1 | // Copyright 2006 The Android Open Source Project |
2 | // Copyright 2020 Yevhenii Reizner |
3 | // |
4 | // Use of this source code is governed by a BSD-style license that can be |
5 | // found in the LICENSE file. |
6 | |
7 | use tiny_skia_path::{NormalizedF32, Scalar}; |
8 | |
9 | /// 8-bit type for an alpha value. 255 is 100% opaque, zero is 100% transparent. |
10 | pub type AlphaU8 = u8; |
11 | |
12 | /// Represents fully transparent AlphaU8 value. |
13 | pub const ALPHA_U8_TRANSPARENT: AlphaU8 = 0x00; |
14 | |
15 | /// Represents fully opaque AlphaU8 value. |
16 | pub const ALPHA_U8_OPAQUE: AlphaU8 = 0xFF; |
17 | |
18 | /// Represents fully transparent Alpha value. |
19 | pub const ALPHA_TRANSPARENT: NormalizedF32 = NormalizedF32::ZERO; |
20 | |
21 | /// Represents fully opaque Alpha value. |
22 | pub const ALPHA_OPAQUE: NormalizedF32 = NormalizedF32::ONE; |
23 | |
24 | /// A 32-bit RGBA color value. |
25 | /// |
26 | /// Byteorder: RGBA (relevant for bytemuck casts) |
27 | #[repr (transparent)] |
28 | #[derive (Copy, Clone, PartialEq)] |
29 | pub struct ColorU8([u8; 4]); |
30 | |
31 | impl ColorU8 { |
32 | /// Creates a new color. |
33 | pub const fn from_rgba(r: u8, g: u8, b: u8, a: u8) -> Self { |
34 | ColorU8([r, g, b, a]) |
35 | } |
36 | |
37 | /// Returns color's red component. |
38 | pub const fn red(self) -> u8 { |
39 | self.0[0] |
40 | } |
41 | |
42 | /// Returns color's green component. |
43 | pub const fn green(self) -> u8 { |
44 | self.0[1] |
45 | } |
46 | |
47 | /// Returns color's blue component. |
48 | pub const fn blue(self) -> u8 { |
49 | self.0[2] |
50 | } |
51 | |
52 | /// Returns color's alpha component. |
53 | pub const fn alpha(self) -> u8 { |
54 | self.0[3] |
55 | } |
56 | |
57 | /// Check that color is opaque. |
58 | /// |
59 | /// Alpha == 255 |
60 | pub fn is_opaque(&self) -> bool { |
61 | self.alpha() == ALPHA_U8_OPAQUE |
62 | } |
63 | |
64 | /// Converts into a premultiplied color. |
65 | pub fn premultiply(&self) -> PremultipliedColorU8 { |
66 | let a = self.alpha(); |
67 | if a != ALPHA_U8_OPAQUE { |
68 | PremultipliedColorU8::from_rgba_unchecked( |
69 | premultiply_u8(self.red(), a), |
70 | premultiply_u8(self.green(), a), |
71 | premultiply_u8(self.blue(), a), |
72 | a, |
73 | ) |
74 | } else { |
75 | PremultipliedColorU8::from_rgba_unchecked(self.red(), self.green(), self.blue(), a) |
76 | } |
77 | } |
78 | } |
79 | |
80 | impl core::fmt::Debug for ColorU8 { |
81 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
82 | f&mut DebugStruct<'_, '_>.debug_struct("ColorU8" ) |
83 | .field("r" , &self.red()) |
84 | .field("g" , &self.green()) |
85 | .field("b" , &self.blue()) |
86 | .field(name:"a" , &self.alpha()) |
87 | .finish() |
88 | } |
89 | } |
90 | |
91 | /// A 32-bit premultiplied RGBA color value. |
92 | /// |
93 | /// Byteorder: RGBA (relevant for bytemuck casts) |
94 | #[repr (transparent)] |
95 | #[derive (Copy, Clone, PartialEq)] |
96 | pub struct PremultipliedColorU8([u8; 4]); |
97 | |
98 | // Perfectly safe, since [u8; 4] is already Pod. |
99 | unsafe impl bytemuck::Zeroable for PremultipliedColorU8 {} |
100 | unsafe impl bytemuck::Pod for PremultipliedColorU8 {} |
101 | |
102 | impl PremultipliedColorU8 { |
103 | /// A transparent color. |
104 | pub const TRANSPARENT: Self = PremultipliedColorU8::from_rgba_unchecked(0, 0, 0, 0); |
105 | |
106 | /// Creates a new premultiplied color. |
107 | /// |
108 | /// RGB components must be <= alpha. |
109 | pub fn from_rgba(r: u8, g: u8, b: u8, a: u8) -> Option<Self> { |
110 | if r <= a && g <= a && b <= a { |
111 | Some(PremultipliedColorU8([r, g, b, a])) |
112 | } else { |
113 | None |
114 | } |
115 | } |
116 | |
117 | /// Creates a new color. |
118 | pub(crate) const fn from_rgba_unchecked(r: u8, g: u8, b: u8, a: u8) -> Self { |
119 | PremultipliedColorU8([r, g, b, a]) |
120 | } |
121 | |
122 | /// Returns color's red component. |
123 | /// |
124 | /// The value is <= alpha. |
125 | pub const fn red(self) -> u8 { |
126 | self.0[0] |
127 | } |
128 | |
129 | /// Returns color's green component. |
130 | /// |
131 | /// The value is <= alpha. |
132 | pub const fn green(self) -> u8 { |
133 | self.0[1] |
134 | } |
135 | |
136 | /// Returns color's blue component. |
137 | /// |
138 | /// The value is <= alpha. |
139 | pub const fn blue(self) -> u8 { |
140 | self.0[2] |
141 | } |
142 | |
143 | /// Returns color's alpha component. |
144 | pub const fn alpha(self) -> u8 { |
145 | self.0[3] |
146 | } |
147 | |
148 | /// Check that color is opaque. |
149 | /// |
150 | /// Alpha == 255 |
151 | pub fn is_opaque(&self) -> bool { |
152 | self.alpha() == ALPHA_U8_OPAQUE |
153 | } |
154 | |
155 | /// Returns a demultiplied color. |
156 | pub fn demultiply(&self) -> ColorU8 { |
157 | let alpha = self.alpha(); |
158 | if alpha == ALPHA_U8_OPAQUE { |
159 | ColorU8(self.0) |
160 | } else { |
161 | let a = alpha as f64 / 255.0; |
162 | ColorU8::from_rgba( |
163 | (self.red() as f64 / a + 0.5) as u8, |
164 | (self.green() as f64 / a + 0.5) as u8, |
165 | (self.blue() as f64 / a + 0.5) as u8, |
166 | alpha, |
167 | ) |
168 | } |
169 | } |
170 | } |
171 | |
172 | impl core::fmt::Debug for PremultipliedColorU8 { |
173 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
174 | f&mut DebugStruct<'_, '_>.debug_struct("PremultipliedColorU8" ) |
175 | .field("r" , &self.red()) |
176 | .field("g" , &self.green()) |
177 | .field("b" , &self.blue()) |
178 | .field(name:"a" , &self.alpha()) |
179 | .finish() |
180 | } |
181 | } |
182 | |
183 | /// An RGBA color value, holding four floating point components. |
184 | /// |
185 | /// # Guarantees |
186 | /// |
187 | /// - All values are in 0..=1 range. |
188 | #[derive (Copy, Clone, PartialEq, Debug)] |
189 | pub struct Color { |
190 | r: NormalizedF32, |
191 | g: NormalizedF32, |
192 | b: NormalizedF32, |
193 | a: NormalizedF32, |
194 | } |
195 | |
196 | const NV_ZERO: NormalizedF32 = NormalizedF32::ZERO; |
197 | const NV_ONE: NormalizedF32 = NormalizedF32::ONE; |
198 | |
199 | impl Color { |
200 | /// A transparent color. |
201 | pub const TRANSPARENT: Color = Color { |
202 | r: NV_ZERO, |
203 | g: NV_ZERO, |
204 | b: NV_ZERO, |
205 | a: NV_ZERO, |
206 | }; |
207 | /// A black color. |
208 | pub const BLACK: Color = Color { |
209 | r: NV_ZERO, |
210 | g: NV_ZERO, |
211 | b: NV_ZERO, |
212 | a: NV_ONE, |
213 | }; |
214 | /// A white color. |
215 | pub const WHITE: Color = Color { |
216 | r: NV_ONE, |
217 | g: NV_ONE, |
218 | b: NV_ONE, |
219 | a: NV_ONE, |
220 | }; |
221 | |
222 | /// Creates a new color from 4 components. |
223 | /// |
224 | /// All values must be in 0..=1 range. |
225 | pub fn from_rgba(r: f32, g: f32, b: f32, a: f32) -> Option<Self> { |
226 | Some(Color { |
227 | r: NormalizedF32::new(r)?, |
228 | g: NormalizedF32::new(g)?, |
229 | b: NormalizedF32::new(b)?, |
230 | a: NormalizedF32::new(a)?, |
231 | }) |
232 | } |
233 | |
234 | /// Creates a new color from 4 components. |
235 | /// |
236 | /// u8 will be divided by 255 to get the float component. |
237 | pub fn from_rgba8(r: u8, g: u8, b: u8, a: u8) -> Self { |
238 | Color { |
239 | r: NormalizedF32::new_u8(r), |
240 | g: NormalizedF32::new_u8(g), |
241 | b: NormalizedF32::new_u8(b), |
242 | a: NormalizedF32::new_u8(a), |
243 | } |
244 | } |
245 | |
246 | /// Returns color's red component. |
247 | /// |
248 | /// The value is guarantee to be in a 0..=1 range. |
249 | pub fn red(&self) -> f32 { |
250 | self.r.get() |
251 | } |
252 | |
253 | /// Returns color's green component. |
254 | /// |
255 | /// The value is guarantee to be in a 0..=1 range. |
256 | pub fn green(&self) -> f32 { |
257 | self.g.get() |
258 | } |
259 | |
260 | /// Returns color's blue component. |
261 | /// |
262 | /// The value is guarantee to be in a 0..=1 range. |
263 | pub fn blue(&self) -> f32 { |
264 | self.b.get() |
265 | } |
266 | |
267 | /// Returns color's alpha component. |
268 | /// |
269 | /// The value is guarantee to be in a 0..=1 range. |
270 | pub fn alpha(&self) -> f32 { |
271 | self.a.get() |
272 | } |
273 | |
274 | /// Sets the red component value. |
275 | /// |
276 | /// The new value will be clipped to the 0..=1 range. |
277 | pub fn set_red(&mut self, c: f32) { |
278 | self.r = NormalizedF32::new_clamped(c); |
279 | } |
280 | |
281 | /// Sets the green component value. |
282 | /// |
283 | /// The new value will be clipped to the 0..=1 range. |
284 | pub fn set_green(&mut self, c: f32) { |
285 | self.g = NormalizedF32::new_clamped(c); |
286 | } |
287 | |
288 | /// Sets the blue component value. |
289 | /// |
290 | /// The new value will be clipped to the 0..=1 range. |
291 | pub fn set_blue(&mut self, c: f32) { |
292 | self.b = NormalizedF32::new_clamped(c); |
293 | } |
294 | |
295 | /// Sets the alpha component value. |
296 | /// |
297 | /// The new value will be clipped to the 0..=1 range. |
298 | pub fn set_alpha(&mut self, c: f32) { |
299 | self.a = NormalizedF32::new_clamped(c); |
300 | } |
301 | |
302 | /// Shifts color's opacity. |
303 | /// |
304 | /// Essentially, multiplies color's alpha by opacity. |
305 | /// |
306 | /// `opacity` will be clamped to the 0..=1 range first. |
307 | /// The final alpha will also be clamped. |
308 | pub fn apply_opacity(&mut self, opacity: f32) { |
309 | self.a = NormalizedF32::new_clamped(self.a.get() * opacity.bound(0.0, 1.0)); |
310 | } |
311 | |
312 | /// Check that color is opaque. |
313 | /// |
314 | /// Alpha == 1.0 |
315 | pub fn is_opaque(&self) -> bool { |
316 | self.a == ALPHA_OPAQUE |
317 | } |
318 | |
319 | /// Converts into a premultiplied color. |
320 | pub fn premultiply(&self) -> PremultipliedColor { |
321 | if self.is_opaque() { |
322 | PremultipliedColor { |
323 | r: self.r, |
324 | g: self.g, |
325 | b: self.b, |
326 | a: self.a, |
327 | } |
328 | } else { |
329 | PremultipliedColor { |
330 | r: NormalizedF32::new_clamped(self.r.get() * self.a.get()), |
331 | g: NormalizedF32::new_clamped(self.g.get() * self.a.get()), |
332 | b: NormalizedF32::new_clamped(self.b.get() * self.a.get()), |
333 | a: self.a, |
334 | } |
335 | } |
336 | } |
337 | |
338 | /// Converts into `ColorU8`. |
339 | pub fn to_color_u8(&self) -> ColorU8 { |
340 | let c = color_f32_to_u8(self.r, self.g, self.b, self.a); |
341 | ColorU8::from_rgba(c[0], c[1], c[2], c[3]) |
342 | } |
343 | } |
344 | |
345 | /// A premultiplied RGBA color value, holding four floating point components. |
346 | /// |
347 | /// # Guarantees |
348 | /// |
349 | /// - All values are in 0..=1 range. |
350 | /// - RGB components are <= A. |
351 | #[derive (Copy, Clone, PartialEq, Debug)] |
352 | pub struct PremultipliedColor { |
353 | r: NormalizedF32, |
354 | g: NormalizedF32, |
355 | b: NormalizedF32, |
356 | a: NormalizedF32, |
357 | } |
358 | |
359 | impl PremultipliedColor { |
360 | /// Returns color's red component. |
361 | /// |
362 | /// - The value is guarantee to be in a 0..=1 range. |
363 | /// - The value is <= alpha. |
364 | pub fn red(&self) -> f32 { |
365 | self.r.get() |
366 | } |
367 | |
368 | /// Returns color's green component. |
369 | /// |
370 | /// - The value is guarantee to be in a 0..=1 range. |
371 | /// - The value is <= alpha. |
372 | pub fn green(&self) -> f32 { |
373 | self.g.get() |
374 | } |
375 | |
376 | /// Returns color's blue component. |
377 | /// |
378 | /// - The value is guarantee to be in a 0..=1 range. |
379 | /// - The value is <= alpha. |
380 | pub fn blue(&self) -> f32 { |
381 | self.b.get() |
382 | } |
383 | |
384 | /// Returns color's alpha component. |
385 | /// |
386 | /// - The value is guarantee to be in a 0..=1 range. |
387 | pub fn alpha(&self) -> f32 { |
388 | self.a.get() |
389 | } |
390 | |
391 | /// Returns a demultiplied color. |
392 | pub fn demultiply(&self) -> Color { |
393 | let a = self.a.get(); |
394 | if a == 0.0 { |
395 | Color::TRANSPARENT |
396 | } else { |
397 | Color { |
398 | r: NormalizedF32::new_clamped(self.r.get() / a), |
399 | g: NormalizedF32::new_clamped(self.g.get() / a), |
400 | b: NormalizedF32::new_clamped(self.b.get() / a), |
401 | a: self.a, |
402 | } |
403 | } |
404 | } |
405 | |
406 | /// Converts into `PremultipliedColorU8`. |
407 | pub fn to_color_u8(&self) -> PremultipliedColorU8 { |
408 | let c = color_f32_to_u8(self.r, self.g, self.b, self.a); |
409 | PremultipliedColorU8::from_rgba_unchecked(c[0], c[1], c[2], c[3]) |
410 | } |
411 | } |
412 | |
413 | /// Return a*b/255, rounding any fractional bits. |
414 | pub fn premultiply_u8(c: u8, a: u8) -> u8 { |
415 | let prod: u32 = u32::from(c) * u32::from(a) + 128; |
416 | ((prod + (prod >> 8)) >> 8) as u8 |
417 | } |
418 | |
419 | fn color_f32_to_u8( |
420 | r: NormalizedF32, |
421 | g: NormalizedF32, |
422 | b: NormalizedF32, |
423 | a: NormalizedF32, |
424 | ) -> [u8; 4] { |
425 | [ |
426 | (r.get() * 255.0 + 0.5) as u8, |
427 | (g.get() * 255.0 + 0.5) as u8, |
428 | (b.get() * 255.0 + 0.5) as u8, |
429 | (a.get() * 255.0 + 0.5) as u8, |
430 | ] |
431 | } |
432 | |
433 | #[cfg (test)] |
434 | mod tests { |
435 | use super::*; |
436 | |
437 | #[test ] |
438 | fn premultiply_u8() { |
439 | assert_eq!( |
440 | ColorU8::from_rgba(10, 20, 30, 40).premultiply(), |
441 | PremultipliedColorU8::from_rgba_unchecked(2, 3, 5, 40) |
442 | ); |
443 | } |
444 | |
445 | #[test ] |
446 | fn premultiply_u8_opaque() { |
447 | assert_eq!( |
448 | ColorU8::from_rgba(10, 20, 30, 255).premultiply(), |
449 | PremultipliedColorU8::from_rgba_unchecked(10, 20, 30, 255) |
450 | ); |
451 | } |
452 | |
453 | #[test ] |
454 | fn demultiply_u8_1() { |
455 | assert_eq!( |
456 | PremultipliedColorU8::from_rgba_unchecked(2, 3, 5, 40).demultiply(), |
457 | ColorU8::from_rgba(13, 19, 32, 40) |
458 | ); |
459 | } |
460 | |
461 | #[test ] |
462 | fn demultiply_u8_2() { |
463 | assert_eq!( |
464 | PremultipliedColorU8::from_rgba_unchecked(10, 20, 30, 255).demultiply(), |
465 | ColorU8::from_rgba(10, 20, 30, 255) |
466 | ); |
467 | } |
468 | |
469 | #[test ] |
470 | fn demultiply_u8_3() { |
471 | assert_eq!( |
472 | PremultipliedColorU8::from_rgba_unchecked(153, 99, 54, 180).demultiply(), |
473 | ColorU8::from_rgba(217, 140, 77, 180) |
474 | ); |
475 | } |
476 | |
477 | #[test ] |
478 | fn bytemuck_casts_rgba() { |
479 | let slice = &[ |
480 | PremultipliedColorU8::from_rgba_unchecked(0, 1, 2, 3), |
481 | PremultipliedColorU8::from_rgba_unchecked(10, 11, 12, 13), |
482 | ]; |
483 | let bytes: &[u8] = bytemuck::cast_slice(slice); |
484 | assert_eq!(bytes, &[0, 1, 2, 3, 10, 11, 12, 13]); |
485 | } |
486 | } |
487 | |