| 1 | // Copyright 2012 Google Inc. |
| 2 | // Copyright 2020 Yevhenii Reizner |
| 3 | // |
| 4 | // Use of this source code is governed by a BSD-style license that can be |
| 5 | // found in the LICENSE file. |
| 6 | |
| 7 | use super::point64::{Point64, SearchAxis}; |
| 8 | use super::quad64; |
| 9 | use super::Scalar64; |
| 10 | |
| 11 | #[cfg (all(not(feature = "std" ), feature = "no-std-float" ))] |
| 12 | use tiny_skia_path::NoStdFloat; |
| 13 | |
| 14 | pub const POINT_COUNT: usize = 4; |
| 15 | const PI: f64 = 3.141592653589793; |
| 16 | |
| 17 | pub struct Cubic64Pair { |
| 18 | pub points: [Point64; 7], |
| 19 | } |
| 20 | |
| 21 | pub struct Cubic64 { |
| 22 | pub points: [Point64; POINT_COUNT], |
| 23 | } |
| 24 | |
| 25 | impl Cubic64 { |
| 26 | pub fn new(points: [Point64; POINT_COUNT]) -> Self { |
| 27 | Cubic64 { points } |
| 28 | } |
| 29 | |
| 30 | pub fn as_f64_slice(&self) -> [f64; POINT_COUNT * 2] { |
| 31 | [ |
| 32 | self.points[0].x, |
| 33 | self.points[0].y, |
| 34 | self.points[1].x, |
| 35 | self.points[1].y, |
| 36 | self.points[2].x, |
| 37 | self.points[2].y, |
| 38 | self.points[3].x, |
| 39 | self.points[3].y, |
| 40 | ] |
| 41 | } |
| 42 | |
| 43 | pub fn point_at_t(&self, t: f64) -> Point64 { |
| 44 | if t == 0.0 { |
| 45 | return self.points[0]; |
| 46 | } |
| 47 | |
| 48 | if t == 1.0 { |
| 49 | return self.points[3]; |
| 50 | } |
| 51 | |
| 52 | let one_t = 1.0 - t; |
| 53 | let one_t2 = one_t * one_t; |
| 54 | let a = one_t2 * one_t; |
| 55 | let b = 3.0 * one_t2 * t; |
| 56 | let t2 = t * t; |
| 57 | let c = 3.0 * one_t * t2; |
| 58 | let d = t2 * t; |
| 59 | Point64::from_xy( |
| 60 | a * self.points[0].x |
| 61 | + b * self.points[1].x |
| 62 | + c * self.points[2].x |
| 63 | + d * self.points[3].x, |
| 64 | a * self.points[0].y |
| 65 | + b * self.points[1].y |
| 66 | + c * self.points[2].y |
| 67 | + d * self.points[3].y, |
| 68 | ) |
| 69 | } |
| 70 | |
| 71 | pub fn search_roots( |
| 72 | &self, |
| 73 | mut extrema: usize, |
| 74 | axis_intercept: f64, |
| 75 | x_axis: SearchAxis, |
| 76 | extreme_ts: &mut [f64; 6], |
| 77 | valid_roots: &mut [f64], |
| 78 | ) -> usize { |
| 79 | extrema += self.find_inflections(&mut extreme_ts[extrema..]); |
| 80 | extreme_ts[extrema] = 0.0; |
| 81 | extrema += 1; |
| 82 | extreme_ts[extrema] = 1.0; |
| 83 | debug_assert!(extrema < 6); |
| 84 | extreme_ts[0..extrema].sort_by(cmp_f64); |
| 85 | let mut valid_count = 0; |
| 86 | let mut index = 0; |
| 87 | while index < extrema { |
| 88 | let min = extreme_ts[index]; |
| 89 | index += 1; |
| 90 | let max = extreme_ts[index]; |
| 91 | if min == max { |
| 92 | continue; |
| 93 | } |
| 94 | |
| 95 | let new_t = self.binary_search(min, max, axis_intercept, x_axis); |
| 96 | if new_t >= 0.0 { |
| 97 | if valid_count >= 3 { |
| 98 | return 0; |
| 99 | } |
| 100 | |
| 101 | valid_roots[valid_count] = new_t; |
| 102 | valid_count += 1; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | valid_count |
| 107 | } |
| 108 | |
| 109 | fn find_inflections(&self, t_values: &mut [f64]) -> usize { |
| 110 | let ax = self.points[1].x - self.points[0].x; |
| 111 | let ay = self.points[1].y - self.points[0].y; |
| 112 | let bx = self.points[2].x - 2.0 * self.points[1].x + self.points[0].x; |
| 113 | let by = self.points[2].y - 2.0 * self.points[1].y + self.points[0].y; |
| 114 | let cx = self.points[3].x + 3.0 * (self.points[1].x - self.points[2].x) - self.points[0].x; |
| 115 | let cy = self.points[3].y + 3.0 * (self.points[1].y - self.points[2].y) - self.points[0].y; |
| 116 | quad64::roots_valid_t( |
| 117 | bx * cy - by * cx, |
| 118 | ax * cy - ay * cx, |
| 119 | ax * by - ay * bx, |
| 120 | t_values, |
| 121 | ) |
| 122 | } |
| 123 | |
| 124 | // give up when changing t no longer moves point |
| 125 | // also, copy point rather than recompute it when it does change |
| 126 | fn binary_search(&self, min: f64, max: f64, axis_intercept: f64, x_axis: SearchAxis) -> f64 { |
| 127 | let mut t = (min + max) / 2.0; |
| 128 | let mut step = (t - min) / 2.0; |
| 129 | let mut cubic_at_t = self.point_at_t(t); |
| 130 | let mut calc_pos = cubic_at_t.axis_coord(x_axis); |
| 131 | let mut calc_dist = calc_pos - axis_intercept; |
| 132 | loop { |
| 133 | let prior_t = min.max(t - step); |
| 134 | let less_pt = self.point_at_t(prior_t); |
| 135 | if less_pt.x.approximately_equal_half(cubic_at_t.x) |
| 136 | && less_pt.y.approximately_equal_half(cubic_at_t.y) |
| 137 | { |
| 138 | return -1.0; // binary search found no point at this axis intercept |
| 139 | } |
| 140 | |
| 141 | let less_dist = less_pt.axis_coord(x_axis) - axis_intercept; |
| 142 | let last_step = step; |
| 143 | step /= 2.0; |
| 144 | let ok = if calc_dist > 0.0 { |
| 145 | calc_dist > less_dist |
| 146 | } else { |
| 147 | calc_dist < less_dist |
| 148 | }; |
| 149 | if ok { |
| 150 | t = prior_t; |
| 151 | } else { |
| 152 | let next_t = t + last_step; |
| 153 | if next_t > max { |
| 154 | return -1.0; |
| 155 | } |
| 156 | |
| 157 | let more_pt = self.point_at_t(next_t); |
| 158 | if more_pt.x.approximately_equal_half(cubic_at_t.x) |
| 159 | && more_pt.y.approximately_equal_half(cubic_at_t.y) |
| 160 | { |
| 161 | return -1.0; // binary search found no point at this axis intercept |
| 162 | } |
| 163 | |
| 164 | let more_dist = more_pt.axis_coord(x_axis) - axis_intercept; |
| 165 | let ok = if calc_dist > 0.0 { |
| 166 | calc_dist <= more_dist |
| 167 | } else { |
| 168 | calc_dist >= more_dist |
| 169 | }; |
| 170 | if ok { |
| 171 | continue; |
| 172 | } |
| 173 | |
| 174 | t = next_t; |
| 175 | } |
| 176 | |
| 177 | let test_at_t = self.point_at_t(t); |
| 178 | cubic_at_t = test_at_t; |
| 179 | calc_pos = cubic_at_t.axis_coord(x_axis); |
| 180 | calc_dist = calc_pos - axis_intercept; |
| 181 | |
| 182 | if calc_pos.approximately_equal(axis_intercept) { |
| 183 | break; |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | t |
| 188 | } |
| 189 | |
| 190 | pub fn chop_at(&self, t: f64) -> Cubic64Pair { |
| 191 | let mut dst = [Point64::zero(); 7]; |
| 192 | if t == 0.5 { |
| 193 | dst[0] = self.points[0]; |
| 194 | dst[1].x = (self.points[0].x + self.points[1].x) / 2.0; |
| 195 | dst[1].y = (self.points[0].y + self.points[1].y) / 2.0; |
| 196 | dst[2].x = (self.points[0].x + 2.0 * self.points[1].x + self.points[2].x) / 4.0; |
| 197 | dst[2].y = (self.points[0].y + 2.0 * self.points[1].y + self.points[2].y) / 4.0; |
| 198 | dst[3].x = |
| 199 | (self.points[0].x + 3.0 * (self.points[1].x + self.points[2].x) + self.points[3].x) |
| 200 | / 8.0; |
| 201 | dst[3].y = |
| 202 | (self.points[0].y + 3.0 * (self.points[1].y + self.points[2].y) + self.points[3].y) |
| 203 | / 8.0; |
| 204 | dst[4].x = (self.points[1].x + 2.0 * self.points[2].x + self.points[3].x) / 4.0; |
| 205 | dst[4].y = (self.points[1].y + 2.0 * self.points[2].y + self.points[3].y) / 4.0; |
| 206 | dst[5].x = (self.points[2].x + self.points[3].x) / 2.0; |
| 207 | dst[5].y = (self.points[2].y + self.points[3].y) / 2.0; |
| 208 | dst[6] = self.points[3]; |
| 209 | |
| 210 | Cubic64Pair { points: dst } |
| 211 | } else { |
| 212 | interp_cubic_coords_x(&self.points, t, &mut dst); |
| 213 | interp_cubic_coords_y(&self.points, t, &mut dst); |
| 214 | Cubic64Pair { points: dst } |
| 215 | } |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | pub fn coefficients(src: &[f64]) -> (f64, f64, f64, f64) { |
| 220 | let mut a: f64 = src[6]; // d |
| 221 | let mut b: f64 = src[4] * 3.0; // 3*c |
| 222 | let mut c: f64 = src[2] * 3.0; // 3*b |
| 223 | let d: f64 = src[0]; // a |
| 224 | a -= d - c + b; // A = -a + 3*b - 3*c + d |
| 225 | b += 3.0 * d - 2.0 * c; // B = 3*a - 6*b + 3*c |
| 226 | c -= 3.0 * d; // C = -3*a + 3*b |
| 227 | |
| 228 | (a, b, c, d) |
| 229 | } |
| 230 | |
| 231 | // from SkGeometry.cpp (and Numeric Solutions, 5.6) |
| 232 | pub fn roots_valid_t(a: f64, b: f64, c: f64, d: f64, t: &mut [f64; 3]) -> usize { |
| 233 | let mut s = [0.0; 3]; |
| 234 | let real_roots = roots_real(a, b, c, d, &mut s); |
| 235 | let mut found_roots = quad64::push_valid_ts(&s, real_roots, t); |
| 236 | 'outer: for index in 0..real_roots { |
| 237 | let t_value = s[index]; |
| 238 | if !t_value.approximately_one_or_less() && t_value.between(1.0, 1.00005) { |
| 239 | for idx2 in 0..found_roots { |
| 240 | if t[idx2].approximately_equal(1.0) { |
| 241 | continue 'outer; |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | debug_assert!(found_roots < 3); |
| 246 | t[found_roots] = 1.0; |
| 247 | found_roots += 1; |
| 248 | } else if !t_value.approximately_zero_or_more() && t_value.between(-0.00005, 0.0) { |
| 249 | for idx2 in 0..found_roots { |
| 250 | if t[idx2].approximately_equal(0.0) { |
| 251 | continue 'outer; |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | debug_assert!(found_roots < 3); |
| 256 | t[found_roots] = 0.0; |
| 257 | found_roots += 1; |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | found_roots |
| 262 | } |
| 263 | |
| 264 | fn roots_real(a: f64, b: f64, c: f64, d: f64, s: &mut [f64; 3]) -> usize { |
| 265 | if a.approximately_zero() |
| 266 | && a.approximately_zero_when_compared_to(b) |
| 267 | && a.approximately_zero_when_compared_to(c) |
| 268 | && a.approximately_zero_when_compared_to(d) |
| 269 | { |
| 270 | // we're just a quadratic |
| 271 | return quad64::roots_real(b, c, d, s); |
| 272 | } |
| 273 | |
| 274 | if d.approximately_zero_when_compared_to(a) |
| 275 | && d.approximately_zero_when_compared_to(b) |
| 276 | && d.approximately_zero_when_compared_to(c) |
| 277 | { |
| 278 | // 0 is one root |
| 279 | let mut num = quad64::roots_real(a, b, c, s); |
| 280 | for i in 0..num { |
| 281 | if s[i].approximately_zero() { |
| 282 | return num; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | s[num] = 0.0; |
| 287 | num += 1; |
| 288 | |
| 289 | return num; |
| 290 | } |
| 291 | |
| 292 | if (a + b + c + d).approximately_zero() { |
| 293 | // 1 is one root |
| 294 | let mut num = quad64::roots_real(a, a + b, -d, s); |
| 295 | for i in 0..num { |
| 296 | if s[i].almost_dequal_ulps(1.0) { |
| 297 | return num; |
| 298 | } |
| 299 | } |
| 300 | s[num] = 1.0; |
| 301 | num += 1; |
| 302 | return num; |
| 303 | } |
| 304 | |
| 305 | let (a, b, c) = { |
| 306 | let inv_a = 1.0 / a; |
| 307 | let a = b * inv_a; |
| 308 | let b = c * inv_a; |
| 309 | let c = d * inv_a; |
| 310 | (a, b, c) |
| 311 | }; |
| 312 | |
| 313 | let a2 = a * a; |
| 314 | let q = (a2 - b * 3.0) / 9.0; |
| 315 | let r = (2.0 * a2 * a - 9.0 * a * b + 27.0 * c) / 54.0; |
| 316 | let r2 = r * r; |
| 317 | let q3 = q * q * q; |
| 318 | let r2_minus_q3 = r2 - q3; |
| 319 | let adiv3 = a / 3.0; |
| 320 | let mut offset = 0; |
| 321 | if r2_minus_q3 < 0.0 { |
| 322 | // we have 3 real roots |
| 323 | |
| 324 | // the divide/root can, due to finite precisions, be slightly outside of -1...1 |
| 325 | let theta = (r / q3.sqrt()).bound(-1.0, 1.0).acos(); |
| 326 | let neg2_root_q = -2.0 * q.sqrt(); |
| 327 | |
| 328 | let mut rr = neg2_root_q * (theta / 3.0).cos() - adiv3; |
| 329 | s[offset] = rr; |
| 330 | offset += 1; |
| 331 | |
| 332 | rr = neg2_root_q * ((theta + 2.0 * PI) / 3.0).cos() - adiv3; |
| 333 | if !s[0].almost_dequal_ulps(rr) { |
| 334 | s[offset] = rr; |
| 335 | offset += 1; |
| 336 | } |
| 337 | |
| 338 | rr = neg2_root_q * ((theta - 2.0 * PI) / 3.0).cos() - adiv3; |
| 339 | if !s[0].almost_dequal_ulps(rr) && (offset == 1 || !s[1].almost_dequal_ulps(rr)) { |
| 340 | s[offset] = rr; |
| 341 | offset += 1; |
| 342 | } |
| 343 | } else { |
| 344 | // we have 1 real root |
| 345 | let sqrt_r2_minus_q3 = r2_minus_q3.sqrt(); |
| 346 | let mut a = r.abs() + sqrt_r2_minus_q3; |
| 347 | a = super::cube_root(a); |
| 348 | if r > 0.0 { |
| 349 | a = -a; |
| 350 | } |
| 351 | |
| 352 | if a != 0.0 { |
| 353 | a += q / a; |
| 354 | } |
| 355 | |
| 356 | let mut r2 = a - adiv3; |
| 357 | s[offset] = r2; |
| 358 | offset += 1; |
| 359 | if r2.almost_dequal_ulps(q3) { |
| 360 | r2 = -a / 2.0 - adiv3; |
| 361 | if !s[0].almost_dequal_ulps(r2) { |
| 362 | s[offset] = r2; |
| 363 | offset += 1; |
| 364 | } |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | offset |
| 369 | } |
| 370 | |
| 371 | // Cubic64'(t) = At^2 + Bt + C, where |
| 372 | // A = 3(-a + 3(b - c) + d) |
| 373 | // B = 6(a - 2b + c) |
| 374 | // C = 3(b - a) |
| 375 | // Solve for t, keeping only those that fit between 0 < t < 1 |
| 376 | pub fn find_extrema(src: &[f64], t_values: &mut [f64]) -> usize { |
| 377 | // we divide A,B,C by 3 to simplify |
| 378 | let a: f64 = src[0]; |
| 379 | let b: f64 = src[2]; |
| 380 | let c: f64 = src[4]; |
| 381 | let d: f64 = src[6]; |
| 382 | let a2: f64 = d - a + 3.0 * (b - c); |
| 383 | let b2: f64 = 2.0 * (a - b - b + c); |
| 384 | let c2: f64 = b - a; |
| 385 | |
| 386 | quad64::roots_valid_t(a:a2, b:b2, c:c2, t_values) |
| 387 | } |
| 388 | |
| 389 | // Skia doesn't seems to care about NaN/inf during sorting, so we don't too. |
| 390 | fn cmp_f64(a: &f64, b: &f64) -> core::cmp::Ordering { |
| 391 | if a < b { |
| 392 | core::cmp::Ordering::Less |
| 393 | } else if a > b { |
| 394 | core::cmp::Ordering::Greater |
| 395 | } else { |
| 396 | core::cmp::Ordering::Equal |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | // classic one t subdivision |
| 401 | fn interp_cubic_coords_x(src: &[Point64; 4], t: f64, dst: &mut [Point64; 7]) { |
| 402 | use super::interp; |
| 403 | |
| 404 | let ab: f64 = interp(a:src[0].x, b:src[1].x, t); |
| 405 | let bc: f64 = interp(a:src[1].x, b:src[2].x, t); |
| 406 | let cd: f64 = interp(a:src[2].x, b:src[3].x, t); |
| 407 | let abc: f64 = interp(a:ab, b:bc, t); |
| 408 | let bcd: f64 = interp(a:bc, b:cd, t); |
| 409 | let abcd: f64 = interp(a:abc, b:bcd, t); |
| 410 | |
| 411 | dst[0].x = src[0].x; |
| 412 | dst[1].x = ab; |
| 413 | dst[2].x = abc; |
| 414 | dst[3].x = abcd; |
| 415 | dst[4].x = bcd; |
| 416 | dst[5].x = cd; |
| 417 | dst[6].x = src[3].x; |
| 418 | } |
| 419 | |
| 420 | fn interp_cubic_coords_y(src: &[Point64; 4], t: f64, dst: &mut [Point64; 7]) { |
| 421 | use super::interp; |
| 422 | |
| 423 | let ab: f64 = interp(a:src[0].y, b:src[1].y, t); |
| 424 | let bc: f64 = interp(a:src[1].y, b:src[2].y, t); |
| 425 | let cd: f64 = interp(a:src[2].y, b:src[3].y, t); |
| 426 | let abc: f64 = interp(a:ab, b:bc, t); |
| 427 | let bcd: f64 = interp(a:bc, b:cd, t); |
| 428 | let abcd: f64 = interp(a:abc, b:bcd, t); |
| 429 | |
| 430 | dst[0].y = src[0].y; |
| 431 | dst[1].y = ab; |
| 432 | dst[2].y = abc; |
| 433 | dst[3].y = abcd; |
| 434 | dst[4].y = bcd; |
| 435 | dst[5].y = cd; |
| 436 | dst[6].y = src[3].y; |
| 437 | } |
| 438 | |