| 1 | /*! |
| 2 | A collection of bounded numeric types. |
| 3 | |
| 4 | Includes: |
| 5 | |
| 6 | - [`FiniteF32`] |
| 7 | - [`FiniteF64`] |
| 8 | - [`NonZeroPositiveF32`] |
| 9 | - [`NonZeroPositiveF64`] |
| 10 | - [`PositiveF32`] |
| 11 | - [`PositiveF64`] |
| 12 | - [`NormalizedF32`] |
| 13 | - [`NormalizedF64`] |
| 14 | |
| 15 | Unlike `f32`/`f64`, all float types implement `Ord`, `PartialOrd` and `Hash`, |
| 16 | since it's guaranteed that they all are finite. |
| 17 | */ |
| 18 | |
| 19 | #![no_std ] |
| 20 | #![deny (missing_docs)] |
| 21 | #![deny (missing_copy_implementations)] |
| 22 | #![deny (missing_debug_implementations)] |
| 23 | |
| 24 | macro_rules! impl_display { |
| 25 | ($t:ident) => { |
| 26 | impl core::fmt::Display for $t { |
| 27 | #[inline] |
| 28 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 29 | write!(f, "{}" , self.get()) |
| 30 | } |
| 31 | } |
| 32 | }; |
| 33 | } |
| 34 | |
| 35 | #[cfg (feature = "approx-eq" )] |
| 36 | pub use float_cmp::{ApproxEq, ApproxEqUlps, Ulps}; |
| 37 | |
| 38 | #[cfg (feature = "approx-eq" )] |
| 39 | macro_rules! impl_approx_32 { |
| 40 | ($t:ident) => { |
| 41 | impl float_cmp::ApproxEq for $t { |
| 42 | type Margin = float_cmp::F32Margin; |
| 43 | |
| 44 | #[inline] |
| 45 | fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool { |
| 46 | self.0.approx_eq(other.0, margin) |
| 47 | } |
| 48 | } |
| 49 | |
| 50 | impl float_cmp::ApproxEqUlps for $t { |
| 51 | type Flt = f32; |
| 52 | |
| 53 | #[inline] |
| 54 | fn approx_eq_ulps(&self, other: &Self, ulps: i32) -> bool { |
| 55 | self.0.approx_eq_ulps(&other.0, ulps) |
| 56 | } |
| 57 | } |
| 58 | }; |
| 59 | } |
| 60 | |
| 61 | #[cfg (not(feature = "approx-eq" ))] |
| 62 | macro_rules! impl_approx_32 { |
| 63 | ($t:ident) => {}; |
| 64 | } |
| 65 | |
| 66 | #[cfg (feature = "approx-eq" )] |
| 67 | macro_rules! impl_approx_64 { |
| 68 | ($t:ident) => { |
| 69 | #[cfg(feature = "approx-eq" )] |
| 70 | impl float_cmp::ApproxEq for $t { |
| 71 | type Margin = float_cmp::F64Margin; |
| 72 | |
| 73 | #[inline] |
| 74 | fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool { |
| 75 | self.0.approx_eq(other.0, margin) |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | #[cfg(feature = "approx-eq" )] |
| 80 | impl float_cmp::ApproxEqUlps for $t { |
| 81 | type Flt = f64; |
| 82 | |
| 83 | #[inline] |
| 84 | fn approx_eq_ulps(&self, other: &Self, ulps: i64) -> bool { |
| 85 | self.0.approx_eq_ulps(&other.0, ulps) |
| 86 | } |
| 87 | } |
| 88 | }; |
| 89 | } |
| 90 | |
| 91 | #[cfg (not(feature = "approx-eq" ))] |
| 92 | macro_rules! impl_approx_64 { |
| 93 | ($t:ident) => {}; |
| 94 | } |
| 95 | |
| 96 | /// An immutable, finite `f32`. |
| 97 | /// |
| 98 | /// Unlike `f32`, implements `Ord`, `PartialOrd` and `Hash`. |
| 99 | #[derive (Copy, Clone, Default, Debug)] |
| 100 | #[repr (transparent)] |
| 101 | pub struct FiniteF32(f32); |
| 102 | |
| 103 | impl FiniteF32 { |
| 104 | /// Creates a finite `f32`. |
| 105 | /// |
| 106 | /// Returns `None` for NaN and infinity. |
| 107 | #[inline ] |
| 108 | pub fn new(n: f32) -> Option<Self> { |
| 109 | if n.is_finite() { |
| 110 | Some(FiniteF32(n)) |
| 111 | } else { |
| 112 | None |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | /// Creates a finite `f32` without checking the value. |
| 117 | /// |
| 118 | /// # Safety |
| 119 | /// |
| 120 | /// `n` must be finite. |
| 121 | #[inline ] |
| 122 | pub const unsafe fn new_unchecked(n: f32) -> Self { |
| 123 | FiniteF32(n) |
| 124 | } |
| 125 | |
| 126 | /// Returns the value as a primitive type. |
| 127 | #[inline ] |
| 128 | pub const fn get(&self) -> f32 { |
| 129 | self.0 |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | impl Eq for FiniteF32 {} |
| 134 | |
| 135 | impl PartialEq for FiniteF32 { |
| 136 | #[inline ] |
| 137 | fn eq(&self, other: &Self) -> bool { |
| 138 | self.0 == other.0 |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | impl Ord for FiniteF32 { |
| 143 | #[inline ] |
| 144 | fn cmp(&self, other: &Self) -> core::cmp::Ordering { |
| 145 | if self.0 < other.0 { |
| 146 | core::cmp::Ordering::Less |
| 147 | } else if self.0 > other.0 { |
| 148 | core::cmp::Ordering::Greater |
| 149 | } else { |
| 150 | core::cmp::Ordering::Equal |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | impl PartialOrd for FiniteF32 { |
| 156 | #[inline ] |
| 157 | fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { |
| 158 | Some(self.cmp(other)) |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | impl core::hash::Hash for FiniteF32 { |
| 163 | #[inline ] |
| 164 | fn hash<H: core::hash::Hasher>(&self, state: &mut H) { |
| 165 | self.0.to_bits().hash(state); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | impl PartialEq<f32> for FiniteF32 { |
| 170 | #[inline ] |
| 171 | fn eq(&self, other: &f32) -> bool { |
| 172 | self.get() == *other |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | impl_display!(FiniteF32); |
| 177 | impl_approx_32!(FiniteF32); |
| 178 | |
| 179 | /// An immutable, finite `f64`. |
| 180 | /// |
| 181 | /// Unlike `f64`, implements `Ord`, `PartialOrd` and `Hash`. |
| 182 | #[derive (Copy, Clone, Default, Debug)] |
| 183 | #[repr (transparent)] |
| 184 | pub struct FiniteF64(f64); |
| 185 | |
| 186 | impl FiniteF64 { |
| 187 | /// Creates a finite `f64`. |
| 188 | /// |
| 189 | /// Returns `None` for NaN and infinity. |
| 190 | #[inline ] |
| 191 | pub fn new(n: f64) -> Option<Self> { |
| 192 | if n.is_finite() { |
| 193 | Some(FiniteF64(n)) |
| 194 | } else { |
| 195 | None |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | /// Creates a finite `f64` without checking the value. |
| 200 | /// |
| 201 | /// # Safety |
| 202 | /// |
| 203 | /// `n` must be finite. |
| 204 | #[inline ] |
| 205 | pub const unsafe fn new_unchecked(n: f64) -> Self { |
| 206 | FiniteF64(n) |
| 207 | } |
| 208 | |
| 209 | /// Returns the value as a primitive type. |
| 210 | #[inline ] |
| 211 | pub const fn get(&self) -> f64 { |
| 212 | self.0 |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | impl Eq for FiniteF64 {} |
| 217 | |
| 218 | impl PartialEq for FiniteF64 { |
| 219 | #[inline ] |
| 220 | fn eq(&self, other: &Self) -> bool { |
| 221 | self.0 == other.0 |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | impl Ord for FiniteF64 { |
| 226 | #[inline ] |
| 227 | fn cmp(&self, other: &Self) -> core::cmp::Ordering { |
| 228 | if self.0 < other.0 { |
| 229 | core::cmp::Ordering::Less |
| 230 | } else if self.0 > other.0 { |
| 231 | core::cmp::Ordering::Greater |
| 232 | } else { |
| 233 | core::cmp::Ordering::Equal |
| 234 | } |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | impl PartialOrd for FiniteF64 { |
| 239 | #[inline ] |
| 240 | fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { |
| 241 | Some(self.cmp(other)) |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | impl core::hash::Hash for FiniteF64 { |
| 246 | #[inline ] |
| 247 | fn hash<H: core::hash::Hasher>(&self, state: &mut H) { |
| 248 | self.0.to_bits().hash(state); |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | impl PartialEq<f64> for FiniteF64 { |
| 253 | #[inline ] |
| 254 | fn eq(&self, other: &f64) -> bool { |
| 255 | self.get() == *other |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | impl_display!(FiniteF64); |
| 260 | impl_approx_64!(FiniteF64); |
| 261 | |
| 262 | /// An immutable, finite `f32` that is known to be >= 0. |
| 263 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Default, Debug)] |
| 264 | #[repr (transparent)] |
| 265 | pub struct PositiveF32(FiniteF32); |
| 266 | |
| 267 | impl PositiveF32 { |
| 268 | /// A `PositiveF32` value initialized with zero. |
| 269 | pub const ZERO: Self = PositiveF32(FiniteF32(0.0)); |
| 270 | |
| 271 | /// Creates a new `PositiveF32` if the given value is >= 0. |
| 272 | /// |
| 273 | /// Returns `None` for negative, NaN and infinity. |
| 274 | #[inline ] |
| 275 | pub fn new(n: f32) -> Option<Self> { |
| 276 | if n.is_finite() && n >= 0.0 { |
| 277 | Some(PositiveF32(FiniteF32(n))) |
| 278 | } else { |
| 279 | None |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | /// Creates a new `PositiveF32` without checking the value. |
| 284 | /// |
| 285 | /// # Safety |
| 286 | /// |
| 287 | /// `n` must be finite and >= 0. |
| 288 | #[inline ] |
| 289 | pub const unsafe fn new_unchecked(n: f32) -> Self { |
| 290 | PositiveF32(FiniteF32(n)) |
| 291 | } |
| 292 | |
| 293 | /// Returns the value as a primitive type. |
| 294 | #[inline ] |
| 295 | pub const fn get(&self) -> f32 { |
| 296 | self.0.get() |
| 297 | } |
| 298 | |
| 299 | /// Returns the value as a `FiniteF32`. |
| 300 | #[inline ] |
| 301 | pub const fn get_finite(&self) -> FiniteF32 { |
| 302 | self.0 |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | impl PartialEq<f32> for PositiveF32 { |
| 307 | #[inline ] |
| 308 | fn eq(&self, other: &f32) -> bool { |
| 309 | self.get() == *other |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | impl_display!(PositiveF32); |
| 314 | impl_approx_32!(PositiveF32); |
| 315 | |
| 316 | /// An immutable, finite `f64` that is known to be >= 0. |
| 317 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Default, Debug)] |
| 318 | #[repr (transparent)] |
| 319 | pub struct PositiveF64(FiniteF64); |
| 320 | |
| 321 | impl PositiveF64 { |
| 322 | /// A `PositiveF64` value initialized with zero. |
| 323 | pub const ZERO: Self = PositiveF64(FiniteF64(0.0)); |
| 324 | |
| 325 | /// Creates a new `PositiveF64` if the given value is >= 0. |
| 326 | /// |
| 327 | /// Returns `None` for negative, NaN and infinity. |
| 328 | #[inline ] |
| 329 | pub fn new(n: f64) -> Option<Self> { |
| 330 | if n.is_finite() && n >= 0.0 { |
| 331 | Some(PositiveF64(FiniteF64(n))) |
| 332 | } else { |
| 333 | None |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | /// Creates a new `PositiveF64` without checking the value. |
| 338 | /// |
| 339 | /// # Safety |
| 340 | /// |
| 341 | /// `n` must be finite and >= 0. |
| 342 | #[inline ] |
| 343 | pub const unsafe fn new_unchecked(n: f64) -> Self { |
| 344 | PositiveF64(FiniteF64(n)) |
| 345 | } |
| 346 | |
| 347 | /// Returns the value as a primitive type. |
| 348 | #[inline ] |
| 349 | pub const fn get(&self) -> f64 { |
| 350 | self.0.get() |
| 351 | } |
| 352 | |
| 353 | /// Returns the value as a `FiniteF64`. |
| 354 | #[inline ] |
| 355 | pub const fn get_finite(&self) -> FiniteF64 { |
| 356 | self.0 |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | impl PartialEq<f64> for PositiveF64 { |
| 361 | #[inline ] |
| 362 | fn eq(&self, other: &f64) -> bool { |
| 363 | self.get() == *other |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | impl_display!(PositiveF64); |
| 368 | impl_approx_64!(PositiveF64); |
| 369 | |
| 370 | /// An immutable, finite `f32` that is known to be > 0. |
| 371 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 372 | #[repr (transparent)] |
| 373 | pub struct NonZeroPositiveF32(FiniteF32); |
| 374 | |
| 375 | impl NonZeroPositiveF32 { |
| 376 | /// Creates a new `NonZeroPositiveF32` if the given value is > 0. |
| 377 | /// |
| 378 | /// Returns `None` for negative, zero, NaN and infinity. |
| 379 | #[inline ] |
| 380 | pub fn new(n: f32) -> Option<Self> { |
| 381 | if n.is_finite() && n > 0.0 { |
| 382 | Some(NonZeroPositiveF32(FiniteF32(n))) |
| 383 | } else { |
| 384 | None |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | /// Creates a new `NonZeroPositiveF32` without checking the value. |
| 389 | /// |
| 390 | /// # Safety |
| 391 | /// |
| 392 | /// `n` must be finite and > 0. |
| 393 | #[inline ] |
| 394 | pub const unsafe fn new_unchecked(n: f32) -> Self { |
| 395 | NonZeroPositiveF32(FiniteF32(n)) |
| 396 | } |
| 397 | |
| 398 | /// Returns the value as a primitive type. |
| 399 | #[inline ] |
| 400 | pub const fn get(&self) -> f32 { |
| 401 | self.0.get() |
| 402 | } |
| 403 | |
| 404 | /// Returns the value as a `FiniteF32`. |
| 405 | #[inline ] |
| 406 | pub const fn get_finite(&self) -> FiniteF32 { |
| 407 | self.0 |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | impl PartialEq<f32> for NonZeroPositiveF32 { |
| 412 | #[inline ] |
| 413 | fn eq(&self, other: &f32) -> bool { |
| 414 | self.get() == *other |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | impl_display!(NonZeroPositiveF32); |
| 419 | impl_approx_32!(NonZeroPositiveF32); |
| 420 | |
| 421 | /// An immutable, finite `f64` that is known to be > 0. |
| 422 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 423 | #[repr (transparent)] |
| 424 | pub struct NonZeroPositiveF64(FiniteF64); |
| 425 | |
| 426 | impl NonZeroPositiveF64 { |
| 427 | /// Creates a new `NonZeroPositiveF64` if the given value is > 0. |
| 428 | /// |
| 429 | /// Returns `None` for negative, zero, NaN and infinity. |
| 430 | #[inline ] |
| 431 | pub fn new(n: f64) -> Option<Self> { |
| 432 | if n.is_finite() && n > 0.0 { |
| 433 | Some(NonZeroPositiveF64(FiniteF64(n))) |
| 434 | } else { |
| 435 | None |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | /// Creates a new `NonZeroPositiveF64` without checking the value. |
| 440 | /// |
| 441 | /// # Safety |
| 442 | /// |
| 443 | /// `n` must be finite and > 0. |
| 444 | #[inline ] |
| 445 | pub const unsafe fn new_unchecked(n: f64) -> Self { |
| 446 | NonZeroPositiveF64(FiniteF64(n)) |
| 447 | } |
| 448 | |
| 449 | /// Returns the value as a primitive type. |
| 450 | #[inline ] |
| 451 | pub const fn get(&self) -> f64 { |
| 452 | self.0.get() |
| 453 | } |
| 454 | |
| 455 | /// Returns the value as a `FiniteF64`. |
| 456 | #[inline ] |
| 457 | pub const fn get_finite(&self) -> FiniteF64 { |
| 458 | self.0 |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | impl PartialEq<f64> for NonZeroPositiveF64 { |
| 463 | #[inline ] |
| 464 | fn eq(&self, other: &f64) -> bool { |
| 465 | self.get() == *other |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | impl_display!(NonZeroPositiveF64); |
| 470 | impl_approx_64!(NonZeroPositiveF64); |
| 471 | |
| 472 | /// An immutable, finite `f32` in a 0..=1 range. |
| 473 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 474 | #[repr (transparent)] |
| 475 | pub struct NormalizedF32(FiniteF32); |
| 476 | |
| 477 | impl NormalizedF32 { |
| 478 | /// A `NormalizedF32` value initialized with zero. |
| 479 | pub const ZERO: Self = NormalizedF32(FiniteF32(0.0)); |
| 480 | /// A `NormalizedF32` value initialized with one. |
| 481 | pub const ONE: Self = NormalizedF32(FiniteF32(1.0)); |
| 482 | |
| 483 | /// Creates a `NormalizedF32` if the given value is in a 0..=1 range. |
| 484 | #[inline ] |
| 485 | pub fn new(n: f32) -> Option<Self> { |
| 486 | if n.is_finite() && n >= 0.0 && n <= 1.0 { |
| 487 | Some(NormalizedF32(FiniteF32(n))) |
| 488 | } else { |
| 489 | None |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | /// Creates a new `NormalizedF32` without checking the value. |
| 494 | /// |
| 495 | /// # Safety |
| 496 | /// |
| 497 | /// `n` must be in 0..=1 range. |
| 498 | #[inline ] |
| 499 | pub const unsafe fn new_unchecked(n: f32) -> Self { |
| 500 | NormalizedF32(FiniteF32(n)) |
| 501 | } |
| 502 | |
| 503 | /// Creates a `NormalizedF32` clamping the given value to a 0..=1 range. |
| 504 | /// |
| 505 | /// Returns zero in case of NaN or infinity. |
| 506 | #[inline ] |
| 507 | pub fn new_clamped(n: f32) -> Self { |
| 508 | if n.is_finite() { |
| 509 | NormalizedF32(FiniteF32(clamp_f32(0.0, n, 1.0))) |
| 510 | } else { |
| 511 | Self::ZERO |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | /// Creates a `NormalizedF32` by dividing the given value by 255. |
| 516 | #[inline ] |
| 517 | pub fn new_u8(n: u8) -> Self { |
| 518 | NormalizedF32(FiniteF32(f32::from(n) / 255.0)) |
| 519 | } |
| 520 | |
| 521 | /// Creates a `NormalizedF64` by dividing the given value by 65535. |
| 522 | #[inline ] |
| 523 | pub fn new_u16(n: u16) -> Self { |
| 524 | NormalizedF32(FiniteF32(f32::from(n) / 65535.0)) |
| 525 | } |
| 526 | |
| 527 | /// Returns the value as a primitive type. |
| 528 | #[inline ] |
| 529 | pub const fn get(self) -> f32 { |
| 530 | self.0.get() |
| 531 | } |
| 532 | |
| 533 | /// Returns the value as a `FiniteF32`. |
| 534 | #[inline ] |
| 535 | pub const fn get_finite(&self) -> FiniteF32 { |
| 536 | self.0 |
| 537 | } |
| 538 | |
| 539 | /// Returns the value as a `u8`. |
| 540 | #[inline ] |
| 541 | pub fn to_u8(&self) -> u8 { |
| 542 | ((self.0).0 * 255.0 + 0.5) as u8 |
| 543 | } |
| 544 | |
| 545 | /// Returns the value as a `u16`. |
| 546 | #[inline ] |
| 547 | pub fn to_u16(&self) -> u16 { |
| 548 | ((self.0).0 * 65535.0 + 0.5) as u16 |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | impl core::ops::Mul<NormalizedF32> for NormalizedF32 { |
| 553 | type Output = Self; |
| 554 | |
| 555 | #[inline ] |
| 556 | fn mul(self, rhs: Self) -> Self::Output { |
| 557 | Self::new_clamped((self.0).0 * (rhs.0).0) |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | impl PartialEq<f32> for NormalizedF32 { |
| 562 | #[inline ] |
| 563 | fn eq(&self, other: &f32) -> bool { |
| 564 | self.get() == *other |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | impl_display!(NormalizedF32); |
| 569 | impl_approx_32!(NormalizedF32); |
| 570 | |
| 571 | /// An immutable, finite `f64` in a 0..=1 range. |
| 572 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 573 | #[repr (transparent)] |
| 574 | pub struct NormalizedF64(FiniteF64); |
| 575 | |
| 576 | impl NormalizedF64 { |
| 577 | /// A `NormalizedF64` value initialized with zero. |
| 578 | pub const ZERO: Self = NormalizedF64(FiniteF64(0.0)); |
| 579 | /// A `NormalizedF64` value initialized with one. |
| 580 | pub const ONE: Self = NormalizedF64(FiniteF64(1.0)); |
| 581 | |
| 582 | /// Creates a `NormalizedF64` if the given value is in a 0..=1 range. |
| 583 | #[inline ] |
| 584 | pub fn new(n: f64) -> Option<Self> { |
| 585 | if n >= 0.0 && n <= 1.0 { |
| 586 | Some(NormalizedF64(FiniteF64(n))) |
| 587 | } else { |
| 588 | None |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | /// Creates a new `NormalizedF64` without checking the value. |
| 593 | /// |
| 594 | /// # Safety |
| 595 | /// |
| 596 | /// `n` must be in 0..=1 range. |
| 597 | #[inline ] |
| 598 | pub const unsafe fn new_unchecked(n: f64) -> Self { |
| 599 | NormalizedF64(FiniteF64(n)) |
| 600 | } |
| 601 | |
| 602 | /// Creates a `NormalizedF64` clamping the given value to a 0..=1 range. |
| 603 | /// |
| 604 | /// Returns zero in case of NaN or infinity. |
| 605 | #[inline ] |
| 606 | pub fn new_clamped(n: f64) -> Self { |
| 607 | if n.is_finite() { |
| 608 | NormalizedF64(FiniteF64(clamp_f64(0.0, n, 1.0))) |
| 609 | } else { |
| 610 | Self::ZERO |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | /// Creates a `NormalizedF64` by dividing the given value by 255. |
| 615 | #[inline ] |
| 616 | pub fn new_u8(n: u8) -> Self { |
| 617 | NormalizedF64(FiniteF64(f64::from(n) / 255.0)) |
| 618 | } |
| 619 | |
| 620 | /// Creates a `NormalizedF64` by dividing the given value by 65535. |
| 621 | #[inline ] |
| 622 | pub fn new_u16(n: u16) -> Self { |
| 623 | NormalizedF64(FiniteF64(f64::from(n) / 65535.0)) |
| 624 | } |
| 625 | |
| 626 | /// Returns the value as a primitive type. |
| 627 | #[inline ] |
| 628 | pub const fn get(self) -> f64 { |
| 629 | self.0.get() |
| 630 | } |
| 631 | |
| 632 | /// Returns the value as a `FiniteF64`. |
| 633 | #[inline ] |
| 634 | pub const fn get_finite(&self) -> FiniteF64 { |
| 635 | self.0 |
| 636 | } |
| 637 | |
| 638 | /// Returns the value as a `u8`. |
| 639 | #[inline ] |
| 640 | pub fn to_u8(&self) -> u8 { |
| 641 | ((self.0).0 * 255.0 + 0.5) as u8 |
| 642 | } |
| 643 | |
| 644 | /// Returns the value as a `u16`. |
| 645 | #[inline ] |
| 646 | pub fn to_u16(&self) -> u16 { |
| 647 | ((self.0).0 * 65535.0 + 0.5) as u16 |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | impl core::ops::Mul<NormalizedF64> for NormalizedF64 { |
| 652 | type Output = Self; |
| 653 | |
| 654 | #[inline ] |
| 655 | fn mul(self, rhs: Self) -> Self::Output { |
| 656 | Self::new_clamped((self.0).0 * (rhs.0).0) |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | impl PartialEq<f64> for NormalizedF64 { |
| 661 | #[inline ] |
| 662 | fn eq(&self, other: &f64) -> bool { |
| 663 | self.get() == *other |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | impl_display!(NormalizedF64); |
| 668 | impl_approx_64!(NormalizedF64); |
| 669 | |
| 670 | #[inline ] |
| 671 | fn clamp_f32(min: f32, val: f32, max: f32) -> f32 { |
| 672 | max.min(val).max(min) |
| 673 | } |
| 674 | |
| 675 | #[inline ] |
| 676 | fn clamp_f64(min: f64, val: f64, max: f64) -> f64 { |
| 677 | max.min(val).max(min) |
| 678 | } |
| 679 | |
| 680 | #[cfg (test)] |
| 681 | mod tests { |
| 682 | use super::*; |
| 683 | |
| 684 | #[test ] |
| 685 | fn finite_f32() { |
| 686 | assert_eq!(FiniteF32::new(0.0).map(|n| n.get()), Some(0.0)); |
| 687 | assert_eq!(FiniteF32::new(core::f32::NAN), None); |
| 688 | assert_eq!(FiniteF32::new(core::f32::INFINITY), None); |
| 689 | assert_eq!(FiniteF32::new(core::f32::NEG_INFINITY), None); |
| 690 | } |
| 691 | |
| 692 | #[test ] |
| 693 | fn positive_f32() { |
| 694 | assert_eq!(NonZeroPositiveF32::new(-1.0).map(|n| n.get()), None); |
| 695 | assert_eq!(NonZeroPositiveF32::new(0.0).map(|n| n.get()), None); |
| 696 | assert_eq!(NonZeroPositiveF32::new(1.0).map(|n| n.get()), Some(1.0)); |
| 697 | assert_eq!( |
| 698 | NonZeroPositiveF32::new(core::f32::EPSILON).map(|n| n.get()), |
| 699 | Some(core::f32::EPSILON) |
| 700 | ); |
| 701 | assert_eq!( |
| 702 | NonZeroPositiveF32::new(-core::f32::EPSILON).map(|n| n.get()), |
| 703 | None |
| 704 | ); |
| 705 | assert_eq!(NonZeroPositiveF32::new(core::f32::NAN), None); |
| 706 | assert_eq!(NonZeroPositiveF32::new(core::f32::INFINITY), None); |
| 707 | assert_eq!(NonZeroPositiveF32::new(core::f32::NEG_INFINITY), None); |
| 708 | } |
| 709 | |
| 710 | #[test ] |
| 711 | fn positive_f64() { |
| 712 | assert_eq!(NonZeroPositiveF32::new(-1.0).map(|n| n.get()), None); |
| 713 | assert_eq!(NonZeroPositiveF64::new(0.0).map(|n| n.get()), None); |
| 714 | assert_eq!(NonZeroPositiveF64::new(1.0).map(|n| n.get()), Some(1.0)); |
| 715 | assert_eq!( |
| 716 | NonZeroPositiveF64::new(core::f64::EPSILON).map(|n| n.get()), |
| 717 | Some(core::f64::EPSILON) |
| 718 | ); |
| 719 | assert_eq!( |
| 720 | NonZeroPositiveF64::new(-core::f64::EPSILON).map(|n| n.get()), |
| 721 | None |
| 722 | ); |
| 723 | assert_eq!(NonZeroPositiveF64::new(core::f64::NAN), None); |
| 724 | assert_eq!(NonZeroPositiveF64::new(core::f64::INFINITY), None); |
| 725 | assert_eq!(NonZeroPositiveF64::new(core::f64::NEG_INFINITY), None); |
| 726 | } |
| 727 | |
| 728 | #[test ] |
| 729 | fn norm_f32() { |
| 730 | assert_eq!(NormalizedF32::new(-0.5), None); |
| 731 | assert_eq!( |
| 732 | NormalizedF32::new(-core::f32::EPSILON).map(|n| n.get()), |
| 733 | None |
| 734 | ); |
| 735 | assert_eq!(NormalizedF32::new(0.0).map(|n| n.get()), Some(0.0)); |
| 736 | assert_eq!(NormalizedF32::new(0.5).map(|n| n.get()), Some(0.5)); |
| 737 | assert_eq!(NormalizedF32::new(1.0).map(|n| n.get()), Some(1.0)); |
| 738 | assert_eq!(NormalizedF32::new(1.5), None); |
| 739 | assert_eq!(NormalizedF32::new(core::f32::NAN), None); |
| 740 | assert_eq!(NormalizedF32::new(core::f32::INFINITY), None); |
| 741 | assert_eq!(NormalizedF32::new(core::f32::NEG_INFINITY), None); |
| 742 | } |
| 743 | |
| 744 | #[test ] |
| 745 | fn clamped_norm_f32() { |
| 746 | assert_eq!(NormalizedF32::new_clamped(-0.5).get(), 0.0); |
| 747 | assert_eq!(NormalizedF32::new_clamped(0.5).get(), 0.5); |
| 748 | assert_eq!(NormalizedF32::new_clamped(1.5).get(), 1.0); |
| 749 | assert_eq!(NormalizedF32::new_clamped(core::f32::NAN).get(), 0.0); |
| 750 | assert_eq!(NormalizedF32::new_clamped(core::f32::INFINITY).get(), 0.0); |
| 751 | assert_eq!( |
| 752 | NormalizedF32::new_clamped(core::f32::NEG_INFINITY).get(), |
| 753 | 0.0 |
| 754 | ); |
| 755 | } |
| 756 | |
| 757 | #[test ] |
| 758 | fn norm_f64() { |
| 759 | assert_eq!(NormalizedF64::new(-0.5), None); |
| 760 | assert_eq!( |
| 761 | NormalizedF64::new(-core::f64::EPSILON).map(|n| n.get()), |
| 762 | None |
| 763 | ); |
| 764 | assert_eq!(NormalizedF64::new(0.0).map(|n| n.get()), Some(0.0)); |
| 765 | assert_eq!(NormalizedF64::new(0.5).map(|n| n.get()), Some(0.5)); |
| 766 | assert_eq!(NormalizedF64::new(1.0).map(|n| n.get()), Some(1.0)); |
| 767 | assert_eq!(NormalizedF64::new(1.5), None); |
| 768 | assert_eq!(NormalizedF64::new(core::f64::NAN), None); |
| 769 | assert_eq!(NormalizedF64::new(core::f64::INFINITY), None); |
| 770 | assert_eq!(NormalizedF64::new(core::f64::NEG_INFINITY), None); |
| 771 | } |
| 772 | |
| 773 | #[test ] |
| 774 | fn clamped_norm_f64() { |
| 775 | assert_eq!(NormalizedF64::new_clamped(-0.5).get(), 0.0); |
| 776 | assert_eq!(NormalizedF64::new_clamped(0.5).get(), 0.5); |
| 777 | assert_eq!(NormalizedF64::new_clamped(1.5).get(), 1.0); |
| 778 | assert_eq!(NormalizedF64::new_clamped(core::f64::NAN).get(), 0.0); |
| 779 | assert_eq!(NormalizedF64::new_clamped(core::f64::INFINITY).get(), 0.0); |
| 780 | assert_eq!( |
| 781 | NormalizedF64::new_clamped(core::f64::NEG_INFINITY).get(), |
| 782 | 0.0 |
| 783 | ); |
| 784 | } |
| 785 | } |
| 786 | |