm.org/docs/WritingAnLLVMBackend.html#defining-a-register.
48
49#[cfg(target_arch = "x86")]
50const UNWIND_DATA_REG: (i32, i32) = (0, 2); // EAX, EDX
51
52#[cfg(target_arch = "x86_64")]
53const UNWIND_DATA_REG: (i32, i32) = (0, 1); // RAX, RDX
54
55#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
56const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1 / X0, X1
57
58#[cfg(target_arch = "m68k")]
59const UNWIND_DATA_REG: (i32, i32) = (0, 1); // D0, D1
60
61#[cfg(any(
62 target_arch = "mips",
63 target_arch = "mips32r6",
64 target_arch = "mips64",
65 target_arch = "mips64r6"
66))]
67const UNWIND_DATA_REG: (i32, i32) = (4, 5); // A0, A1
68
69#[cfg(target_arch = "csky")]
70const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1
71
72#[cfg(any(target_arch = "powerpc", target_arch = "powerpc64"))]
73const UNWIND_DATA_REG: (i32, i32) = (3, 4); // R3, R4 / X3, X4
74
75#[cfg(target_arch = "s390x")]
76const UNWIND_DATA_REG: (i32, i32) = (6, 7); // R6, R7
77
78#[cfg(any(target_arch = "sparc", target_arch = "sparc64"))]
79const UNWIND_DATA_REG: (i32, i32) = (24, 25); // I0, I1
80
81#[cfg(target_arch = "hexagon")]
82const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1
83
84#[cfg(any(target_arch = "riscv64", target_arch = "riscv32"))]
85const UNWIND_DATA_REG: (i32, i32) = (10, 11); // x10, x11
86
87#[cfg(target_arch = "loongarch64")]
88const UNWIND_DATA_REG: (i32, i32) = (4, 5); // a0, a1
89
90// The following code is based on GCC's C and C++ personality routines. For reference, see:
91// https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/eh_personality.cc
92// https://github.com/gcc-mirror/gcc/blob/trunk/libgcc/unwind-c.c
93
94cfg_if::cfg_if! {
95 if #[cfg(all(target_arch = "arm", not(target_os = "ios"), not(target_os = "tvos"), not(target_os = "watchos"), not(target_os = "netbsd")))] {
96 // ARM EHABI personality routine.
97 // https://web.archive.org/web/20190728160938/https://infocenter.arm.com/help/topic/com.arm.doc.ihi0038b/IHI0038B_ehabi.pdf
98 //
99 // iOS uses the default routine instead since it uses SjLj unwinding.
100 #[lang = "eh_personality"]
101 unsafe extern "C" fn rust_eh_personality(
102 state: uw::_Unwind_State,
103 exception_object: *mut uw::_Unwind_Exception,
104 context: *mut uw::_Unwind_Context,
105 ) -> uw::_Unwind_Reason_Code {
106 let state = state as c_int;
107 let action = state & uw::_US_ACTION_MASK as c_int;
108 let search_phase = if action == uw::_US_VIRTUAL_UNWIND_FRAME as c_int {
109 // Backtraces on ARM will call the personality routine with
110 // state == _US_VIRTUAL_UNWIND_FRAME | _US_FORCE_UNWIND. In those cases
111 // we want to continue unwinding the stack, otherwise all our backtraces
112 // would end at __rust_try
113 if state & uw::_US_FORCE_UNWIND as c_int != 0 {
114 return continue_unwind(exception_object, context);
115 }
116 true
117 } else if action == uw::_US_UNWIND_FRAME_STARTING as c_int {
118 false
119 } else if action == uw::_US_UNWIND_FRAME_RESUME as c_int {
120 return continue_unwind(exception_object, context);
121 } else {
122 return uw::_URC_FAILURE;
123 };
124
125 // The DWARF unwinder assumes that _Unwind_Context holds things like the function
126 // and LSDA pointers, however ARM EHABI places them into the exception object.
127 // To preserve signatures of functions like _Unwind_GetLanguageSpecificData(), which
128 // take only the context pointer, GCC personality routines stash a pointer to
129 // exception_object in the context, using location reserved for ARM's
130 // "scratch register" (r12).
131 uw::_Unwind_SetGR(context, uw::UNWIND_POINTER_REG, exception_object as uw::_Unwind_Ptr);
132 // ...A more principled approach would be to provide the full definition of ARM's
133 // _Unwind_Context in our libunwind bindings and fetch the required data from there
134 // directly, bypassing DWARF compatibility functions.
135
136 let eh_action = match find_eh_action(context) {
137 Ok(action) => action,
138 Err(_) => return uw::_URC_FAILURE,
139 };
140 if search_phase {
141 match eh_action {
142 EHAction::None | EHAction::Cleanup(_) => {
143 return continue_unwind(exception_object, context);
144 }
145 EHAction::Catch(_) | EHAction::Filter(_) => {
146 // EHABI requires the personality routine to update the
147 // SP value in the barrier cache of the exception object.
148 (*exception_object).private[5] =
149 uw::_Unwind_GetGR(context, uw::UNWIND_SP_REG);
150 return uw::_URC_HANDLER_FOUND;
151 }
152 EHAction::Terminate => return uw::_URC_FAILURE,
153 }
154 } else {
155 match eh_action {
156 EHAction::None => return continue_unwind(exception_object, context),
157 EHAction::Filter(_) if state & uw::_US_FORCE_UNWIND as c_int != 0 => return continue_unwind(exception_object, context),
158 EHAction::Cleanup(lpad) | EHAction::Catch(lpad) | EHAction::Filter(lpad) => {
159 uw::_Unwind_SetGR(
160 context,
161 UNWIND_DATA_REG.0,
162 exception_object as uw::_Unwind_Ptr,
163 );
164 uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, core::ptr::null());
165 uw::_Unwind_SetIP(context, lpad);
166 return uw::_URC_INSTALL_CONTEXT;
167 }
168 EHAction::Terminate => return uw::_URC_FAILURE,
169 }
170 }
171
172 // On ARM EHABI the personality routine is responsible for actually
173 // unwinding a single stack frame before returning (ARM EHABI Sec. 6.1).
174 unsafe fn continue_unwind(
175 exception_object: *mut uw::_Unwind_Exception,
176 context: *mut uw::_Unwind_Context,
177 ) -> uw::_Unwind_Reason_Code {
178 if __gnu_unwind_frame(exception_object, context) == uw::_URC_NO_REASON {
179 uw::_URC_CONTINUE_UNWIND
180 } else {
181 uw::_URC_FAILURE
182 }
183 }
184 // defined in libgcc
185 extern "C" {
186 fn __gnu_unwind_frame(
187 exception_object: *mut uw::_Unwind_Exception,
188 context: *mut uw::_Unwind_Context,
189 ) -> uw::_Unwind_Reason_Code;
190 }
191 }
192 } else {
193 // Default personality routine, which is used directly on most targets
194 // and indirectly on Windows x86_64 via SEH.
195 unsafe extern "C" fn rust_eh_personality_impl(
196 version: c_int,
197 actions: uw::_Unwind_Action,
198 _exception_class: uw::_Unwind_Exception_Class,
199 exception_object: *mut uw::_Unwind_Exception,
200 context: *mut uw::_Unwind_Context,
201 ) -> uw::_Unwind_Reason_Code {
202 if version != 1 {
203 return uw::_URC_FATAL_PHASE1_ERROR;
204 }
205 let eh_action = match find_eh_action(context) {
206 Ok(action) => action,
207 Err(_) => return uw::_URC_FATAL_PHASE1_ERROR,
208 };
209 if actions as i32 & uw::_UA_SEARCH_PHASE as i32 != 0 {
210 match eh_action {
211 EHAction::None | EHAction::Cleanup(_) => uw::_URC_CONTINUE_UNWIND,
212 EHAction::Catch(_) | EHAction::Filter(_) => uw::_URC_HANDLER_FOUND,
213 EHAction::Terminate => uw::_URC_FATAL_PHASE1_ERROR,
214 }
215 } else {
216 match eh_action {
217 EHAction::None => uw::_URC_CONTINUE_UNWIND,
218 // Forced unwinding hits a terminate action.
219 EHAction::Filter(_) if actions as i32 & uw::_UA_FORCE_UNWIND as i32 != 0 => uw::_URC_CONTINUE_UNWIND,
220 EHAction::Cleanup(lpad) | EHAction::Catch(lpad) | EHAction::Filter(lpad) => {
221 uw::_Unwind_SetGR(
222 context,
223 UNWIND_DATA_REG.0,
224 exception_object.cast(),
225 );
226 uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, core::ptr::null());
227 uw::_Unwind_SetIP(context, lpad);
228 uw::_URC_INSTALL_CONTEXT
229 }
230 EHAction::Terminate => uw::_URC_FATAL_PHASE2_ERROR,
231 }
232 }
233 }
234
235 cfg_if::cfg_if! {
236 if #[cfg(all(windows, any(target_arch = "aarch64", target_arch = "x86_64"), target_env = "gnu"))] {
237 // On x86_64 MinGW targets, the unwinding mechanism is SEH however the unwind
238 // handler data (aka LSDA) uses GCC-compatible encoding.
239 #[lang = "eh_personality"]
240 #[allow(nonstandard_style)]
241 unsafe extern "C" fn rust_eh_personality(
242 exceptionRecord: *mut uw::EXCEPTION_RECORD,
243 establisherFrame: uw::LPVOID,
244 contextRecord: *mut uw::CONTEXT,
245 dispatcherContext: *mut uw::DISPATCHER_CONTEXT,
246 ) -> uw::EXCEPTION_DISPOSITION {
247 uw::_GCC_specific_handler(
248 exceptionRecord,
249 establisherFrame,
250 contextRecord,
251 dispatcherContext,
252 rust_eh_personality_impl,
253 )
254 }
255 } else {
256 // The personality routine for most of our targets.
257 #[lang = "eh_personality"]
258 unsafe extern "C" fn rust_eh_personality(
259 version: c_int,
260 actions: uw::_Unwind_Action,
261 exception_class: uw::_Unwind_Exception_Class,
262 exception_object: *mut uw::_Unwind_Exception,
263 context: *mut uw::_Unwind_Context,
264 ) -> uw::_Unwind_Reason_Code {
265 rust_eh_personality_impl(
266 version,
267 actions,
268 exception_class,
269 exception_object,
270 context,
271 )
272 }
273 }
274 }
275 }
276}
277
278unsafe fn find_eh_action(context: *mut uw::_Unwind_Context) -> Result<EHAction, ()> {
279 let lsda: *const u8 = uw::_Unwind_GetLanguageSpecificData(context) as *const u8;
280 let mut ip_before_instr: c_int = 0;
281 let ip: *const u8 = uw::_Unwind_GetIPInfo(context, &mut ip_before_instr);
282 let eh_context: EHContext<'_> = EHContext {
283 // The return address points 1 byte past the call instruction,
284 // which could be in the next IP range in LSDA range table.
285 //
286 // `ip = -1` has special meaning, so use wrapping sub to allow for that
287 ip: if ip_before_instr != 0 { ip } else { ip.wrapping_sub(count:1) },
288 func_start: uw::_Unwind_GetRegionStart(context),
289 get_text_start: &|| uw::_Unwind_GetTextRelBase(context),
290 get_data_start: &|| uw::_Unwind_GetDataRelBase(context),
291 };
292 eh::find_eh_action(lsda, &eh_context)
293}
294