| 1 | // Copyright 2006 The Android Open Source Project |
| 2 | // Copyright 2020 Yevhenii Reizner |
| 3 | // |
| 4 | // Use of this source code is governed by a BSD-style license that can be |
| 5 | // found in the LICENSE file. |
| 6 | |
| 7 | // Skia uses fixed points pretty chaotically, therefore we cannot use |
| 8 | // strongly typed wrappers. Which is unfortunate. |
| 9 | |
| 10 | use tiny_skia_path::SaturateCast; |
| 11 | |
| 12 | use crate::math::{bound, left_shift, left_shift64}; |
| 13 | |
| 14 | /// A 26.6 fixed point. |
| 15 | pub type FDot6 = i32; |
| 16 | |
| 17 | /// A 24.8 fixed point. |
| 18 | pub type FDot8 = i32; |
| 19 | |
| 20 | /// A 16.16 fixed point. |
| 21 | pub type FDot16 = i32; |
| 22 | |
| 23 | pub mod fdot6 { |
| 24 | use super::*; |
| 25 | use core::convert::TryFrom; |
| 26 | |
| 27 | pub const ONE: FDot6 = 64; |
| 28 | |
| 29 | pub fn from_i32(n: i32) -> FDot6 { |
| 30 | debug_assert!(n as i16 as i32 == n); |
| 31 | n << 6 |
| 32 | } |
| 33 | |
| 34 | pub fn from_f32(n: f32) -> FDot6 { |
| 35 | (n * 64.0) as i32 |
| 36 | } |
| 37 | |
| 38 | pub fn floor(n: FDot6) -> FDot6 { |
| 39 | n >> 6 |
| 40 | } |
| 41 | |
| 42 | pub fn ceil(n: FDot6) -> FDot6 { |
| 43 | (n + 63) >> 6 |
| 44 | } |
| 45 | |
| 46 | pub fn round(n: FDot6) -> FDot6 { |
| 47 | (n + 32) >> 6 |
| 48 | } |
| 49 | |
| 50 | pub fn to_fdot16(n: FDot6) -> FDot16 { |
| 51 | debug_assert!((left_shift(n, 10) >> 10) == n); |
| 52 | left_shift(n, 10) |
| 53 | } |
| 54 | |
| 55 | pub fn div(a: FDot6, b: FDot6) -> FDot16 { |
| 56 | debug_assert_ne!(b, 0); |
| 57 | |
| 58 | if i16::try_from(a).is_ok() { |
| 59 | left_shift(a, 16) / b |
| 60 | } else { |
| 61 | fdot16::div(a, b) |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | pub fn can_convert_to_fdot16(n: FDot6) -> bool { |
| 66 | let max_dot6 = i32::MAX >> (16 - 6); |
| 67 | n.abs() <= max_dot6 |
| 68 | } |
| 69 | |
| 70 | pub fn small_scale(value: u8, dot6: FDot6) -> u8 { |
| 71 | debug_assert!(dot6 as u32 <= 64); |
| 72 | ((value as i32 * dot6) >> 6) as u8 |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | pub mod fdot8 { |
| 77 | use super::*; |
| 78 | |
| 79 | // Extracted from SkScan_Antihair.cpp |
| 80 | |
| 81 | pub fn from_fdot16(x: FDot16) -> FDot8 { |
| 82 | (x + 0x80) >> 8 |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | pub mod fdot16 { |
| 87 | use super::*; |
| 88 | |
| 89 | pub const HALF: FDot16 = (1 << 16) / 2; |
| 90 | pub const ONE: FDot16 = 1 << 16; |
| 91 | |
| 92 | // `from_f32` seems to lack a rounding step. For all fixed-point |
| 93 | // values, this version is as accurate as possible for (fixed -> float -> fixed). Rounding reduces |
| 94 | // accuracy if the intermediate floats are in the range that only holds integers (adding 0.5 to an |
| 95 | // odd integer then snaps to nearest even). Using double for the rounding math gives maximum |
| 96 | // accuracy for (float -> fixed -> float), but that's usually overkill. |
| 97 | pub fn from_f32(x: f32) -> FDot16 { |
| 98 | i32::saturate_from(x * ONE as f32) |
| 99 | } |
| 100 | |
| 101 | pub fn floor_to_i32(x: FDot16) -> i32 { |
| 102 | x >> 16 |
| 103 | } |
| 104 | |
| 105 | pub fn ceil_to_i32(x: FDot16) -> i32 { |
| 106 | (x + ONE - 1) >> 16 |
| 107 | } |
| 108 | |
| 109 | pub fn round_to_i32(x: FDot16) -> i32 { |
| 110 | (x + HALF) >> 16 |
| 111 | } |
| 112 | |
| 113 | // The divide may exceed 32 bits. Clamp to a signed 32 bit result. |
| 114 | pub fn mul(a: FDot16, b: FDot16) -> FDot16 { |
| 115 | ((i64::from(a) * i64::from(b)) >> 16) as FDot16 |
| 116 | } |
| 117 | |
| 118 | // The divide may exceed 32 bits. Clamp to a signed 32 bit result. |
| 119 | pub fn div(numer: FDot6, denom: FDot6) -> FDot16 { |
| 120 | let v = left_shift64(numer as i64, 16) / denom as i64; |
| 121 | let n = bound(i32::MIN as i64, v, i32::MAX as i64); |
| 122 | n as i32 |
| 123 | } |
| 124 | |
| 125 | pub fn fast_div(a: FDot6, b: FDot6) -> FDot16 { |
| 126 | debug_assert!((left_shift(a, 16) >> 16) == a); |
| 127 | debug_assert!(b != 0); |
| 128 | left_shift(a, 16) / b |
| 129 | } |
| 130 | } |
| 131 | |