| 1 | // Copyright 2006 The Android Open Source Project |
| 2 | // Copyright 2020 Yevhenii Reizner |
| 3 | // |
| 4 | // Use of this source code is governed by a BSD-style license that can be |
| 5 | // found in the LICENSE file. |
| 6 | |
| 7 | use crate::scalar::Scalar; |
| 8 | |
| 9 | pub use strict_num::{FiniteF32, NonZeroPositiveF32, NormalizedF32}; |
| 10 | |
| 11 | #[cfg (all(not(feature = "std" ), feature = "no-std-float" ))] |
| 12 | use crate::NoStdFloat; |
| 13 | |
| 14 | pub(crate) const FLOAT_PI: f32 = 3.14159265; |
| 15 | |
| 16 | const MAX_I32_FITS_IN_F32: f32 = 2147483520.0; |
| 17 | const MIN_I32_FITS_IN_F32: f32 = -MAX_I32_FITS_IN_F32; |
| 18 | |
| 19 | // TODO: is there an std alternative? |
| 20 | /// Custom float to integer conversion routines. |
| 21 | pub trait SaturateCast<T>: Sized { |
| 22 | /// Return the closest integer for the given float. |
| 23 | fn saturate_from(n: T) -> Self; |
| 24 | } |
| 25 | |
| 26 | impl SaturateCast<f32> for i32 { |
| 27 | /// Return the closest integer for the given float. |
| 28 | /// |
| 29 | /// Returns MAX_I32_FITS_IN_F32 for NaN. |
| 30 | fn saturate_from(mut x: f32) -> Self { |
| 31 | x = if x < MAX_I32_FITS_IN_F32 { |
| 32 | x |
| 33 | } else { |
| 34 | MAX_I32_FITS_IN_F32 |
| 35 | }; |
| 36 | x = if x > MIN_I32_FITS_IN_F32 { |
| 37 | x |
| 38 | } else { |
| 39 | MIN_I32_FITS_IN_F32 |
| 40 | }; |
| 41 | x as i32 |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | impl SaturateCast<f64> for i32 { |
| 46 | /// Return the closest integer for the given double. |
| 47 | /// |
| 48 | /// Returns i32::MAX for NaN. |
| 49 | fn saturate_from(mut x: f64) -> Self { |
| 50 | x = if x < i32::MAX as f64 { |
| 51 | x |
| 52 | } else { |
| 53 | i32::MAX as f64 |
| 54 | }; |
| 55 | x = if x > i32::MIN as f64 { |
| 56 | x |
| 57 | } else { |
| 58 | i32::MIN as f64 |
| 59 | }; |
| 60 | x as i32 |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | /// Custom float to integer rounding routines. |
| 65 | #[allow (missing_docs)] |
| 66 | pub trait SaturateRound<T>: SaturateCast<T> { |
| 67 | fn saturate_floor(n: T) -> Self; |
| 68 | fn saturate_ceil(n: T) -> Self; |
| 69 | fn saturate_round(n: T) -> Self; |
| 70 | } |
| 71 | |
| 72 | impl SaturateRound<f32> for i32 { |
| 73 | fn saturate_floor(x: f32) -> Self { |
| 74 | Self::saturate_from(x.floor()) |
| 75 | } |
| 76 | |
| 77 | fn saturate_ceil(x: f32) -> Self { |
| 78 | Self::saturate_from(x.ceil()) |
| 79 | } |
| 80 | |
| 81 | fn saturate_round(x: f32) -> Self { |
| 82 | Self::saturate_from(x.floor() + 0.5) |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | /// Return the float as a 2s compliment int. Just to be used to compare floats |
| 87 | /// to each other or against positive float-bit-constants (like 0). This does |
| 88 | /// not return the int equivalent of the float, just something cheaper for |
| 89 | /// compares-only. |
| 90 | pub(crate) fn f32_as_2s_compliment(x: f32) -> i32 { |
| 91 | sign_bit_to_2s_compliment(bytemuck::cast(x)) |
| 92 | } |
| 93 | |
| 94 | /// Convert a sign-bit int (i.e. float interpreted as int) into a 2s compliement |
| 95 | /// int. This also converts -0 (0x80000000) to 0. Doing this to a float allows |
| 96 | /// it to be compared using normal C operators (<, <=, etc.) |
| 97 | fn sign_bit_to_2s_compliment(mut x: i32) -> i32 { |
| 98 | if x < 0 { |
| 99 | x &= 0x7FFFFFFF; |
| 100 | x = -x; |
| 101 | } |
| 102 | |
| 103 | x |
| 104 | } |
| 105 | |
| 106 | /// An immutable `f32` that is larger than 0 but less then 1. |
| 107 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Default, Debug)] |
| 108 | #[repr (transparent)] |
| 109 | pub struct NormalizedF32Exclusive(FiniteF32); |
| 110 | |
| 111 | impl NormalizedF32Exclusive { |
| 112 | /// Just a random, valid number. |
| 113 | pub const ANY: Self = Self::HALF; |
| 114 | |
| 115 | /// A predefined 0.5 value. |
| 116 | pub const HALF: Self = NormalizedF32Exclusive(unsafe { FiniteF32::new_unchecked(0.5) }); |
| 117 | |
| 118 | /// Creates a `NormalizedF32Exclusive`. |
| 119 | pub fn new(n: f32) -> Option<Self> { |
| 120 | if n > 0.0 && n < 1.0 { |
| 121 | // `n` is guarantee to be finite after the bounds check. |
| 122 | FiniteF32::new(n).map(NormalizedF32Exclusive) |
| 123 | } else { |
| 124 | None |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | /// Creates a `NormalizedF32Exclusive` clamping the given value. |
| 129 | /// |
| 130 | /// Returns zero in case of NaN or infinity. |
| 131 | pub fn new_bounded(n: f32) -> Self { |
| 132 | let n = n.bound(f32::EPSILON, 1.0 - f32::EPSILON); |
| 133 | // `n` is guarantee to be finite after clamping. |
| 134 | debug_assert!(n.is_finite()); |
| 135 | NormalizedF32Exclusive(unsafe { FiniteF32::new_unchecked(n) }) |
| 136 | } |
| 137 | |
| 138 | /// Returns the value as a primitive type. |
| 139 | pub fn get(self) -> f32 { |
| 140 | self.0.get() |
| 141 | } |
| 142 | |
| 143 | /// Returns the value as a `FiniteF32`. |
| 144 | pub fn to_normalized(self) -> NormalizedF32 { |
| 145 | // NormalizedF32 is (0,1), while NormalizedF32 is [0,1], so it will always fit. |
| 146 | unsafe { NormalizedF32::new_unchecked(self.0.get()) } |
| 147 | } |
| 148 | } |
| 149 | |