| 1 | // Copyright 2024 The Fuchsia Authors |
| 2 | // |
| 3 | // Licensed under the 2-Clause BSD License <LICENSE-BSD or |
| 4 | // https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0 |
| 5 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| 6 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| 7 | // This file may not be copied, modified, or distributed except according to |
| 8 | // those terms. |
| 9 | |
| 10 | use core::{mem, num::NonZeroUsize}; |
| 11 | |
| 12 | use crate::util; |
| 13 | |
| 14 | /// The target pointer width, counted in bits. |
| 15 | const POINTER_WIDTH_BITS: usize = mem::size_of::<usize>() * 8; |
| 16 | |
| 17 | /// The layout of a type which might be dynamically-sized. |
| 18 | /// |
| 19 | /// `DstLayout` describes the layout of sized types, slice types, and "slice |
| 20 | /// DSTs" - ie, those that are known by the type system to have a trailing slice |
| 21 | /// (as distinguished from `dyn Trait` types - such types *might* have a |
| 22 | /// trailing slice type, but the type system isn't aware of it). |
| 23 | /// |
| 24 | /// Note that `DstLayout` does not have any internal invariants, so no guarantee |
| 25 | /// is made that a `DstLayout` conforms to any of Rust's requirements regarding |
| 26 | /// the layout of real Rust types or instances of types. |
| 27 | #[doc (hidden)] |
| 28 | #[allow (missing_debug_implementations, missing_copy_implementations)] |
| 29 | #[cfg_attr (any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))] |
| 30 | pub struct DstLayout { |
| 31 | pub(crate) align: NonZeroUsize, |
| 32 | pub(crate) size_info: SizeInfo, |
| 33 | } |
| 34 | |
| 35 | #[cfg_attr (any(kani, test), derive(Debug, PartialEq, Eq))] |
| 36 | #[derive (Copy, Clone)] |
| 37 | pub(crate) enum SizeInfo<E = usize> { |
| 38 | Sized { size: usize }, |
| 39 | SliceDst(TrailingSliceLayout<E>), |
| 40 | } |
| 41 | |
| 42 | #[cfg_attr (any(kani, test), derive(Debug, PartialEq, Eq))] |
| 43 | #[derive (Copy, Clone)] |
| 44 | pub(crate) struct TrailingSliceLayout<E = usize> { |
| 45 | // The offset of the first byte of the trailing slice field. Note that this |
| 46 | // is NOT the same as the minimum size of the type. For example, consider |
| 47 | // the following type: |
| 48 | // |
| 49 | // struct Foo { |
| 50 | // a: u16, |
| 51 | // b: u8, |
| 52 | // c: [u8], |
| 53 | // } |
| 54 | // |
| 55 | // In `Foo`, `c` is at byte offset 3. When `c.len() == 0`, `c` is followed |
| 56 | // by a padding byte. |
| 57 | pub(crate) offset: usize, |
| 58 | // The size of the element type of the trailing slice field. |
| 59 | pub(crate) elem_size: E, |
| 60 | } |
| 61 | |
| 62 | impl SizeInfo { |
| 63 | /// Attempts to create a `SizeInfo` from `Self` in which `elem_size` is a |
| 64 | /// `NonZeroUsize`. If `elem_size` is 0, returns `None`. |
| 65 | #[allow (unused)] |
| 66 | const fn try_to_nonzero_elem_size(&self) -> Option<SizeInfo<NonZeroUsize>> { |
| 67 | Some(match *self { |
| 68 | SizeInfo::Sized { size: usize } => SizeInfo::Sized { size }, |
| 69 | SizeInfo::SliceDst(TrailingSliceLayout { offset: usize, elem_size: usize }) => { |
| 70 | if let Some(elem_size: NonZero) = NonZeroUsize::new(elem_size) { |
| 71 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) |
| 72 | } else { |
| 73 | return None; |
| 74 | } |
| 75 | } |
| 76 | }) |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | #[doc (hidden)] |
| 81 | #[derive (Copy, Clone)] |
| 82 | #[cfg_attr (test, derive(Debug))] |
| 83 | #[allow (missing_debug_implementations)] |
| 84 | pub enum CastType { |
| 85 | Prefix, |
| 86 | Suffix, |
| 87 | } |
| 88 | |
| 89 | #[cfg_attr (test, derive(Debug))] |
| 90 | pub(crate) enum MetadataCastError { |
| 91 | Alignment, |
| 92 | Size, |
| 93 | } |
| 94 | |
| 95 | impl DstLayout { |
| 96 | /// The minimum possible alignment of a type. |
| 97 | const MIN_ALIGN: NonZeroUsize = match NonZeroUsize::new(1) { |
| 98 | Some(min_align) => min_align, |
| 99 | None => const_unreachable!(), |
| 100 | }; |
| 101 | |
| 102 | /// The maximum theoretic possible alignment of a type. |
| 103 | /// |
| 104 | /// For compatibility with future Rust versions, this is defined as the |
| 105 | /// maximum power-of-two that fits into a `usize`. See also |
| 106 | /// [`DstLayout::CURRENT_MAX_ALIGN`]. |
| 107 | pub(crate) const THEORETICAL_MAX_ALIGN: NonZeroUsize = |
| 108 | match NonZeroUsize::new(1 << (POINTER_WIDTH_BITS - 1)) { |
| 109 | Some(max_align) => max_align, |
| 110 | None => const_unreachable!(), |
| 111 | }; |
| 112 | |
| 113 | /// The current, documented max alignment of a type \[1\]. |
| 114 | /// |
| 115 | /// \[1\] Per <https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers>: |
| 116 | /// |
| 117 | /// The alignment value must be a power of two from 1 up to |
| 118 | /// 2<sup>29</sup>. |
| 119 | #[cfg (not(kani))] |
| 120 | #[cfg (not(target_pointer_width = "16" ))] |
| 121 | pub(crate) const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 28) { |
| 122 | Some(max_align) => max_align, |
| 123 | None => const_unreachable!(), |
| 124 | }; |
| 125 | |
| 126 | #[cfg (not(kani))] |
| 127 | #[cfg (target_pointer_width = "16" )] |
| 128 | pub(crate) const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 15) { |
| 129 | Some(max_align) => max_align, |
| 130 | None => const_unreachable!(), |
| 131 | }; |
| 132 | |
| 133 | /// Constructs a `DstLayout` for a zero-sized type with `repr_align` |
| 134 | /// alignment (or 1). If `repr_align` is provided, then it must be a power |
| 135 | /// of two. |
| 136 | /// |
| 137 | /// # Panics |
| 138 | /// |
| 139 | /// This function panics if the supplied `repr_align` is not a power of two. |
| 140 | /// |
| 141 | /// # Safety |
| 142 | /// |
| 143 | /// Unsafe code may assume that the contract of this function is satisfied. |
| 144 | #[doc (hidden)] |
| 145 | #[must_use ] |
| 146 | #[inline ] |
| 147 | pub const fn new_zst(repr_align: Option<NonZeroUsize>) -> DstLayout { |
| 148 | let align = match repr_align { |
| 149 | Some(align) => align, |
| 150 | None => Self::MIN_ALIGN, |
| 151 | }; |
| 152 | |
| 153 | const_assert!(align.get().is_power_of_two()); |
| 154 | |
| 155 | DstLayout { align, size_info: SizeInfo::Sized { size: 0 } } |
| 156 | } |
| 157 | |
| 158 | /// Constructs a `DstLayout` which describes `T`. |
| 159 | /// |
| 160 | /// # Safety |
| 161 | /// |
| 162 | /// Unsafe code may assume that `DstLayout` is the correct layout for `T`. |
| 163 | #[doc (hidden)] |
| 164 | #[must_use ] |
| 165 | #[inline ] |
| 166 | pub const fn for_type<T>() -> DstLayout { |
| 167 | // SAFETY: `align` is correct by construction. `T: Sized`, and so it is |
| 168 | // sound to initialize `size_info` to `SizeInfo::Sized { size }`; the |
| 169 | // `size` field is also correct by construction. |
| 170 | DstLayout { |
| 171 | align: match NonZeroUsize::new(mem::align_of::<T>()) { |
| 172 | Some(align) => align, |
| 173 | None => const_unreachable!(), |
| 174 | }, |
| 175 | size_info: SizeInfo::Sized { size: mem::size_of::<T>() }, |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | /// Constructs a `DstLayout` which describes `[T]`. |
| 180 | /// |
| 181 | /// # Safety |
| 182 | /// |
| 183 | /// Unsafe code may assume that `DstLayout` is the correct layout for `[T]`. |
| 184 | pub(crate) const fn for_slice<T>() -> DstLayout { |
| 185 | // SAFETY: The alignment of a slice is equal to the alignment of its |
| 186 | // element type, and so `align` is initialized correctly. |
| 187 | // |
| 188 | // Since this is just a slice type, there is no offset between the |
| 189 | // beginning of the type and the beginning of the slice, so it is |
| 190 | // correct to set `offset: 0`. The `elem_size` is correct by |
| 191 | // construction. Since `[T]` is a (degenerate case of a) slice DST, it |
| 192 | // is correct to initialize `size_info` to `SizeInfo::SliceDst`. |
| 193 | DstLayout { |
| 194 | align: match NonZeroUsize::new(mem::align_of::<T>()) { |
| 195 | Some(align) => align, |
| 196 | None => const_unreachable!(), |
| 197 | }, |
| 198 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| 199 | offset: 0, |
| 200 | elem_size: mem::size_of::<T>(), |
| 201 | }), |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | /// Like `Layout::extend`, this creates a layout that describes a record |
| 206 | /// whose layout consists of `self` followed by `next` that includes the |
| 207 | /// necessary inter-field padding, but not any trailing padding. |
| 208 | /// |
| 209 | /// In order to match the layout of a `#[repr(C)]` struct, this method |
| 210 | /// should be invoked for each field in declaration order. To add trailing |
| 211 | /// padding, call `DstLayout::pad_to_align` after extending the layout for |
| 212 | /// all fields. If `self` corresponds to a type marked with |
| 213 | /// `repr(packed(N))`, then `repr_packed` should be set to `Some(N)`, |
| 214 | /// otherwise `None`. |
| 215 | /// |
| 216 | /// This method cannot be used to match the layout of a record with the |
| 217 | /// default representation, as that representation is mostly unspecified. |
| 218 | /// |
| 219 | /// # Safety |
| 220 | /// |
| 221 | /// If a (potentially hypothetical) valid `repr(C)` Rust type begins with |
| 222 | /// fields whose layout are `self`, and those fields are immediately |
| 223 | /// followed by a field whose layout is `field`, then unsafe code may rely |
| 224 | /// on `self.extend(field, repr_packed)` producing a layout that correctly |
| 225 | /// encompasses those two components. |
| 226 | /// |
| 227 | /// We make no guarantees to the behavior of this method if these fragments |
| 228 | /// cannot appear in a valid Rust type (e.g., the concatenation of the |
| 229 | /// layouts would lead to a size larger than `isize::MAX`). |
| 230 | #[doc (hidden)] |
| 231 | #[must_use ] |
| 232 | #[inline ] |
| 233 | pub const fn extend(self, field: DstLayout, repr_packed: Option<NonZeroUsize>) -> Self { |
| 234 | use util::{max, min, padding_needed_for}; |
| 235 | |
| 236 | // If `repr_packed` is `None`, there are no alignment constraints, and |
| 237 | // the value can be defaulted to `THEORETICAL_MAX_ALIGN`. |
| 238 | let max_align = match repr_packed { |
| 239 | Some(max_align) => max_align, |
| 240 | None => Self::THEORETICAL_MAX_ALIGN, |
| 241 | }; |
| 242 | |
| 243 | const_assert!(max_align.get().is_power_of_two()); |
| 244 | |
| 245 | // We use Kani to prove that this method is robust to future increases |
| 246 | // in Rust's maximum allowed alignment. However, if such a change ever |
| 247 | // actually occurs, we'd like to be notified via assertion failures. |
| 248 | #[cfg (not(kani))] |
| 249 | { |
| 250 | const_debug_assert!(self.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| 251 | const_debug_assert!(field.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| 252 | if let Some(repr_packed) = repr_packed { |
| 253 | const_debug_assert!(repr_packed.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | // The field's alignment is clamped by `repr_packed` (i.e., the |
| 258 | // `repr(packed(N))` attribute, if any) [1]. |
| 259 | // |
| 260 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| 261 | // |
| 262 | // The alignments of each field, for the purpose of positioning |
| 263 | // fields, is the smaller of the specified alignment and the alignment |
| 264 | // of the field's type. |
| 265 | let field_align = min(field.align, max_align); |
| 266 | |
| 267 | // The struct's alignment is the maximum of its previous alignment and |
| 268 | // `field_align`. |
| 269 | let align = max(self.align, field_align); |
| 270 | |
| 271 | let size_info = match self.size_info { |
| 272 | // If the layout is already a DST, we panic; DSTs cannot be extended |
| 273 | // with additional fields. |
| 274 | SizeInfo::SliceDst(..) => const_panic!("Cannot extend a DST with additional fields." ), |
| 275 | |
| 276 | SizeInfo::Sized { size: preceding_size } => { |
| 277 | // Compute the minimum amount of inter-field padding needed to |
| 278 | // satisfy the field's alignment, and offset of the trailing |
| 279 | // field. [1] |
| 280 | // |
| 281 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| 282 | // |
| 283 | // Inter-field padding is guaranteed to be the minimum |
| 284 | // required in order to satisfy each field's (possibly |
| 285 | // altered) alignment. |
| 286 | let padding = padding_needed_for(preceding_size, field_align); |
| 287 | |
| 288 | // This will not panic (and is proven to not panic, with Kani) |
| 289 | // if the layout components can correspond to a leading layout |
| 290 | // fragment of a valid Rust type, but may panic otherwise (e.g., |
| 291 | // combining or aligning the components would create a size |
| 292 | // exceeding `isize::MAX`). |
| 293 | let offset = match preceding_size.checked_add(padding) { |
| 294 | Some(offset) => offset, |
| 295 | None => const_panic!("Adding padding to `self`'s size overflows `usize`." ), |
| 296 | }; |
| 297 | |
| 298 | match field.size_info { |
| 299 | SizeInfo::Sized { size: field_size } => { |
| 300 | // If the trailing field is sized, the resulting layout |
| 301 | // will be sized. Its size will be the sum of the |
| 302 | // preceeding layout, the size of the new field, and the |
| 303 | // size of inter-field padding between the two. |
| 304 | // |
| 305 | // This will not panic (and is proven with Kani to not |
| 306 | // panic) if the layout components can correspond to a |
| 307 | // leading layout fragment of a valid Rust type, but may |
| 308 | // panic otherwise (e.g., combining or aligning the |
| 309 | // components would create a size exceeding |
| 310 | // `usize::MAX`). |
| 311 | let size = match offset.checked_add(field_size) { |
| 312 | Some(size) => size, |
| 313 | None => const_panic!("`field` cannot be appended without the total size overflowing `usize`" ), |
| 314 | }; |
| 315 | SizeInfo::Sized { size } |
| 316 | } |
| 317 | SizeInfo::SliceDst(TrailingSliceLayout { |
| 318 | offset: trailing_offset, |
| 319 | elem_size, |
| 320 | }) => { |
| 321 | // If the trailing field is dynamically sized, so too |
| 322 | // will the resulting layout. The offset of the trailing |
| 323 | // slice component is the sum of the offset of the |
| 324 | // trailing field and the trailing slice offset within |
| 325 | // that field. |
| 326 | // |
| 327 | // This will not panic (and is proven with Kani to not |
| 328 | // panic) if the layout components can correspond to a |
| 329 | // leading layout fragment of a valid Rust type, but may |
| 330 | // panic otherwise (e.g., combining or aligning the |
| 331 | // components would create a size exceeding |
| 332 | // `usize::MAX`). |
| 333 | let offset = match offset.checked_add(trailing_offset) { |
| 334 | Some(offset) => offset, |
| 335 | None => const_panic!("`field` cannot be appended without the total size overflowing `usize`" ), |
| 336 | }; |
| 337 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | }; |
| 342 | |
| 343 | DstLayout { align, size_info } |
| 344 | } |
| 345 | |
| 346 | /// Like `Layout::pad_to_align`, this routine rounds the size of this layout |
| 347 | /// up to the nearest multiple of this type's alignment or `repr_packed` |
| 348 | /// (whichever is less). This method leaves DST layouts unchanged, since the |
| 349 | /// trailing padding of DSTs is computed at runtime. |
| 350 | /// |
| 351 | /// In order to match the layout of a `#[repr(C)]` struct, this method |
| 352 | /// should be invoked after the invocations of [`DstLayout::extend`]. If |
| 353 | /// `self` corresponds to a type marked with `repr(packed(N))`, then |
| 354 | /// `repr_packed` should be set to `Some(N)`, otherwise `None`. |
| 355 | /// |
| 356 | /// This method cannot be used to match the layout of a record with the |
| 357 | /// default representation, as that representation is mostly unspecified. |
| 358 | /// |
| 359 | /// # Safety |
| 360 | /// |
| 361 | /// If a (potentially hypothetical) valid `repr(C)` type begins with fields |
| 362 | /// whose layout are `self` followed only by zero or more bytes of trailing |
| 363 | /// padding (not included in `self`), then unsafe code may rely on |
| 364 | /// `self.pad_to_align(repr_packed)` producing a layout that correctly |
| 365 | /// encapsulates the layout of that type. |
| 366 | /// |
| 367 | /// We make no guarantees to the behavior of this method if `self` cannot |
| 368 | /// appear in a valid Rust type (e.g., because the addition of trailing |
| 369 | /// padding would lead to a size larger than `isize::MAX`). |
| 370 | #[doc (hidden)] |
| 371 | #[must_use ] |
| 372 | #[inline ] |
| 373 | pub const fn pad_to_align(self) -> Self { |
| 374 | use util::padding_needed_for; |
| 375 | |
| 376 | let size_info = match self.size_info { |
| 377 | // For sized layouts, we add the minimum amount of trailing padding |
| 378 | // needed to satisfy alignment. |
| 379 | SizeInfo::Sized { size: unpadded_size } => { |
| 380 | let padding = padding_needed_for(unpadded_size, self.align); |
| 381 | let size = match unpadded_size.checked_add(padding) { |
| 382 | Some(size) => size, |
| 383 | None => const_panic!("Adding padding caused size to overflow `usize`." ), |
| 384 | }; |
| 385 | SizeInfo::Sized { size } |
| 386 | } |
| 387 | // For DST layouts, trailing padding depends on the length of the |
| 388 | // trailing DST and is computed at runtime. This does not alter the |
| 389 | // offset or element size of the layout, so we leave `size_info` |
| 390 | // unchanged. |
| 391 | size_info @ SizeInfo::SliceDst(_) => size_info, |
| 392 | }; |
| 393 | |
| 394 | DstLayout { align: self.align, size_info } |
| 395 | } |
| 396 | |
| 397 | /// Validates that a cast is sound from a layout perspective. |
| 398 | /// |
| 399 | /// Validates that the size and alignment requirements of a type with the |
| 400 | /// layout described in `self` would not be violated by performing a |
| 401 | /// `cast_type` cast from a pointer with address `addr` which refers to a |
| 402 | /// memory region of size `bytes_len`. |
| 403 | /// |
| 404 | /// If the cast is valid, `validate_cast_and_convert_metadata` returns |
| 405 | /// `(elems, split_at)`. If `self` describes a dynamically-sized type, then |
| 406 | /// `elems` is the maximum number of trailing slice elements for which a |
| 407 | /// cast would be valid (for sized types, `elem` is meaningless and should |
| 408 | /// be ignored). `split_at` is the index at which to split the memory region |
| 409 | /// in order for the prefix (suffix) to contain the result of the cast, and |
| 410 | /// in order for the remaining suffix (prefix) to contain the leftover |
| 411 | /// bytes. |
| 412 | /// |
| 413 | /// There are three conditions under which a cast can fail: |
| 414 | /// - The smallest possible value for the type is larger than the provided |
| 415 | /// memory region |
| 416 | /// - A prefix cast is requested, and `addr` does not satisfy `self`'s |
| 417 | /// alignment requirement |
| 418 | /// - A suffix cast is requested, and `addr + bytes_len` does not satisfy |
| 419 | /// `self`'s alignment requirement (as a consequence, since all instances |
| 420 | /// of the type are a multiple of its alignment, no size for the type will |
| 421 | /// result in a starting address which is properly aligned) |
| 422 | /// |
| 423 | /// # Safety |
| 424 | /// |
| 425 | /// The caller may assume that this implementation is correct, and may rely |
| 426 | /// on that assumption for the soundness of their code. In particular, the |
| 427 | /// caller may assume that, if `validate_cast_and_convert_metadata` returns |
| 428 | /// `Some((elems, split_at))`, then: |
| 429 | /// - A pointer to the type (for dynamically sized types, this includes |
| 430 | /// `elems` as its pointer metadata) describes an object of size `size <= |
| 431 | /// bytes_len` |
| 432 | /// - If this is a prefix cast: |
| 433 | /// - `addr` satisfies `self`'s alignment |
| 434 | /// - `size == split_at` |
| 435 | /// - If this is a suffix cast: |
| 436 | /// - `split_at == bytes_len - size` |
| 437 | /// - `addr + split_at` satisfies `self`'s alignment |
| 438 | /// |
| 439 | /// Note that this method does *not* ensure that a pointer constructed from |
| 440 | /// its return values will be a valid pointer. In particular, this method |
| 441 | /// does not reason about `isize` overflow, which is a requirement of many |
| 442 | /// Rust pointer APIs, and may at some point be determined to be a validity |
| 443 | /// invariant of pointer types themselves. This should never be a problem so |
| 444 | /// long as the arguments to this method are derived from a known-valid |
| 445 | /// pointer (e.g., one derived from a safe Rust reference), but it is |
| 446 | /// nonetheless the caller's responsibility to justify that pointer |
| 447 | /// arithmetic will not overflow based on a safety argument *other than* the |
| 448 | /// mere fact that this method returned successfully. |
| 449 | /// |
| 450 | /// # Panics |
| 451 | /// |
| 452 | /// `validate_cast_and_convert_metadata` will panic if `self` describes a |
| 453 | /// DST whose trailing slice element is zero-sized. |
| 454 | /// |
| 455 | /// If `addr + bytes_len` overflows `usize`, |
| 456 | /// `validate_cast_and_convert_metadata` may panic, or it may return |
| 457 | /// incorrect results. No guarantees are made about when |
| 458 | /// `validate_cast_and_convert_metadata` will panic. The caller should not |
| 459 | /// rely on `validate_cast_and_convert_metadata` panicking in any particular |
| 460 | /// condition, even if `debug_assertions` are enabled. |
| 461 | #[allow (unused)] |
| 462 | #[inline (always)] |
| 463 | pub(crate) const fn validate_cast_and_convert_metadata( |
| 464 | &self, |
| 465 | addr: usize, |
| 466 | bytes_len: usize, |
| 467 | cast_type: CastType, |
| 468 | ) -> Result<(usize, usize), MetadataCastError> { |
| 469 | // `debug_assert!`, but with `#[allow(clippy::arithmetic_side_effects)]`. |
| 470 | macro_rules! __const_debug_assert { |
| 471 | ($e:expr $(, $msg:expr)?) => { |
| 472 | const_debug_assert!({ |
| 473 | #[allow(clippy::arithmetic_side_effects)] |
| 474 | let e = $e; |
| 475 | e |
| 476 | } $(, $msg)?); |
| 477 | }; |
| 478 | } |
| 479 | |
| 480 | // Note that, in practice, `self` is always a compile-time constant. We |
| 481 | // do this check earlier than needed to ensure that we always panic as a |
| 482 | // result of bugs in the program (such as calling this function on an |
| 483 | // invalid type) instead of allowing this panic to be hidden if the cast |
| 484 | // would have failed anyway for runtime reasons (such as a too-small |
| 485 | // memory region). |
| 486 | // |
| 487 | // TODO(#67): Once our MSRV is 1.65, use let-else: |
| 488 | // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
| 489 | let size_info = match self.size_info.try_to_nonzero_elem_size() { |
| 490 | Some(size_info) => size_info, |
| 491 | None => const_panic!("attempted to cast to slice type with zero-sized element" ), |
| 492 | }; |
| 493 | |
| 494 | // Precondition |
| 495 | __const_debug_assert!( |
| 496 | addr.checked_add(bytes_len).is_some(), |
| 497 | "`addr` + `bytes_len` > usize::MAX" |
| 498 | ); |
| 499 | |
| 500 | // Alignment checks go in their own block to avoid introducing variables |
| 501 | // into the top-level scope. |
| 502 | { |
| 503 | // We check alignment for `addr` (for prefix casts) or `addr + |
| 504 | // bytes_len` (for suffix casts). For a prefix cast, the correctness |
| 505 | // of this check is trivial - `addr` is the address the object will |
| 506 | // live at. |
| 507 | // |
| 508 | // For a suffix cast, we know that all valid sizes for the type are |
| 509 | // a multiple of the alignment (and by safety precondition, we know |
| 510 | // `DstLayout` may only describe valid Rust types). Thus, a |
| 511 | // validly-sized instance which lives at a validly-aligned address |
| 512 | // must also end at a validly-aligned address. Thus, if the end |
| 513 | // address for a suffix cast (`addr + bytes_len`) is not aligned, |
| 514 | // then no valid start address will be aligned either. |
| 515 | let offset = match cast_type { |
| 516 | CastType::Prefix => 0, |
| 517 | CastType::Suffix => bytes_len, |
| 518 | }; |
| 519 | |
| 520 | // Addition is guaranteed not to overflow because `offset <= |
| 521 | // bytes_len`, and `addr + bytes_len <= usize::MAX` is a |
| 522 | // precondition of this method. Modulus is guaranteed not to divide |
| 523 | // by 0 because `align` is non-zero. |
| 524 | #[allow (clippy::arithmetic_side_effects)] |
| 525 | if (addr + offset) % self.align.get() != 0 { |
| 526 | return Err(MetadataCastError::Alignment); |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | let (elems, self_bytes) = match size_info { |
| 531 | SizeInfo::Sized { size } => { |
| 532 | if size > bytes_len { |
| 533 | return Err(MetadataCastError::Size); |
| 534 | } |
| 535 | (0, size) |
| 536 | } |
| 537 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => { |
| 538 | // Calculate the maximum number of bytes that could be consumed |
| 539 | // - any number of bytes larger than this will either not be a |
| 540 | // multiple of the alignment, or will be larger than |
| 541 | // `bytes_len`. |
| 542 | let max_total_bytes = |
| 543 | util::round_down_to_next_multiple_of_alignment(bytes_len, self.align); |
| 544 | // Calculate the maximum number of bytes that could be consumed |
| 545 | // by the trailing slice. |
| 546 | // |
| 547 | // TODO(#67): Once our MSRV is 1.65, use let-else: |
| 548 | // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
| 549 | let max_slice_and_padding_bytes = match max_total_bytes.checked_sub(offset) { |
| 550 | Some(max) => max, |
| 551 | // `bytes_len` too small even for 0 trailing slice elements. |
| 552 | None => return Err(MetadataCastError::Size), |
| 553 | }; |
| 554 | |
| 555 | // Calculate the number of elements that fit in |
| 556 | // `max_slice_and_padding_bytes`; any remaining bytes will be |
| 557 | // considered padding. |
| 558 | // |
| 559 | // Guaranteed not to divide by zero: `elem_size` is non-zero. |
| 560 | #[allow (clippy::arithmetic_side_effects)] |
| 561 | let elems = max_slice_and_padding_bytes / elem_size.get(); |
| 562 | // Guaranteed not to overflow on multiplication: `usize::MAX >= |
| 563 | // max_slice_and_padding_bytes >= (max_slice_and_padding_bytes / |
| 564 | // elem_size) * elem_size`. |
| 565 | // |
| 566 | // Guaranteed not to overflow on addition: |
| 567 | // - max_slice_and_padding_bytes == max_total_bytes - offset |
| 568 | // - elems * elem_size <= max_slice_and_padding_bytes == max_total_bytes - offset |
| 569 | // - elems * elem_size + offset <= max_total_bytes <= usize::MAX |
| 570 | #[allow (clippy::arithmetic_side_effects)] |
| 571 | let without_padding = offset + elems * elem_size.get(); |
| 572 | // `self_bytes` is equal to the offset bytes plus the bytes |
| 573 | // consumed by the trailing slice plus any padding bytes |
| 574 | // required to satisfy the alignment. Note that we have computed |
| 575 | // the maximum number of trailing slice elements that could fit |
| 576 | // in `self_bytes`, so any padding is guaranteed to be less than |
| 577 | // the size of an extra element. |
| 578 | // |
| 579 | // Guaranteed not to overflow: |
| 580 | // - By previous comment: without_padding == elems * elem_size + |
| 581 | // offset <= max_total_bytes |
| 582 | // - By construction, `max_total_bytes` is a multiple of |
| 583 | // `self.align`. |
| 584 | // - At most, adding padding needed to round `without_padding` |
| 585 | // up to the next multiple of the alignment will bring |
| 586 | // `self_bytes` up to `max_total_bytes`. |
| 587 | #[allow (clippy::arithmetic_side_effects)] |
| 588 | let self_bytes = |
| 589 | without_padding + util::padding_needed_for(without_padding, self.align); |
| 590 | (elems, self_bytes) |
| 591 | } |
| 592 | }; |
| 593 | |
| 594 | __const_debug_assert!(self_bytes <= bytes_len); |
| 595 | |
| 596 | let split_at = match cast_type { |
| 597 | CastType::Prefix => self_bytes, |
| 598 | // Guaranteed not to underflow: |
| 599 | // - In the `Sized` branch, only returns `size` if `size <= |
| 600 | // bytes_len`. |
| 601 | // - In the `SliceDst` branch, calculates `self_bytes <= |
| 602 | // max_toatl_bytes`, which is upper-bounded by `bytes_len`. |
| 603 | #[allow (clippy::arithmetic_side_effects)] |
| 604 | CastType::Suffix => bytes_len - self_bytes, |
| 605 | }; |
| 606 | |
| 607 | Ok((elems, split_at)) |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | // TODO(#67): For some reason, on our MSRV toolchain, this `allow` isn't |
| 612 | // enforced despite having `#![allow(unknown_lints)]` at the crate root, but |
| 613 | // putting it here works. Once our MSRV is high enough that this bug has been |
| 614 | // fixed, remove this `allow`. |
| 615 | #[allow (unknown_lints)] |
| 616 | #[cfg (test)] |
| 617 | mod tests { |
| 618 | use super::*; |
| 619 | |
| 620 | /// Tests of when a sized `DstLayout` is extended with a sized field. |
| 621 | #[allow (clippy::decimal_literal_representation)] |
| 622 | #[test ] |
| 623 | fn test_dst_layout_extend_sized_with_sized() { |
| 624 | // This macro constructs a layout corresponding to a `u8` and extends it |
| 625 | // with a zero-sized trailing field of given alignment `n`. The macro |
| 626 | // tests that the resulting layout has both size and alignment `min(n, |
| 627 | // P)` for all valid values of `repr(packed(P))`. |
| 628 | macro_rules! test_align_is_size { |
| 629 | ($n:expr) => { |
| 630 | let base = DstLayout::for_type::<u8>(); |
| 631 | let trailing_field = DstLayout::for_type::<elain::Align<$n>>(); |
| 632 | |
| 633 | let packs = |
| 634 | core::iter::once(None).chain((0..29).map(|p| NonZeroUsize::new(2usize.pow(p)))); |
| 635 | |
| 636 | for pack in packs { |
| 637 | let composite = base.extend(trailing_field, pack); |
| 638 | let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN); |
| 639 | let align = $n.min(max_align.get()); |
| 640 | assert_eq!( |
| 641 | composite, |
| 642 | DstLayout { |
| 643 | align: NonZeroUsize::new(align).unwrap(), |
| 644 | size_info: SizeInfo::Sized { size: align } |
| 645 | } |
| 646 | ) |
| 647 | } |
| 648 | }; |
| 649 | } |
| 650 | |
| 651 | test_align_is_size!(1); |
| 652 | test_align_is_size!(2); |
| 653 | test_align_is_size!(4); |
| 654 | test_align_is_size!(8); |
| 655 | test_align_is_size!(16); |
| 656 | test_align_is_size!(32); |
| 657 | test_align_is_size!(64); |
| 658 | test_align_is_size!(128); |
| 659 | test_align_is_size!(256); |
| 660 | test_align_is_size!(512); |
| 661 | test_align_is_size!(1024); |
| 662 | test_align_is_size!(2048); |
| 663 | test_align_is_size!(4096); |
| 664 | test_align_is_size!(8192); |
| 665 | test_align_is_size!(16384); |
| 666 | test_align_is_size!(32768); |
| 667 | test_align_is_size!(65536); |
| 668 | test_align_is_size!(131072); |
| 669 | test_align_is_size!(262144); |
| 670 | test_align_is_size!(524288); |
| 671 | test_align_is_size!(1048576); |
| 672 | test_align_is_size!(2097152); |
| 673 | test_align_is_size!(4194304); |
| 674 | test_align_is_size!(8388608); |
| 675 | test_align_is_size!(16777216); |
| 676 | test_align_is_size!(33554432); |
| 677 | test_align_is_size!(67108864); |
| 678 | test_align_is_size!(33554432); |
| 679 | test_align_is_size!(134217728); |
| 680 | test_align_is_size!(268435456); |
| 681 | } |
| 682 | |
| 683 | /// Tests of when a sized `DstLayout` is extended with a DST field. |
| 684 | #[test ] |
| 685 | fn test_dst_layout_extend_sized_with_dst() { |
| 686 | // Test that for all combinations of real-world alignments and |
| 687 | // `repr_packed` values, that the extension of a sized `DstLayout`` with |
| 688 | // a DST field correctly computes the trailing offset in the composite |
| 689 | // layout. |
| 690 | |
| 691 | let aligns = (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()); |
| 692 | let packs = core::iter::once(None).chain(aligns.clone().map(Some)); |
| 693 | |
| 694 | for align in aligns { |
| 695 | for pack in packs.clone() { |
| 696 | let base = DstLayout::for_type::<u8>(); |
| 697 | let elem_size = 42; |
| 698 | let trailing_field_offset = 11; |
| 699 | |
| 700 | let trailing_field = DstLayout { |
| 701 | align, |
| 702 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { elem_size, offset: 11 }), |
| 703 | }; |
| 704 | |
| 705 | let composite = base.extend(trailing_field, pack); |
| 706 | |
| 707 | let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN).get(); |
| 708 | |
| 709 | let align = align.get().min(max_align); |
| 710 | |
| 711 | assert_eq!( |
| 712 | composite, |
| 713 | DstLayout { |
| 714 | align: NonZeroUsize::new(align).unwrap(), |
| 715 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| 716 | elem_size, |
| 717 | offset: align + trailing_field_offset, |
| 718 | }), |
| 719 | } |
| 720 | ) |
| 721 | } |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | /// Tests that calling `pad_to_align` on a sized `DstLayout` adds the |
| 726 | /// expected amount of trailing padding. |
| 727 | #[test ] |
| 728 | fn test_dst_layout_pad_to_align_with_sized() { |
| 729 | // For all valid alignments `align`, construct a one-byte layout aligned |
| 730 | // to `align`, call `pad_to_align`, and assert that the size of the |
| 731 | // resulting layout is equal to `align`. |
| 732 | for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
| 733 | let layout = DstLayout { align, size_info: SizeInfo::Sized { size: 1 } }; |
| 734 | |
| 735 | assert_eq!( |
| 736 | layout.pad_to_align(), |
| 737 | DstLayout { align, size_info: SizeInfo::Sized { size: align.get() } } |
| 738 | ); |
| 739 | } |
| 740 | |
| 741 | // Test explicitly-provided combinations of unpadded and padded |
| 742 | // counterparts. |
| 743 | |
| 744 | macro_rules! test { |
| 745 | (unpadded { size: $unpadded_size:expr, align: $unpadded_align:expr } |
| 746 | => padded { size: $padded_size:expr, align: $padded_align:expr }) => { |
| 747 | let unpadded = DstLayout { |
| 748 | align: NonZeroUsize::new($unpadded_align).unwrap(), |
| 749 | size_info: SizeInfo::Sized { size: $unpadded_size }, |
| 750 | }; |
| 751 | let padded = unpadded.pad_to_align(); |
| 752 | |
| 753 | assert_eq!( |
| 754 | padded, |
| 755 | DstLayout { |
| 756 | align: NonZeroUsize::new($padded_align).unwrap(), |
| 757 | size_info: SizeInfo::Sized { size: $padded_size }, |
| 758 | } |
| 759 | ); |
| 760 | }; |
| 761 | } |
| 762 | |
| 763 | test !(unpadded { size: 0, align: 4 } => padded { size: 0, align: 4 }); |
| 764 | test !(unpadded { size: 1, align: 4 } => padded { size: 4, align: 4 }); |
| 765 | test !(unpadded { size: 2, align: 4 } => padded { size: 4, align: 4 }); |
| 766 | test !(unpadded { size: 3, align: 4 } => padded { size: 4, align: 4 }); |
| 767 | test !(unpadded { size: 4, align: 4 } => padded { size: 4, align: 4 }); |
| 768 | test !(unpadded { size: 5, align: 4 } => padded { size: 8, align: 4 }); |
| 769 | test !(unpadded { size: 6, align: 4 } => padded { size: 8, align: 4 }); |
| 770 | test !(unpadded { size: 7, align: 4 } => padded { size: 8, align: 4 }); |
| 771 | test !(unpadded { size: 8, align: 4 } => padded { size: 8, align: 4 }); |
| 772 | |
| 773 | let current_max_align = DstLayout::CURRENT_MAX_ALIGN.get(); |
| 774 | |
| 775 | test !(unpadded { size: 1, align: current_max_align } |
| 776 | => padded { size: current_max_align, align: current_max_align }); |
| 777 | |
| 778 | test !(unpadded { size: current_max_align + 1, align: current_max_align } |
| 779 | => padded { size: current_max_align * 2, align: current_max_align }); |
| 780 | } |
| 781 | |
| 782 | /// Tests that calling `pad_to_align` on a DST `DstLayout` is a no-op. |
| 783 | #[test ] |
| 784 | fn test_dst_layout_pad_to_align_with_dst() { |
| 785 | for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
| 786 | for offset in 0..10 { |
| 787 | for elem_size in 0..10 { |
| 788 | let layout = DstLayout { |
| 789 | align, |
| 790 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }), |
| 791 | }; |
| 792 | assert_eq!(layout.pad_to_align(), layout); |
| 793 | } |
| 794 | } |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | // This test takes a long time when running under Miri, so we skip it in |
| 799 | // that case. This is acceptable because this is a logic test that doesn't |
| 800 | // attempt to expose UB. |
| 801 | #[test ] |
| 802 | #[cfg_attr (miri, ignore)] |
| 803 | fn test_validate_cast_and_convert_metadata() { |
| 804 | #[allow (non_local_definitions)] |
| 805 | impl From<usize> for SizeInfo { |
| 806 | fn from(size: usize) -> SizeInfo { |
| 807 | SizeInfo::Sized { size } |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | #[allow (non_local_definitions)] |
| 812 | impl From<(usize, usize)> for SizeInfo { |
| 813 | fn from((offset, elem_size): (usize, usize)) -> SizeInfo { |
| 814 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | fn layout<S: Into<SizeInfo>>(s: S, align: usize) -> DstLayout { |
| 819 | DstLayout { size_info: s.into(), align: NonZeroUsize::new(align).unwrap() } |
| 820 | } |
| 821 | |
| 822 | /// This macro accepts arguments in the form of: |
| 823 | /// |
| 824 | /// layout(_, _).validate(_, _, _), Ok(Some((_, _))) |
| 825 | /// | | | | | | | |
| 826 | /// size ---------+ | | | | | | |
| 827 | /// align -----------+ | | | | | |
| 828 | /// addr ------------------------+ | | | | |
| 829 | /// bytes_len ----------------------+ | | | |
| 830 | /// cast_type -------------------------+ | | |
| 831 | /// elems ------------------------------------------+ | |
| 832 | /// split_at ------------------------------------------+ |
| 833 | /// |
| 834 | /// `.validate` is shorthand for `.validate_cast_and_convert_metadata` |
| 835 | /// for brevity. |
| 836 | /// |
| 837 | /// Each argument can either be an iterator or a wildcard. Each |
| 838 | /// wildcarded variable is implicitly replaced by an iterator over a |
| 839 | /// representative sample of values for that variable. Each `test!` |
| 840 | /// invocation iterates over every combination of values provided by |
| 841 | /// each variable's iterator (ie, the cartesian product) and validates |
| 842 | /// that the results are expected. |
| 843 | /// |
| 844 | /// The final argument uses the same syntax, but it has a different |
| 845 | /// meaning: |
| 846 | /// - If it is `Ok(pat)`, then the pattern `pat` is supplied to |
| 847 | /// a matching assert to validate the computed result for each |
| 848 | /// combination of input values. |
| 849 | /// - If it is `Err(Some(msg) | None)`, then `test!` validates that the |
| 850 | /// call to `validate_cast_and_convert_metadata` panics with the given |
| 851 | /// panic message or, if the current Rust toolchain version is too |
| 852 | /// early to support panicking in `const fn`s, panics with *some* |
| 853 | /// message. In the latter case, the `const_panic!` macro is used, |
| 854 | /// which emits code which causes a non-panicking error at const eval |
| 855 | /// time, but which does panic when invoked at runtime. Thus, it is |
| 856 | /// merely difficult to predict the *value* of this panic. We deem |
| 857 | /// that testing against the real panic strings on stable and nightly |
| 858 | /// toolchains is enough to ensure correctness. |
| 859 | /// |
| 860 | /// Note that the meta-variables that match these variables have the |
| 861 | /// `tt` type, and some valid expressions are not valid `tt`s (such as |
| 862 | /// `a..b`). In this case, wrap the expression in parentheses, and it |
| 863 | /// will become valid `tt`. |
| 864 | macro_rules! test { |
| 865 | ( |
| 866 | layout($size:tt, $align:tt) |
| 867 | .validate($addr:tt, $bytes_len:tt, $cast_type:tt), $expect:pat $(,)? |
| 868 | ) => { |
| 869 | itertools::iproduct!( |
| 870 | test!(@generate_size $size), |
| 871 | test!(@generate_align $align), |
| 872 | test!(@generate_usize $addr), |
| 873 | test!(@generate_usize $bytes_len), |
| 874 | test!(@generate_cast_type $cast_type) |
| 875 | ).for_each(|(size_info, align, addr, bytes_len, cast_type)| { |
| 876 | // Temporarily disable the panic hook installed by the test |
| 877 | // harness. If we don't do this, all panic messages will be |
| 878 | // kept in an internal log. On its own, this isn't a |
| 879 | // problem, but if a non-caught panic ever happens (ie, in |
| 880 | // code later in this test not in this macro), all of the |
| 881 | // previously-buffered messages will be dumped, hiding the |
| 882 | // real culprit. |
| 883 | let previous_hook = std::panic::take_hook(); |
| 884 | // I don't understand why, but this seems to be required in |
| 885 | // addition to the previous line. |
| 886 | std::panic::set_hook(Box::new(|_| {})); |
| 887 | let actual = std::panic::catch_unwind(|| { |
| 888 | layout(size_info, align).validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
| 889 | }).map_err(|d| { |
| 890 | let msg = d.downcast::<&'static str>().ok().map(|s| *s.as_ref()); |
| 891 | assert!(msg.is_some() || cfg!(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)), "non-string panic messages are not permitted when `--cfg zerocopy_panic_in_const_and_vec_try_reserve` is set" ); |
| 892 | msg |
| 893 | }); |
| 894 | std::panic::set_hook(previous_hook); |
| 895 | |
| 896 | assert!( |
| 897 | matches!(actual, $expect), |
| 898 | "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?})" ,size_info, align, addr, bytes_len, cast_type |
| 899 | ); |
| 900 | }); |
| 901 | }; |
| 902 | (@generate_usize _) => { 0..8 }; |
| 903 | // Generate sizes for both Sized and !Sized types. |
| 904 | (@generate_size _) => { |
| 905 | test!(@generate_size (_)).chain(test!(@generate_size (_, _))) |
| 906 | }; |
| 907 | // Generate sizes for both Sized and !Sized types by chaining |
| 908 | // specified iterators for each. |
| 909 | (@generate_size ($sized_sizes:tt | $unsized_sizes:tt)) => { |
| 910 | test!(@generate_size ($sized_sizes)).chain(test!(@generate_size $unsized_sizes)) |
| 911 | }; |
| 912 | // Generate sizes for Sized types. |
| 913 | (@generate_size (_)) => { test!(@generate_size (0..8)) }; |
| 914 | (@generate_size ($sizes:expr)) => { $sizes.into_iter().map(Into::<SizeInfo>::into) }; |
| 915 | // Generate sizes for !Sized types. |
| 916 | (@generate_size ($min_sizes:tt, $elem_sizes:tt)) => { |
| 917 | itertools::iproduct!( |
| 918 | test!(@generate_min_size $min_sizes), |
| 919 | test!(@generate_elem_size $elem_sizes) |
| 920 | ).map(Into::<SizeInfo>::into) |
| 921 | }; |
| 922 | (@generate_fixed_size _) => { (0..8).into_iter().map(Into::<SizeInfo>::into) }; |
| 923 | (@generate_min_size _) => { 0..8 }; |
| 924 | (@generate_elem_size _) => { 1..8 }; |
| 925 | (@generate_align _) => { [1, 2, 4, 8, 16] }; |
| 926 | (@generate_opt_usize _) => { [None].into_iter().chain((0..8).map(Some).into_iter()) }; |
| 927 | (@generate_cast_type _) => { [CastType::Prefix, CastType::Suffix] }; |
| 928 | (@generate_cast_type $variant:ident) => { [CastType::$variant] }; |
| 929 | // Some expressions need to be wrapped in parentheses in order to be |
| 930 | // valid `tt`s (required by the top match pattern). See the comment |
| 931 | // below for more details. This arm removes these parentheses to |
| 932 | // avoid generating an `unused_parens` warning. |
| 933 | (@$_:ident ($vals:expr)) => { $vals }; |
| 934 | (@$_:ident $vals:expr) => { $vals }; |
| 935 | } |
| 936 | |
| 937 | const EVENS: [usize; 8] = [0, 2, 4, 6, 8, 10, 12, 14]; |
| 938 | const ODDS: [usize; 8] = [1, 3, 5, 7, 9, 11, 13, 15]; |
| 939 | |
| 940 | // base_size is too big for the memory region. |
| 941 | test !( |
| 942 | layout(((1..8) | ((1..8), (1..8))), _).validate([0], [0], _), |
| 943 | Ok(Err(MetadataCastError::Size)) |
| 944 | ); |
| 945 | test !( |
| 946 | layout(((2..8) | ((2..8), (2..8))), _).validate([0], [1], Prefix), |
| 947 | Ok(Err(MetadataCastError::Size)) |
| 948 | ); |
| 949 | test !( |
| 950 | layout(((2..8) | ((2..8), (2..8))), _).validate([0x1000_0000 - 1], [1], Suffix), |
| 951 | Ok(Err(MetadataCastError::Size)) |
| 952 | ); |
| 953 | |
| 954 | // addr is unaligned for prefix cast |
| 955 | test !(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment))); |
| 956 | test !(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment))); |
| 957 | |
| 958 | // addr is aligned, but end of buffer is unaligned for suffix cast |
| 959 | test !(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment))); |
| 960 | test !(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment))); |
| 961 | |
| 962 | // Unfortunately, these constants cannot easily be used in the |
| 963 | // implementation of `validate_cast_and_convert_metadata`, since |
| 964 | // `panic!` consumes a string literal, not an expression. |
| 965 | // |
| 966 | // It's important that these messages be in a separate module. If they |
| 967 | // were at the function's top level, we'd pass them to `test!` as, e.g., |
| 968 | // `Err(TRAILING)`, which would run into a subtle Rust footgun - the |
| 969 | // `TRAILING` identifier would be treated as a pattern to match rather |
| 970 | // than a value to check for equality. |
| 971 | mod msgs { |
| 972 | pub(super) const TRAILING: &str = |
| 973 | "attempted to cast to slice type with zero-sized element" ; |
| 974 | pub(super) const OVERFLOW: &str = "`addr` + `bytes_len` > usize::MAX" ; |
| 975 | } |
| 976 | |
| 977 | // casts with ZST trailing element types are unsupported |
| 978 | test !(layout((_, [0]), _).validate(_, _, _), Err(Some(msgs::TRAILING) | None),); |
| 979 | |
| 980 | // addr + bytes_len must not overflow usize |
| 981 | test !(layout(_, _).validate([usize::MAX], (1..100), _), Err(Some(msgs::OVERFLOW) | None)); |
| 982 | test !(layout(_, _).validate((1..100), [usize::MAX], _), Err(Some(msgs::OVERFLOW) | None)); |
| 983 | test !( |
| 984 | layout(_, _).validate( |
| 985 | [usize::MAX / 2 + 1, usize::MAX], |
| 986 | [usize::MAX / 2 + 1, usize::MAX], |
| 987 | _ |
| 988 | ), |
| 989 | Err(Some(msgs::OVERFLOW) | None) |
| 990 | ); |
| 991 | |
| 992 | // Validates that `validate_cast_and_convert_metadata` satisfies its own |
| 993 | // documented safety postconditions, and also a few other properties |
| 994 | // that aren't documented but we want to guarantee anyway. |
| 995 | fn validate_behavior( |
| 996 | (layout, addr, bytes_len, cast_type): (DstLayout, usize, usize, CastType), |
| 997 | ) { |
| 998 | if let Ok((elems, split_at)) = |
| 999 | layout.validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
| 1000 | { |
| 1001 | let (size_info, align) = (layout.size_info, layout.align); |
| 1002 | let debug_str = format!( |
| 1003 | "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?}) => ({}, {})" , |
| 1004 | size_info, align, addr, bytes_len, cast_type, elems, split_at |
| 1005 | ); |
| 1006 | |
| 1007 | // If this is a sized type (no trailing slice), then `elems` is |
| 1008 | // meaningless, but in practice we set it to 0. Callers are not |
| 1009 | // allowed to rely on this, but a lot of math is nicer if |
| 1010 | // they're able to, and some callers might accidentally do that. |
| 1011 | let sized = matches!(layout.size_info, SizeInfo::Sized { .. }); |
| 1012 | assert!(!(sized && elems != 0), "{}" , debug_str); |
| 1013 | |
| 1014 | let resulting_size = match layout.size_info { |
| 1015 | SizeInfo::Sized { size } => size, |
| 1016 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => { |
| 1017 | let padded_size = |elems| { |
| 1018 | let without_padding = offset + elems * elem_size; |
| 1019 | without_padding + util::padding_needed_for(without_padding, align) |
| 1020 | }; |
| 1021 | |
| 1022 | let resulting_size = padded_size(elems); |
| 1023 | // Test that `validate_cast_and_convert_metadata` |
| 1024 | // computed the largest possible value that fits in the |
| 1025 | // given range. |
| 1026 | assert!(padded_size(elems + 1) > bytes_len, "{}" , debug_str); |
| 1027 | resulting_size |
| 1028 | } |
| 1029 | }; |
| 1030 | |
| 1031 | // Test safety postconditions guaranteed by |
| 1032 | // `validate_cast_and_convert_metadata`. |
| 1033 | assert!(resulting_size <= bytes_len, "{}" , debug_str); |
| 1034 | match cast_type { |
| 1035 | CastType::Prefix => { |
| 1036 | assert_eq!(addr % align, 0, "{}" , debug_str); |
| 1037 | assert_eq!(resulting_size, split_at, "{}" , debug_str); |
| 1038 | } |
| 1039 | CastType::Suffix => { |
| 1040 | assert_eq!(split_at, bytes_len - resulting_size, "{}" , debug_str); |
| 1041 | assert_eq!((addr + split_at) % align, 0, "{}" , debug_str); |
| 1042 | } |
| 1043 | } |
| 1044 | } else { |
| 1045 | let min_size = match layout.size_info { |
| 1046 | SizeInfo::Sized { size } => size, |
| 1047 | SizeInfo::SliceDst(TrailingSliceLayout { offset, .. }) => { |
| 1048 | offset + util::padding_needed_for(offset, layout.align) |
| 1049 | } |
| 1050 | }; |
| 1051 | |
| 1052 | // If a cast is invalid, it is either because... |
| 1053 | // 1. there are insufficent bytes at the given region for type: |
| 1054 | let insufficient_bytes = bytes_len < min_size; |
| 1055 | // 2. performing the cast would misalign type: |
| 1056 | let base = match cast_type { |
| 1057 | CastType::Prefix => 0, |
| 1058 | CastType::Suffix => bytes_len, |
| 1059 | }; |
| 1060 | let misaligned = (base + addr) % layout.align != 0; |
| 1061 | |
| 1062 | assert!(insufficient_bytes || misaligned); |
| 1063 | } |
| 1064 | } |
| 1065 | |
| 1066 | let sizes = 0..8; |
| 1067 | let elem_sizes = 1..8; |
| 1068 | let size_infos = sizes |
| 1069 | .clone() |
| 1070 | .map(Into::<SizeInfo>::into) |
| 1071 | .chain(itertools::iproduct!(sizes, elem_sizes).map(Into::<SizeInfo>::into)); |
| 1072 | let layouts = itertools::iproduct!(size_infos, [1, 2, 4, 8, 16, 32]) |
| 1073 | .filter(|(size_info, align)| !matches!(size_info, SizeInfo::Sized { size } if size % align != 0)) |
| 1074 | .map(|(size_info, align)| layout(size_info, align)); |
| 1075 | itertools::iproduct!(layouts, 0..8, 0..8, [CastType::Prefix, CastType::Suffix]) |
| 1076 | .for_each(validate_behavior); |
| 1077 | } |
| 1078 | |
| 1079 | #[test ] |
| 1080 | #[cfg (__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)] |
| 1081 | fn test_validate_rust_layout() { |
| 1082 | use crate::util::testutil::*; |
| 1083 | use core::{ |
| 1084 | convert::TryInto as _, |
| 1085 | ptr::{self, NonNull}, |
| 1086 | }; |
| 1087 | |
| 1088 | // This test synthesizes pointers with various metadata and uses Rust's |
| 1089 | // built-in APIs to confirm that Rust makes decisions about type layout |
| 1090 | // which are consistent with what we believe is guaranteed by the |
| 1091 | // language. If this test fails, it doesn't just mean our code is wrong |
| 1092 | // - it means we're misunderstanding the language's guarantees. |
| 1093 | |
| 1094 | #[derive (Debug)] |
| 1095 | struct MacroArgs { |
| 1096 | offset: usize, |
| 1097 | align: NonZeroUsize, |
| 1098 | elem_size: Option<usize>, |
| 1099 | } |
| 1100 | |
| 1101 | /// # Safety |
| 1102 | /// |
| 1103 | /// `test` promises to only call `addr_of_slice_field` on a `NonNull<T>` |
| 1104 | /// which points to a valid `T`. |
| 1105 | /// |
| 1106 | /// `with_elems` must produce a pointer which points to a valid `T`. |
| 1107 | fn test<T: ?Sized, W: Fn(usize) -> NonNull<T>>( |
| 1108 | args: MacroArgs, |
| 1109 | with_elems: W, |
| 1110 | addr_of_slice_field: Option<fn(NonNull<T>) -> NonNull<u8>>, |
| 1111 | ) { |
| 1112 | let dst = args.elem_size.is_some(); |
| 1113 | let layout = { |
| 1114 | let size_info = match args.elem_size { |
| 1115 | Some(elem_size) => { |
| 1116 | SizeInfo::SliceDst(TrailingSliceLayout { offset: args.offset, elem_size }) |
| 1117 | } |
| 1118 | None => SizeInfo::Sized { |
| 1119 | // Rust only supports types whose sizes are a multiple |
| 1120 | // of their alignment. If the macro created a type like |
| 1121 | // this: |
| 1122 | // |
| 1123 | // #[repr(C, align(2))] |
| 1124 | // struct Foo([u8; 1]); |
| 1125 | // |
| 1126 | // ...then Rust will automatically round the type's size |
| 1127 | // up to 2. |
| 1128 | size: args.offset + util::padding_needed_for(args.offset, args.align), |
| 1129 | }, |
| 1130 | }; |
| 1131 | DstLayout { size_info, align: args.align } |
| 1132 | }; |
| 1133 | |
| 1134 | for elems in 0..128 { |
| 1135 | let ptr = with_elems(elems); |
| 1136 | |
| 1137 | if let Some(addr_of_slice_field) = addr_of_slice_field { |
| 1138 | let slc_field_ptr = addr_of_slice_field(ptr).as_ptr(); |
| 1139 | // SAFETY: Both `slc_field_ptr` and `ptr` are pointers to |
| 1140 | // the same valid Rust object. |
| 1141 | #[allow (clippy::incompatible_msrv)] |
| 1142 | // Work around https://github.com/rust-lang/rust-clippy/issues/12280 |
| 1143 | let offset: usize = |
| 1144 | unsafe { slc_field_ptr.byte_offset_from(ptr.as_ptr()).try_into().unwrap() }; |
| 1145 | assert_eq!(offset, args.offset); |
| 1146 | } |
| 1147 | |
| 1148 | // SAFETY: `ptr` points to a valid `T`. |
| 1149 | let (size, align) = unsafe { |
| 1150 | (mem::size_of_val_raw(ptr.as_ptr()), mem::align_of_val_raw(ptr.as_ptr())) |
| 1151 | }; |
| 1152 | |
| 1153 | // Avoid expensive allocation when running under Miri. |
| 1154 | let assert_msg = if !cfg!(miri) { |
| 1155 | format!(" \n{:?} \nsize:{}, align:{}" , args, size, align) |
| 1156 | } else { |
| 1157 | String::new() |
| 1158 | }; |
| 1159 | |
| 1160 | let without_padding = |
| 1161 | args.offset + args.elem_size.map(|elem_size| elems * elem_size).unwrap_or(0); |
| 1162 | assert!(size >= without_padding, "{}" , assert_msg); |
| 1163 | assert_eq!(align, args.align.get(), "{}" , assert_msg); |
| 1164 | |
| 1165 | // This encodes the most important part of the test: our |
| 1166 | // understanding of how Rust determines the layout of repr(C) |
| 1167 | // types. Sized repr(C) types are trivial, but DST types have |
| 1168 | // some subtlety. Note that: |
| 1169 | // - For sized types, `without_padding` is just the size of the |
| 1170 | // type that we constructed for `Foo`. Since we may have |
| 1171 | // requested a larger alignment, `Foo` may actually be larger |
| 1172 | // than this, hence `padding_needed_for`. |
| 1173 | // - For unsized types, `without_padding` is dynamically |
| 1174 | // computed from the offset, the element size, and element |
| 1175 | // count. We expect that the size of the object should be |
| 1176 | // `offset + elem_size * elems` rounded up to the next |
| 1177 | // alignment. |
| 1178 | let expected_size = |
| 1179 | without_padding + util::padding_needed_for(without_padding, args.align); |
| 1180 | assert_eq!(expected_size, size, "{}" , assert_msg); |
| 1181 | |
| 1182 | // For zero-sized element types, |
| 1183 | // `validate_cast_and_convert_metadata` just panics, so we skip |
| 1184 | // testing those types. |
| 1185 | if args.elem_size.map(|elem_size| elem_size > 0).unwrap_or(true) { |
| 1186 | let addr = ptr.addr().get(); |
| 1187 | let (got_elems, got_split_at) = layout |
| 1188 | .validate_cast_and_convert_metadata(addr, size, CastType::Prefix) |
| 1189 | .unwrap(); |
| 1190 | // Avoid expensive allocation when running under Miri. |
| 1191 | let assert_msg = if !cfg!(miri) { |
| 1192 | format!( |
| 1193 | "{} \nvalidate_cast_and_convert_metadata({}, {})" , |
| 1194 | assert_msg, addr, size, |
| 1195 | ) |
| 1196 | } else { |
| 1197 | String::new() |
| 1198 | }; |
| 1199 | assert_eq!(got_split_at, size, "{}" , assert_msg); |
| 1200 | if dst { |
| 1201 | assert!(got_elems >= elems, "{}" , assert_msg); |
| 1202 | if got_elems != elems { |
| 1203 | // If `validate_cast_and_convert_metadata` |
| 1204 | // returned more elements than `elems`, that |
| 1205 | // means that `elems` is not the maximum number |
| 1206 | // of elements that can fit in `size` - in other |
| 1207 | // words, there is enough padding at the end of |
| 1208 | // the value to fit at least one more element. |
| 1209 | // If we use this metadata to synthesize a |
| 1210 | // pointer, despite having a different element |
| 1211 | // count, we still expect it to have the same |
| 1212 | // size. |
| 1213 | let got_ptr = with_elems(got_elems); |
| 1214 | // SAFETY: `got_ptr` is a pointer to a valid `T`. |
| 1215 | let size_of_got_ptr = unsafe { mem::size_of_val_raw(got_ptr.as_ptr()) }; |
| 1216 | assert_eq!(size_of_got_ptr, size, "{}" , assert_msg); |
| 1217 | } |
| 1218 | } else { |
| 1219 | // For sized casts, the returned element value is |
| 1220 | // technically meaningless, and we don't guarantee any |
| 1221 | // particular value. In practice, it's always zero. |
| 1222 | assert_eq!(got_elems, 0, "{}" , assert_msg) |
| 1223 | } |
| 1224 | } |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | macro_rules! validate_against_rust { |
| 1229 | ($offset:literal, $align:literal $(, $elem_size:literal)?) => {{ |
| 1230 | #[repr(C, align($align))] |
| 1231 | struct Foo([u8; $offset]$(, [[u8; $elem_size]])?); |
| 1232 | |
| 1233 | let args = MacroArgs { |
| 1234 | offset: $offset, |
| 1235 | align: $align.try_into().unwrap(), |
| 1236 | elem_size: { |
| 1237 | #[allow(unused)] |
| 1238 | let ret = None::<usize>; |
| 1239 | $(let ret = Some($elem_size);)? |
| 1240 | ret |
| 1241 | } |
| 1242 | }; |
| 1243 | |
| 1244 | #[repr(C, align($align))] |
| 1245 | struct FooAlign; |
| 1246 | // Create an aligned buffer to use in order to synthesize |
| 1247 | // pointers to `Foo`. We don't ever load values from these |
| 1248 | // pointers - we just do arithmetic on them - so having a "real" |
| 1249 | // block of memory as opposed to a validly-aligned-but-dangling |
| 1250 | // pointer is only necessary to make Miri happy since we run it |
| 1251 | // with "strict provenance" checking enabled. |
| 1252 | let aligned_buf = Align::<_, FooAlign>::new([0u8; 1024]); |
| 1253 | let with_elems = |elems| { |
| 1254 | let slc = NonNull::slice_from_raw_parts(NonNull::from(&aligned_buf.t), elems); |
| 1255 | #[allow(clippy::as_conversions)] |
| 1256 | NonNull::new(slc.as_ptr() as *mut Foo).unwrap() |
| 1257 | }; |
| 1258 | let addr_of_slice_field = { |
| 1259 | #[allow(unused)] |
| 1260 | let f = None::<fn(NonNull<Foo>) -> NonNull<u8>>; |
| 1261 | $( |
| 1262 | // SAFETY: `test` promises to only call `f` with a `ptr` |
| 1263 | // to a valid `Foo`. |
| 1264 | let f: Option<fn(NonNull<Foo>) -> NonNull<u8>> = Some(|ptr: NonNull<Foo>| unsafe { |
| 1265 | NonNull::new(ptr::addr_of_mut!((*ptr.as_ptr()).1)).unwrap().cast::<u8>() |
| 1266 | }); |
| 1267 | let _ = $elem_size; |
| 1268 | )? |
| 1269 | f |
| 1270 | }; |
| 1271 | |
| 1272 | test::<Foo, _>(args, with_elems, addr_of_slice_field); |
| 1273 | }}; |
| 1274 | } |
| 1275 | |
| 1276 | // Every permutation of: |
| 1277 | // - offset in [0, 4] |
| 1278 | // - align in [1, 16] |
| 1279 | // - elem_size in [0, 4] (plus no elem_size) |
| 1280 | validate_against_rust!(0, 1); |
| 1281 | validate_against_rust!(0, 1, 0); |
| 1282 | validate_against_rust!(0, 1, 1); |
| 1283 | validate_against_rust!(0, 1, 2); |
| 1284 | validate_against_rust!(0, 1, 3); |
| 1285 | validate_against_rust!(0, 1, 4); |
| 1286 | validate_against_rust!(0, 2); |
| 1287 | validate_against_rust!(0, 2, 0); |
| 1288 | validate_against_rust!(0, 2, 1); |
| 1289 | validate_against_rust!(0, 2, 2); |
| 1290 | validate_against_rust!(0, 2, 3); |
| 1291 | validate_against_rust!(0, 2, 4); |
| 1292 | validate_against_rust!(0, 4); |
| 1293 | validate_against_rust!(0, 4, 0); |
| 1294 | validate_against_rust!(0, 4, 1); |
| 1295 | validate_against_rust!(0, 4, 2); |
| 1296 | validate_against_rust!(0, 4, 3); |
| 1297 | validate_against_rust!(0, 4, 4); |
| 1298 | validate_against_rust!(0, 8); |
| 1299 | validate_against_rust!(0, 8, 0); |
| 1300 | validate_against_rust!(0, 8, 1); |
| 1301 | validate_against_rust!(0, 8, 2); |
| 1302 | validate_against_rust!(0, 8, 3); |
| 1303 | validate_against_rust!(0, 8, 4); |
| 1304 | validate_against_rust!(0, 16); |
| 1305 | validate_against_rust!(0, 16, 0); |
| 1306 | validate_against_rust!(0, 16, 1); |
| 1307 | validate_against_rust!(0, 16, 2); |
| 1308 | validate_against_rust!(0, 16, 3); |
| 1309 | validate_against_rust!(0, 16, 4); |
| 1310 | validate_against_rust!(1, 1); |
| 1311 | validate_against_rust!(1, 1, 0); |
| 1312 | validate_against_rust!(1, 1, 1); |
| 1313 | validate_against_rust!(1, 1, 2); |
| 1314 | validate_against_rust!(1, 1, 3); |
| 1315 | validate_against_rust!(1, 1, 4); |
| 1316 | validate_against_rust!(1, 2); |
| 1317 | validate_against_rust!(1, 2, 0); |
| 1318 | validate_against_rust!(1, 2, 1); |
| 1319 | validate_against_rust!(1, 2, 2); |
| 1320 | validate_against_rust!(1, 2, 3); |
| 1321 | validate_against_rust!(1, 2, 4); |
| 1322 | validate_against_rust!(1, 4); |
| 1323 | validate_against_rust!(1, 4, 0); |
| 1324 | validate_against_rust!(1, 4, 1); |
| 1325 | validate_against_rust!(1, 4, 2); |
| 1326 | validate_against_rust!(1, 4, 3); |
| 1327 | validate_against_rust!(1, 4, 4); |
| 1328 | validate_against_rust!(1, 8); |
| 1329 | validate_against_rust!(1, 8, 0); |
| 1330 | validate_against_rust!(1, 8, 1); |
| 1331 | validate_against_rust!(1, 8, 2); |
| 1332 | validate_against_rust!(1, 8, 3); |
| 1333 | validate_against_rust!(1, 8, 4); |
| 1334 | validate_against_rust!(1, 16); |
| 1335 | validate_against_rust!(1, 16, 0); |
| 1336 | validate_against_rust!(1, 16, 1); |
| 1337 | validate_against_rust!(1, 16, 2); |
| 1338 | validate_against_rust!(1, 16, 3); |
| 1339 | validate_against_rust!(1, 16, 4); |
| 1340 | validate_against_rust!(2, 1); |
| 1341 | validate_against_rust!(2, 1, 0); |
| 1342 | validate_against_rust!(2, 1, 1); |
| 1343 | validate_against_rust!(2, 1, 2); |
| 1344 | validate_against_rust!(2, 1, 3); |
| 1345 | validate_against_rust!(2, 1, 4); |
| 1346 | validate_against_rust!(2, 2); |
| 1347 | validate_against_rust!(2, 2, 0); |
| 1348 | validate_against_rust!(2, 2, 1); |
| 1349 | validate_against_rust!(2, 2, 2); |
| 1350 | validate_against_rust!(2, 2, 3); |
| 1351 | validate_against_rust!(2, 2, 4); |
| 1352 | validate_against_rust!(2, 4); |
| 1353 | validate_against_rust!(2, 4, 0); |
| 1354 | validate_against_rust!(2, 4, 1); |
| 1355 | validate_against_rust!(2, 4, 2); |
| 1356 | validate_against_rust!(2, 4, 3); |
| 1357 | validate_against_rust!(2, 4, 4); |
| 1358 | validate_against_rust!(2, 8); |
| 1359 | validate_against_rust!(2, 8, 0); |
| 1360 | validate_against_rust!(2, 8, 1); |
| 1361 | validate_against_rust!(2, 8, 2); |
| 1362 | validate_against_rust!(2, 8, 3); |
| 1363 | validate_against_rust!(2, 8, 4); |
| 1364 | validate_against_rust!(2, 16); |
| 1365 | validate_against_rust!(2, 16, 0); |
| 1366 | validate_against_rust!(2, 16, 1); |
| 1367 | validate_against_rust!(2, 16, 2); |
| 1368 | validate_against_rust!(2, 16, 3); |
| 1369 | validate_against_rust!(2, 16, 4); |
| 1370 | validate_against_rust!(3, 1); |
| 1371 | validate_against_rust!(3, 1, 0); |
| 1372 | validate_against_rust!(3, 1, 1); |
| 1373 | validate_against_rust!(3, 1, 2); |
| 1374 | validate_against_rust!(3, 1, 3); |
| 1375 | validate_against_rust!(3, 1, 4); |
| 1376 | validate_against_rust!(3, 2); |
| 1377 | validate_against_rust!(3, 2, 0); |
| 1378 | validate_against_rust!(3, 2, 1); |
| 1379 | validate_against_rust!(3, 2, 2); |
| 1380 | validate_against_rust!(3, 2, 3); |
| 1381 | validate_against_rust!(3, 2, 4); |
| 1382 | validate_against_rust!(3, 4); |
| 1383 | validate_against_rust!(3, 4, 0); |
| 1384 | validate_against_rust!(3, 4, 1); |
| 1385 | validate_against_rust!(3, 4, 2); |
| 1386 | validate_against_rust!(3, 4, 3); |
| 1387 | validate_against_rust!(3, 4, 4); |
| 1388 | validate_against_rust!(3, 8); |
| 1389 | validate_against_rust!(3, 8, 0); |
| 1390 | validate_against_rust!(3, 8, 1); |
| 1391 | validate_against_rust!(3, 8, 2); |
| 1392 | validate_against_rust!(3, 8, 3); |
| 1393 | validate_against_rust!(3, 8, 4); |
| 1394 | validate_against_rust!(3, 16); |
| 1395 | validate_against_rust!(3, 16, 0); |
| 1396 | validate_against_rust!(3, 16, 1); |
| 1397 | validate_against_rust!(3, 16, 2); |
| 1398 | validate_against_rust!(3, 16, 3); |
| 1399 | validate_against_rust!(3, 16, 4); |
| 1400 | validate_against_rust!(4, 1); |
| 1401 | validate_against_rust!(4, 1, 0); |
| 1402 | validate_against_rust!(4, 1, 1); |
| 1403 | validate_against_rust!(4, 1, 2); |
| 1404 | validate_against_rust!(4, 1, 3); |
| 1405 | validate_against_rust!(4, 1, 4); |
| 1406 | validate_against_rust!(4, 2); |
| 1407 | validate_against_rust!(4, 2, 0); |
| 1408 | validate_against_rust!(4, 2, 1); |
| 1409 | validate_against_rust!(4, 2, 2); |
| 1410 | validate_against_rust!(4, 2, 3); |
| 1411 | validate_against_rust!(4, 2, 4); |
| 1412 | validate_against_rust!(4, 4); |
| 1413 | validate_against_rust!(4, 4, 0); |
| 1414 | validate_against_rust!(4, 4, 1); |
| 1415 | validate_against_rust!(4, 4, 2); |
| 1416 | validate_against_rust!(4, 4, 3); |
| 1417 | validate_against_rust!(4, 4, 4); |
| 1418 | validate_against_rust!(4, 8); |
| 1419 | validate_against_rust!(4, 8, 0); |
| 1420 | validate_against_rust!(4, 8, 1); |
| 1421 | validate_against_rust!(4, 8, 2); |
| 1422 | validate_against_rust!(4, 8, 3); |
| 1423 | validate_against_rust!(4, 8, 4); |
| 1424 | validate_against_rust!(4, 16); |
| 1425 | validate_against_rust!(4, 16, 0); |
| 1426 | validate_against_rust!(4, 16, 1); |
| 1427 | validate_against_rust!(4, 16, 2); |
| 1428 | validate_against_rust!(4, 16, 3); |
| 1429 | validate_against_rust!(4, 16, 4); |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | #[cfg (kani)] |
| 1434 | mod proofs { |
| 1435 | use core::alloc::Layout; |
| 1436 | |
| 1437 | use super::*; |
| 1438 | |
| 1439 | impl kani::Arbitrary for DstLayout { |
| 1440 | fn any() -> Self { |
| 1441 | let align: NonZeroUsize = kani::any(); |
| 1442 | let size_info: SizeInfo = kani::any(); |
| 1443 | |
| 1444 | kani::assume(align.is_power_of_two()); |
| 1445 | kani::assume(align < DstLayout::THEORETICAL_MAX_ALIGN); |
| 1446 | |
| 1447 | // For testing purposes, we most care about instantiations of |
| 1448 | // `DstLayout` that can correspond to actual Rust types. We use |
| 1449 | // `Layout` to verify that our `DstLayout` satisfies the validity |
| 1450 | // conditions of Rust layouts. |
| 1451 | kani::assume( |
| 1452 | match size_info { |
| 1453 | SizeInfo::Sized { size } => Layout::from_size_align(size, align.get()), |
| 1454 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size: _ }) => { |
| 1455 | // `SliceDst`` cannot encode an exact size, but we know |
| 1456 | // it is at least `offset` bytes. |
| 1457 | Layout::from_size_align(offset, align.get()) |
| 1458 | } |
| 1459 | } |
| 1460 | .is_ok(), |
| 1461 | ); |
| 1462 | |
| 1463 | Self { align: align, size_info: size_info } |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | impl kani::Arbitrary for SizeInfo { |
| 1468 | fn any() -> Self { |
| 1469 | let is_sized: bool = kani::any(); |
| 1470 | |
| 1471 | match is_sized { |
| 1472 | true => { |
| 1473 | let size: usize = kani::any(); |
| 1474 | |
| 1475 | kani::assume(size <= isize::MAX as _); |
| 1476 | |
| 1477 | SizeInfo::Sized { size } |
| 1478 | } |
| 1479 | false => SizeInfo::SliceDst(kani::any()), |
| 1480 | } |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | impl kani::Arbitrary for TrailingSliceLayout { |
| 1485 | fn any() -> Self { |
| 1486 | let elem_size: usize = kani::any(); |
| 1487 | let offset: usize = kani::any(); |
| 1488 | |
| 1489 | kani::assume(elem_size < isize::MAX as _); |
| 1490 | kani::assume(offset < isize::MAX as _); |
| 1491 | |
| 1492 | TrailingSliceLayout { elem_size, offset } |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | #[kani::proof] |
| 1497 | fn prove_dst_layout_extend() { |
| 1498 | use crate::util::{max, min, padding_needed_for}; |
| 1499 | |
| 1500 | let base: DstLayout = kani::any(); |
| 1501 | let field: DstLayout = kani::any(); |
| 1502 | let packed: Option<NonZeroUsize> = kani::any(); |
| 1503 | |
| 1504 | if let Some(max_align) = packed { |
| 1505 | kani::assume(max_align.is_power_of_two()); |
| 1506 | kani::assume(base.align <= max_align); |
| 1507 | } |
| 1508 | |
| 1509 | // The base can only be extended if it's sized. |
| 1510 | kani::assume(matches!(base.size_info, SizeInfo::Sized { .. })); |
| 1511 | let base_size = if let SizeInfo::Sized { size } = base.size_info { |
| 1512 | size |
| 1513 | } else { |
| 1514 | unreachable!(); |
| 1515 | }; |
| 1516 | |
| 1517 | // Under the above conditions, `DstLayout::extend` will not panic. |
| 1518 | let composite = base.extend(field, packed); |
| 1519 | |
| 1520 | // The field's alignment is clamped by `max_align` (i.e., the |
| 1521 | // `packed` attribute, if any) [1]. |
| 1522 | // |
| 1523 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| 1524 | // |
| 1525 | // The alignments of each field, for the purpose of positioning |
| 1526 | // fields, is the smaller of the specified alignment and the |
| 1527 | // alignment of the field's type. |
| 1528 | let field_align = min(field.align, packed.unwrap_or(DstLayout::THEORETICAL_MAX_ALIGN)); |
| 1529 | |
| 1530 | // The struct's alignment is the maximum of its previous alignment and |
| 1531 | // `field_align`. |
| 1532 | assert_eq!(composite.align, max(base.align, field_align)); |
| 1533 | |
| 1534 | // Compute the minimum amount of inter-field padding needed to |
| 1535 | // satisfy the field's alignment, and offset of the trailing field. |
| 1536 | // [1] |
| 1537 | // |
| 1538 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| 1539 | // |
| 1540 | // Inter-field padding is guaranteed to be the minimum required in |
| 1541 | // order to satisfy each field's (possibly altered) alignment. |
| 1542 | let padding = padding_needed_for(base_size, field_align); |
| 1543 | let offset = base_size + padding; |
| 1544 | |
| 1545 | // For testing purposes, we'll also construct `alloc::Layout` |
| 1546 | // stand-ins for `DstLayout`, and show that `extend` behaves |
| 1547 | // comparably on both types. |
| 1548 | let base_analog = Layout::from_size_align(base_size, base.align.get()).unwrap(); |
| 1549 | |
| 1550 | match field.size_info { |
| 1551 | SizeInfo::Sized { size: field_size } => { |
| 1552 | if let SizeInfo::Sized { size: composite_size } = composite.size_info { |
| 1553 | // If the trailing field is sized, the resulting layout will |
| 1554 | // be sized. Its size will be the sum of the preceding |
| 1555 | // layout, the size of the new field, and the size of |
| 1556 | // inter-field padding between the two. |
| 1557 | assert_eq!(composite_size, offset + field_size); |
| 1558 | |
| 1559 | let field_analog = |
| 1560 | Layout::from_size_align(field_size, field_align.get()).unwrap(); |
| 1561 | |
| 1562 | if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
| 1563 | { |
| 1564 | assert_eq!(actual_offset, offset); |
| 1565 | assert_eq!(actual_composite.size(), composite_size); |
| 1566 | assert_eq!(actual_composite.align(), composite.align.get()); |
| 1567 | } else { |
| 1568 | // An error here reflects that composite of `base` |
| 1569 | // and `field` cannot correspond to a real Rust type |
| 1570 | // fragment, because such a fragment would violate |
| 1571 | // the basic invariants of a valid Rust layout. At |
| 1572 | // the time of writing, `DstLayout` is a little more |
| 1573 | // permissive than `Layout`, so we don't assert |
| 1574 | // anything in this branch (e.g., unreachability). |
| 1575 | } |
| 1576 | } else { |
| 1577 | panic!("The composite of two sized layouts must be sized." ) |
| 1578 | } |
| 1579 | } |
| 1580 | SizeInfo::SliceDst(TrailingSliceLayout { |
| 1581 | offset: field_offset, |
| 1582 | elem_size: field_elem_size, |
| 1583 | }) => { |
| 1584 | if let SizeInfo::SliceDst(TrailingSliceLayout { |
| 1585 | offset: composite_offset, |
| 1586 | elem_size: composite_elem_size, |
| 1587 | }) = composite.size_info |
| 1588 | { |
| 1589 | // The offset of the trailing slice component is the sum |
| 1590 | // of the offset of the trailing field and the trailing |
| 1591 | // slice offset within that field. |
| 1592 | assert_eq!(composite_offset, offset + field_offset); |
| 1593 | // The elem size is unchanged. |
| 1594 | assert_eq!(composite_elem_size, field_elem_size); |
| 1595 | |
| 1596 | let field_analog = |
| 1597 | Layout::from_size_align(field_offset, field_align.get()).unwrap(); |
| 1598 | |
| 1599 | if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
| 1600 | { |
| 1601 | assert_eq!(actual_offset, offset); |
| 1602 | assert_eq!(actual_composite.size(), composite_offset); |
| 1603 | assert_eq!(actual_composite.align(), composite.align.get()); |
| 1604 | } else { |
| 1605 | // An error here reflects that composite of `base` |
| 1606 | // and `field` cannot correspond to a real Rust type |
| 1607 | // fragment, because such a fragment would violate |
| 1608 | // the basic invariants of a valid Rust layout. At |
| 1609 | // the time of writing, `DstLayout` is a little more |
| 1610 | // permissive than `Layout`, so we don't assert |
| 1611 | // anything in this branch (e.g., unreachability). |
| 1612 | } |
| 1613 | } else { |
| 1614 | panic!("The extension of a layout with a DST must result in a DST." ) |
| 1615 | } |
| 1616 | } |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | #[kani::proof] |
| 1621 | #[kani::should_panic] |
| 1622 | fn prove_dst_layout_extend_dst_panics() { |
| 1623 | let base: DstLayout = kani::any(); |
| 1624 | let field: DstLayout = kani::any(); |
| 1625 | let packed: Option<NonZeroUsize> = kani::any(); |
| 1626 | |
| 1627 | if let Some(max_align) = packed { |
| 1628 | kani::assume(max_align.is_power_of_two()); |
| 1629 | kani::assume(base.align <= max_align); |
| 1630 | } |
| 1631 | |
| 1632 | kani::assume(matches!(base.size_info, SizeInfo::SliceDst(..))); |
| 1633 | |
| 1634 | let _ = base.extend(field, packed); |
| 1635 | } |
| 1636 | |
| 1637 | #[kani::proof] |
| 1638 | fn prove_dst_layout_pad_to_align() { |
| 1639 | use crate::util::padding_needed_for; |
| 1640 | |
| 1641 | let layout: DstLayout = kani::any(); |
| 1642 | |
| 1643 | let padded: DstLayout = layout.pad_to_align(); |
| 1644 | |
| 1645 | // Calling `pad_to_align` does not alter the `DstLayout`'s alignment. |
| 1646 | assert_eq!(padded.align, layout.align); |
| 1647 | |
| 1648 | if let SizeInfo::Sized { size: unpadded_size } = layout.size_info { |
| 1649 | if let SizeInfo::Sized { size: padded_size } = padded.size_info { |
| 1650 | // If the layout is sized, it will remain sized after padding is |
| 1651 | // added. Its sum will be its unpadded size and the size of the |
| 1652 | // trailing padding needed to satisfy its alignment |
| 1653 | // requirements. |
| 1654 | let padding = padding_needed_for(unpadded_size, layout.align); |
| 1655 | assert_eq!(padded_size, unpadded_size + padding); |
| 1656 | |
| 1657 | // Prove that calling `DstLayout::pad_to_align` behaves |
| 1658 | // identically to `Layout::pad_to_align`. |
| 1659 | let layout_analog = |
| 1660 | Layout::from_size_align(unpadded_size, layout.align.get()).unwrap(); |
| 1661 | let padded_analog = layout_analog.pad_to_align(); |
| 1662 | assert_eq!(padded_analog.align(), layout.align.get()); |
| 1663 | assert_eq!(padded_analog.size(), padded_size); |
| 1664 | } else { |
| 1665 | panic!("The padding of a sized layout must result in a sized layout." ) |
| 1666 | } |
| 1667 | } else { |
| 1668 | // If the layout is a DST, padding cannot be statically added. |
| 1669 | assert_eq!(padded.size_info, layout.size_info); |
| 1670 | } |
| 1671 | } |
| 1672 | } |
| 1673 | |