1 | // Copyright 2012 Google Inc. |
2 | // Copyright 2020 Yevhenii Reizner |
3 | // |
4 | // Use of this source code is governed by a BSD-style license that can be |
5 | // found in the LICENSE file. |
6 | |
7 | use super::Scalar64; |
8 | |
9 | #[cfg (all(not(feature = "std" ), feature = "no-std-float" ))] |
10 | use tiny_skia_path::NoStdFloat; |
11 | |
12 | pub fn push_valid_ts(s: &[f64], real_roots: usize, t: &mut [f64]) -> usize { |
13 | let mut found_roots: usize = 0; |
14 | 'outer: for index: usize in 0..real_roots { |
15 | let mut t_value: f64 = s[index]; |
16 | if t_value.approximately_zero_or_more() && t_value.approximately_one_or_less() { |
17 | t_value = t_value.bound(min:0.0, max:1.0); |
18 | |
19 | for idx2: usize in 0..found_roots { |
20 | if t[idx2].approximately_equal(t_value) { |
21 | continue 'outer; |
22 | } |
23 | } |
24 | |
25 | t[found_roots] = t_value; |
26 | found_roots += 1; |
27 | } |
28 | } |
29 | |
30 | found_roots |
31 | } |
32 | |
33 | // note: caller expects multiple results to be sorted smaller first |
34 | // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting |
35 | // analysis of the quadratic equation, suggesting why the following looks at |
36 | // the sign of B -- and further suggesting that the greatest loss of precision |
37 | // is in b squared less two a c |
38 | pub fn roots_valid_t(a: f64, b: f64, c: f64, t: &mut [f64]) -> usize { |
39 | let mut s: [f64; 3] = [0.0; 3]; |
40 | let real_roots: usize = roots_real(a, b, c, &mut s); |
41 | push_valid_ts(&s, real_roots, t) |
42 | } |
43 | |
44 | // Numeric Solutions (5.6) suggests to solve the quadratic by computing |
45 | // Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) |
46 | // and using the roots |
47 | // t1 = Q / A |
48 | // t2 = C / Q |
49 | // |
50 | // this does not discard real roots <= 0 or >= 1 |
51 | pub fn roots_real(a: f64, b: f64, c: f64, s: &mut [f64; 3]) -> usize { |
52 | if a == 0.0 { |
53 | return handle_zero(b, c, s); |
54 | } |
55 | |
56 | let p = b / (2.0 * a); |
57 | let q = c / a; |
58 | if a.approximately_zero() && (p.approximately_zero_inverse() || q.approximately_zero_inverse()) |
59 | { |
60 | return handle_zero(b, c, s); |
61 | } |
62 | |
63 | // normal form: x^2 + px + q = 0 |
64 | let p2 = p * p; |
65 | if !p2.almost_dequal_ulps(q) && p2 < q { |
66 | return 0; |
67 | } |
68 | |
69 | let mut sqrt_d = 0.0; |
70 | if p2 > q { |
71 | sqrt_d = (p2 - q).sqrt(); |
72 | } |
73 | |
74 | s[0] = sqrt_d - p; |
75 | s[1] = -sqrt_d - p; |
76 | 1 + usize::from(!s[0].almost_dequal_ulps(s[1])) |
77 | } |
78 | |
79 | fn handle_zero(b: f64, c: f64, s: &mut [f64; 3]) -> usize { |
80 | if b.approximately_zero() { |
81 | s[0] = 0.0; |
82 | (c == 0.0) as usize |
83 | } else { |
84 | s[0] = -c / b; |
85 | 1 |
86 | } |
87 | } |
88 | |