| 1 | // Copyright 2014-2020 Optimal Computing (NZ) Ltd. |
| 2 | // Licensed under the MIT license. See LICENSE for details. |
| 3 | |
| 4 | use core::{f32, f64}; |
| 5 | #[cfg (feature = "num-traits" )] |
| 6 | #[allow (unused_imports)] |
| 7 | use num_traits::float::FloatCore; |
| 8 | use super::Ulps; |
| 9 | |
| 10 | /// A trait for approximate equality comparisons. |
| 11 | pub trait ApproxEq: Sized { |
| 12 | /// This type type defines a margin within which two values are to be |
| 13 | /// considered approximately equal. It must implement `Default` so that |
| 14 | /// `approx_eq()` can be called on unknown types. |
| 15 | type Margin: Copy + Default; |
| 16 | |
| 17 | /// This method tests that the `self` and `other` values are equal within `margin` |
| 18 | /// of each other. |
| 19 | fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool; |
| 20 | |
| 21 | /// This method tests that the `self` and `other` values are not within `margin` |
| 22 | /// of each other. |
| 23 | fn approx_ne<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool { |
| 24 | !self.approx_eq(other, margin) |
| 25 | } |
| 26 | } |
| 27 | |
| 28 | /// This type defines a margin within two `f32` values might be considered equal, |
| 29 | /// and is intended as the associated type for the `ApproxEq` trait. |
| 30 | /// |
| 31 | /// Two tests are used to determine approximate equality. |
| 32 | /// |
| 33 | /// The first test considers two values approximately equal if they differ by <= |
| 34 | /// `epsilon`. This will only succeed for very small numbers. Note that it may |
| 35 | /// succeed even if the parameters are of differing signs, straddling zero. |
| 36 | /// |
| 37 | /// The second test considers how many ULPs (units of least precision, units in |
| 38 | /// the last place, which is the integer number of floating-point representations |
| 39 | /// that the parameters are separated by) different the parameters are and considers |
| 40 | /// them approximately equal if this is <= `ulps`. For large floating-point numbers, |
| 41 | /// an ULP can be a rather large gap, but this kind of comparison is necessary |
| 42 | /// because floating-point operations must round to the nearest representable value |
| 43 | /// and so larger floating-point values accumulate larger errors. |
| 44 | #[repr (C)] |
| 45 | #[derive (Debug, Clone, Copy)] |
| 46 | pub struct F32Margin { |
| 47 | pub epsilon: f32, |
| 48 | pub ulps: i32 |
| 49 | } |
| 50 | impl Default for F32Margin { |
| 51 | #[inline ] |
| 52 | fn default() -> F32Margin { |
| 53 | F32Margin { |
| 54 | epsilon: f32::EPSILON, |
| 55 | ulps: 4 |
| 56 | } |
| 57 | } |
| 58 | } |
| 59 | impl F32Margin { |
| 60 | #[inline ] |
| 61 | pub fn zero() -> F32Margin { |
| 62 | F32Margin { |
| 63 | epsilon: 0.0, |
| 64 | ulps: 0 |
| 65 | } |
| 66 | } |
| 67 | pub fn epsilon(self, epsilon: f32) -> Self { |
| 68 | F32Margin { |
| 69 | epsilon, |
| 70 | ..self |
| 71 | } |
| 72 | } |
| 73 | pub fn ulps(self, ulps: i32) -> Self { |
| 74 | F32Margin { |
| 75 | ulps, |
| 76 | ..self |
| 77 | } |
| 78 | } |
| 79 | } |
| 80 | impl From<(f32, i32)> for F32Margin { |
| 81 | fn from(m: (f32, i32)) -> F32Margin { |
| 82 | F32Margin { |
| 83 | epsilon: m.0, |
| 84 | ulps: m.1 |
| 85 | } |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | impl ApproxEq for f32 { |
| 90 | type Margin = F32Margin; |
| 91 | |
| 92 | fn approx_eq<M: Into<Self::Margin>>(self, other: f32, margin: M) -> bool { |
| 93 | let margin = margin.into(); |
| 94 | |
| 95 | // Check for exact equality first. This is often true, and so we get the |
| 96 | // performance benefit of only doing one compare in most cases. |
| 97 | self==other || |
| 98 | |
| 99 | // Perform epsilon comparison next |
| 100 | ((self - other).abs() <= margin.epsilon) || |
| 101 | |
| 102 | { |
| 103 | // Perform ulps comparion last |
| 104 | let diff: i32 = self.ulps(&other); |
| 105 | saturating_abs_i32!(diff) <= margin.ulps |
| 106 | } |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | #[test ] |
| 111 | fn f32_approx_eq_test1() { |
| 112 | let f: f32 = 0.0_f32; |
| 113 | let g: f32 = -0.0000000000000005551115123125783_f32; |
| 114 | assert!(f != g); // Should not be directly equal |
| 115 | assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true); |
| 116 | } |
| 117 | #[test ] |
| 118 | fn f32_approx_eq_test2() { |
| 119 | let f: f32 = 0.0_f32; |
| 120 | let g: f32 = -0.0_f32; |
| 121 | assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true); |
| 122 | } |
| 123 | #[test ] |
| 124 | fn f32_approx_eq_test3() { |
| 125 | let f: f32 = 0.0_f32; |
| 126 | let g: f32 = 0.00000000000000001_f32; |
| 127 | assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true); |
| 128 | } |
| 129 | #[test ] |
| 130 | fn f32_approx_eq_test4() { |
| 131 | let f: f32 = 0.00001_f32; |
| 132 | let g: f32 = 0.00000000000000001_f32; |
| 133 | assert!(f.approx_eq(g, (f32::EPSILON, 0)) == false); |
| 134 | } |
| 135 | #[test ] |
| 136 | fn f32_approx_eq_test5() { |
| 137 | let f: f32 = 0.1_f32; |
| 138 | let mut sum: f32 = 0.0_f32; |
| 139 | for _ in 0_isize..10_isize { sum += f; } |
| 140 | let product: f32 = f * 10.0_f32; |
| 141 | assert!(sum != product); // Should not be directly equal: |
| 142 | assert!(sum.approx_eq(product, (f32::EPSILON, 1)) == true); |
| 143 | assert!(sum.approx_eq(product, F32Margin::zero()) == false); |
| 144 | } |
| 145 | #[test ] |
| 146 | fn f32_approx_eq_test6() { |
| 147 | let x: f32 = 1000000_f32; |
| 148 | let y: f32 = 1000000.1_f32; |
| 149 | assert!(x != y); // Should not be directly equal |
| 150 | assert!(x.approx_eq(y, (0.0, 2)) == true); // 2 ulps does it |
| 151 | // epsilon method no good here: |
| 152 | assert!(x.approx_eq(y, (1000.0 * f32::EPSILON, 0)) == false); |
| 153 | } |
| 154 | |
| 155 | /// This type defines a margin within two `f64` values might be considered equal, |
| 156 | /// and is intended as the associated type for the `ApproxEq` trait. |
| 157 | /// |
| 158 | /// Two tests are used to determine approximate equality. |
| 159 | /// |
| 160 | /// The first test considers two values approximately equal if they differ by <= |
| 161 | /// `epsilon`. This will only succeed for very small numbers. Note that it may |
| 162 | /// succeed even if the parameters are of differing signs, straddling zero. |
| 163 | /// |
| 164 | /// The second test considers how many ULPs (units of least precision, units in |
| 165 | /// the last place, which is the integer number of floating-point representations |
| 166 | /// that the parameters are separated by) different the parameters are and considers |
| 167 | /// them approximately equal if this is <= `ulps`. For large floating-point numbers, |
| 168 | /// an ULP can be a rather large gap, but this kind of comparison is necessary |
| 169 | /// because floating-point operations must round to the nearest representable value |
| 170 | /// and so larger floating-point values accumulate larger errors. |
| 171 | #[derive (Debug, Clone, Copy)] |
| 172 | pub struct F64Margin { |
| 173 | pub epsilon: f64, |
| 174 | pub ulps: i64 |
| 175 | } |
| 176 | impl Default for F64Margin { |
| 177 | #[inline ] |
| 178 | fn default() -> F64Margin { |
| 179 | F64Margin { |
| 180 | epsilon: f64::EPSILON, |
| 181 | ulps: 4 |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | impl F64Margin { |
| 186 | #[inline ] |
| 187 | pub fn zero() -> F64Margin { |
| 188 | F64Margin { |
| 189 | epsilon: 0.0, |
| 190 | ulps: 0 |
| 191 | } |
| 192 | } |
| 193 | pub fn epsilon(self, epsilon: f64) -> Self { |
| 194 | F64Margin { |
| 195 | epsilon, |
| 196 | ..self |
| 197 | } |
| 198 | } |
| 199 | pub fn ulps(self, ulps: i64) -> Self { |
| 200 | F64Margin { |
| 201 | ulps, |
| 202 | ..self |
| 203 | } |
| 204 | } |
| 205 | } |
| 206 | impl From<(f64, i64)> for F64Margin { |
| 207 | fn from(m: (f64, i64)) -> F64Margin { |
| 208 | F64Margin { |
| 209 | epsilon: m.0, |
| 210 | ulps: m.1 |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | impl ApproxEq for f64 { |
| 216 | type Margin = F64Margin; |
| 217 | |
| 218 | fn approx_eq<M: Into<Self::Margin>>(self, other: f64, margin: M) -> bool { |
| 219 | let margin = margin.into(); |
| 220 | |
| 221 | // Check for exact equality first. This is often true, and so we get the |
| 222 | // performance benefit of only doing one compare in most cases. |
| 223 | self == other || |
| 224 | |
| 225 | // Perform epsilon comparison next |
| 226 | ((self - other).abs() <= margin.epsilon) || |
| 227 | |
| 228 | { |
| 229 | // Perform ulps comparion last |
| 230 | let diff: i64 = self.ulps(&other); |
| 231 | saturating_abs_i64!(diff) <= margin.ulps |
| 232 | } |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | #[test ] |
| 237 | fn f64_approx_eq_test1() { |
| 238 | let f: f64 = 0.0_f64; |
| 239 | let g: f64 = -0.0000000000000005551115123125783_f64; |
| 240 | assert!(f != g); // Should not be precisely equal. |
| 241 | assert!(f.approx_eq(g, (3.0 * f64::EPSILON, 0)) == true); // 3e is enough. |
| 242 | // ULPs test won't ever call these equal. |
| 243 | } |
| 244 | #[test ] |
| 245 | fn f64_approx_eq_test2() { |
| 246 | let f: f64 = 0.0_f64; |
| 247 | let g: f64 = -0.0_f64; |
| 248 | assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true); |
| 249 | } |
| 250 | #[test ] |
| 251 | fn f64_approx_eq_test3() { |
| 252 | let f: f64 = 0.0_f64; |
| 253 | let g: f64 = 1e-17_f64; |
| 254 | assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true); |
| 255 | } |
| 256 | #[test ] |
| 257 | fn f64_approx_eq_test4() { |
| 258 | let f: f64 = 0.00001_f64; |
| 259 | let g: f64 = 0.00000000000000001_f64; |
| 260 | assert!(f.approx_eq(g, (f64::EPSILON, 0)) == false); |
| 261 | } |
| 262 | #[test ] |
| 263 | fn f64_approx_eq_test5() { |
| 264 | let f: f64 = 0.1_f64; |
| 265 | let mut sum: f64 = 0.0_f64; |
| 266 | for _ in 0_isize..10_isize { sum += f; } |
| 267 | let product: f64 = f * 10.0_f64; |
| 268 | assert!(sum != product); // Should not be precisely equaly. |
| 269 | assert!(sum.approx_eq(product, (f64::EPSILON, 0)) == true); |
| 270 | assert!(sum.approx_eq(product, (0.0, 1)) == true); |
| 271 | } |
| 272 | #[test ] |
| 273 | fn f64_approx_eq_test6() { |
| 274 | let x: f64 = 1000000_f64; |
| 275 | let y: f64 = 1000000.0000000003_f64; |
| 276 | assert!(x != y); // Should not be precisely equal. |
| 277 | assert!(x.approx_eq(y, (0.0, 3)) == true); |
| 278 | } |
| 279 | #[test ] |
| 280 | fn f64_code_triggering_issue_20() { |
| 281 | assert_eq!((-25.0f64).approx_eq(25.0, (0.00390625, 1)), false); |
| 282 | } |
| 283 | |
| 284 | impl<T> ApproxEq for &[T] |
| 285 | where T: Copy + ApproxEq { |
| 286 | type Margin = <T as ApproxEq>::Margin; |
| 287 | |
| 288 | fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool { |
| 289 | let margin = margin.into(); |
| 290 | if self.len() != other.len() { return false; } |
| 291 | self.iter().zip(other.iter()).all(|(a: &T,b: &T)| { |
| 292 | a.approx_eq(*b, margin) |
| 293 | }) |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | #[test ] |
| 298 | fn test_slices() { |
| 299 | assert!( [1.33, 2.4, 2.5].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64)) ); |
| 300 | assert!( ! [1.33, 2.4, 2.6].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64)) ); |
| 301 | assert!( ! [1.33, 2.4].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64)) ); |
| 302 | assert!( ! [1.33, 2.4, 2.5].approx_eq(&[1.33, 2.4], (0.0, 0_i64)) ); |
| 303 | } |
| 304 | |
| 305 | |