1 | //! Type-level unsigned integers. |
2 | //! |
3 | //! |
4 | //! **Type operators** implemented: |
5 | //! |
6 | //! From `::core::ops`: `BitAnd`, `BitOr`, `BitXor`, `Shl`, `Shr`, `Add`, `Sub`, |
7 | //! `Mul`, `Div`, and `Rem`. |
8 | //! From `typenum`: `Same`, `Cmp`, and `Pow`. |
9 | //! |
10 | //! Rather than directly using the structs defined in this module, it is recommended that |
11 | //! you import and use the relevant aliases from the [consts](../consts/index.html) module. |
12 | //! |
13 | //! # Example |
14 | //! ```rust |
15 | //! use std::ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Rem, Shl, Shr, Sub}; |
16 | //! use typenum::{Unsigned, U1, U2, U3, U4}; |
17 | //! |
18 | //! assert_eq!(<U3 as BitAnd<U2>>::Output::to_u32(), 2); |
19 | //! assert_eq!(<U3 as BitOr<U4>>::Output::to_u32(), 7); |
20 | //! assert_eq!(<U3 as BitXor<U2>>::Output::to_u32(), 1); |
21 | //! assert_eq!(<U3 as Shl<U1>>::Output::to_u32(), 6); |
22 | //! assert_eq!(<U3 as Shr<U1>>::Output::to_u32(), 1); |
23 | //! assert_eq!(<U3 as Add<U2>>::Output::to_u32(), 5); |
24 | //! assert_eq!(<U3 as Sub<U2>>::Output::to_u32(), 1); |
25 | //! assert_eq!(<U3 as Mul<U2>>::Output::to_u32(), 6); |
26 | //! assert_eq!(<U3 as Div<U2>>::Output::to_u32(), 1); |
27 | //! assert_eq!(<U3 as Rem<U2>>::Output::to_u32(), 1); |
28 | //! ``` |
29 | |
30 | use crate::{ |
31 | bit::{Bit, B0, B1}, |
32 | consts::{U0, U1}, |
33 | private::{ |
34 | BitDiff, BitDiffOut, Internal, InternalMarker, PrivateAnd, PrivateAndOut, PrivateCmp, |
35 | PrivateCmpOut, PrivateLogarithm2, PrivatePow, PrivatePowOut, PrivateSquareRoot, PrivateSub, |
36 | PrivateSubOut, PrivateXor, PrivateXorOut, Trim, TrimOut, |
37 | }, |
38 | Add1, Cmp, Double, Equal, Gcd, Gcf, GrEq, Greater, IsGreaterOrEqual, Len, Length, Less, Log2, |
39 | Logarithm2, Maximum, Minimum, NonZero, Or, Ord, Pow, Prod, Shleft, Shright, Sqrt, Square, |
40 | SquareRoot, Sub1, Sum, ToInt, Zero, |
41 | }; |
42 | use core::ops::{Add, BitAnd, BitOr, BitXor, Mul, Shl, Shr, Sub}; |
43 | |
44 | pub use crate::marker_traits::{PowerOfTwo, Unsigned}; |
45 | |
46 | /// The terminating type for `UInt`; it always comes after the most significant |
47 | /// bit. `UTerm` by itself represents zero, which is aliased to `U0`. |
48 | #[derive (Eq, PartialEq, Ord, PartialOrd, Clone, Copy, Hash, Debug, Default)] |
49 | #[cfg_attr (feature = "scale_info" , derive(scale_info::TypeInfo))] |
50 | pub struct UTerm; |
51 | |
52 | impl UTerm { |
53 | /// Instantiates a singleton representing this unsigned integer. |
54 | #[inline ] |
55 | pub fn new() -> UTerm { |
56 | UTerm |
57 | } |
58 | } |
59 | |
60 | impl Unsigned for UTerm { |
61 | const U8: u8 = 0; |
62 | const U16: u16 = 0; |
63 | const U32: u32 = 0; |
64 | const U64: u64 = 0; |
65 | #[cfg (feature = "i128" )] |
66 | const U128: u128 = 0; |
67 | const USIZE: usize = 0; |
68 | |
69 | const I8: i8 = 0; |
70 | const I16: i16 = 0; |
71 | const I32: i32 = 0; |
72 | const I64: i64 = 0; |
73 | #[cfg (feature = "i128" )] |
74 | const I128: i128 = 0; |
75 | const ISIZE: isize = 0; |
76 | |
77 | #[inline ] |
78 | fn to_u8() -> u8 { |
79 | 0 |
80 | } |
81 | #[inline ] |
82 | fn to_u16() -> u16 { |
83 | 0 |
84 | } |
85 | #[inline ] |
86 | fn to_u32() -> u32 { |
87 | 0 |
88 | } |
89 | #[inline ] |
90 | fn to_u64() -> u64 { |
91 | 0 |
92 | } |
93 | #[cfg (feature = "i128" )] |
94 | #[inline ] |
95 | fn to_u128() -> u128 { |
96 | 0 |
97 | } |
98 | #[inline ] |
99 | fn to_usize() -> usize { |
100 | 0 |
101 | } |
102 | |
103 | #[inline ] |
104 | fn to_i8() -> i8 { |
105 | 0 |
106 | } |
107 | #[inline ] |
108 | fn to_i16() -> i16 { |
109 | 0 |
110 | } |
111 | #[inline ] |
112 | fn to_i32() -> i32 { |
113 | 0 |
114 | } |
115 | #[inline ] |
116 | fn to_i64() -> i64 { |
117 | 0 |
118 | } |
119 | #[cfg (feature = "i128" )] |
120 | #[inline ] |
121 | fn to_i128() -> i128 { |
122 | 0 |
123 | } |
124 | #[inline ] |
125 | fn to_isize() -> isize { |
126 | 0 |
127 | } |
128 | } |
129 | |
130 | /// `UInt` is defined recursively, where `B` is the least significant bit and `U` is the rest |
131 | /// of the number. Conceptually, `U` should be bound by the trait `Unsigned` and `B` should |
132 | /// be bound by the trait `Bit`, but enforcing these bounds causes linear instead of |
133 | /// logrithmic scaling in some places, so they are left off for now. They may be enforced in |
134 | /// future. |
135 | /// |
136 | /// In order to keep numbers unique, leading zeros are not allowed, so `UInt<UTerm, B0>` is |
137 | /// forbidden. |
138 | /// |
139 | /// # Example |
140 | /// ```rust |
141 | /// use typenum::{UInt, UTerm, B0, B1}; |
142 | /// |
143 | /// # #[allow (dead_code)] |
144 | /// type U6 = UInt<UInt<UInt<UTerm, B1>, B1>, B0>; |
145 | /// ``` |
146 | #[derive (Eq, PartialEq, Ord, PartialOrd, Clone, Copy, Hash, Debug, Default)] |
147 | #[cfg_attr (feature = "scale_info" , derive(scale_info::TypeInfo))] |
148 | pub struct UInt<U, B> { |
149 | /// The more significant bits of `Self`. |
150 | pub(crate) msb: U, |
151 | /// The least significant bit of `Self`. |
152 | pub(crate) lsb: B, |
153 | } |
154 | |
155 | impl<U: Unsigned, B: Bit> UInt<U, B> { |
156 | /// Instantiates a singleton representing this unsigned integer. |
157 | #[inline ] |
158 | pub fn new() -> UInt<U, B> { |
159 | UInt::default() |
160 | } |
161 | } |
162 | |
163 | impl<U: Unsigned, B: Bit> Unsigned for UInt<U, B> { |
164 | const U8: u8 = B::U8 | U::U8 << 1; |
165 | const U16: u16 = B::U8 as u16 | U::U16 << 1; |
166 | const U32: u32 = B::U8 as u32 | U::U32 << 1; |
167 | const U64: u64 = B::U8 as u64 | U::U64 << 1; |
168 | #[cfg (feature = "i128" )] |
169 | const U128: u128 = B::U8 as u128 | U::U128 << 1; |
170 | const USIZE: usize = B::U8 as usize | U::USIZE << 1; |
171 | |
172 | const I8: i8 = B::U8 as i8 | U::I8 << 1; |
173 | const I16: i16 = B::U8 as i16 | U::I16 << 1; |
174 | const I32: i32 = B::U8 as i32 | U::I32 << 1; |
175 | const I64: i64 = B::U8 as i64 | U::I64 << 1; |
176 | #[cfg (feature = "i128" )] |
177 | const I128: i128 = B::U8 as i128 | U::I128 << 1; |
178 | const ISIZE: isize = B::U8 as isize | U::ISIZE << 1; |
179 | |
180 | #[inline ] |
181 | fn to_u8() -> u8 { |
182 | B::to_u8() | U::to_u8() << 1 |
183 | } |
184 | #[inline ] |
185 | fn to_u16() -> u16 { |
186 | u16::from(B::to_u8()) | U::to_u16() << 1 |
187 | } |
188 | #[inline ] |
189 | fn to_u32() -> u32 { |
190 | u32::from(B::to_u8()) | U::to_u32() << 1 |
191 | } |
192 | #[inline ] |
193 | fn to_u64() -> u64 { |
194 | u64::from(B::to_u8()) | U::to_u64() << 1 |
195 | } |
196 | #[cfg (feature = "i128" )] |
197 | #[inline ] |
198 | fn to_u128() -> u128 { |
199 | u128::from(B::to_u8()) | U::to_u128() << 1 |
200 | } |
201 | #[inline ] |
202 | fn to_usize() -> usize { |
203 | usize::from(B::to_u8()) | U::to_usize() << 1 |
204 | } |
205 | |
206 | #[inline ] |
207 | fn to_i8() -> i8 { |
208 | B::to_u8() as i8 | U::to_i8() << 1 |
209 | } |
210 | #[inline ] |
211 | fn to_i16() -> i16 { |
212 | i16::from(B::to_u8()) | U::to_i16() << 1 |
213 | } |
214 | #[inline ] |
215 | fn to_i32() -> i32 { |
216 | i32::from(B::to_u8()) | U::to_i32() << 1 |
217 | } |
218 | #[inline ] |
219 | fn to_i64() -> i64 { |
220 | i64::from(B::to_u8()) | U::to_i64() << 1 |
221 | } |
222 | #[cfg (feature = "i128" )] |
223 | #[inline ] |
224 | fn to_i128() -> i128 { |
225 | i128::from(B::to_u8()) | U::to_i128() << 1 |
226 | } |
227 | #[inline ] |
228 | fn to_isize() -> isize { |
229 | B::to_u8() as isize | U::to_isize() << 1 |
230 | } |
231 | } |
232 | |
233 | impl<U: Unsigned, B: Bit> NonZero for UInt<U, B> {} |
234 | impl Zero for UTerm {} |
235 | |
236 | impl PowerOfTwo for UInt<UTerm, B1> {} |
237 | impl<U: Unsigned + PowerOfTwo> PowerOfTwo for UInt<U, B0> {} |
238 | |
239 | // --------------------------------------------------------------------------------------- |
240 | // Getting length of unsigned integers, which is defined as the number of bits before `UTerm` |
241 | |
242 | /// Length of `UTerm` by itself is 0 |
243 | impl Len for UTerm { |
244 | type Output = U0; |
245 | #[inline ] |
246 | fn len(&self) -> Self::Output { |
247 | UTerm |
248 | } |
249 | } |
250 | |
251 | /// Length of a bit is 1 |
252 | impl<U: Unsigned, B: Bit> Len for UInt<U, B> |
253 | where |
254 | U: Len, |
255 | Length<U>: Add<B1>, |
256 | Add1<Length<U>>: Unsigned, |
257 | { |
258 | type Output = Add1<Length<U>>; |
259 | #[inline ] |
260 | fn len(&self) -> Self::Output { |
261 | self.msb.len() + B1 |
262 | } |
263 | } |
264 | |
265 | // --------------------------------------------------------------------------------------- |
266 | // Adding bits to unsigned integers |
267 | |
268 | /// `UTerm + B0 = UTerm` |
269 | impl Add<B0> for UTerm { |
270 | type Output = UTerm; |
271 | #[inline ] |
272 | fn add(self, _: B0) -> Self::Output { |
273 | UTerm |
274 | } |
275 | } |
276 | |
277 | /// `U + B0 = U` |
278 | impl<U: Unsigned, B: Bit> Add<B0> for UInt<U, B> { |
279 | type Output = UInt<U, B>; |
280 | #[inline ] |
281 | fn add(self, _: B0) -> Self::Output { |
282 | UInt::new() |
283 | } |
284 | } |
285 | |
286 | /// `UTerm + B1 = UInt<UTerm, B1>` |
287 | impl Add<B1> for UTerm { |
288 | type Output = UInt<UTerm, B1>; |
289 | #[inline ] |
290 | fn add(self, _: B1) -> Self::Output { |
291 | UInt::new() |
292 | } |
293 | } |
294 | |
295 | /// `UInt<U, B0> + B1 = UInt<U + B1>` |
296 | impl<U: Unsigned> Add<B1> for UInt<U, B0> { |
297 | type Output = UInt<U, B1>; |
298 | #[inline ] |
299 | fn add(self, _: B1) -> Self::Output { |
300 | UInt::new() |
301 | } |
302 | } |
303 | |
304 | /// `UInt<U, B1> + B1 = UInt<U + B1, B0>` |
305 | impl<U: Unsigned> Add<B1> for UInt<U, B1> |
306 | where |
307 | U: Add<B1>, |
308 | Add1<U>: Unsigned, |
309 | { |
310 | type Output = UInt<Add1<U>, B0>; |
311 | #[inline ] |
312 | fn add(self, _: B1) -> Self::Output { |
313 | UInt::new() |
314 | } |
315 | } |
316 | |
317 | // --------------------------------------------------------------------------------------- |
318 | // Adding unsigned integers |
319 | |
320 | /// `UTerm + U = U` |
321 | impl<U: Unsigned> Add<U> for UTerm { |
322 | type Output = U; |
323 | #[inline ] |
324 | fn add(self, rhs: U) -> Self::Output { |
325 | rhs |
326 | } |
327 | } |
328 | |
329 | /// `UInt<U, B> + UTerm = UInt<U, B>` |
330 | impl<U: Unsigned, B: Bit> Add<UTerm> for UInt<U, B> { |
331 | type Output = UInt<U, B>; |
332 | #[inline ] |
333 | fn add(self, _: UTerm) -> Self::Output { |
334 | UInt::new() |
335 | } |
336 | } |
337 | |
338 | /// `UInt<Ul, B0> + UInt<Ur, B0> = UInt<Ul + Ur, B0>` |
339 | impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B0> |
340 | where |
341 | Ul: Add<Ur>, |
342 | { |
343 | type Output = UInt<Sum<Ul, Ur>, B0>; |
344 | #[inline ] |
345 | fn add(self, rhs: UInt<Ur, B0>) -> Self::Output { |
346 | UInt { |
347 | msb: self.msb + rhs.msb, |
348 | lsb: B0, |
349 | } |
350 | } |
351 | } |
352 | |
353 | /// `UInt<Ul, B0> + UInt<Ur, B1> = UInt<Ul + Ur, B1>` |
354 | impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B0> |
355 | where |
356 | Ul: Add<Ur>, |
357 | { |
358 | type Output = UInt<Sum<Ul, Ur>, B1>; |
359 | #[inline ] |
360 | fn add(self, rhs: UInt<Ur, B1>) -> Self::Output { |
361 | UInt { |
362 | msb: self.msb + rhs.msb, |
363 | lsb: B1, |
364 | } |
365 | } |
366 | } |
367 | |
368 | /// `UInt<Ul, B1> + UInt<Ur, B0> = UInt<Ul + Ur, B1>` |
369 | impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B1> |
370 | where |
371 | Ul: Add<Ur>, |
372 | { |
373 | type Output = UInt<Sum<Ul, Ur>, B1>; |
374 | #[inline ] |
375 | fn add(self, rhs: UInt<Ur, B0>) -> Self::Output { |
376 | UInt { |
377 | msb: self.msb + rhs.msb, |
378 | lsb: B1, |
379 | } |
380 | } |
381 | } |
382 | |
383 | /// `UInt<Ul, B1> + UInt<Ur, B1> = UInt<(Ul + Ur) + B1, B0>` |
384 | impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B1> |
385 | where |
386 | Ul: Add<Ur>, |
387 | Sum<Ul, Ur>: Add<B1>, |
388 | { |
389 | type Output = UInt<Add1<Sum<Ul, Ur>>, B0>; |
390 | #[inline ] |
391 | fn add(self, rhs: UInt<Ur, B1>) -> Self::Output { |
392 | UInt { |
393 | msb: self.msb + rhs.msb + B1, |
394 | lsb: B0, |
395 | } |
396 | } |
397 | } |
398 | |
399 | // --------------------------------------------------------------------------------------- |
400 | // Subtracting bits from unsigned integers |
401 | |
402 | /// `UTerm - B0 = Term` |
403 | impl Sub<B0> for UTerm { |
404 | type Output = UTerm; |
405 | #[inline ] |
406 | fn sub(self, _: B0) -> Self::Output { |
407 | UTerm |
408 | } |
409 | } |
410 | |
411 | /// `UInt - B0 = UInt` |
412 | impl<U: Unsigned, B: Bit> Sub<B0> for UInt<U, B> { |
413 | type Output = UInt<U, B>; |
414 | #[inline ] |
415 | fn sub(self, _: B0) -> Self::Output { |
416 | UInt::new() |
417 | } |
418 | } |
419 | |
420 | /// `UInt<U, B1> - B1 = UInt<U, B0>` |
421 | impl<U: Unsigned, B: Bit> Sub<B1> for UInt<UInt<U, B>, B1> { |
422 | type Output = UInt<UInt<U, B>, B0>; |
423 | #[inline ] |
424 | fn sub(self, _: B1) -> Self::Output { |
425 | UInt::new() |
426 | } |
427 | } |
428 | |
429 | /// `UInt<UTerm, B1> - B1 = UTerm` |
430 | impl Sub<B1> for UInt<UTerm, B1> { |
431 | type Output = UTerm; |
432 | #[inline ] |
433 | fn sub(self, _: B1) -> Self::Output { |
434 | UTerm |
435 | } |
436 | } |
437 | |
438 | /// `UInt<U, B0> - B1 = UInt<U - B1, B1>` |
439 | impl<U: Unsigned> Sub<B1> for UInt<U, B0> |
440 | where |
441 | U: Sub<B1>, |
442 | Sub1<U>: Unsigned, |
443 | { |
444 | type Output = UInt<Sub1<U>, B1>; |
445 | #[inline ] |
446 | fn sub(self, _: B1) -> Self::Output { |
447 | UInt::new() |
448 | } |
449 | } |
450 | |
451 | // --------------------------------------------------------------------------------------- |
452 | // Subtracting unsigned integers |
453 | |
454 | /// `UTerm - UTerm = UTerm` |
455 | impl Sub<UTerm> for UTerm { |
456 | type Output = UTerm; |
457 | #[inline ] |
458 | fn sub(self, _: UTerm) -> Self::Output { |
459 | UTerm |
460 | } |
461 | } |
462 | |
463 | /// Subtracting unsigned integers. We just do our `PrivateSub` and then `Trim` the output. |
464 | impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> Sub<Ur> for UInt<Ul, Bl> |
465 | where |
466 | UInt<Ul, Bl>: PrivateSub<Ur>, |
467 | PrivateSubOut<UInt<Ul, Bl>, Ur>: Trim, |
468 | { |
469 | type Output = TrimOut<PrivateSubOut<UInt<Ul, Bl>, Ur>>; |
470 | #[inline ] |
471 | fn sub(self, rhs: Ur) -> Self::Output { |
472 | self.private_sub(rhs).trim() |
473 | } |
474 | } |
475 | |
476 | /// `U - UTerm = U` |
477 | impl<U: Unsigned> PrivateSub<UTerm> for U { |
478 | type Output = U; |
479 | |
480 | #[inline ] |
481 | fn private_sub(self, _: UTerm) -> Self::Output { |
482 | self |
483 | } |
484 | } |
485 | |
486 | /// `UInt<Ul, B0> - UInt<Ur, B0> = UInt<Ul - Ur, B0>` |
487 | impl<Ul: Unsigned, Ur: Unsigned> PrivateSub<UInt<Ur, B0>> for UInt<Ul, B0> |
488 | where |
489 | Ul: PrivateSub<Ur>, |
490 | { |
491 | type Output = UInt<PrivateSubOut<Ul, Ur>, B0>; |
492 | |
493 | #[inline ] |
494 | fn private_sub(self, rhs: UInt<Ur, B0>) -> Self::Output { |
495 | UInt { |
496 | msb: self.msb.private_sub(rhs.msb), |
497 | lsb: B0, |
498 | } |
499 | } |
500 | } |
501 | |
502 | /// `UInt<Ul, B0> - UInt<Ur, B1> = UInt<(Ul - Ur) - B1, B1>` |
503 | impl<Ul: Unsigned, Ur: Unsigned> PrivateSub<UInt<Ur, B1>> for UInt<Ul, B0> |
504 | where |
505 | Ul: PrivateSub<Ur>, |
506 | PrivateSubOut<Ul, Ur>: Sub<B1>, |
507 | { |
508 | type Output = UInt<Sub1<PrivateSubOut<Ul, Ur>>, B1>; |
509 | |
510 | #[inline ] |
511 | fn private_sub(self, rhs: UInt<Ur, B1>) -> Self::Output { |
512 | UInt { |
513 | msb: self.msb.private_sub(rhs.msb) - B1, |
514 | lsb: B1, |
515 | } |
516 | } |
517 | } |
518 | |
519 | /// `UInt<Ul, B1> - UInt<Ur, B0> = UInt<Ul - Ur, B1>` |
520 | impl<Ul: Unsigned, Ur: Unsigned> PrivateSub<UInt<Ur, B0>> for UInt<Ul, B1> |
521 | where |
522 | Ul: PrivateSub<Ur>, |
523 | { |
524 | type Output = UInt<PrivateSubOut<Ul, Ur>, B1>; |
525 | |
526 | #[inline ] |
527 | fn private_sub(self, rhs: UInt<Ur, B0>) -> Self::Output { |
528 | UInt { |
529 | msb: self.msb.private_sub(rhs.msb), |
530 | lsb: B1, |
531 | } |
532 | } |
533 | } |
534 | |
535 | /// `UInt<Ul, B1> - UInt<Ur, B1> = UInt<Ul - Ur, B0>` |
536 | impl<Ul: Unsigned, Ur: Unsigned> PrivateSub<UInt<Ur, B1>> for UInt<Ul, B1> |
537 | where |
538 | Ul: PrivateSub<Ur>, |
539 | { |
540 | type Output = UInt<PrivateSubOut<Ul, Ur>, B0>; |
541 | |
542 | #[inline ] |
543 | fn private_sub(self, rhs: UInt<Ur, B1>) -> Self::Output { |
544 | UInt { |
545 | msb: self.msb.private_sub(rhs.msb), |
546 | lsb: B0, |
547 | } |
548 | } |
549 | } |
550 | |
551 | // --------------------------------------------------------------------------------------- |
552 | // And unsigned integers |
553 | |
554 | /// 0 & X = 0 |
555 | impl<Ur: Unsigned> BitAnd<Ur> for UTerm { |
556 | type Output = UTerm; |
557 | #[inline ] |
558 | fn bitand(self, _: Ur) -> Self::Output { |
559 | UTerm |
560 | } |
561 | } |
562 | |
563 | /// Anding unsigned integers. |
564 | /// We use our `PrivateAnd` operator and then `Trim` the output. |
565 | impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitAnd<Ur> for UInt<Ul, Bl> |
566 | where |
567 | UInt<Ul, Bl>: PrivateAnd<Ur>, |
568 | PrivateAndOut<UInt<Ul, Bl>, Ur>: Trim, |
569 | { |
570 | type Output = TrimOut<PrivateAndOut<UInt<Ul, Bl>, Ur>>; |
571 | #[inline ] |
572 | fn bitand(self, rhs: Ur) -> Self::Output { |
573 | self.private_and(rhs).trim() |
574 | } |
575 | } |
576 | |
577 | /// `UTerm & X = UTerm` |
578 | impl<U: Unsigned> PrivateAnd<U> for UTerm { |
579 | type Output = UTerm; |
580 | |
581 | #[inline ] |
582 | fn private_and(self, _: U) -> Self::Output { |
583 | UTerm |
584 | } |
585 | } |
586 | |
587 | /// `X & UTerm = UTerm` |
588 | impl<B: Bit, U: Unsigned> PrivateAnd<UTerm> for UInt<U, B> { |
589 | type Output = UTerm; |
590 | |
591 | #[inline ] |
592 | fn private_and(self, _: UTerm) -> Self::Output { |
593 | UTerm |
594 | } |
595 | } |
596 | |
597 | /// `UInt<Ul, B0> & UInt<Ur, B0> = UInt<Ul & Ur, B0>` |
598 | impl<Ul: Unsigned, Ur: Unsigned> PrivateAnd<UInt<Ur, B0>> for UInt<Ul, B0> |
599 | where |
600 | Ul: PrivateAnd<Ur>, |
601 | { |
602 | type Output = UInt<PrivateAndOut<Ul, Ur>, B0>; |
603 | |
604 | #[inline ] |
605 | fn private_and(self, rhs: UInt<Ur, B0>) -> Self::Output { |
606 | UInt { |
607 | msb: self.msb.private_and(rhs.msb), |
608 | lsb: B0, |
609 | } |
610 | } |
611 | } |
612 | |
613 | /// `UInt<Ul, B0> & UInt<Ur, B1> = UInt<Ul & Ur, B0>` |
614 | impl<Ul: Unsigned, Ur: Unsigned> PrivateAnd<UInt<Ur, B1>> for UInt<Ul, B0> |
615 | where |
616 | Ul: PrivateAnd<Ur>, |
617 | { |
618 | type Output = UInt<PrivateAndOut<Ul, Ur>, B0>; |
619 | |
620 | #[inline ] |
621 | fn private_and(self, rhs: UInt<Ur, B1>) -> Self::Output { |
622 | UInt { |
623 | msb: self.msb.private_and(rhs.msb), |
624 | lsb: B0, |
625 | } |
626 | } |
627 | } |
628 | |
629 | /// `UInt<Ul, B1> & UInt<Ur, B0> = UInt<Ul & Ur, B0>` |
630 | impl<Ul: Unsigned, Ur: Unsigned> PrivateAnd<UInt<Ur, B0>> for UInt<Ul, B1> |
631 | where |
632 | Ul: PrivateAnd<Ur>, |
633 | { |
634 | type Output = UInt<PrivateAndOut<Ul, Ur>, B0>; |
635 | |
636 | #[inline ] |
637 | fn private_and(self, rhs: UInt<Ur, B0>) -> Self::Output { |
638 | UInt { |
639 | msb: self.msb.private_and(rhs.msb), |
640 | lsb: B0, |
641 | } |
642 | } |
643 | } |
644 | |
645 | /// `UInt<Ul, B1> & UInt<Ur, B1> = UInt<Ul & Ur, B1>` |
646 | impl<Ul: Unsigned, Ur: Unsigned> PrivateAnd<UInt<Ur, B1>> for UInt<Ul, B1> |
647 | where |
648 | Ul: PrivateAnd<Ur>, |
649 | { |
650 | type Output = UInt<PrivateAndOut<Ul, Ur>, B1>; |
651 | |
652 | #[inline ] |
653 | fn private_and(self, rhs: UInt<Ur, B1>) -> Self::Output { |
654 | UInt { |
655 | msb: self.msb.private_and(rhs.msb), |
656 | lsb: B1, |
657 | } |
658 | } |
659 | } |
660 | |
661 | // --------------------------------------------------------------------------------------- |
662 | // Or unsigned integers |
663 | |
664 | /// `UTerm | X = X` |
665 | impl<U: Unsigned> BitOr<U> for UTerm { |
666 | type Output = U; |
667 | #[inline ] |
668 | fn bitor(self, rhs: U) -> Self::Output { |
669 | rhs |
670 | } |
671 | } |
672 | |
673 | /// `X | UTerm = X` |
674 | impl<B: Bit, U: Unsigned> BitOr<UTerm> for UInt<U, B> { |
675 | type Output = Self; |
676 | #[inline ] |
677 | fn bitor(self, _: UTerm) -> Self::Output { |
678 | UInt::new() |
679 | } |
680 | } |
681 | |
682 | /// `UInt<Ul, B0> | UInt<Ur, B0> = UInt<Ul | Ur, B0>` |
683 | impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B0> |
684 | where |
685 | Ul: BitOr<Ur>, |
686 | { |
687 | type Output = UInt<<Ul as BitOr<Ur>>::Output, B0>; |
688 | #[inline ] |
689 | fn bitor(self, rhs: UInt<Ur, B0>) -> Self::Output { |
690 | UInt { |
691 | msb: self.msb.bitor(rhs.msb), |
692 | lsb: B0, |
693 | } |
694 | } |
695 | } |
696 | |
697 | /// `UInt<Ul, B0> | UInt<Ur, B1> = UInt<Ul | Ur, B1>` |
698 | impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B0> |
699 | where |
700 | Ul: BitOr<Ur>, |
701 | { |
702 | type Output = UInt<Or<Ul, Ur>, B1>; |
703 | #[inline ] |
704 | fn bitor(self, rhs: UInt<Ur, B1>) -> Self::Output { |
705 | UInt { |
706 | msb: self.msb.bitor(rhs.msb), |
707 | lsb: self.lsb.bitor(rhs.lsb), |
708 | } |
709 | } |
710 | } |
711 | |
712 | /// `UInt<Ul, B1> | UInt<Ur, B0> = UInt<Ul | Ur, B1>` |
713 | impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B1> |
714 | where |
715 | Ul: BitOr<Ur>, |
716 | { |
717 | type Output = UInt<Or<Ul, Ur>, B1>; |
718 | #[inline ] |
719 | fn bitor(self, rhs: UInt<Ur, B0>) -> Self::Output { |
720 | UInt { |
721 | msb: self.msb.bitor(rhs.msb), |
722 | lsb: self.lsb.bitor(rhs.lsb), |
723 | } |
724 | } |
725 | } |
726 | |
727 | /// `UInt<Ul, B1> | UInt<Ur, B1> = UInt<Ul | Ur, B1>` |
728 | impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B1> |
729 | where |
730 | Ul: BitOr<Ur>, |
731 | { |
732 | type Output = UInt<Or<Ul, Ur>, B1>; |
733 | #[inline ] |
734 | fn bitor(self, rhs: UInt<Ur, B1>) -> Self::Output { |
735 | UInt { |
736 | msb: self.msb.bitor(rhs.msb), |
737 | lsb: self.lsb.bitor(rhs.lsb), |
738 | } |
739 | } |
740 | } |
741 | |
742 | // --------------------------------------------------------------------------------------- |
743 | // Xor unsigned integers |
744 | |
745 | /// 0 ^ X = X |
746 | impl<Ur: Unsigned> BitXor<Ur> for UTerm { |
747 | type Output = Ur; |
748 | #[inline ] |
749 | fn bitxor(self, rhs: Ur) -> Self::Output { |
750 | rhs |
751 | } |
752 | } |
753 | |
754 | /// Xoring unsigned integers. |
755 | /// We use our `PrivateXor` operator and then `Trim` the output. |
756 | impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitXor<Ur> for UInt<Ul, Bl> |
757 | where |
758 | UInt<Ul, Bl>: PrivateXor<Ur>, |
759 | PrivateXorOut<UInt<Ul, Bl>, Ur>: Trim, |
760 | { |
761 | type Output = TrimOut<PrivateXorOut<UInt<Ul, Bl>, Ur>>; |
762 | #[inline ] |
763 | fn bitxor(self, rhs: Ur) -> Self::Output { |
764 | self.private_xor(rhs).trim() |
765 | } |
766 | } |
767 | |
768 | /// `UTerm ^ X = X` |
769 | impl<U: Unsigned> PrivateXor<U> for UTerm { |
770 | type Output = U; |
771 | |
772 | #[inline ] |
773 | fn private_xor(self, rhs: U) -> Self::Output { |
774 | rhs |
775 | } |
776 | } |
777 | |
778 | /// `X ^ UTerm = X` |
779 | impl<B: Bit, U: Unsigned> PrivateXor<UTerm> for UInt<U, B> { |
780 | type Output = Self; |
781 | |
782 | #[inline ] |
783 | fn private_xor(self, _: UTerm) -> Self::Output { |
784 | self |
785 | } |
786 | } |
787 | |
788 | /// `UInt<Ul, B0> ^ UInt<Ur, B0> = UInt<Ul ^ Ur, B0>` |
789 | impl<Ul: Unsigned, Ur: Unsigned> PrivateXor<UInt<Ur, B0>> for UInt<Ul, B0> |
790 | where |
791 | Ul: PrivateXor<Ur>, |
792 | { |
793 | type Output = UInt<PrivateXorOut<Ul, Ur>, B0>; |
794 | |
795 | #[inline ] |
796 | fn private_xor(self, rhs: UInt<Ur, B0>) -> Self::Output { |
797 | UInt { |
798 | msb: self.msb.private_xor(rhs.msb), |
799 | lsb: B0, |
800 | } |
801 | } |
802 | } |
803 | |
804 | /// `UInt<Ul, B0> ^ UInt<Ur, B1> = UInt<Ul ^ Ur, B1>` |
805 | impl<Ul: Unsigned, Ur: Unsigned> PrivateXor<UInt<Ur, B1>> for UInt<Ul, B0> |
806 | where |
807 | Ul: PrivateXor<Ur>, |
808 | { |
809 | type Output = UInt<PrivateXorOut<Ul, Ur>, B1>; |
810 | |
811 | #[inline ] |
812 | fn private_xor(self, rhs: UInt<Ur, B1>) -> Self::Output { |
813 | UInt { |
814 | msb: self.msb.private_xor(rhs.msb), |
815 | lsb: B1, |
816 | } |
817 | } |
818 | } |
819 | |
820 | /// `UInt<Ul, B1> ^ UInt<Ur, B0> = UInt<Ul ^ Ur, B1>` |
821 | impl<Ul: Unsigned, Ur: Unsigned> PrivateXor<UInt<Ur, B0>> for UInt<Ul, B1> |
822 | where |
823 | Ul: PrivateXor<Ur>, |
824 | { |
825 | type Output = UInt<PrivateXorOut<Ul, Ur>, B1>; |
826 | |
827 | #[inline ] |
828 | fn private_xor(self, rhs: UInt<Ur, B0>) -> Self::Output { |
829 | UInt { |
830 | msb: self.msb.private_xor(rhs.msb), |
831 | lsb: B1, |
832 | } |
833 | } |
834 | } |
835 | |
836 | /// `UInt<Ul, B1> ^ UInt<Ur, B1> = UInt<Ul ^ Ur, B0>` |
837 | impl<Ul: Unsigned, Ur: Unsigned> PrivateXor<UInt<Ur, B1>> for UInt<Ul, B1> |
838 | where |
839 | Ul: PrivateXor<Ur>, |
840 | { |
841 | type Output = UInt<PrivateXorOut<Ul, Ur>, B0>; |
842 | |
843 | #[inline ] |
844 | fn private_xor(self, rhs: UInt<Ur, B1>) -> Self::Output { |
845 | UInt { |
846 | msb: self.msb.private_xor(rhs.msb), |
847 | lsb: B0, |
848 | } |
849 | } |
850 | } |
851 | |
852 | // --------------------------------------------------------------------------------------- |
853 | // Shl unsigned integers |
854 | |
855 | /// Shifting `UTerm` by a 0 bit: `UTerm << B0 = UTerm` |
856 | impl Shl<B0> for UTerm { |
857 | type Output = UTerm; |
858 | #[inline ] |
859 | fn shl(self, _: B0) -> Self::Output { |
860 | UTerm |
861 | } |
862 | } |
863 | |
864 | /// Shifting `UTerm` by a 1 bit: `UTerm << B1 = UTerm` |
865 | impl Shl<B1> for UTerm { |
866 | type Output = UTerm; |
867 | #[inline ] |
868 | fn shl(self, _: B1) -> Self::Output { |
869 | UTerm |
870 | } |
871 | } |
872 | |
873 | /// Shifting left any unsigned by a zero bit: `U << B0 = U` |
874 | impl<U: Unsigned, B: Bit> Shl<B0> for UInt<U, B> { |
875 | type Output = UInt<U, B>; |
876 | #[inline ] |
877 | fn shl(self, _: B0) -> Self::Output { |
878 | UInt::new() |
879 | } |
880 | } |
881 | |
882 | /// Shifting left a `UInt` by a one bit: `UInt<U, B> << B1 = UInt<UInt<U, B>, B0>` |
883 | impl<U: Unsigned, B: Bit> Shl<B1> for UInt<U, B> { |
884 | type Output = UInt<UInt<U, B>, B0>; |
885 | #[inline ] |
886 | fn shl(self, _: B1) -> Self::Output { |
887 | UInt::new() |
888 | } |
889 | } |
890 | |
891 | /// Shifting left `UInt` by `UTerm`: `UInt<U, B> << UTerm = UInt<U, B>` |
892 | impl<U: Unsigned, B: Bit> Shl<UTerm> for UInt<U, B> { |
893 | type Output = UInt<U, B>; |
894 | #[inline ] |
895 | fn shl(self, _: UTerm) -> Self::Output { |
896 | UInt::new() |
897 | } |
898 | } |
899 | |
900 | /// Shifting left `UTerm` by an unsigned integer: `UTerm << U = UTerm` |
901 | impl<U: Unsigned> Shl<U> for UTerm { |
902 | type Output = UTerm; |
903 | #[inline ] |
904 | fn shl(self, _: U) -> Self::Output { |
905 | UTerm |
906 | } |
907 | } |
908 | |
909 | /// Shifting left `UInt` by `UInt`: `X << Y` = `UInt(X, B0) << (Y - 1)` |
910 | impl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shl<UInt<Ur, Br>> for UInt<U, B> |
911 | where |
912 | UInt<Ur, Br>: Sub<B1>, |
913 | UInt<UInt<U, B>, B0>: Shl<Sub1<UInt<Ur, Br>>>, |
914 | { |
915 | type Output = Shleft<UInt<UInt<U, B>, B0>, Sub1<UInt<Ur, Br>>>; |
916 | #[inline ] |
917 | fn shl(self, rhs: UInt<Ur, Br>) -> Self::Output { |
918 | (UInt { msb: self, lsb: B0 }).shl(rhs - B1) |
919 | } |
920 | } |
921 | |
922 | // --------------------------------------------------------------------------------------- |
923 | // Shr unsigned integers |
924 | |
925 | /// Shifting right a `UTerm` by an unsigned integer: `UTerm >> U = UTerm` |
926 | impl<U: Unsigned> Shr<U> for UTerm { |
927 | type Output = UTerm; |
928 | #[inline ] |
929 | fn shr(self, _: U) -> Self::Output { |
930 | UTerm |
931 | } |
932 | } |
933 | |
934 | /// Shifting right `UInt` by `UTerm`: `UInt<U, B> >> UTerm = UInt<U, B>` |
935 | impl<U: Unsigned, B: Bit> Shr<UTerm> for UInt<U, B> { |
936 | type Output = UInt<U, B>; |
937 | #[inline ] |
938 | fn shr(self, _: UTerm) -> Self::Output { |
939 | UInt::new() |
940 | } |
941 | } |
942 | |
943 | /// Shifting right `UTerm` by a 0 bit: `UTerm >> B0 = UTerm` |
944 | impl Shr<B0> for UTerm { |
945 | type Output = UTerm; |
946 | #[inline ] |
947 | fn shr(self, _: B0) -> Self::Output { |
948 | UTerm |
949 | } |
950 | } |
951 | |
952 | /// Shifting right `UTerm` by a 1 bit: `UTerm >> B1 = UTerm` |
953 | impl Shr<B1> for UTerm { |
954 | type Output = UTerm; |
955 | #[inline ] |
956 | fn shr(self, _: B1) -> Self::Output { |
957 | UTerm |
958 | } |
959 | } |
960 | |
961 | /// Shifting right any unsigned by a zero bit: `U >> B0 = U` |
962 | impl<U: Unsigned, B: Bit> Shr<B0> for UInt<U, B> { |
963 | type Output = UInt<U, B>; |
964 | #[inline ] |
965 | fn shr(self, _: B0) -> Self::Output { |
966 | UInt::new() |
967 | } |
968 | } |
969 | |
970 | /// Shifting right a `UInt` by a 1 bit: `UInt<U, B> >> B1 = U` |
971 | impl<U: Unsigned, B: Bit> Shr<B1> for UInt<U, B> { |
972 | type Output = U; |
973 | #[inline ] |
974 | fn shr(self, _: B1) -> Self::Output { |
975 | self.msb |
976 | } |
977 | } |
978 | |
979 | /// Shifting right `UInt` by `UInt`: `UInt(U, B) >> Y` = `U >> (Y - 1)` |
980 | impl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shr<UInt<Ur, Br>> for UInt<U, B> |
981 | where |
982 | UInt<Ur, Br>: Sub<B1>, |
983 | U: Shr<Sub1<UInt<Ur, Br>>>, |
984 | { |
985 | type Output = Shright<U, Sub1<UInt<Ur, Br>>>; |
986 | #[inline ] |
987 | fn shr(self, rhs: UInt<Ur, Br>) -> Self::Output { |
988 | self.msb.shr(rhs - B1) |
989 | } |
990 | } |
991 | |
992 | // --------------------------------------------------------------------------------------- |
993 | // Multiply unsigned integers |
994 | |
995 | /// `UInt * B0 = UTerm` |
996 | impl<U: Unsigned, B: Bit> Mul<B0> for UInt<U, B> { |
997 | type Output = UTerm; |
998 | #[inline ] |
999 | fn mul(self, _: B0) -> Self::Output { |
1000 | UTerm |
1001 | } |
1002 | } |
1003 | |
1004 | /// `UTerm * B0 = UTerm` |
1005 | impl Mul<B0> for UTerm { |
1006 | type Output = UTerm; |
1007 | #[inline ] |
1008 | fn mul(self, _: B0) -> Self::Output { |
1009 | UTerm |
1010 | } |
1011 | } |
1012 | |
1013 | /// `UTerm * B1 = UTerm` |
1014 | impl Mul<B1> for UTerm { |
1015 | type Output = UTerm; |
1016 | #[inline ] |
1017 | fn mul(self, _: B1) -> Self::Output { |
1018 | UTerm |
1019 | } |
1020 | } |
1021 | |
1022 | /// `UInt * B1 = UInt` |
1023 | impl<U: Unsigned, B: Bit> Mul<B1> for UInt<U, B> { |
1024 | type Output = UInt<U, B>; |
1025 | #[inline ] |
1026 | fn mul(self, _: B1) -> Self::Output { |
1027 | UInt::new() |
1028 | } |
1029 | } |
1030 | |
1031 | /// `UInt<U, B> * UTerm = UTerm` |
1032 | impl<U: Unsigned, B: Bit> Mul<UTerm> for UInt<U, B> { |
1033 | type Output = UTerm; |
1034 | #[inline ] |
1035 | fn mul(self, _: UTerm) -> Self::Output { |
1036 | UTerm |
1037 | } |
1038 | } |
1039 | |
1040 | /// `UTerm * U = UTerm` |
1041 | impl<U: Unsigned> Mul<U> for UTerm { |
1042 | type Output = UTerm; |
1043 | #[inline ] |
1044 | fn mul(self, _: U) -> Self::Output { |
1045 | UTerm |
1046 | } |
1047 | } |
1048 | |
1049 | /// `UInt<Ul, B0> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0>` |
1050 | impl<Ul: Unsigned, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B0> |
1051 | where |
1052 | Ul: Mul<UInt<Ur, B>>, |
1053 | { |
1054 | type Output = UInt<Prod<Ul, UInt<Ur, B>>, B0>; |
1055 | #[inline ] |
1056 | fn mul(self, rhs: UInt<Ur, B>) -> Self::Output { |
1057 | UInt { |
1058 | msb: self.msb * rhs, |
1059 | lsb: B0, |
1060 | } |
1061 | } |
1062 | } |
1063 | |
1064 | /// `UInt<Ul, B1> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0> + UInt<Ur, B>` |
1065 | impl<Ul: Unsigned, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B1> |
1066 | where |
1067 | Ul: Mul<UInt<Ur, B>>, |
1068 | UInt<Prod<Ul, UInt<Ur, B>>, B0>: Add<UInt<Ur, B>>, |
1069 | { |
1070 | type Output = Sum<UInt<Prod<Ul, UInt<Ur, B>>, B0>, UInt<Ur, B>>; |
1071 | #[inline ] |
1072 | fn mul(self, rhs: UInt<Ur, B>) -> Self::Output { |
1073 | UInt { |
1074 | msb: self.msb * rhs, |
1075 | lsb: B0, |
1076 | } + rhs |
1077 | } |
1078 | } |
1079 | |
1080 | // --------------------------------------------------------------------------------------- |
1081 | // Compare unsigned integers |
1082 | |
1083 | /// Zero == Zero |
1084 | impl Cmp<UTerm> for UTerm { |
1085 | type Output = Equal; |
1086 | |
1087 | #[inline ] |
1088 | fn compare<IM: InternalMarker>(&self, _: &UTerm) -> Self::Output { |
1089 | Equal |
1090 | } |
1091 | } |
1092 | |
1093 | /// Nonzero > Zero |
1094 | impl<U: Unsigned, B: Bit> Cmp<UTerm> for UInt<U, B> { |
1095 | type Output = Greater; |
1096 | |
1097 | #[inline ] |
1098 | fn compare<IM: InternalMarker>(&self, _: &UTerm) -> Self::Output { |
1099 | Greater |
1100 | } |
1101 | } |
1102 | |
1103 | /// Zero < Nonzero |
1104 | impl<U: Unsigned, B: Bit> Cmp<UInt<U, B>> for UTerm { |
1105 | type Output = Less; |
1106 | |
1107 | #[inline ] |
1108 | fn compare<IM: InternalMarker>(&self, _: &UInt<U, B>) -> Self::Output { |
1109 | Less |
1110 | } |
1111 | } |
1112 | |
1113 | /// `UInt<Ul, B0>` cmp with `UInt<Ur, B0>`: `SoFar` is `Equal` |
1114 | impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B0> |
1115 | where |
1116 | Ul: PrivateCmp<Ur, Equal>, |
1117 | { |
1118 | type Output = PrivateCmpOut<Ul, Ur, Equal>; |
1119 | |
1120 | #[inline ] |
1121 | fn compare<IM: InternalMarker>(&self, rhs: &UInt<Ur, B0>) -> Self::Output { |
1122 | self.msb.private_cmp(&rhs.msb, Equal) |
1123 | } |
1124 | } |
1125 | |
1126 | /// `UInt<Ul, B1>` cmp with `UInt<Ur, B1>`: `SoFar` is `Equal` |
1127 | impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B1> |
1128 | where |
1129 | Ul: PrivateCmp<Ur, Equal>, |
1130 | { |
1131 | type Output = PrivateCmpOut<Ul, Ur, Equal>; |
1132 | |
1133 | #[inline ] |
1134 | fn compare<IM: InternalMarker>(&self, rhs: &UInt<Ur, B1>) -> Self::Output { |
1135 | self.msb.private_cmp(&rhs.msb, Equal) |
1136 | } |
1137 | } |
1138 | |
1139 | /// `UInt<Ul, B0>` cmp with `UInt<Ur, B1>`: `SoFar` is `Less` |
1140 | impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B0> |
1141 | where |
1142 | Ul: PrivateCmp<Ur, Less>, |
1143 | { |
1144 | type Output = PrivateCmpOut<Ul, Ur, Less>; |
1145 | |
1146 | #[inline ] |
1147 | fn compare<IM: InternalMarker>(&self, rhs: &UInt<Ur, B1>) -> Self::Output { |
1148 | self.msb.private_cmp(&rhs.msb, Less) |
1149 | } |
1150 | } |
1151 | |
1152 | /// `UInt<Ul, B1>` cmp with `UInt<Ur, B0>`: `SoFar` is `Greater` |
1153 | impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B1> |
1154 | where |
1155 | Ul: PrivateCmp<Ur, Greater>, |
1156 | { |
1157 | type Output = PrivateCmpOut<Ul, Ur, Greater>; |
1158 | |
1159 | #[inline ] |
1160 | fn compare<IM: InternalMarker>(&self, rhs: &UInt<Ur, B0>) -> Self::Output { |
1161 | self.msb.private_cmp(&rhs.msb, Greater) |
1162 | } |
1163 | } |
1164 | |
1165 | /// Comparing non-terimal bits, with both having bit `B0`. |
1166 | /// These are `Equal`, so we propagate `SoFar`. |
1167 | impl<Ul, Ur, SoFar> PrivateCmp<UInt<Ur, B0>, SoFar> for UInt<Ul, B0> |
1168 | where |
1169 | Ul: Unsigned, |
1170 | Ur: Unsigned, |
1171 | SoFar: Ord, |
1172 | Ul: PrivateCmp<Ur, SoFar>, |
1173 | { |
1174 | type Output = PrivateCmpOut<Ul, Ur, SoFar>; |
1175 | |
1176 | #[inline ] |
1177 | fn private_cmp(&self, rhs: &UInt<Ur, B0>, so_far: SoFar) -> Self::Output { |
1178 | self.msb.private_cmp(&rhs.msb, so_far) |
1179 | } |
1180 | } |
1181 | |
1182 | /// Comparing non-terimal bits, with both having bit `B1`. |
1183 | /// These are `Equal`, so we propagate `SoFar`. |
1184 | impl<Ul, Ur, SoFar> PrivateCmp<UInt<Ur, B1>, SoFar> for UInt<Ul, B1> |
1185 | where |
1186 | Ul: Unsigned, |
1187 | Ur: Unsigned, |
1188 | SoFar: Ord, |
1189 | Ul: PrivateCmp<Ur, SoFar>, |
1190 | { |
1191 | type Output = PrivateCmpOut<Ul, Ur, SoFar>; |
1192 | |
1193 | #[inline ] |
1194 | fn private_cmp(&self, rhs: &UInt<Ur, B1>, so_far: SoFar) -> Self::Output { |
1195 | self.msb.private_cmp(&rhs.msb, so_far) |
1196 | } |
1197 | } |
1198 | |
1199 | /// Comparing non-terimal bits, with `Lhs` having bit `B0` and `Rhs` having bit `B1`. |
1200 | /// `SoFar`, Lhs is `Less`. |
1201 | impl<Ul, Ur, SoFar> PrivateCmp<UInt<Ur, B1>, SoFar> for UInt<Ul, B0> |
1202 | where |
1203 | Ul: Unsigned, |
1204 | Ur: Unsigned, |
1205 | SoFar: Ord, |
1206 | Ul: PrivateCmp<Ur, Less>, |
1207 | { |
1208 | type Output = PrivateCmpOut<Ul, Ur, Less>; |
1209 | |
1210 | #[inline ] |
1211 | fn private_cmp(&self, rhs: &UInt<Ur, B1>, _: SoFar) -> Self::Output { |
1212 | self.msb.private_cmp(&rhs.msb, Less) |
1213 | } |
1214 | } |
1215 | |
1216 | /// Comparing non-terimal bits, with `Lhs` having bit `B1` and `Rhs` having bit `B0`. |
1217 | /// `SoFar`, Lhs is `Greater`. |
1218 | impl<Ul, Ur, SoFar> PrivateCmp<UInt<Ur, B0>, SoFar> for UInt<Ul, B1> |
1219 | where |
1220 | Ul: Unsigned, |
1221 | Ur: Unsigned, |
1222 | SoFar: Ord, |
1223 | Ul: PrivateCmp<Ur, Greater>, |
1224 | { |
1225 | type Output = PrivateCmpOut<Ul, Ur, Greater>; |
1226 | |
1227 | #[inline ] |
1228 | fn private_cmp(&self, rhs: &UInt<Ur, B0>, _: SoFar) -> Self::Output { |
1229 | self.msb.private_cmp(&rhs.msb, Greater) |
1230 | } |
1231 | } |
1232 | |
1233 | /// Got to the end of just the `Lhs`. It's `Less`. |
1234 | impl<U: Unsigned, B: Bit, SoFar: Ord> PrivateCmp<UInt<U, B>, SoFar> for UTerm { |
1235 | type Output = Less; |
1236 | |
1237 | #[inline ] |
1238 | fn private_cmp(&self, _: &UInt<U, B>, _: SoFar) -> Self::Output { |
1239 | Less |
1240 | } |
1241 | } |
1242 | |
1243 | /// Got to the end of just the `Rhs`. `Lhs` is `Greater`. |
1244 | impl<U: Unsigned, B: Bit, SoFar: Ord> PrivateCmp<UTerm, SoFar> for UInt<U, B> { |
1245 | type Output = Greater; |
1246 | |
1247 | #[inline ] |
1248 | fn private_cmp(&self, _: &UTerm, _: SoFar) -> Self::Output { |
1249 | Greater |
1250 | } |
1251 | } |
1252 | |
1253 | /// Got to the end of both! Return `SoFar` |
1254 | impl<SoFar: Ord> PrivateCmp<UTerm, SoFar> for UTerm { |
1255 | type Output = SoFar; |
1256 | |
1257 | #[inline ] |
1258 | fn private_cmp(&self, _: &UTerm, so_far: SoFar) -> Self::Output { |
1259 | so_far |
1260 | } |
1261 | } |
1262 | |
1263 | // --------------------------------------------------------------------------------------- |
1264 | // Getting difference in number of bits |
1265 | |
1266 | impl<Ul, Bl, Ur, Br> BitDiff<UInt<Ur, Br>> for UInt<Ul, Bl> |
1267 | where |
1268 | Ul: Unsigned, |
1269 | Bl: Bit, |
1270 | Ur: Unsigned, |
1271 | Br: Bit, |
1272 | Ul: BitDiff<Ur>, |
1273 | { |
1274 | type Output = BitDiffOut<Ul, Ur>; |
1275 | } |
1276 | |
1277 | impl<Ul> BitDiff<UTerm> for Ul |
1278 | where |
1279 | Ul: Unsigned + Len, |
1280 | { |
1281 | type Output = Length<Ul>; |
1282 | } |
1283 | |
1284 | // --------------------------------------------------------------------------------------- |
1285 | // Shifting one number until it's the size of another |
1286 | use crate::private::ShiftDiff; |
1287 | impl<Ul: Unsigned, Ur: Unsigned> ShiftDiff<Ur> for Ul |
1288 | where |
1289 | Ur: BitDiff<Ul>, |
1290 | Ul: Shl<BitDiffOut<Ur, Ul>>, |
1291 | { |
1292 | type Output = Shleft<Ul, BitDiffOut<Ur, Ul>>; |
1293 | } |
1294 | |
1295 | // --------------------------------------------------------------------------------------- |
1296 | // Powers of unsigned integers |
1297 | |
1298 | /// X^N |
1299 | impl<X: Unsigned, N: Unsigned> Pow<N> for X |
1300 | where |
1301 | X: PrivatePow<U1, N>, |
1302 | { |
1303 | type Output = PrivatePowOut<X, U1, N>; |
1304 | #[inline ] |
1305 | fn powi(self, n: N) -> Self::Output { |
1306 | self.private_pow(U1::new(), n) |
1307 | } |
1308 | } |
1309 | |
1310 | impl<Y: Unsigned, X: Unsigned> PrivatePow<Y, U0> for X { |
1311 | type Output = Y; |
1312 | |
1313 | #[inline ] |
1314 | fn private_pow(self, y: Y, _: U0) -> Self::Output { |
1315 | y |
1316 | } |
1317 | } |
1318 | |
1319 | impl<Y: Unsigned, X: Unsigned> PrivatePow<Y, U1> for X |
1320 | where |
1321 | X: Mul<Y>, |
1322 | { |
1323 | type Output = Prod<X, Y>; |
1324 | |
1325 | #[inline ] |
1326 | fn private_pow(self, y: Y, _: U1) -> Self::Output { |
1327 | self * y |
1328 | } |
1329 | } |
1330 | |
1331 | /// N is even |
1332 | impl<Y: Unsigned, U: Unsigned, B: Bit, X: Unsigned> PrivatePow<Y, UInt<UInt<U, B>, B0>> for X |
1333 | where |
1334 | X: Mul, |
1335 | Square<X>: PrivatePow<Y, UInt<U, B>>, |
1336 | { |
1337 | type Output = PrivatePowOut<Square<X>, Y, UInt<U, B>>; |
1338 | |
1339 | #[inline ] |
1340 | fn private_pow(self, y: Y, n: UInt<UInt<U, B>, B0>) -> Self::Output { |
1341 | (self * self).private_pow(y, n.msb) |
1342 | } |
1343 | } |
1344 | |
1345 | /// N is odd |
1346 | impl<Y: Unsigned, U: Unsigned, B: Bit, X: Unsigned> PrivatePow<Y, UInt<UInt<U, B>, B1>> for X |
1347 | where |
1348 | X: Mul + Mul<Y>, |
1349 | Square<X>: PrivatePow<Prod<X, Y>, UInt<U, B>>, |
1350 | { |
1351 | type Output = PrivatePowOut<Square<X>, Prod<X, Y>, UInt<U, B>>; |
1352 | |
1353 | #[inline ] |
1354 | fn private_pow(self, y: Y, n: UInt<UInt<U, B>, B1>) -> Self::Output { |
1355 | (self * self).private_pow(self * y, n.msb) |
1356 | } |
1357 | } |
1358 | |
1359 | //------------------------------------------ |
1360 | // Greatest Common Divisor |
1361 | |
1362 | /// The even number 2*N |
1363 | #[allow (unused)] // Silence spurious warning on older versions of rust |
1364 | type Even<N> = UInt<N, B0>; |
1365 | |
1366 | /// The odd number 2*N + 1 |
1367 | type Odd<N> = UInt<N, B1>; |
1368 | |
1369 | /// gcd(0, 0) = 0 |
1370 | impl Gcd<U0> for U0 { |
1371 | type Output = U0; |
1372 | } |
1373 | |
1374 | /// gcd(x, 0) = x |
1375 | impl<X> Gcd<U0> for X |
1376 | where |
1377 | X: Unsigned + NonZero, |
1378 | { |
1379 | type Output = X; |
1380 | } |
1381 | |
1382 | /// gcd(0, y) = y |
1383 | impl<Y> Gcd<Y> for U0 |
1384 | where |
1385 | Y: Unsigned + NonZero, |
1386 | { |
1387 | type Output = Y; |
1388 | } |
1389 | |
1390 | /// gcd(x, y) = 2*gcd(x/2, y/2) if both x and y even |
1391 | impl<Xp, Yp> Gcd<Even<Yp>> for Even<Xp> |
1392 | where |
1393 | Xp: Gcd<Yp>, |
1394 | Even<Xp>: NonZero, |
1395 | Even<Yp>: NonZero, |
1396 | { |
1397 | type Output = UInt<Gcf<Xp, Yp>, B0>; |
1398 | } |
1399 | |
1400 | /// gcd(x, y) = gcd(x, y/2) if x odd and y even |
1401 | impl<Xp, Yp> Gcd<Even<Yp>> for Odd<Xp> |
1402 | where |
1403 | Odd<Xp>: Gcd<Yp>, |
1404 | Even<Yp>: NonZero, |
1405 | { |
1406 | type Output = Gcf<Odd<Xp>, Yp>; |
1407 | } |
1408 | |
1409 | /// gcd(x, y) = gcd(x/2, y) if x even and y odd |
1410 | impl<Xp, Yp> Gcd<Odd<Yp>> for Even<Xp> |
1411 | where |
1412 | Xp: Gcd<Odd<Yp>>, |
1413 | Even<Xp>: NonZero, |
1414 | { |
1415 | type Output = Gcf<Xp, Odd<Yp>>; |
1416 | } |
1417 | |
1418 | /// gcd(x, y) = gcd([max(x, y) - min(x, y)], min(x, y)) if both x and y odd |
1419 | /// |
1420 | /// This will immediately invoke the case for x even and y odd because the difference of two odd |
1421 | /// numbers is an even number. |
1422 | impl<Xp, Yp> Gcd<Odd<Yp>> for Odd<Xp> |
1423 | where |
1424 | Odd<Xp>: Max<Odd<Yp>> + Min<Odd<Yp>>, |
1425 | Odd<Yp>: Max<Odd<Xp>> + Min<Odd<Xp>>, |
1426 | Maximum<Odd<Xp>, Odd<Yp>>: Sub<Minimum<Odd<Xp>, Odd<Yp>>>, |
1427 | Diff<Maximum<Odd<Xp>, Odd<Yp>>, Minimum<Odd<Xp>, Odd<Yp>>>: Gcd<Minimum<Odd<Xp>, Odd<Yp>>>, |
1428 | { |
1429 | type Output = |
1430 | Gcf<Diff<Maximum<Odd<Xp>, Odd<Yp>>, Minimum<Odd<Xp>, Odd<Yp>>>, Minimum<Odd<Xp>, Odd<Yp>>>; |
1431 | } |
1432 | |
1433 | #[cfg (test)] |
1434 | mod gcd_tests { |
1435 | use super::*; |
1436 | use crate::consts::*; |
1437 | |
1438 | macro_rules! gcd_test { |
1439 | ( |
1440 | $( $a:ident, $b:ident => $c:ident ),* $(,)* |
1441 | ) => { |
1442 | $( |
1443 | assert_eq!(<Gcf<$a, $b> as Unsigned>::to_usize(), $c::to_usize()); |
1444 | assert_eq!(<Gcf<$b, $a> as Unsigned>::to_usize(), $c::to_usize()); |
1445 | )* |
1446 | } |
1447 | } |
1448 | |
1449 | #[test ] |
1450 | fn gcd() { |
1451 | gcd_test! { |
1452 | U0, U0 => U0, |
1453 | U0, U42 => U42, |
1454 | U12, U8 => U4, |
1455 | U13, U1013 => U1, // Two primes |
1456 | U9, U26 => U1, // Not prime but coprime |
1457 | U143, U273 => U13, |
1458 | U117, U273 => U39, |
1459 | } |
1460 | } |
1461 | } |
1462 | |
1463 | // ----------------------------------------- |
1464 | // GetBit |
1465 | |
1466 | #[allow (missing_docs)] |
1467 | pub trait GetBit<I> { |
1468 | #[allow (missing_docs)] |
1469 | type Output; |
1470 | |
1471 | #[doc (hidden)] |
1472 | fn get_bit<IM: InternalMarker>(&self, _: &I) -> Self::Output; |
1473 | } |
1474 | |
1475 | #[allow (missing_docs)] |
1476 | pub type GetBitOut<N, I> = <N as GetBit<I>>::Output; |
1477 | |
1478 | // Base case |
1479 | impl<Un, Bn> GetBit<U0> for UInt<Un, Bn> |
1480 | where |
1481 | Bn: Copy, |
1482 | { |
1483 | type Output = Bn; |
1484 | |
1485 | #[inline ] |
1486 | fn get_bit<IM: InternalMarker>(&self, _: &U0) -> Self::Output { |
1487 | self.lsb |
1488 | } |
1489 | } |
1490 | |
1491 | // Recursion case |
1492 | impl<Un, Bn, Ui, Bi> GetBit<UInt<Ui, Bi>> for UInt<Un, Bn> |
1493 | where |
1494 | UInt<Ui, Bi>: Copy + Sub<B1>, |
1495 | Un: GetBit<Sub1<UInt<Ui, Bi>>>, |
1496 | { |
1497 | type Output = GetBitOut<Un, Sub1<UInt<Ui, Bi>>>; |
1498 | |
1499 | #[inline ] |
1500 | fn get_bit<IM: InternalMarker>(&self, i: &UInt<Ui, Bi>) -> Self::Output { |
1501 | self.msb.get_bit::<Internal>(&(*i - B1)) |
1502 | } |
1503 | } |
1504 | |
1505 | // Ran out of bits |
1506 | impl<I> GetBit<I> for UTerm { |
1507 | type Output = B0; |
1508 | |
1509 | #[inline ] |
1510 | fn get_bit<IM: InternalMarker>(&self, _: &I) -> Self::Output { |
1511 | B0 |
1512 | } |
1513 | } |
1514 | |
1515 | #[test ] |
1516 | fn test_get_bit() { |
1517 | use crate::consts::*; |
1518 | use crate::Same; |
1519 | type T1 = <GetBitOut<U2, U0> as Same<B0>>::Output; |
1520 | type T2 = <GetBitOut<U2, U1> as Same<B1>>::Output; |
1521 | type T3 = <GetBitOut<U2, U2> as Same<B0>>::Output; |
1522 | |
1523 | <T1 as Bit>::to_bool(); |
1524 | <T2 as Bit>::to_bool(); |
1525 | <T3 as Bit>::to_bool(); |
1526 | } |
1527 | |
1528 | // ----------------------------------------- |
1529 | // SetBit |
1530 | |
1531 | /// A **type operator** that, when implemented for unsigned integer `N`, sets the bit at position |
1532 | /// `I` to `B`. |
1533 | pub trait SetBit<I, B> { |
1534 | #[allow (missing_docs)] |
1535 | type Output; |
1536 | |
1537 | #[doc (hidden)] |
1538 | fn set_bit<IM: InternalMarker>(self, _: I, _: B) -> Self::Output; |
1539 | } |
1540 | /// Alias for the result of calling `SetBit`: `SetBitOut<N, I, B> = <N as SetBit<I, B>>::Output`. |
1541 | pub type SetBitOut<N, I, B> = <N as SetBit<I, B>>::Output; |
1542 | |
1543 | use crate::private::{PrivateSetBit, PrivateSetBitOut}; |
1544 | |
1545 | // Call private one then trim it |
1546 | impl<N, I, B> SetBit<I, B> for N |
1547 | where |
1548 | N: PrivateSetBit<I, B>, |
1549 | PrivateSetBitOut<N, I, B>: Trim, |
1550 | { |
1551 | type Output = TrimOut<PrivateSetBitOut<N, I, B>>; |
1552 | |
1553 | #[inline ] |
1554 | fn set_bit<IM: InternalMarker>(self, i: I, b: B) -> Self::Output { |
1555 | self.private_set_bit(i, b).trim() |
1556 | } |
1557 | } |
1558 | |
1559 | // Base case |
1560 | impl<Un, Bn, B> PrivateSetBit<U0, B> for UInt<Un, Bn> { |
1561 | type Output = UInt<Un, B>; |
1562 | |
1563 | #[inline ] |
1564 | fn private_set_bit(self, _: U0, b: B) -> Self::Output { |
1565 | UInt { |
1566 | msb: self.msb, |
1567 | lsb: b, |
1568 | } |
1569 | } |
1570 | } |
1571 | |
1572 | // Recursion case |
1573 | impl<Un, Bn, Ui, Bi, B> PrivateSetBit<UInt<Ui, Bi>, B> for UInt<Un, Bn> |
1574 | where |
1575 | UInt<Ui, Bi>: Sub<B1>, |
1576 | Un: PrivateSetBit<Sub1<UInt<Ui, Bi>>, B>, |
1577 | { |
1578 | type Output = UInt<PrivateSetBitOut<Un, Sub1<UInt<Ui, Bi>>, B>, Bn>; |
1579 | |
1580 | #[inline ] |
1581 | fn private_set_bit(self, i: UInt<Ui, Bi>, b: B) -> Self::Output { |
1582 | UInt { |
1583 | msb: self.msb.private_set_bit(i - B1, b), |
1584 | lsb: self.lsb, |
1585 | } |
1586 | } |
1587 | } |
1588 | |
1589 | // Ran out of bits, setting B0 |
1590 | impl<I> PrivateSetBit<I, B0> for UTerm { |
1591 | type Output = UTerm; |
1592 | |
1593 | #[inline ] |
1594 | fn private_set_bit(self, _: I, _: B0) -> Self::Output { |
1595 | UTerm |
1596 | } |
1597 | } |
1598 | |
1599 | // Ran out of bits, setting B1 |
1600 | impl<I> PrivateSetBit<I, B1> for UTerm |
1601 | where |
1602 | U1: Shl<I>, |
1603 | { |
1604 | type Output = Shleft<U1, I>; |
1605 | |
1606 | #[inline ] |
1607 | fn private_set_bit(self, i: I, _: B1) -> Self::Output { |
1608 | <U1 as Shl<I>>::shl(self:U1::new(), rhs:i) |
1609 | } |
1610 | } |
1611 | |
1612 | #[test ] |
1613 | fn test_set_bit() { |
1614 | use crate::consts::*; |
1615 | use crate::Same; |
1616 | type T1 = <SetBitOut<U2, U0, B0> as Same<U2>>::Output; |
1617 | type T2 = <SetBitOut<U2, U0, B1> as Same<U3>>::Output; |
1618 | type T3 = <SetBitOut<U2, U1, B0> as Same<U0>>::Output; |
1619 | type T4 = <SetBitOut<U2, U1, B1> as Same<U2>>::Output; |
1620 | type T5 = <SetBitOut<U2, U2, B0> as Same<U2>>::Output; |
1621 | type T6 = <SetBitOut<U2, U2, B1> as Same<U6>>::Output; |
1622 | type T7 = <SetBitOut<U2, U3, B0> as Same<U2>>::Output; |
1623 | type T8 = <SetBitOut<U2, U3, B1> as Same<U10>>::Output; |
1624 | type T9 = <SetBitOut<U2, U4, B0> as Same<U2>>::Output; |
1625 | type T10 = <SetBitOut<U2, U4, B1> as Same<U18>>::Output; |
1626 | |
1627 | type T11 = <SetBitOut<U3, U0, B0> as Same<U2>>::Output; |
1628 | |
1629 | <T1 as Unsigned>::to_u32(); |
1630 | <T2 as Unsigned>::to_u32(); |
1631 | <T3 as Unsigned>::to_u32(); |
1632 | <T4 as Unsigned>::to_u32(); |
1633 | <T5 as Unsigned>::to_u32(); |
1634 | <T6 as Unsigned>::to_u32(); |
1635 | <T7 as Unsigned>::to_u32(); |
1636 | <T8 as Unsigned>::to_u32(); |
1637 | <T9 as Unsigned>::to_u32(); |
1638 | <T10 as Unsigned>::to_u32(); |
1639 | <T11 as Unsigned>::to_u32(); |
1640 | } |
1641 | |
1642 | // ----------------------------------------- |
1643 | |
1644 | // Division algorithm: |
1645 | // We have N / D: |
1646 | // let Q = 0, R = 0 |
1647 | // NBits = len(N) |
1648 | // for I in NBits-1..0: |
1649 | // R <<=1 |
1650 | // R[0] = N[i] |
1651 | // let C = R.cmp(D) |
1652 | // if C == Equal or Greater: |
1653 | // R -= D |
1654 | // Q[i] = 1 |
1655 | |
1656 | #[cfg (tests)] |
1657 | mod tests { |
1658 | macro_rules! test_div { |
1659 | ($a:ident / $b:ident = $c:ident) => {{ |
1660 | type R = Quot<$a, $b>; |
1661 | assert_eq!(<R as Unsigned>::to_usize(), $c::to_usize()); |
1662 | }}; |
1663 | } |
1664 | #[test ] |
1665 | fn test_div() { |
1666 | use crate::consts::*; |
1667 | use crate::{Quot, Same}; |
1668 | |
1669 | test_div!(U0 / U1 = U0); |
1670 | test_div!(U1 / U1 = U1); |
1671 | test_div!(U2 / U1 = U2); |
1672 | test_div!(U3 / U1 = U3); |
1673 | test_div!(U4 / U1 = U4); |
1674 | |
1675 | test_div!(U0 / U2 = U0); |
1676 | test_div!(U1 / U2 = U0); |
1677 | test_div!(U2 / U2 = U1); |
1678 | test_div!(U3 / U2 = U1); |
1679 | test_div!(U4 / U2 = U2); |
1680 | test_div!(U6 / U2 = U3); |
1681 | test_div!(U7 / U2 = U3); |
1682 | |
1683 | type T = <SetBitOut<U0, U1, B1> as Same<U2>>::Output; |
1684 | <T as Unsigned>::to_u32(); |
1685 | } |
1686 | } |
1687 | // ----------------------------------------- |
1688 | // Div |
1689 | use core::ops::Div; |
1690 | |
1691 | // 0 // N |
1692 | impl<Ur: Unsigned, Br: Bit> Div<UInt<Ur, Br>> for UTerm { |
1693 | type Output = UTerm; |
1694 | #[inline ] |
1695 | fn div(self, _: UInt<Ur, Br>) -> Self::Output { |
1696 | UTerm |
1697 | } |
1698 | } |
1699 | |
1700 | // M // N |
1701 | impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> Div<UInt<Ur, Br>> for UInt<Ul, Bl> |
1702 | where |
1703 | UInt<Ul, Bl>: Len, |
1704 | Length<UInt<Ul, Bl>>: Sub<B1>, |
1705 | (): PrivateDiv<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>, |
1706 | { |
1707 | type Output = PrivateDivQuot<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>; |
1708 | #[inline ] |
1709 | #[cfg_attr (feature = "cargo-clippy" , allow(clippy::suspicious_arithmetic_impl))] |
1710 | fn div(self, rhs: UInt<Ur, Br>) -> Self::Output { |
1711 | ().private_div_quotient(self, rhs, U0::new(), U0::new(), self.len() - B1) |
1712 | } |
1713 | } |
1714 | |
1715 | // ----------------------------------------- |
1716 | // Rem |
1717 | use core::ops::Rem; |
1718 | |
1719 | // 0 % N |
1720 | impl<Ur: Unsigned, Br: Bit> Rem<UInt<Ur, Br>> for UTerm { |
1721 | type Output = UTerm; |
1722 | #[inline ] |
1723 | fn rem(self, _: UInt<Ur, Br>) -> Self::Output { |
1724 | UTerm |
1725 | } |
1726 | } |
1727 | |
1728 | // M % N |
1729 | impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> Rem<UInt<Ur, Br>> for UInt<Ul, Bl> |
1730 | where |
1731 | UInt<Ul, Bl>: Len, |
1732 | Length<UInt<Ul, Bl>>: Sub<B1>, |
1733 | (): PrivateDiv<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>, |
1734 | { |
1735 | type Output = PrivateDivRem<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>; |
1736 | #[inline ] |
1737 | fn rem(self, rhs: UInt<Ur, Br>) -> Self::Output { |
1738 | ().private_div_remainder(self, rhs, UTerm, UTerm, self.len() - B1) |
1739 | } |
1740 | } |
1741 | |
1742 | // ----------------------------------------- |
1743 | // PrivateDiv |
1744 | use crate::private::{PrivateDiv, PrivateDivQuot, PrivateDivRem}; |
1745 | |
1746 | use crate::Compare; |
1747 | // R == 0: We set R = UInt<UTerm, N[i]>, then call out to PrivateDivIf for the if statement |
1748 | impl<N, D, Q, I> PrivateDiv<N, D, Q, U0, I> for () |
1749 | where |
1750 | N: GetBit<I>, |
1751 | UInt<UTerm, GetBitOut<N, I>>: Trim, |
1752 | TrimOut<UInt<UTerm, GetBitOut<N, I>>>: Cmp<D>, |
1753 | (): PrivateDivIf< |
1754 | N, |
1755 | D, |
1756 | Q, |
1757 | TrimOut<UInt<UTerm, GetBitOut<N, I>>>, |
1758 | I, |
1759 | Compare<TrimOut<UInt<UTerm, GetBitOut<N, I>>>, D>, |
1760 | >, |
1761 | { |
1762 | type Quotient = PrivateDivIfQuot< |
1763 | N, |
1764 | D, |
1765 | Q, |
1766 | TrimOut<UInt<UTerm, GetBitOut<N, I>>>, |
1767 | I, |
1768 | Compare<TrimOut<UInt<UTerm, GetBitOut<N, I>>>, D>, |
1769 | >; |
1770 | type Remainder = PrivateDivIfRem< |
1771 | N, |
1772 | D, |
1773 | Q, |
1774 | TrimOut<UInt<UTerm, GetBitOut<N, I>>>, |
1775 | I, |
1776 | Compare<TrimOut<UInt<UTerm, GetBitOut<N, I>>>, D>, |
1777 | >; |
1778 | |
1779 | #[inline ] |
1780 | fn private_div_quotient(self, n: N, d: D, q: Q, _: U0, i: I) -> Self::Quotient |
1781 | where { |
1782 | let r = (UInt { |
1783 | msb: UTerm, |
1784 | lsb: n.get_bit::<Internal>(&i), |
1785 | }) |
1786 | .trim(); |
1787 | let r_cmp_d = r.compare::<Internal>(&d); |
1788 | ().private_div_if_quotient(n, d, q, r, i, r_cmp_d) |
1789 | } |
1790 | |
1791 | #[inline ] |
1792 | fn private_div_remainder(self, n: N, d: D, q: Q, _: U0, i: I) -> Self::Remainder { |
1793 | let r = (UInt { |
1794 | msb: UTerm, |
1795 | lsb: n.get_bit::<Internal>(&i), |
1796 | }) |
1797 | .trim(); |
1798 | let r_cmp_d = r.compare::<Internal>(&d); |
1799 | ().private_div_if_remainder(n, d, q, r, i, r_cmp_d) |
1800 | } |
1801 | } |
1802 | |
1803 | // R > 0: We perform R <<= 1 and R[0] = N[i], then call out to PrivateDivIf for the if statement |
1804 | impl<N, D, Q, Ur, Br, I> PrivateDiv<N, D, Q, UInt<Ur, Br>, I> for () |
1805 | where |
1806 | N: GetBit<I>, |
1807 | UInt<UInt<Ur, Br>, GetBitOut<N, I>>: Cmp<D>, |
1808 | (): PrivateDivIf< |
1809 | N, |
1810 | D, |
1811 | Q, |
1812 | UInt<UInt<Ur, Br>, GetBitOut<N, I>>, |
1813 | I, |
1814 | Compare<UInt<UInt<Ur, Br>, GetBitOut<N, I>>, D>, |
1815 | >, |
1816 | { |
1817 | type Quotient = PrivateDivIfQuot< |
1818 | N, |
1819 | D, |
1820 | Q, |
1821 | UInt<UInt<Ur, Br>, GetBitOut<N, I>>, |
1822 | I, |
1823 | Compare<UInt<UInt<Ur, Br>, GetBitOut<N, I>>, D>, |
1824 | >; |
1825 | type Remainder = PrivateDivIfRem< |
1826 | N, |
1827 | D, |
1828 | Q, |
1829 | UInt<UInt<Ur, Br>, GetBitOut<N, I>>, |
1830 | I, |
1831 | Compare<UInt<UInt<Ur, Br>, GetBitOut<N, I>>, D>, |
1832 | >; |
1833 | |
1834 | #[inline ] |
1835 | fn private_div_quotient(self, n: N, d: D, q: Q, r: UInt<Ur, Br>, i: I) -> Self::Quotient { |
1836 | let r = UInt { |
1837 | msb: r, |
1838 | lsb: n.get_bit::<Internal>(&i), |
1839 | }; |
1840 | let r_cmp_d = r.compare::<Internal>(&d); |
1841 | ().private_div_if_quotient(n, d, q, r, i, r_cmp_d) |
1842 | } |
1843 | |
1844 | #[inline ] |
1845 | fn private_div_remainder(self, n: N, d: D, q: Q, r: UInt<Ur, Br>, i: I) -> Self::Remainder { |
1846 | let r = UInt { |
1847 | msb: r, |
1848 | lsb: n.get_bit::<Internal>(&i), |
1849 | }; |
1850 | let r_cmp_d = r.compare::<Internal>(&d); |
1851 | ().private_div_if_remainder(n, d, q, r, i, r_cmp_d) |
1852 | } |
1853 | } |
1854 | |
1855 | // ----------------------------------------- |
1856 | // PrivateDivIf |
1857 | |
1858 | use crate::private::{PrivateDivIf, PrivateDivIfQuot, PrivateDivIfRem}; |
1859 | |
1860 | // R < D, I > 0, we do nothing and recurse |
1861 | impl<N, D, Q, R, Ui, Bi> PrivateDivIf<N, D, Q, R, UInt<Ui, Bi>, Less> for () |
1862 | where |
1863 | UInt<Ui, Bi>: Sub<B1>, |
1864 | (): PrivateDiv<N, D, Q, R, Sub1<UInt<Ui, Bi>>>, |
1865 | { |
1866 | type Quotient = PrivateDivQuot<N, D, Q, R, Sub1<UInt<Ui, Bi>>>; |
1867 | type Remainder = PrivateDivRem<N, D, Q, R, Sub1<UInt<Ui, Bi>>>; |
1868 | |
1869 | #[inline ] |
1870 | fn private_div_if_quotient( |
1871 | self, |
1872 | n: N, |
1873 | d: D, |
1874 | q: Q, |
1875 | r: R, |
1876 | i: UInt<Ui, Bi>, |
1877 | _: Less, |
1878 | ) -> Self::Quotient |
1879 | where { |
1880 | ().private_div_quotient(n, d, q, r, i - B1) |
1881 | } |
1882 | |
1883 | #[inline ] |
1884 | fn private_div_if_remainder( |
1885 | self, |
1886 | n: N, |
1887 | d: D, |
1888 | q: Q, |
1889 | r: R, |
1890 | i: UInt<Ui, Bi>, |
1891 | _: Less, |
1892 | ) -> Self::Remainder |
1893 | where { |
1894 | ().private_div_remainder(n, d, q, r, i - B1) |
1895 | } |
1896 | } |
1897 | |
1898 | // R == D, I > 0, we set R = 0, Q[I] = 1 and recurse |
1899 | impl<N, D, Q, R, Ui, Bi> PrivateDivIf<N, D, Q, R, UInt<Ui, Bi>, Equal> for () |
1900 | where |
1901 | UInt<Ui, Bi>: Copy + Sub<B1>, |
1902 | Q: SetBit<UInt<Ui, Bi>, B1>, |
1903 | (): PrivateDiv<N, D, SetBitOut<Q, UInt<Ui, Bi>, B1>, U0, Sub1<UInt<Ui, Bi>>>, |
1904 | { |
1905 | type Quotient = PrivateDivQuot<N, D, SetBitOut<Q, UInt<Ui, Bi>, B1>, U0, Sub1<UInt<Ui, Bi>>>; |
1906 | type Remainder = PrivateDivRem<N, D, SetBitOut<Q, UInt<Ui, Bi>, B1>, U0, Sub1<UInt<Ui, Bi>>>; |
1907 | |
1908 | #[inline ] |
1909 | fn private_div_if_quotient( |
1910 | self, |
1911 | n: N, |
1912 | d: D, |
1913 | q: Q, |
1914 | _: R, |
1915 | i: UInt<Ui, Bi>, |
1916 | _: Equal, |
1917 | ) -> Self::Quotient |
1918 | where { |
1919 | ().private_div_quotient(n, d, q.set_bit::<Internal>(i, B1), U0::new(), i - B1) |
1920 | } |
1921 | |
1922 | #[inline ] |
1923 | fn private_div_if_remainder( |
1924 | self, |
1925 | n: N, |
1926 | d: D, |
1927 | q: Q, |
1928 | _: R, |
1929 | i: UInt<Ui, Bi>, |
1930 | _: Equal, |
1931 | ) -> Self::Remainder |
1932 | where { |
1933 | ().private_div_remainder(n, d, q.set_bit::<Internal>(i, B1), U0::new(), i - B1) |
1934 | } |
1935 | } |
1936 | |
1937 | use crate::Diff; |
1938 | // R > D, I > 0, we set R -= D, Q[I] = 1 and recurse |
1939 | impl<N, D, Q, R, Ui, Bi> PrivateDivIf<N, D, Q, R, UInt<Ui, Bi>, Greater> for () |
1940 | where |
1941 | D: Copy, |
1942 | UInt<Ui, Bi>: Copy + Sub<B1>, |
1943 | R: Sub<D>, |
1944 | Q: SetBit<UInt<Ui, Bi>, B1>, |
1945 | (): PrivateDiv<N, D, SetBitOut<Q, UInt<Ui, Bi>, B1>, Diff<R, D>, Sub1<UInt<Ui, Bi>>>, |
1946 | { |
1947 | type Quotient = |
1948 | PrivateDivQuot<N, D, SetBitOut<Q, UInt<Ui, Bi>, B1>, Diff<R, D>, Sub1<UInt<Ui, Bi>>>; |
1949 | type Remainder = |
1950 | PrivateDivRem<N, D, SetBitOut<Q, UInt<Ui, Bi>, B1>, Diff<R, D>, Sub1<UInt<Ui, Bi>>>; |
1951 | |
1952 | #[inline ] |
1953 | fn private_div_if_quotient( |
1954 | self, |
1955 | n: N, |
1956 | d: D, |
1957 | q: Q, |
1958 | r: R, |
1959 | i: UInt<Ui, Bi>, |
1960 | _: Greater, |
1961 | ) -> Self::Quotient |
1962 | where { |
1963 | ().private_div_quotient(n, d, q.set_bit::<Internal>(i, B1), r - d, i - B1) |
1964 | } |
1965 | |
1966 | #[inline ] |
1967 | fn private_div_if_remainder( |
1968 | self, |
1969 | n: N, |
1970 | d: D, |
1971 | q: Q, |
1972 | r: R, |
1973 | i: UInt<Ui, Bi>, |
1974 | _: Greater, |
1975 | ) -> Self::Remainder |
1976 | where { |
1977 | ().private_div_remainder(n, d, q.set_bit::<Internal>(i, B1), r - d, i - B1) |
1978 | } |
1979 | } |
1980 | |
1981 | // R < D, I == 0: we do nothing, and return |
1982 | impl<N, D, Q, R> PrivateDivIf<N, D, Q, R, U0, Less> for () { |
1983 | type Quotient = Q; |
1984 | type Remainder = R; |
1985 | |
1986 | #[inline ] |
1987 | fn private_div_if_quotient(self, _: N, _: D, q: Q, _: R, _: U0, _: Less) -> Self::Quotient { |
1988 | q |
1989 | } |
1990 | |
1991 | #[inline ] |
1992 | fn private_div_if_remainder(self, _: N, _: D, _: Q, r: R, _: U0, _: Less) -> Self::Remainder { |
1993 | r |
1994 | } |
1995 | } |
1996 | |
1997 | // R == D, I == 0: we set R = 0, Q[I] = 1, and return |
1998 | impl<N, D, Q, R> PrivateDivIf<N, D, Q, R, U0, Equal> for () |
1999 | where |
2000 | Q: SetBit<U0, B1>, |
2001 | { |
2002 | type Quotient = SetBitOut<Q, U0, B1>; |
2003 | type Remainder = U0; |
2004 | |
2005 | #[inline ] |
2006 | fn private_div_if_quotient(self, _: N, _: D, q: Q, _: R, i: U0, _: Equal) -> Self::Quotient { |
2007 | q.set_bit::<Internal>(i, B1) |
2008 | } |
2009 | |
2010 | #[inline ] |
2011 | fn private_div_if_remainder(self, _: N, _: D, _: Q, _: R, i: U0, _: Equal) -> Self::Remainder { |
2012 | i |
2013 | } |
2014 | } |
2015 | |
2016 | // R > D, I == 0: We set R -= D, Q[I] = 1, and return |
2017 | impl<N, D, Q, R> PrivateDivIf<N, D, Q, R, U0, Greater> for () |
2018 | where |
2019 | R: Sub<D>, |
2020 | Q: SetBit<U0, B1>, |
2021 | { |
2022 | type Quotient = SetBitOut<Q, U0, B1>; |
2023 | type Remainder = Diff<R, D>; |
2024 | |
2025 | #[inline ] |
2026 | fn private_div_if_quotient(self, _: N, _: D, q: Q, _: R, i: U0, _: Greater) -> Self::Quotient { |
2027 | q.set_bit::<Internal>(i, B1) |
2028 | } |
2029 | |
2030 | #[inline ] |
2031 | fn private_div_if_remainder( |
2032 | self, |
2033 | _: N, |
2034 | d: D, |
2035 | _: Q, |
2036 | r: R, |
2037 | _: U0, |
2038 | _: Greater, |
2039 | ) -> Self::Remainder { |
2040 | r - d |
2041 | } |
2042 | } |
2043 | |
2044 | // ----------------------------------------- |
2045 | // PartialDiv |
2046 | use crate::{PartialDiv, Quot}; |
2047 | impl<Ur: Unsigned, Br: Bit> PartialDiv<UInt<Ur, Br>> for UTerm { |
2048 | type Output = UTerm; |
2049 | #[inline ] |
2050 | fn partial_div(self, _: UInt<Ur, Br>) -> Self::Output { |
2051 | UTerm |
2052 | } |
2053 | } |
2054 | |
2055 | // M / N |
2056 | impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> PartialDiv<UInt<Ur, Br>> for UInt<Ul, Bl> |
2057 | where |
2058 | UInt<Ul, Bl>: Div<UInt<Ur, Br>> + Rem<UInt<Ur, Br>, Output = U0>, |
2059 | { |
2060 | type Output = Quot<UInt<Ul, Bl>, UInt<Ur, Br>>; |
2061 | #[inline ] |
2062 | fn partial_div(self, rhs: UInt<Ur, Br>) -> Self::Output { |
2063 | self / rhs |
2064 | } |
2065 | } |
2066 | |
2067 | // ----------------------------------------- |
2068 | // PrivateMin |
2069 | use crate::private::{PrivateMin, PrivateMinOut}; |
2070 | |
2071 | impl<U, B, Ur> PrivateMin<Ur, Equal> for UInt<U, B> |
2072 | where |
2073 | Ur: Unsigned, |
2074 | U: Unsigned, |
2075 | B: Bit, |
2076 | { |
2077 | type Output = UInt<U, B>; |
2078 | #[inline ] |
2079 | fn private_min(self, _: Ur) -> Self::Output { |
2080 | self |
2081 | } |
2082 | } |
2083 | |
2084 | impl<U, B, Ur> PrivateMin<Ur, Less> for UInt<U, B> |
2085 | where |
2086 | Ur: Unsigned, |
2087 | U: Unsigned, |
2088 | B: Bit, |
2089 | { |
2090 | type Output = UInt<U, B>; |
2091 | #[inline ] |
2092 | fn private_min(self, _: Ur) -> Self::Output { |
2093 | self |
2094 | } |
2095 | } |
2096 | |
2097 | impl<U, B, Ur> PrivateMin<Ur, Greater> for UInt<U, B> |
2098 | where |
2099 | Ur: Unsigned, |
2100 | U: Unsigned, |
2101 | B: Bit, |
2102 | { |
2103 | type Output = Ur; |
2104 | #[inline ] |
2105 | fn private_min(self, rhs: Ur) -> Self::Output { |
2106 | rhs |
2107 | } |
2108 | } |
2109 | |
2110 | // ----------------------------------------- |
2111 | // Min |
2112 | use crate::Min; |
2113 | |
2114 | impl<U> Min<U> for UTerm |
2115 | where |
2116 | U: Unsigned, |
2117 | { |
2118 | type Output = UTerm; |
2119 | #[inline ] |
2120 | fn min(self, _: U) -> Self::Output { |
2121 | self |
2122 | } |
2123 | } |
2124 | |
2125 | impl<U, B, Ur> Min<Ur> for UInt<U, B> |
2126 | where |
2127 | U: Unsigned, |
2128 | B: Bit, |
2129 | Ur: Unsigned, |
2130 | UInt<U, B>: Cmp<Ur> + PrivateMin<Ur, Compare<UInt<U, B>, Ur>>, |
2131 | { |
2132 | type Output = PrivateMinOut<UInt<U, B>, Ur, Compare<UInt<U, B>, Ur>>; |
2133 | #[inline ] |
2134 | fn min(self, rhs: Ur) -> Self::Output { |
2135 | self.private_min(rhs) |
2136 | } |
2137 | } |
2138 | |
2139 | // ----------------------------------------- |
2140 | // PrivateMax |
2141 | use crate::private::{PrivateMax, PrivateMaxOut}; |
2142 | |
2143 | impl<U, B, Ur> PrivateMax<Ur, Equal> for UInt<U, B> |
2144 | where |
2145 | Ur: Unsigned, |
2146 | U: Unsigned, |
2147 | B: Bit, |
2148 | { |
2149 | type Output = UInt<U, B>; |
2150 | #[inline ] |
2151 | fn private_max(self, _: Ur) -> Self::Output { |
2152 | self |
2153 | } |
2154 | } |
2155 | |
2156 | impl<U, B, Ur> PrivateMax<Ur, Less> for UInt<U, B> |
2157 | where |
2158 | Ur: Unsigned, |
2159 | U: Unsigned, |
2160 | B: Bit, |
2161 | { |
2162 | type Output = Ur; |
2163 | #[inline ] |
2164 | fn private_max(self, rhs: Ur) -> Self::Output { |
2165 | rhs |
2166 | } |
2167 | } |
2168 | |
2169 | impl<U, B, Ur> PrivateMax<Ur, Greater> for UInt<U, B> |
2170 | where |
2171 | Ur: Unsigned, |
2172 | U: Unsigned, |
2173 | B: Bit, |
2174 | { |
2175 | type Output = UInt<U, B>; |
2176 | #[inline ] |
2177 | fn private_max(self, _: Ur) -> Self::Output { |
2178 | self |
2179 | } |
2180 | } |
2181 | |
2182 | // ----------------------------------------- |
2183 | // Max |
2184 | use crate::Max; |
2185 | |
2186 | impl<U> Max<U> for UTerm |
2187 | where |
2188 | U: Unsigned, |
2189 | { |
2190 | type Output = U; |
2191 | #[inline ] |
2192 | fn max(self, rhs: U) -> Self::Output { |
2193 | rhs |
2194 | } |
2195 | } |
2196 | |
2197 | impl<U, B, Ur> Max<Ur> for UInt<U, B> |
2198 | where |
2199 | U: Unsigned, |
2200 | B: Bit, |
2201 | Ur: Unsigned, |
2202 | UInt<U, B>: Cmp<Ur> + PrivateMax<Ur, Compare<UInt<U, B>, Ur>>, |
2203 | { |
2204 | type Output = PrivateMaxOut<UInt<U, B>, Ur, Compare<UInt<U, B>, Ur>>; |
2205 | #[inline ] |
2206 | fn max(self, rhs: Ur) -> Self::Output { |
2207 | self.private_max(rhs) |
2208 | } |
2209 | } |
2210 | |
2211 | // ----------------------------------------- |
2212 | // SquareRoot |
2213 | |
2214 | impl<N> SquareRoot for N |
2215 | where |
2216 | N: PrivateSquareRoot, |
2217 | { |
2218 | type Output = <Self as PrivateSquareRoot>::Output; |
2219 | } |
2220 | |
2221 | // sqrt(0) = 0. |
2222 | impl PrivateSquareRoot for UTerm { |
2223 | type Output = UTerm; |
2224 | } |
2225 | |
2226 | // sqrt(1) = 1. |
2227 | impl PrivateSquareRoot for UInt<UTerm, B1> { |
2228 | type Output = UInt<UTerm, B1>; |
2229 | } |
2230 | |
2231 | // General case of sqrt(Self) where Self >= 2. If a and b are |
2232 | // bit-valued and Self = 4*u + 2*a + b, then the integer-valued |
2233 | // (fractional part truncated) square root of Self is either 2*sqrt(u) |
2234 | // or 2*sqrt(u)+1. Guess and check by comparing (2*sqrt(u)+1)^2 |
2235 | // against Self. Since the `typenum` result of that comparison is a |
2236 | // bit, directly add that bit to 2*sqrt(u). |
2237 | // |
2238 | // Use `Sum<Double<Sqrt<U>>, GrEq<...>>` instead of `UInt<Sqrt<U>, |
2239 | // GrEq<...>>` because `Sqrt<U>` can turn out to be `UTerm` and |
2240 | // `GrEq<...>` can turn out to be `B0`, which would not be a valid |
2241 | // UInt as leading zeros are disallowed. |
2242 | impl<U, Ba, Bb> PrivateSquareRoot for UInt<UInt<U, Ba>, Bb> |
2243 | where |
2244 | U: Unsigned, |
2245 | Ba: Bit, |
2246 | Bb: Bit, |
2247 | U: SquareRoot, |
2248 | Sqrt<U>: Shl<B1>, |
2249 | Double<Sqrt<U>>: Add<B1>, |
2250 | Add1<Double<Sqrt<U>>>: Mul, |
2251 | Self: IsGreaterOrEqual<Square<Add1<Double<Sqrt<U>>>>>, |
2252 | Double<Sqrt<U>>: Add<GrEq<Self, Square<Add1<Double<Sqrt<U>>>>>>, |
2253 | { |
2254 | type Output = Sum<Double<Sqrt<U>>, GrEq<Self, Square<Add1<Double<Sqrt<U>>>>>>; |
2255 | } |
2256 | |
2257 | #[test ] |
2258 | fn sqrt_test() { |
2259 | use crate::consts::*; |
2260 | |
2261 | assert_eq!(0, <Sqrt<U0>>::to_u32()); |
2262 | |
2263 | assert_eq!(1, <Sqrt<U1>>::to_u32()); |
2264 | assert_eq!(1, <Sqrt<U2>>::to_u32()); |
2265 | assert_eq!(1, <Sqrt<U3>>::to_u32()); |
2266 | |
2267 | assert_eq!(2, <Sqrt<U4>>::to_u32()); |
2268 | assert_eq!(2, <Sqrt<U5>>::to_u32()); |
2269 | assert_eq!(2, <Sqrt<U6>>::to_u32()); |
2270 | assert_eq!(2, <Sqrt<U7>>::to_u32()); |
2271 | assert_eq!(2, <Sqrt<U8>>::to_u32()); |
2272 | |
2273 | assert_eq!(3, <Sqrt<U9>>::to_u32()); |
2274 | assert_eq!(3, <Sqrt<U10>>::to_u32()); |
2275 | assert_eq!(3, <Sqrt<U11>>::to_u32()); |
2276 | assert_eq!(3, <Sqrt<U12>>::to_u32()); |
2277 | assert_eq!(3, <Sqrt<U13>>::to_u32()); |
2278 | assert_eq!(3, <Sqrt<U14>>::to_u32()); |
2279 | assert_eq!(3, <Sqrt<U15>>::to_u32()); |
2280 | |
2281 | assert_eq!(4, <Sqrt<U16>>::to_u32()); |
2282 | assert_eq!(4, <Sqrt<U17>>::to_u32()); |
2283 | assert_eq!(4, <Sqrt<U18>>::to_u32()); |
2284 | assert_eq!(4, <Sqrt<U19>>::to_u32()); |
2285 | assert_eq!(4, <Sqrt<U20>>::to_u32()); |
2286 | assert_eq!(4, <Sqrt<U21>>::to_u32()); |
2287 | assert_eq!(4, <Sqrt<U22>>::to_u32()); |
2288 | assert_eq!(4, <Sqrt<U23>>::to_u32()); |
2289 | assert_eq!(4, <Sqrt<U24>>::to_u32()); |
2290 | |
2291 | assert_eq!(5, <Sqrt<U25>>::to_u32()); |
2292 | assert_eq!(5, <Sqrt<U26>>::to_u32()); |
2293 | // ... |
2294 | } |
2295 | |
2296 | // ----------------------------------------- |
2297 | // Logarithm2 |
2298 | |
2299 | impl<N> Logarithm2 for N |
2300 | where |
2301 | N: PrivateLogarithm2, |
2302 | { |
2303 | type Output = <Self as PrivateLogarithm2>::Output; |
2304 | } |
2305 | |
2306 | // log2(1) = 0. |
2307 | impl PrivateLogarithm2 for UInt<UTerm, B1> { |
2308 | type Output = U0; |
2309 | } |
2310 | |
2311 | // General case of log2(Self) where Self >= 2. |
2312 | impl<U, B> PrivateLogarithm2 for UInt<U, B> |
2313 | where |
2314 | U: Unsigned + Logarithm2, |
2315 | B: Bit, |
2316 | Log2<U>: Add<B1>, |
2317 | { |
2318 | type Output = Add1<Log2<U>>; |
2319 | } |
2320 | |
2321 | // ----------------------------------------- |
2322 | // ToInt |
2323 | |
2324 | impl ToInt<i8> for UTerm { |
2325 | #[inline ] |
2326 | fn to_int() -> i8 { |
2327 | Self::I8 |
2328 | } |
2329 | const INT: i8 = Self::I8; |
2330 | } |
2331 | |
2332 | impl ToInt<i16> for UTerm { |
2333 | #[inline ] |
2334 | fn to_int() -> i16 { |
2335 | Self::I16 |
2336 | } |
2337 | const INT: i16 = Self::I16; |
2338 | } |
2339 | |
2340 | impl ToInt<i32> for UTerm { |
2341 | #[inline ] |
2342 | fn to_int() -> i32 { |
2343 | Self::I32 |
2344 | } |
2345 | const INT: i32 = Self::I32; |
2346 | } |
2347 | |
2348 | impl ToInt<i64> for UTerm { |
2349 | #[inline ] |
2350 | fn to_int() -> i64 { |
2351 | Self::I64 |
2352 | } |
2353 | const INT: i64 = Self::I64; |
2354 | } |
2355 | |
2356 | impl ToInt<u8> for UTerm { |
2357 | #[inline ] |
2358 | fn to_int() -> u8 { |
2359 | Self::U8 |
2360 | } |
2361 | const INT: u8 = Self::U8; |
2362 | } |
2363 | |
2364 | impl ToInt<u16> for UTerm { |
2365 | #[inline ] |
2366 | fn to_int() -> u16 { |
2367 | Self::U16 |
2368 | } |
2369 | const INT: u16 = Self::U16; |
2370 | } |
2371 | |
2372 | impl ToInt<u32> for UTerm { |
2373 | #[inline ] |
2374 | fn to_int() -> u32 { |
2375 | Self::U32 |
2376 | } |
2377 | const INT: u32 = Self::U32; |
2378 | } |
2379 | |
2380 | impl ToInt<u64> for UTerm { |
2381 | #[inline ] |
2382 | fn to_int() -> u64 { |
2383 | Self::U64 |
2384 | } |
2385 | const INT: u64 = Self::U64; |
2386 | } |
2387 | |
2388 | impl ToInt<usize> for UTerm { |
2389 | #[inline ] |
2390 | fn to_int() -> usize { |
2391 | Self::USIZE |
2392 | } |
2393 | const INT: usize = Self::USIZE; |
2394 | } |
2395 | |
2396 | impl<U, B> ToInt<i8> for UInt<U, B> |
2397 | where |
2398 | U: Unsigned, |
2399 | B: Bit, |
2400 | { |
2401 | #[inline ] |
2402 | fn to_int() -> i8 { |
2403 | Self::I8 |
2404 | } |
2405 | const INT: i8 = Self::I8; |
2406 | } |
2407 | |
2408 | impl<U, B> ToInt<i16> for UInt<U, B> |
2409 | where |
2410 | U: Unsigned, |
2411 | B: Bit, |
2412 | { |
2413 | #[inline ] |
2414 | fn to_int() -> i16 { |
2415 | Self::I16 |
2416 | } |
2417 | const INT: i16 = Self::I16; |
2418 | } |
2419 | |
2420 | impl<U, B> ToInt<i32> for UInt<U, B> |
2421 | where |
2422 | U: Unsigned, |
2423 | B: Bit, |
2424 | { |
2425 | #[inline ] |
2426 | fn to_int() -> i32 { |
2427 | Self::I32 |
2428 | } |
2429 | const INT: i32 = Self::I32; |
2430 | } |
2431 | |
2432 | impl<U, B> ToInt<i64> for UInt<U, B> |
2433 | where |
2434 | U: Unsigned, |
2435 | B: Bit, |
2436 | { |
2437 | #[inline ] |
2438 | fn to_int() -> i64 { |
2439 | Self::I64 |
2440 | } |
2441 | const INT: i64 = Self::I64; |
2442 | } |
2443 | |
2444 | impl<U, B> ToInt<u8> for UInt<U, B> |
2445 | where |
2446 | U: Unsigned, |
2447 | B: Bit, |
2448 | { |
2449 | #[inline ] |
2450 | fn to_int() -> u8 { |
2451 | Self::U8 |
2452 | } |
2453 | const INT: u8 = Self::U8; |
2454 | } |
2455 | |
2456 | impl<U, B> ToInt<u16> for UInt<U, B> |
2457 | where |
2458 | U: Unsigned, |
2459 | B: Bit, |
2460 | { |
2461 | #[inline ] |
2462 | fn to_int() -> u16 { |
2463 | Self::U16 |
2464 | } |
2465 | const INT: u16 = Self::U16; |
2466 | } |
2467 | |
2468 | impl<U, B> ToInt<u32> for UInt<U, B> |
2469 | where |
2470 | U: Unsigned, |
2471 | B: Bit, |
2472 | { |
2473 | #[inline ] |
2474 | fn to_int() -> u32 { |
2475 | Self::U32 |
2476 | } |
2477 | const INT: u32 = Self::U32; |
2478 | } |
2479 | |
2480 | impl<U, B> ToInt<u64> for UInt<U, B> |
2481 | where |
2482 | U: Unsigned, |
2483 | B: Bit, |
2484 | { |
2485 | #[inline ] |
2486 | fn to_int() -> u64 { |
2487 | Self::U64 |
2488 | } |
2489 | const INT: u64 = Self::U64; |
2490 | } |
2491 | |
2492 | impl<U, B> ToInt<usize> for UInt<U, B> |
2493 | where |
2494 | U: Unsigned, |
2495 | B: Bit, |
2496 | { |
2497 | #[inline ] |
2498 | fn to_int() -> usize { |
2499 | Self::USIZE |
2500 | } |
2501 | const INT: usize = Self::USIZE; |
2502 | } |
2503 | |
2504 | #[cfg (test)] |
2505 | mod tests { |
2506 | use crate::consts::*; |
2507 | use crate::{Log2, ToInt, Unsigned}; |
2508 | |
2509 | #[test ] |
2510 | fn log2_test() { |
2511 | assert_eq!(0, <Log2<U1>>::to_u32()); |
2512 | |
2513 | assert_eq!(1, <Log2<U2>>::to_u32()); |
2514 | assert_eq!(1, <Log2<U3>>::to_u32()); |
2515 | |
2516 | assert_eq!(2, <Log2<U4>>::to_u32()); |
2517 | assert_eq!(2, <Log2<U5>>::to_u32()); |
2518 | assert_eq!(2, <Log2<U6>>::to_u32()); |
2519 | assert_eq!(2, <Log2<U7>>::to_u32()); |
2520 | |
2521 | assert_eq!(3, <Log2<U8>>::to_u32()); |
2522 | assert_eq!(3, <Log2<U9>>::to_u32()); |
2523 | assert_eq!(3, <Log2<U10>>::to_u32()); |
2524 | assert_eq!(3, <Log2<U11>>::to_u32()); |
2525 | assert_eq!(3, <Log2<U12>>::to_u32()); |
2526 | assert_eq!(3, <Log2<U13>>::to_u32()); |
2527 | assert_eq!(3, <Log2<U14>>::to_u32()); |
2528 | assert_eq!(3, <Log2<U15>>::to_u32()); |
2529 | |
2530 | assert_eq!(4, <Log2<U16>>::to_u32()); |
2531 | assert_eq!(4, <Log2<U17>>::to_u32()); |
2532 | assert_eq!(4, <Log2<U18>>::to_u32()); |
2533 | assert_eq!(4, <Log2<U19>>::to_u32()); |
2534 | assert_eq!(4, <Log2<U20>>::to_u32()); |
2535 | assert_eq!(4, <Log2<U21>>::to_u32()); |
2536 | assert_eq!(4, <Log2<U22>>::to_u32()); |
2537 | assert_eq!(4, <Log2<U23>>::to_u32()); |
2538 | assert_eq!(4, <Log2<U24>>::to_u32()); |
2539 | assert_eq!(4, <Log2<U25>>::to_u32()); |
2540 | assert_eq!(4, <Log2<U26>>::to_u32()); |
2541 | assert_eq!(4, <Log2<U27>>::to_u32()); |
2542 | assert_eq!(4, <Log2<U28>>::to_u32()); |
2543 | assert_eq!(4, <Log2<U29>>::to_u32()); |
2544 | assert_eq!(4, <Log2<U30>>::to_u32()); |
2545 | assert_eq!(4, <Log2<U31>>::to_u32()); |
2546 | |
2547 | assert_eq!(5, <Log2<U32>>::to_u32()); |
2548 | assert_eq!(5, <Log2<U33>>::to_u32()); |
2549 | |
2550 | // ... |
2551 | } |
2552 | |
2553 | #[test ] |
2554 | fn uint_toint_test() { |
2555 | // i8 |
2556 | assert_eq!(0_i8, U0::to_int()); |
2557 | assert_eq!(1_i8, U1::to_int()); |
2558 | assert_eq!(2_i8, U2::to_int()); |
2559 | assert_eq!(3_i8, U3::to_int()); |
2560 | assert_eq!(4_i8, U4::to_int()); |
2561 | assert_eq!(0_i8, U0::INT); |
2562 | assert_eq!(1_i8, U1::INT); |
2563 | assert_eq!(2_i8, U2::INT); |
2564 | assert_eq!(3_i8, U3::INT); |
2565 | assert_eq!(4_i8, U4::INT); |
2566 | |
2567 | // i16 |
2568 | assert_eq!(0_i16, U0::to_int()); |
2569 | assert_eq!(1_i16, U1::to_int()); |
2570 | assert_eq!(2_i16, U2::to_int()); |
2571 | assert_eq!(3_i16, U3::to_int()); |
2572 | assert_eq!(4_i16, U4::to_int()); |
2573 | assert_eq!(0_i16, U0::INT); |
2574 | assert_eq!(1_i16, U1::INT); |
2575 | assert_eq!(2_i16, U2::INT); |
2576 | assert_eq!(3_i16, U3::INT); |
2577 | assert_eq!(4_i16, U4::INT); |
2578 | |
2579 | // i32 |
2580 | assert_eq!(0_i32, U0::to_int()); |
2581 | assert_eq!(1_i32, U1::to_int()); |
2582 | assert_eq!(2_i32, U2::to_int()); |
2583 | assert_eq!(3_i32, U3::to_int()); |
2584 | assert_eq!(4_i32, U4::to_int()); |
2585 | assert_eq!(0_i32, U0::INT); |
2586 | assert_eq!(1_i32, U1::INT); |
2587 | assert_eq!(2_i32, U2::INT); |
2588 | assert_eq!(3_i32, U3::INT); |
2589 | assert_eq!(4_i32, U4::INT); |
2590 | |
2591 | // i64 |
2592 | assert_eq!(0_i64, U0::to_int()); |
2593 | assert_eq!(1_i64, U1::to_int()); |
2594 | assert_eq!(2_i64, U2::to_int()); |
2595 | assert_eq!(3_i64, U3::to_int()); |
2596 | assert_eq!(4_i64, U4::to_int()); |
2597 | assert_eq!(0_i64, U0::INT); |
2598 | assert_eq!(1_i64, U1::INT); |
2599 | assert_eq!(2_i64, U2::INT); |
2600 | assert_eq!(3_i64, U3::INT); |
2601 | assert_eq!(4_i64, U4::INT); |
2602 | |
2603 | // u8 |
2604 | assert_eq!(0_u8, U0::to_int()); |
2605 | assert_eq!(1_u8, U1::to_int()); |
2606 | assert_eq!(2_u8, U2::to_int()); |
2607 | assert_eq!(3_u8, U3::to_int()); |
2608 | assert_eq!(4_u8, U4::to_int()); |
2609 | assert_eq!(0_u8, U0::INT); |
2610 | assert_eq!(1_u8, U1::INT); |
2611 | assert_eq!(2_u8, U2::INT); |
2612 | assert_eq!(3_u8, U3::INT); |
2613 | assert_eq!(4_u8, U4::INT); |
2614 | |
2615 | // u16 |
2616 | assert_eq!(0_u16, U0::to_int()); |
2617 | assert_eq!(1_u16, U1::to_int()); |
2618 | assert_eq!(2_u16, U2::to_int()); |
2619 | assert_eq!(3_u16, U3::to_int()); |
2620 | assert_eq!(4_u16, U4::to_int()); |
2621 | assert_eq!(0_u16, U0::INT); |
2622 | assert_eq!(1_u16, U1::INT); |
2623 | assert_eq!(2_u16, U2::INT); |
2624 | assert_eq!(3_u16, U3::INT); |
2625 | assert_eq!(4_u16, U4::INT); |
2626 | |
2627 | // u32 |
2628 | assert_eq!(0_u32, U0::to_int()); |
2629 | assert_eq!(1_u32, U1::to_int()); |
2630 | assert_eq!(2_u32, U2::to_int()); |
2631 | assert_eq!(3_u32, U3::to_int()); |
2632 | assert_eq!(4_u32, U4::to_int()); |
2633 | assert_eq!(0_u32, U0::INT); |
2634 | assert_eq!(1_u32, U1::INT); |
2635 | assert_eq!(2_u32, U2::INT); |
2636 | assert_eq!(3_u32, U3::INT); |
2637 | assert_eq!(4_u32, U4::INT); |
2638 | |
2639 | // u64 |
2640 | assert_eq!(0_u64, U0::to_int()); |
2641 | assert_eq!(1_u64, U1::to_int()); |
2642 | assert_eq!(2_u64, U2::to_int()); |
2643 | assert_eq!(3_u64, U3::to_int()); |
2644 | assert_eq!(4_u64, U4::to_int()); |
2645 | assert_eq!(0_u64, U0::INT); |
2646 | assert_eq!(1_u64, U1::INT); |
2647 | assert_eq!(2_u64, U2::INT); |
2648 | assert_eq!(3_u64, U3::INT); |
2649 | assert_eq!(4_u64, U4::INT); |
2650 | |
2651 | // usize |
2652 | assert_eq!(0_usize, U0::to_int()); |
2653 | assert_eq!(1_usize, U1::to_int()); |
2654 | assert_eq!(2_usize, U2::to_int()); |
2655 | assert_eq!(3_usize, U3::to_int()); |
2656 | assert_eq!(4_usize, U4::to_int()); |
2657 | assert_eq!(0_usize, U0::INT); |
2658 | assert_eq!(1_usize, U1::INT); |
2659 | assert_eq!(2_usize, U2::INT); |
2660 | assert_eq!(3_usize, U3::INT); |
2661 | assert_eq!(4_usize, U4::INT); |
2662 | } |
2663 | } |
2664 | |