1 | // Copyright 2012 Google Inc. |
2 | // Copyright 2020 Yevhenii Reizner |
3 | // |
4 | // Use of this source code is governed by a BSD-style license that can be |
5 | // found in the LICENSE file. |
6 | |
7 | use tiny_skia_path::{Scalar, SCALAR_MAX}; |
8 | |
9 | #[cfg (all(not(feature = "std" ), feature = "no-std-float" ))] |
10 | use tiny_skia_path::NoStdFloat; |
11 | |
12 | // Must be first, because of macro scope rules. |
13 | #[macro_use ] |
14 | pub mod point64; |
15 | |
16 | pub mod cubic64; |
17 | pub mod line_cubic_intersections; |
18 | mod quad64; |
19 | |
20 | // The code below is from SkPathOpsTypes. |
21 | |
22 | const DBL_EPSILON_ERR: f64 = f64::EPSILON * 4.0; |
23 | const FLT_EPSILON_HALF: f64 = (f32::EPSILON / 2.0) as f64; |
24 | const FLT_EPSILON_CUBED: f64 = (f32::EPSILON * f32::EPSILON * f32::EPSILON) as f64; |
25 | const FLT_EPSILON_INVERSE: f64 = 1.0 / f32::EPSILON as f64; |
26 | |
27 | pub trait Scalar64 { |
28 | fn bound(self, min: Self, max: Self) -> Self; |
29 | fn between(self, a: f64, b: f64) -> bool; |
30 | fn precisely_zero(self) -> bool; |
31 | fn approximately_zero_or_more(self) -> bool; |
32 | fn approximately_one_or_less(self) -> bool; |
33 | fn approximately_zero(self) -> bool; |
34 | fn approximately_zero_inverse(self) -> bool; |
35 | fn approximately_zero_cubed(self) -> bool; |
36 | fn approximately_zero_half(self) -> bool; |
37 | fn approximately_zero_when_compared_to(self, other: Self) -> bool; |
38 | fn approximately_equal(self, other: Self) -> bool; |
39 | fn approximately_equal_half(self, other: Self) -> bool; |
40 | fn almost_dequal_ulps(self, other: Self) -> bool; |
41 | } |
42 | |
43 | impl Scalar64 for f64 { |
44 | // Works just like SkTPin, returning `max` for NaN/inf |
45 | fn bound(self, min: Self, max: Self) -> Self { |
46 | max.min(self).max(min) |
47 | } |
48 | |
49 | /// Returns true if (a <= self <= b) || (a >= self >= b). |
50 | fn between(self, a: f64, b: f64) -> bool { |
51 | debug_assert!( |
52 | ((a <= self && self <= b) || (a >= self && self >= b)) |
53 | == ((a - self) * (b - self) <= 0.0) |
54 | || (a.precisely_zero() && self.precisely_zero() && b.precisely_zero()) |
55 | ); |
56 | |
57 | (a - self) * (b - self) <= 0.0 |
58 | } |
59 | |
60 | fn precisely_zero(self) -> bool { |
61 | self.abs() < DBL_EPSILON_ERR |
62 | } |
63 | |
64 | fn approximately_zero_or_more(self) -> bool { |
65 | self > -f64::EPSILON |
66 | } |
67 | |
68 | fn approximately_one_or_less(self) -> bool { |
69 | self < 1.0 + f64::EPSILON |
70 | } |
71 | |
72 | fn approximately_zero(self) -> bool { |
73 | self.abs() < f64::EPSILON |
74 | } |
75 | |
76 | fn approximately_zero_inverse(self) -> bool { |
77 | self.abs() > FLT_EPSILON_INVERSE |
78 | } |
79 | |
80 | fn approximately_zero_cubed(self) -> bool { |
81 | self.abs() < FLT_EPSILON_CUBED |
82 | } |
83 | |
84 | fn approximately_zero_half(self) -> bool { |
85 | self < FLT_EPSILON_HALF |
86 | } |
87 | |
88 | fn approximately_zero_when_compared_to(self, other: Self) -> bool { |
89 | self == 0.0 || self.abs() < (other * (f32::EPSILON as f64)).abs() |
90 | } |
91 | |
92 | // Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use |
93 | // AlmostEqualUlps instead. |
94 | fn approximately_equal(self, other: Self) -> bool { |
95 | (self - other).approximately_zero() |
96 | } |
97 | |
98 | fn approximately_equal_half(self, other: Self) -> bool { |
99 | (self - other).approximately_zero_half() |
100 | } |
101 | |
102 | fn almost_dequal_ulps(self, other: Self) -> bool { |
103 | if self.abs() < SCALAR_MAX as f64 && other.abs() < SCALAR_MAX as f64 { |
104 | (self as f32).almost_dequal_ulps(other as f32) |
105 | } else { |
106 | (self - other).abs() / self.abs().max(other.abs()) < (f32::EPSILON * 16.0) as f64 |
107 | } |
108 | } |
109 | } |
110 | |
111 | pub fn cube_root(x: f64) -> f64 { |
112 | if x.approximately_zero_cubed() { |
113 | return 0.0; |
114 | } |
115 | |
116 | let result: f64 = halley_cbrt3d(x.abs()); |
117 | if x < 0.0 { |
118 | -result |
119 | } else { |
120 | result |
121 | } |
122 | } |
123 | |
124 | // cube root approximation using 3 iterations of Halley's method (double) |
125 | fn halley_cbrt3d(d: f64) -> f64 { |
126 | let mut a: f64 = cbrt_5d(d); |
127 | a = cbrta_halleyd(a, r:d); |
128 | a = cbrta_halleyd(a, r:d); |
129 | cbrta_halleyd(a, r:d) |
130 | } |
131 | |
132 | // cube root approximation using bit hack for 64-bit float |
133 | // adapted from Kahan's cbrt |
134 | fn cbrt_5d(d: f64) -> f64 { |
135 | let b1: u32 = 715094163; |
136 | let mut t: f64 = 0.0; |
137 | let pt: &mut [u32; 2] = bytemuck::cast_mut(&mut t); |
138 | let px: [u32; 2] = bytemuck::cast(d); |
139 | pt[1] = px[1] / 3 + b1; |
140 | t |
141 | } |
142 | |
143 | // iterative cube root approximation using Halley's method (double) |
144 | fn cbrta_halleyd(a: f64, r: f64) -> f64 { |
145 | let a3: f64 = a * a * a; |
146 | a * (a3 + r + r) / (a3 + a3 + r) |
147 | } |
148 | |
149 | fn interp(a: f64, b: f64, t: f64) -> f64 { |
150 | a + (b - a) * t |
151 | } |
152 | |