1 | // Copyright 2024 The Fuchsia Authors |
2 | // |
3 | // Licensed under the 2-Clause BSD License <LICENSE-BSD or |
4 | // https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0 |
5 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
6 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
7 | // This file may not be copied, modified, or distributed except according to |
8 | // those terms. |
9 | |
10 | use core::{mem, num::NonZeroUsize}; |
11 | |
12 | use crate::util; |
13 | |
14 | /// The target pointer width, counted in bits. |
15 | const POINTER_WIDTH_BITS: usize = mem::size_of::<usize>() * 8; |
16 | |
17 | /// The layout of a type which might be dynamically-sized. |
18 | /// |
19 | /// `DstLayout` describes the layout of sized types, slice types, and "slice |
20 | /// DSTs" - ie, those that are known by the type system to have a trailing slice |
21 | /// (as distinguished from `dyn Trait` types - such types *might* have a |
22 | /// trailing slice type, but the type system isn't aware of it). |
23 | /// |
24 | /// Note that `DstLayout` does not have any internal invariants, so no guarantee |
25 | /// is made that a `DstLayout` conforms to any of Rust's requirements regarding |
26 | /// the layout of real Rust types or instances of types. |
27 | #[doc (hidden)] |
28 | #[allow (missing_debug_implementations, missing_copy_implementations)] |
29 | #[cfg_attr (any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))] |
30 | pub struct DstLayout { |
31 | pub(crate) align: NonZeroUsize, |
32 | pub(crate) size_info: SizeInfo, |
33 | } |
34 | |
35 | #[cfg_attr (any(kani, test), derive(Debug, PartialEq, Eq))] |
36 | #[derive (Copy, Clone)] |
37 | pub(crate) enum SizeInfo<E = usize> { |
38 | Sized { size: usize }, |
39 | SliceDst(TrailingSliceLayout<E>), |
40 | } |
41 | |
42 | #[cfg_attr (any(kani, test), derive(Debug, PartialEq, Eq))] |
43 | #[derive (Copy, Clone)] |
44 | pub(crate) struct TrailingSliceLayout<E = usize> { |
45 | // The offset of the first byte of the trailing slice field. Note that this |
46 | // is NOT the same as the minimum size of the type. For example, consider |
47 | // the following type: |
48 | // |
49 | // struct Foo { |
50 | // a: u16, |
51 | // b: u8, |
52 | // c: [u8], |
53 | // } |
54 | // |
55 | // In `Foo`, `c` is at byte offset 3. When `c.len() == 0`, `c` is followed |
56 | // by a padding byte. |
57 | pub(crate) offset: usize, |
58 | // The size of the element type of the trailing slice field. |
59 | pub(crate) elem_size: E, |
60 | } |
61 | |
62 | impl SizeInfo { |
63 | /// Attempts to create a `SizeInfo` from `Self` in which `elem_size` is a |
64 | /// `NonZeroUsize`. If `elem_size` is 0, returns `None`. |
65 | #[allow (unused)] |
66 | const fn try_to_nonzero_elem_size(&self) -> Option<SizeInfo<NonZeroUsize>> { |
67 | Some(match *self { |
68 | SizeInfo::Sized { size: usize } => SizeInfo::Sized { size }, |
69 | SizeInfo::SliceDst(TrailingSliceLayout { offset: usize, elem_size: usize }) => { |
70 | if let Some(elem_size: NonZero) = NonZeroUsize::new(elem_size) { |
71 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) |
72 | } else { |
73 | return None; |
74 | } |
75 | } |
76 | }) |
77 | } |
78 | } |
79 | |
80 | #[doc (hidden)] |
81 | #[derive (Copy, Clone)] |
82 | #[cfg_attr (test, derive(Debug))] |
83 | #[allow (missing_debug_implementations)] |
84 | pub enum CastType { |
85 | Prefix, |
86 | Suffix, |
87 | } |
88 | |
89 | #[cfg_attr (test, derive(Debug))] |
90 | pub(crate) enum MetadataCastError { |
91 | Alignment, |
92 | Size, |
93 | } |
94 | |
95 | impl DstLayout { |
96 | /// The minimum possible alignment of a type. |
97 | const MIN_ALIGN: NonZeroUsize = match NonZeroUsize::new(1) { |
98 | Some(min_align) => min_align, |
99 | None => const_unreachable!(), |
100 | }; |
101 | |
102 | /// The maximum theoretic possible alignment of a type. |
103 | /// |
104 | /// For compatibility with future Rust versions, this is defined as the |
105 | /// maximum power-of-two that fits into a `usize`. See also |
106 | /// [`DstLayout::CURRENT_MAX_ALIGN`]. |
107 | pub(crate) const THEORETICAL_MAX_ALIGN: NonZeroUsize = |
108 | match NonZeroUsize::new(1 << (POINTER_WIDTH_BITS - 1)) { |
109 | Some(max_align) => max_align, |
110 | None => const_unreachable!(), |
111 | }; |
112 | |
113 | /// The current, documented max alignment of a type \[1\]. |
114 | /// |
115 | /// \[1\] Per <https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers>: |
116 | /// |
117 | /// The alignment value must be a power of two from 1 up to |
118 | /// 2<sup>29</sup>. |
119 | #[cfg (not(kani))] |
120 | #[cfg (not(target_pointer_width = "16" ))] |
121 | pub(crate) const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 28) { |
122 | Some(max_align) => max_align, |
123 | None => const_unreachable!(), |
124 | }; |
125 | |
126 | #[cfg (not(kani))] |
127 | #[cfg (target_pointer_width = "16" )] |
128 | pub(crate) const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 15) { |
129 | Some(max_align) => max_align, |
130 | None => const_unreachable!(), |
131 | }; |
132 | |
133 | /// Constructs a `DstLayout` for a zero-sized type with `repr_align` |
134 | /// alignment (or 1). If `repr_align` is provided, then it must be a power |
135 | /// of two. |
136 | /// |
137 | /// # Panics |
138 | /// |
139 | /// This function panics if the supplied `repr_align` is not a power of two. |
140 | /// |
141 | /// # Safety |
142 | /// |
143 | /// Unsafe code may assume that the contract of this function is satisfied. |
144 | #[doc (hidden)] |
145 | #[must_use ] |
146 | #[inline ] |
147 | pub const fn new_zst(repr_align: Option<NonZeroUsize>) -> DstLayout { |
148 | let align = match repr_align { |
149 | Some(align) => align, |
150 | None => Self::MIN_ALIGN, |
151 | }; |
152 | |
153 | const_assert!(align.get().is_power_of_two()); |
154 | |
155 | DstLayout { align, size_info: SizeInfo::Sized { size: 0 } } |
156 | } |
157 | |
158 | /// Constructs a `DstLayout` which describes `T`. |
159 | /// |
160 | /// # Safety |
161 | /// |
162 | /// Unsafe code may assume that `DstLayout` is the correct layout for `T`. |
163 | #[doc (hidden)] |
164 | #[must_use ] |
165 | #[inline ] |
166 | pub const fn for_type<T>() -> DstLayout { |
167 | // SAFETY: `align` is correct by construction. `T: Sized`, and so it is |
168 | // sound to initialize `size_info` to `SizeInfo::Sized { size }`; the |
169 | // `size` field is also correct by construction. |
170 | DstLayout { |
171 | align: match NonZeroUsize::new(mem::align_of::<T>()) { |
172 | Some(align) => align, |
173 | None => const_unreachable!(), |
174 | }, |
175 | size_info: SizeInfo::Sized { size: mem::size_of::<T>() }, |
176 | } |
177 | } |
178 | |
179 | /// Constructs a `DstLayout` which describes `[T]`. |
180 | /// |
181 | /// # Safety |
182 | /// |
183 | /// Unsafe code may assume that `DstLayout` is the correct layout for `[T]`. |
184 | pub(crate) const fn for_slice<T>() -> DstLayout { |
185 | // SAFETY: The alignment of a slice is equal to the alignment of its |
186 | // element type, and so `align` is initialized correctly. |
187 | // |
188 | // Since this is just a slice type, there is no offset between the |
189 | // beginning of the type and the beginning of the slice, so it is |
190 | // correct to set `offset: 0`. The `elem_size` is correct by |
191 | // construction. Since `[T]` is a (degenerate case of a) slice DST, it |
192 | // is correct to initialize `size_info` to `SizeInfo::SliceDst`. |
193 | DstLayout { |
194 | align: match NonZeroUsize::new(mem::align_of::<T>()) { |
195 | Some(align) => align, |
196 | None => const_unreachable!(), |
197 | }, |
198 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
199 | offset: 0, |
200 | elem_size: mem::size_of::<T>(), |
201 | }), |
202 | } |
203 | } |
204 | |
205 | /// Like `Layout::extend`, this creates a layout that describes a record |
206 | /// whose layout consists of `self` followed by `next` that includes the |
207 | /// necessary inter-field padding, but not any trailing padding. |
208 | /// |
209 | /// In order to match the layout of a `#[repr(C)]` struct, this method |
210 | /// should be invoked for each field in declaration order. To add trailing |
211 | /// padding, call `DstLayout::pad_to_align` after extending the layout for |
212 | /// all fields. If `self` corresponds to a type marked with |
213 | /// `repr(packed(N))`, then `repr_packed` should be set to `Some(N)`, |
214 | /// otherwise `None`. |
215 | /// |
216 | /// This method cannot be used to match the layout of a record with the |
217 | /// default representation, as that representation is mostly unspecified. |
218 | /// |
219 | /// # Safety |
220 | /// |
221 | /// If a (potentially hypothetical) valid `repr(C)` Rust type begins with |
222 | /// fields whose layout are `self`, and those fields are immediately |
223 | /// followed by a field whose layout is `field`, then unsafe code may rely |
224 | /// on `self.extend(field, repr_packed)` producing a layout that correctly |
225 | /// encompasses those two components. |
226 | /// |
227 | /// We make no guarantees to the behavior of this method if these fragments |
228 | /// cannot appear in a valid Rust type (e.g., the concatenation of the |
229 | /// layouts would lead to a size larger than `isize::MAX`). |
230 | #[doc (hidden)] |
231 | #[must_use ] |
232 | #[inline ] |
233 | pub const fn extend(self, field: DstLayout, repr_packed: Option<NonZeroUsize>) -> Self { |
234 | use util::{max, min, padding_needed_for}; |
235 | |
236 | // If `repr_packed` is `None`, there are no alignment constraints, and |
237 | // the value can be defaulted to `THEORETICAL_MAX_ALIGN`. |
238 | let max_align = match repr_packed { |
239 | Some(max_align) => max_align, |
240 | None => Self::THEORETICAL_MAX_ALIGN, |
241 | }; |
242 | |
243 | const_assert!(max_align.get().is_power_of_two()); |
244 | |
245 | // We use Kani to prove that this method is robust to future increases |
246 | // in Rust's maximum allowed alignment. However, if such a change ever |
247 | // actually occurs, we'd like to be notified via assertion failures. |
248 | #[cfg (not(kani))] |
249 | { |
250 | const_debug_assert!(self.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
251 | const_debug_assert!(field.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
252 | if let Some(repr_packed) = repr_packed { |
253 | const_debug_assert!(repr_packed.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
254 | } |
255 | } |
256 | |
257 | // The field's alignment is clamped by `repr_packed` (i.e., the |
258 | // `repr(packed(N))` attribute, if any) [1]. |
259 | // |
260 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
261 | // |
262 | // The alignments of each field, for the purpose of positioning |
263 | // fields, is the smaller of the specified alignment and the alignment |
264 | // of the field's type. |
265 | let field_align = min(field.align, max_align); |
266 | |
267 | // The struct's alignment is the maximum of its previous alignment and |
268 | // `field_align`. |
269 | let align = max(self.align, field_align); |
270 | |
271 | let size_info = match self.size_info { |
272 | // If the layout is already a DST, we panic; DSTs cannot be extended |
273 | // with additional fields. |
274 | SizeInfo::SliceDst(..) => const_panic!("Cannot extend a DST with additional fields." ), |
275 | |
276 | SizeInfo::Sized { size: preceding_size } => { |
277 | // Compute the minimum amount of inter-field padding needed to |
278 | // satisfy the field's alignment, and offset of the trailing |
279 | // field. [1] |
280 | // |
281 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
282 | // |
283 | // Inter-field padding is guaranteed to be the minimum |
284 | // required in order to satisfy each field's (possibly |
285 | // altered) alignment. |
286 | let padding = padding_needed_for(preceding_size, field_align); |
287 | |
288 | // This will not panic (and is proven to not panic, with Kani) |
289 | // if the layout components can correspond to a leading layout |
290 | // fragment of a valid Rust type, but may panic otherwise (e.g., |
291 | // combining or aligning the components would create a size |
292 | // exceeding `isize::MAX`). |
293 | let offset = match preceding_size.checked_add(padding) { |
294 | Some(offset) => offset, |
295 | None => const_panic!("Adding padding to `self`'s size overflows `usize`." ), |
296 | }; |
297 | |
298 | match field.size_info { |
299 | SizeInfo::Sized { size: field_size } => { |
300 | // If the trailing field is sized, the resulting layout |
301 | // will be sized. Its size will be the sum of the |
302 | // preceeding layout, the size of the new field, and the |
303 | // size of inter-field padding between the two. |
304 | // |
305 | // This will not panic (and is proven with Kani to not |
306 | // panic) if the layout components can correspond to a |
307 | // leading layout fragment of a valid Rust type, but may |
308 | // panic otherwise (e.g., combining or aligning the |
309 | // components would create a size exceeding |
310 | // `usize::MAX`). |
311 | let size = match offset.checked_add(field_size) { |
312 | Some(size) => size, |
313 | None => const_panic!("`field` cannot be appended without the total size overflowing `usize`" ), |
314 | }; |
315 | SizeInfo::Sized { size } |
316 | } |
317 | SizeInfo::SliceDst(TrailingSliceLayout { |
318 | offset: trailing_offset, |
319 | elem_size, |
320 | }) => { |
321 | // If the trailing field is dynamically sized, so too |
322 | // will the resulting layout. The offset of the trailing |
323 | // slice component is the sum of the offset of the |
324 | // trailing field and the trailing slice offset within |
325 | // that field. |
326 | // |
327 | // This will not panic (and is proven with Kani to not |
328 | // panic) if the layout components can correspond to a |
329 | // leading layout fragment of a valid Rust type, but may |
330 | // panic otherwise (e.g., combining or aligning the |
331 | // components would create a size exceeding |
332 | // `usize::MAX`). |
333 | let offset = match offset.checked_add(trailing_offset) { |
334 | Some(offset) => offset, |
335 | None => const_panic!("`field` cannot be appended without the total size overflowing `usize`" ), |
336 | }; |
337 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) |
338 | } |
339 | } |
340 | } |
341 | }; |
342 | |
343 | DstLayout { align, size_info } |
344 | } |
345 | |
346 | /// Like `Layout::pad_to_align`, this routine rounds the size of this layout |
347 | /// up to the nearest multiple of this type's alignment or `repr_packed` |
348 | /// (whichever is less). This method leaves DST layouts unchanged, since the |
349 | /// trailing padding of DSTs is computed at runtime. |
350 | /// |
351 | /// In order to match the layout of a `#[repr(C)]` struct, this method |
352 | /// should be invoked after the invocations of [`DstLayout::extend`]. If |
353 | /// `self` corresponds to a type marked with `repr(packed(N))`, then |
354 | /// `repr_packed` should be set to `Some(N)`, otherwise `None`. |
355 | /// |
356 | /// This method cannot be used to match the layout of a record with the |
357 | /// default representation, as that representation is mostly unspecified. |
358 | /// |
359 | /// # Safety |
360 | /// |
361 | /// If a (potentially hypothetical) valid `repr(C)` type begins with fields |
362 | /// whose layout are `self` followed only by zero or more bytes of trailing |
363 | /// padding (not included in `self`), then unsafe code may rely on |
364 | /// `self.pad_to_align(repr_packed)` producing a layout that correctly |
365 | /// encapsulates the layout of that type. |
366 | /// |
367 | /// We make no guarantees to the behavior of this method if `self` cannot |
368 | /// appear in a valid Rust type (e.g., because the addition of trailing |
369 | /// padding would lead to a size larger than `isize::MAX`). |
370 | #[doc (hidden)] |
371 | #[must_use ] |
372 | #[inline ] |
373 | pub const fn pad_to_align(self) -> Self { |
374 | use util::padding_needed_for; |
375 | |
376 | let size_info = match self.size_info { |
377 | // For sized layouts, we add the minimum amount of trailing padding |
378 | // needed to satisfy alignment. |
379 | SizeInfo::Sized { size: unpadded_size } => { |
380 | let padding = padding_needed_for(unpadded_size, self.align); |
381 | let size = match unpadded_size.checked_add(padding) { |
382 | Some(size) => size, |
383 | None => const_panic!("Adding padding caused size to overflow `usize`." ), |
384 | }; |
385 | SizeInfo::Sized { size } |
386 | } |
387 | // For DST layouts, trailing padding depends on the length of the |
388 | // trailing DST and is computed at runtime. This does not alter the |
389 | // offset or element size of the layout, so we leave `size_info` |
390 | // unchanged. |
391 | size_info @ SizeInfo::SliceDst(_) => size_info, |
392 | }; |
393 | |
394 | DstLayout { align: self.align, size_info } |
395 | } |
396 | |
397 | /// Validates that a cast is sound from a layout perspective. |
398 | /// |
399 | /// Validates that the size and alignment requirements of a type with the |
400 | /// layout described in `self` would not be violated by performing a |
401 | /// `cast_type` cast from a pointer with address `addr` which refers to a |
402 | /// memory region of size `bytes_len`. |
403 | /// |
404 | /// If the cast is valid, `validate_cast_and_convert_metadata` returns |
405 | /// `(elems, split_at)`. If `self` describes a dynamically-sized type, then |
406 | /// `elems` is the maximum number of trailing slice elements for which a |
407 | /// cast would be valid (for sized types, `elem` is meaningless and should |
408 | /// be ignored). `split_at` is the index at which to split the memory region |
409 | /// in order for the prefix (suffix) to contain the result of the cast, and |
410 | /// in order for the remaining suffix (prefix) to contain the leftover |
411 | /// bytes. |
412 | /// |
413 | /// There are three conditions under which a cast can fail: |
414 | /// - The smallest possible value for the type is larger than the provided |
415 | /// memory region |
416 | /// - A prefix cast is requested, and `addr` does not satisfy `self`'s |
417 | /// alignment requirement |
418 | /// - A suffix cast is requested, and `addr + bytes_len` does not satisfy |
419 | /// `self`'s alignment requirement (as a consequence, since all instances |
420 | /// of the type are a multiple of its alignment, no size for the type will |
421 | /// result in a starting address which is properly aligned) |
422 | /// |
423 | /// # Safety |
424 | /// |
425 | /// The caller may assume that this implementation is correct, and may rely |
426 | /// on that assumption for the soundness of their code. In particular, the |
427 | /// caller may assume that, if `validate_cast_and_convert_metadata` returns |
428 | /// `Some((elems, split_at))`, then: |
429 | /// - A pointer to the type (for dynamically sized types, this includes |
430 | /// `elems` as its pointer metadata) describes an object of size `size <= |
431 | /// bytes_len` |
432 | /// - If this is a prefix cast: |
433 | /// - `addr` satisfies `self`'s alignment |
434 | /// - `size == split_at` |
435 | /// - If this is a suffix cast: |
436 | /// - `split_at == bytes_len - size` |
437 | /// - `addr + split_at` satisfies `self`'s alignment |
438 | /// |
439 | /// Note that this method does *not* ensure that a pointer constructed from |
440 | /// its return values will be a valid pointer. In particular, this method |
441 | /// does not reason about `isize` overflow, which is a requirement of many |
442 | /// Rust pointer APIs, and may at some point be determined to be a validity |
443 | /// invariant of pointer types themselves. This should never be a problem so |
444 | /// long as the arguments to this method are derived from a known-valid |
445 | /// pointer (e.g., one derived from a safe Rust reference), but it is |
446 | /// nonetheless the caller's responsibility to justify that pointer |
447 | /// arithmetic will not overflow based on a safety argument *other than* the |
448 | /// mere fact that this method returned successfully. |
449 | /// |
450 | /// # Panics |
451 | /// |
452 | /// `validate_cast_and_convert_metadata` will panic if `self` describes a |
453 | /// DST whose trailing slice element is zero-sized. |
454 | /// |
455 | /// If `addr + bytes_len` overflows `usize`, |
456 | /// `validate_cast_and_convert_metadata` may panic, or it may return |
457 | /// incorrect results. No guarantees are made about when |
458 | /// `validate_cast_and_convert_metadata` will panic. The caller should not |
459 | /// rely on `validate_cast_and_convert_metadata` panicking in any particular |
460 | /// condition, even if `debug_assertions` are enabled. |
461 | #[allow (unused)] |
462 | #[inline (always)] |
463 | pub(crate) const fn validate_cast_and_convert_metadata( |
464 | &self, |
465 | addr: usize, |
466 | bytes_len: usize, |
467 | cast_type: CastType, |
468 | ) -> Result<(usize, usize), MetadataCastError> { |
469 | // `debug_assert!`, but with `#[allow(clippy::arithmetic_side_effects)]`. |
470 | macro_rules! __const_debug_assert { |
471 | ($e:expr $(, $msg:expr)?) => { |
472 | const_debug_assert!({ |
473 | #[allow(clippy::arithmetic_side_effects)] |
474 | let e = $e; |
475 | e |
476 | } $(, $msg)?); |
477 | }; |
478 | } |
479 | |
480 | // Note that, in practice, `self` is always a compile-time constant. We |
481 | // do this check earlier than needed to ensure that we always panic as a |
482 | // result of bugs in the program (such as calling this function on an |
483 | // invalid type) instead of allowing this panic to be hidden if the cast |
484 | // would have failed anyway for runtime reasons (such as a too-small |
485 | // memory region). |
486 | // |
487 | // TODO(#67): Once our MSRV is 1.65, use let-else: |
488 | // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
489 | let size_info = match self.size_info.try_to_nonzero_elem_size() { |
490 | Some(size_info) => size_info, |
491 | None => const_panic!("attempted to cast to slice type with zero-sized element" ), |
492 | }; |
493 | |
494 | // Precondition |
495 | __const_debug_assert!( |
496 | addr.checked_add(bytes_len).is_some(), |
497 | "`addr` + `bytes_len` > usize::MAX" |
498 | ); |
499 | |
500 | // Alignment checks go in their own block to avoid introducing variables |
501 | // into the top-level scope. |
502 | { |
503 | // We check alignment for `addr` (for prefix casts) or `addr + |
504 | // bytes_len` (for suffix casts). For a prefix cast, the correctness |
505 | // of this check is trivial - `addr` is the address the object will |
506 | // live at. |
507 | // |
508 | // For a suffix cast, we know that all valid sizes for the type are |
509 | // a multiple of the alignment (and by safety precondition, we know |
510 | // `DstLayout` may only describe valid Rust types). Thus, a |
511 | // validly-sized instance which lives at a validly-aligned address |
512 | // must also end at a validly-aligned address. Thus, if the end |
513 | // address for a suffix cast (`addr + bytes_len`) is not aligned, |
514 | // then no valid start address will be aligned either. |
515 | let offset = match cast_type { |
516 | CastType::Prefix => 0, |
517 | CastType::Suffix => bytes_len, |
518 | }; |
519 | |
520 | // Addition is guaranteed not to overflow because `offset <= |
521 | // bytes_len`, and `addr + bytes_len <= usize::MAX` is a |
522 | // precondition of this method. Modulus is guaranteed not to divide |
523 | // by 0 because `align` is non-zero. |
524 | #[allow (clippy::arithmetic_side_effects)] |
525 | if (addr + offset) % self.align.get() != 0 { |
526 | return Err(MetadataCastError::Alignment); |
527 | } |
528 | } |
529 | |
530 | let (elems, self_bytes) = match size_info { |
531 | SizeInfo::Sized { size } => { |
532 | if size > bytes_len { |
533 | return Err(MetadataCastError::Size); |
534 | } |
535 | (0, size) |
536 | } |
537 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => { |
538 | // Calculate the maximum number of bytes that could be consumed |
539 | // - any number of bytes larger than this will either not be a |
540 | // multiple of the alignment, or will be larger than |
541 | // `bytes_len`. |
542 | let max_total_bytes = |
543 | util::round_down_to_next_multiple_of_alignment(bytes_len, self.align); |
544 | // Calculate the maximum number of bytes that could be consumed |
545 | // by the trailing slice. |
546 | // |
547 | // TODO(#67): Once our MSRV is 1.65, use let-else: |
548 | // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
549 | let max_slice_and_padding_bytes = match max_total_bytes.checked_sub(offset) { |
550 | Some(max) => max, |
551 | // `bytes_len` too small even for 0 trailing slice elements. |
552 | None => return Err(MetadataCastError::Size), |
553 | }; |
554 | |
555 | // Calculate the number of elements that fit in |
556 | // `max_slice_and_padding_bytes`; any remaining bytes will be |
557 | // considered padding. |
558 | // |
559 | // Guaranteed not to divide by zero: `elem_size` is non-zero. |
560 | #[allow (clippy::arithmetic_side_effects)] |
561 | let elems = max_slice_and_padding_bytes / elem_size.get(); |
562 | // Guaranteed not to overflow on multiplication: `usize::MAX >= |
563 | // max_slice_and_padding_bytes >= (max_slice_and_padding_bytes / |
564 | // elem_size) * elem_size`. |
565 | // |
566 | // Guaranteed not to overflow on addition: |
567 | // - max_slice_and_padding_bytes == max_total_bytes - offset |
568 | // - elems * elem_size <= max_slice_and_padding_bytes == max_total_bytes - offset |
569 | // - elems * elem_size + offset <= max_total_bytes <= usize::MAX |
570 | #[allow (clippy::arithmetic_side_effects)] |
571 | let without_padding = offset + elems * elem_size.get(); |
572 | // `self_bytes` is equal to the offset bytes plus the bytes |
573 | // consumed by the trailing slice plus any padding bytes |
574 | // required to satisfy the alignment. Note that we have computed |
575 | // the maximum number of trailing slice elements that could fit |
576 | // in `self_bytes`, so any padding is guaranteed to be less than |
577 | // the size of an extra element. |
578 | // |
579 | // Guaranteed not to overflow: |
580 | // - By previous comment: without_padding == elems * elem_size + |
581 | // offset <= max_total_bytes |
582 | // - By construction, `max_total_bytes` is a multiple of |
583 | // `self.align`. |
584 | // - At most, adding padding needed to round `without_padding` |
585 | // up to the next multiple of the alignment will bring |
586 | // `self_bytes` up to `max_total_bytes`. |
587 | #[allow (clippy::arithmetic_side_effects)] |
588 | let self_bytes = |
589 | without_padding + util::padding_needed_for(without_padding, self.align); |
590 | (elems, self_bytes) |
591 | } |
592 | }; |
593 | |
594 | __const_debug_assert!(self_bytes <= bytes_len); |
595 | |
596 | let split_at = match cast_type { |
597 | CastType::Prefix => self_bytes, |
598 | // Guaranteed not to underflow: |
599 | // - In the `Sized` branch, only returns `size` if `size <= |
600 | // bytes_len`. |
601 | // - In the `SliceDst` branch, calculates `self_bytes <= |
602 | // max_toatl_bytes`, which is upper-bounded by `bytes_len`. |
603 | #[allow (clippy::arithmetic_side_effects)] |
604 | CastType::Suffix => bytes_len - self_bytes, |
605 | }; |
606 | |
607 | Ok((elems, split_at)) |
608 | } |
609 | } |
610 | |
611 | // TODO(#67): For some reason, on our MSRV toolchain, this `allow` isn't |
612 | // enforced despite having `#![allow(unknown_lints)]` at the crate root, but |
613 | // putting it here works. Once our MSRV is high enough that this bug has been |
614 | // fixed, remove this `allow`. |
615 | #[allow (unknown_lints)] |
616 | #[cfg (test)] |
617 | mod tests { |
618 | use super::*; |
619 | |
620 | /// Tests of when a sized `DstLayout` is extended with a sized field. |
621 | #[allow (clippy::decimal_literal_representation)] |
622 | #[test ] |
623 | fn test_dst_layout_extend_sized_with_sized() { |
624 | // This macro constructs a layout corresponding to a `u8` and extends it |
625 | // with a zero-sized trailing field of given alignment `n`. The macro |
626 | // tests that the resulting layout has both size and alignment `min(n, |
627 | // P)` for all valid values of `repr(packed(P))`. |
628 | macro_rules! test_align_is_size { |
629 | ($n:expr) => { |
630 | let base = DstLayout::for_type::<u8>(); |
631 | let trailing_field = DstLayout::for_type::<elain::Align<$n>>(); |
632 | |
633 | let packs = |
634 | core::iter::once(None).chain((0..29).map(|p| NonZeroUsize::new(2usize.pow(p)))); |
635 | |
636 | for pack in packs { |
637 | let composite = base.extend(trailing_field, pack); |
638 | let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN); |
639 | let align = $n.min(max_align.get()); |
640 | assert_eq!( |
641 | composite, |
642 | DstLayout { |
643 | align: NonZeroUsize::new(align).unwrap(), |
644 | size_info: SizeInfo::Sized { size: align } |
645 | } |
646 | ) |
647 | } |
648 | }; |
649 | } |
650 | |
651 | test_align_is_size!(1); |
652 | test_align_is_size!(2); |
653 | test_align_is_size!(4); |
654 | test_align_is_size!(8); |
655 | test_align_is_size!(16); |
656 | test_align_is_size!(32); |
657 | test_align_is_size!(64); |
658 | test_align_is_size!(128); |
659 | test_align_is_size!(256); |
660 | test_align_is_size!(512); |
661 | test_align_is_size!(1024); |
662 | test_align_is_size!(2048); |
663 | test_align_is_size!(4096); |
664 | test_align_is_size!(8192); |
665 | test_align_is_size!(16384); |
666 | test_align_is_size!(32768); |
667 | test_align_is_size!(65536); |
668 | test_align_is_size!(131072); |
669 | test_align_is_size!(262144); |
670 | test_align_is_size!(524288); |
671 | test_align_is_size!(1048576); |
672 | test_align_is_size!(2097152); |
673 | test_align_is_size!(4194304); |
674 | test_align_is_size!(8388608); |
675 | test_align_is_size!(16777216); |
676 | test_align_is_size!(33554432); |
677 | test_align_is_size!(67108864); |
678 | test_align_is_size!(33554432); |
679 | test_align_is_size!(134217728); |
680 | test_align_is_size!(268435456); |
681 | } |
682 | |
683 | /// Tests of when a sized `DstLayout` is extended with a DST field. |
684 | #[test ] |
685 | fn test_dst_layout_extend_sized_with_dst() { |
686 | // Test that for all combinations of real-world alignments and |
687 | // `repr_packed` values, that the extension of a sized `DstLayout`` with |
688 | // a DST field correctly computes the trailing offset in the composite |
689 | // layout. |
690 | |
691 | let aligns = (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()); |
692 | let packs = core::iter::once(None).chain(aligns.clone().map(Some)); |
693 | |
694 | for align in aligns { |
695 | for pack in packs.clone() { |
696 | let base = DstLayout::for_type::<u8>(); |
697 | let elem_size = 42; |
698 | let trailing_field_offset = 11; |
699 | |
700 | let trailing_field = DstLayout { |
701 | align, |
702 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { elem_size, offset: 11 }), |
703 | }; |
704 | |
705 | let composite = base.extend(trailing_field, pack); |
706 | |
707 | let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN).get(); |
708 | |
709 | let align = align.get().min(max_align); |
710 | |
711 | assert_eq!( |
712 | composite, |
713 | DstLayout { |
714 | align: NonZeroUsize::new(align).unwrap(), |
715 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
716 | elem_size, |
717 | offset: align + trailing_field_offset, |
718 | }), |
719 | } |
720 | ) |
721 | } |
722 | } |
723 | } |
724 | |
725 | /// Tests that calling `pad_to_align` on a sized `DstLayout` adds the |
726 | /// expected amount of trailing padding. |
727 | #[test ] |
728 | fn test_dst_layout_pad_to_align_with_sized() { |
729 | // For all valid alignments `align`, construct a one-byte layout aligned |
730 | // to `align`, call `pad_to_align`, and assert that the size of the |
731 | // resulting layout is equal to `align`. |
732 | for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
733 | let layout = DstLayout { align, size_info: SizeInfo::Sized { size: 1 } }; |
734 | |
735 | assert_eq!( |
736 | layout.pad_to_align(), |
737 | DstLayout { align, size_info: SizeInfo::Sized { size: align.get() } } |
738 | ); |
739 | } |
740 | |
741 | // Test explicitly-provided combinations of unpadded and padded |
742 | // counterparts. |
743 | |
744 | macro_rules! test { |
745 | (unpadded { size: $unpadded_size:expr, align: $unpadded_align:expr } |
746 | => padded { size: $padded_size:expr, align: $padded_align:expr }) => { |
747 | let unpadded = DstLayout { |
748 | align: NonZeroUsize::new($unpadded_align).unwrap(), |
749 | size_info: SizeInfo::Sized { size: $unpadded_size }, |
750 | }; |
751 | let padded = unpadded.pad_to_align(); |
752 | |
753 | assert_eq!( |
754 | padded, |
755 | DstLayout { |
756 | align: NonZeroUsize::new($padded_align).unwrap(), |
757 | size_info: SizeInfo::Sized { size: $padded_size }, |
758 | } |
759 | ); |
760 | }; |
761 | } |
762 | |
763 | test !(unpadded { size: 0, align: 4 } => padded { size: 0, align: 4 }); |
764 | test !(unpadded { size: 1, align: 4 } => padded { size: 4, align: 4 }); |
765 | test !(unpadded { size: 2, align: 4 } => padded { size: 4, align: 4 }); |
766 | test !(unpadded { size: 3, align: 4 } => padded { size: 4, align: 4 }); |
767 | test !(unpadded { size: 4, align: 4 } => padded { size: 4, align: 4 }); |
768 | test !(unpadded { size: 5, align: 4 } => padded { size: 8, align: 4 }); |
769 | test !(unpadded { size: 6, align: 4 } => padded { size: 8, align: 4 }); |
770 | test !(unpadded { size: 7, align: 4 } => padded { size: 8, align: 4 }); |
771 | test !(unpadded { size: 8, align: 4 } => padded { size: 8, align: 4 }); |
772 | |
773 | let current_max_align = DstLayout::CURRENT_MAX_ALIGN.get(); |
774 | |
775 | test !(unpadded { size: 1, align: current_max_align } |
776 | => padded { size: current_max_align, align: current_max_align }); |
777 | |
778 | test !(unpadded { size: current_max_align + 1, align: current_max_align } |
779 | => padded { size: current_max_align * 2, align: current_max_align }); |
780 | } |
781 | |
782 | /// Tests that calling `pad_to_align` on a DST `DstLayout` is a no-op. |
783 | #[test ] |
784 | fn test_dst_layout_pad_to_align_with_dst() { |
785 | for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
786 | for offset in 0..10 { |
787 | for elem_size in 0..10 { |
788 | let layout = DstLayout { |
789 | align, |
790 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }), |
791 | }; |
792 | assert_eq!(layout.pad_to_align(), layout); |
793 | } |
794 | } |
795 | } |
796 | } |
797 | |
798 | // This test takes a long time when running under Miri, so we skip it in |
799 | // that case. This is acceptable because this is a logic test that doesn't |
800 | // attempt to expose UB. |
801 | #[test ] |
802 | #[cfg_attr (miri, ignore)] |
803 | fn test_validate_cast_and_convert_metadata() { |
804 | #[allow (non_local_definitions)] |
805 | impl From<usize> for SizeInfo { |
806 | fn from(size: usize) -> SizeInfo { |
807 | SizeInfo::Sized { size } |
808 | } |
809 | } |
810 | |
811 | #[allow (non_local_definitions)] |
812 | impl From<(usize, usize)> for SizeInfo { |
813 | fn from((offset, elem_size): (usize, usize)) -> SizeInfo { |
814 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) |
815 | } |
816 | } |
817 | |
818 | fn layout<S: Into<SizeInfo>>(s: S, align: usize) -> DstLayout { |
819 | DstLayout { size_info: s.into(), align: NonZeroUsize::new(align).unwrap() } |
820 | } |
821 | |
822 | /// This macro accepts arguments in the form of: |
823 | /// |
824 | /// layout(_, _).validate(_, _, _), Ok(Some((_, _))) |
825 | /// | | | | | | | |
826 | /// size ---------+ | | | | | | |
827 | /// align -----------+ | | | | | |
828 | /// addr ------------------------+ | | | | |
829 | /// bytes_len ----------------------+ | | | |
830 | /// cast_type -------------------------+ | | |
831 | /// elems ------------------------------------------+ | |
832 | /// split_at ------------------------------------------+ |
833 | /// |
834 | /// `.validate` is shorthand for `.validate_cast_and_convert_metadata` |
835 | /// for brevity. |
836 | /// |
837 | /// Each argument can either be an iterator or a wildcard. Each |
838 | /// wildcarded variable is implicitly replaced by an iterator over a |
839 | /// representative sample of values for that variable. Each `test!` |
840 | /// invocation iterates over every combination of values provided by |
841 | /// each variable's iterator (ie, the cartesian product) and validates |
842 | /// that the results are expected. |
843 | /// |
844 | /// The final argument uses the same syntax, but it has a different |
845 | /// meaning: |
846 | /// - If it is `Ok(pat)`, then the pattern `pat` is supplied to |
847 | /// a matching assert to validate the computed result for each |
848 | /// combination of input values. |
849 | /// - If it is `Err(Some(msg) | None)`, then `test!` validates that the |
850 | /// call to `validate_cast_and_convert_metadata` panics with the given |
851 | /// panic message or, if the current Rust toolchain version is too |
852 | /// early to support panicking in `const fn`s, panics with *some* |
853 | /// message. In the latter case, the `const_panic!` macro is used, |
854 | /// which emits code which causes a non-panicking error at const eval |
855 | /// time, but which does panic when invoked at runtime. Thus, it is |
856 | /// merely difficult to predict the *value* of this panic. We deem |
857 | /// that testing against the real panic strings on stable and nightly |
858 | /// toolchains is enough to ensure correctness. |
859 | /// |
860 | /// Note that the meta-variables that match these variables have the |
861 | /// `tt` type, and some valid expressions are not valid `tt`s (such as |
862 | /// `a..b`). In this case, wrap the expression in parentheses, and it |
863 | /// will become valid `tt`. |
864 | macro_rules! test { |
865 | ( |
866 | layout($size:tt, $align:tt) |
867 | .validate($addr:tt, $bytes_len:tt, $cast_type:tt), $expect:pat $(,)? |
868 | ) => { |
869 | itertools::iproduct!( |
870 | test!(@generate_size $size), |
871 | test!(@generate_align $align), |
872 | test!(@generate_usize $addr), |
873 | test!(@generate_usize $bytes_len), |
874 | test!(@generate_cast_type $cast_type) |
875 | ).for_each(|(size_info, align, addr, bytes_len, cast_type)| { |
876 | // Temporarily disable the panic hook installed by the test |
877 | // harness. If we don't do this, all panic messages will be |
878 | // kept in an internal log. On its own, this isn't a |
879 | // problem, but if a non-caught panic ever happens (ie, in |
880 | // code later in this test not in this macro), all of the |
881 | // previously-buffered messages will be dumped, hiding the |
882 | // real culprit. |
883 | let previous_hook = std::panic::take_hook(); |
884 | // I don't understand why, but this seems to be required in |
885 | // addition to the previous line. |
886 | std::panic::set_hook(Box::new(|_| {})); |
887 | let actual = std::panic::catch_unwind(|| { |
888 | layout(size_info, align).validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
889 | }).map_err(|d| { |
890 | let msg = d.downcast::<&'static str>().ok().map(|s| *s.as_ref()); |
891 | assert!(msg.is_some() || cfg!(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)), "non-string panic messages are not permitted when `--cfg zerocopy_panic_in_const_and_vec_try_reserve` is set" ); |
892 | msg |
893 | }); |
894 | std::panic::set_hook(previous_hook); |
895 | |
896 | assert!( |
897 | matches!(actual, $expect), |
898 | "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?})" ,size_info, align, addr, bytes_len, cast_type |
899 | ); |
900 | }); |
901 | }; |
902 | (@generate_usize _) => { 0..8 }; |
903 | // Generate sizes for both Sized and !Sized types. |
904 | (@generate_size _) => { |
905 | test!(@generate_size (_)).chain(test!(@generate_size (_, _))) |
906 | }; |
907 | // Generate sizes for both Sized and !Sized types by chaining |
908 | // specified iterators for each. |
909 | (@generate_size ($sized_sizes:tt | $unsized_sizes:tt)) => { |
910 | test!(@generate_size ($sized_sizes)).chain(test!(@generate_size $unsized_sizes)) |
911 | }; |
912 | // Generate sizes for Sized types. |
913 | (@generate_size (_)) => { test!(@generate_size (0..8)) }; |
914 | (@generate_size ($sizes:expr)) => { $sizes.into_iter().map(Into::<SizeInfo>::into) }; |
915 | // Generate sizes for !Sized types. |
916 | (@generate_size ($min_sizes:tt, $elem_sizes:tt)) => { |
917 | itertools::iproduct!( |
918 | test!(@generate_min_size $min_sizes), |
919 | test!(@generate_elem_size $elem_sizes) |
920 | ).map(Into::<SizeInfo>::into) |
921 | }; |
922 | (@generate_fixed_size _) => { (0..8).into_iter().map(Into::<SizeInfo>::into) }; |
923 | (@generate_min_size _) => { 0..8 }; |
924 | (@generate_elem_size _) => { 1..8 }; |
925 | (@generate_align _) => { [1, 2, 4, 8, 16] }; |
926 | (@generate_opt_usize _) => { [None].into_iter().chain((0..8).map(Some).into_iter()) }; |
927 | (@generate_cast_type _) => { [CastType::Prefix, CastType::Suffix] }; |
928 | (@generate_cast_type $variant:ident) => { [CastType::$variant] }; |
929 | // Some expressions need to be wrapped in parentheses in order to be |
930 | // valid `tt`s (required by the top match pattern). See the comment |
931 | // below for more details. This arm removes these parentheses to |
932 | // avoid generating an `unused_parens` warning. |
933 | (@$_:ident ($vals:expr)) => { $vals }; |
934 | (@$_:ident $vals:expr) => { $vals }; |
935 | } |
936 | |
937 | const EVENS: [usize; 8] = [0, 2, 4, 6, 8, 10, 12, 14]; |
938 | const ODDS: [usize; 8] = [1, 3, 5, 7, 9, 11, 13, 15]; |
939 | |
940 | // base_size is too big for the memory region. |
941 | test !( |
942 | layout(((1..8) | ((1..8), (1..8))), _).validate([0], [0], _), |
943 | Ok(Err(MetadataCastError::Size)) |
944 | ); |
945 | test !( |
946 | layout(((2..8) | ((2..8), (2..8))), _).validate([0], [1], Prefix), |
947 | Ok(Err(MetadataCastError::Size)) |
948 | ); |
949 | test !( |
950 | layout(((2..8) | ((2..8), (2..8))), _).validate([0x1000_0000 - 1], [1], Suffix), |
951 | Ok(Err(MetadataCastError::Size)) |
952 | ); |
953 | |
954 | // addr is unaligned for prefix cast |
955 | test !(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment))); |
956 | test !(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment))); |
957 | |
958 | // addr is aligned, but end of buffer is unaligned for suffix cast |
959 | test !(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment))); |
960 | test !(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment))); |
961 | |
962 | // Unfortunately, these constants cannot easily be used in the |
963 | // implementation of `validate_cast_and_convert_metadata`, since |
964 | // `panic!` consumes a string literal, not an expression. |
965 | // |
966 | // It's important that these messages be in a separate module. If they |
967 | // were at the function's top level, we'd pass them to `test!` as, e.g., |
968 | // `Err(TRAILING)`, which would run into a subtle Rust footgun - the |
969 | // `TRAILING` identifier would be treated as a pattern to match rather |
970 | // than a value to check for equality. |
971 | mod msgs { |
972 | pub(super) const TRAILING: &str = |
973 | "attempted to cast to slice type with zero-sized element" ; |
974 | pub(super) const OVERFLOW: &str = "`addr` + `bytes_len` > usize::MAX" ; |
975 | } |
976 | |
977 | // casts with ZST trailing element types are unsupported |
978 | test !(layout((_, [0]), _).validate(_, _, _), Err(Some(msgs::TRAILING) | None),); |
979 | |
980 | // addr + bytes_len must not overflow usize |
981 | test !(layout(_, _).validate([usize::MAX], (1..100), _), Err(Some(msgs::OVERFLOW) | None)); |
982 | test !(layout(_, _).validate((1..100), [usize::MAX], _), Err(Some(msgs::OVERFLOW) | None)); |
983 | test !( |
984 | layout(_, _).validate( |
985 | [usize::MAX / 2 + 1, usize::MAX], |
986 | [usize::MAX / 2 + 1, usize::MAX], |
987 | _ |
988 | ), |
989 | Err(Some(msgs::OVERFLOW) | None) |
990 | ); |
991 | |
992 | // Validates that `validate_cast_and_convert_metadata` satisfies its own |
993 | // documented safety postconditions, and also a few other properties |
994 | // that aren't documented but we want to guarantee anyway. |
995 | fn validate_behavior( |
996 | (layout, addr, bytes_len, cast_type): (DstLayout, usize, usize, CastType), |
997 | ) { |
998 | if let Ok((elems, split_at)) = |
999 | layout.validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
1000 | { |
1001 | let (size_info, align) = (layout.size_info, layout.align); |
1002 | let debug_str = format!( |
1003 | "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?}) => ({}, {})" , |
1004 | size_info, align, addr, bytes_len, cast_type, elems, split_at |
1005 | ); |
1006 | |
1007 | // If this is a sized type (no trailing slice), then `elems` is |
1008 | // meaningless, but in practice we set it to 0. Callers are not |
1009 | // allowed to rely on this, but a lot of math is nicer if |
1010 | // they're able to, and some callers might accidentally do that. |
1011 | let sized = matches!(layout.size_info, SizeInfo::Sized { .. }); |
1012 | assert!(!(sized && elems != 0), "{}" , debug_str); |
1013 | |
1014 | let resulting_size = match layout.size_info { |
1015 | SizeInfo::Sized { size } => size, |
1016 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => { |
1017 | let padded_size = |elems| { |
1018 | let without_padding = offset + elems * elem_size; |
1019 | without_padding + util::padding_needed_for(without_padding, align) |
1020 | }; |
1021 | |
1022 | let resulting_size = padded_size(elems); |
1023 | // Test that `validate_cast_and_convert_metadata` |
1024 | // computed the largest possible value that fits in the |
1025 | // given range. |
1026 | assert!(padded_size(elems + 1) > bytes_len, "{}" , debug_str); |
1027 | resulting_size |
1028 | } |
1029 | }; |
1030 | |
1031 | // Test safety postconditions guaranteed by |
1032 | // `validate_cast_and_convert_metadata`. |
1033 | assert!(resulting_size <= bytes_len, "{}" , debug_str); |
1034 | match cast_type { |
1035 | CastType::Prefix => { |
1036 | assert_eq!(addr % align, 0, "{}" , debug_str); |
1037 | assert_eq!(resulting_size, split_at, "{}" , debug_str); |
1038 | } |
1039 | CastType::Suffix => { |
1040 | assert_eq!(split_at, bytes_len - resulting_size, "{}" , debug_str); |
1041 | assert_eq!((addr + split_at) % align, 0, "{}" , debug_str); |
1042 | } |
1043 | } |
1044 | } else { |
1045 | let min_size = match layout.size_info { |
1046 | SizeInfo::Sized { size } => size, |
1047 | SizeInfo::SliceDst(TrailingSliceLayout { offset, .. }) => { |
1048 | offset + util::padding_needed_for(offset, layout.align) |
1049 | } |
1050 | }; |
1051 | |
1052 | // If a cast is invalid, it is either because... |
1053 | // 1. there are insufficent bytes at the given region for type: |
1054 | let insufficient_bytes = bytes_len < min_size; |
1055 | // 2. performing the cast would misalign type: |
1056 | let base = match cast_type { |
1057 | CastType::Prefix => 0, |
1058 | CastType::Suffix => bytes_len, |
1059 | }; |
1060 | let misaligned = (base + addr) % layout.align != 0; |
1061 | |
1062 | assert!(insufficient_bytes || misaligned); |
1063 | } |
1064 | } |
1065 | |
1066 | let sizes = 0..8; |
1067 | let elem_sizes = 1..8; |
1068 | let size_infos = sizes |
1069 | .clone() |
1070 | .map(Into::<SizeInfo>::into) |
1071 | .chain(itertools::iproduct!(sizes, elem_sizes).map(Into::<SizeInfo>::into)); |
1072 | let layouts = itertools::iproduct!(size_infos, [1, 2, 4, 8, 16, 32]) |
1073 | .filter(|(size_info, align)| !matches!(size_info, SizeInfo::Sized { size } if size % align != 0)) |
1074 | .map(|(size_info, align)| layout(size_info, align)); |
1075 | itertools::iproduct!(layouts, 0..8, 0..8, [CastType::Prefix, CastType::Suffix]) |
1076 | .for_each(validate_behavior); |
1077 | } |
1078 | |
1079 | #[test ] |
1080 | #[cfg (__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)] |
1081 | fn test_validate_rust_layout() { |
1082 | use crate::util::testutil::*; |
1083 | use core::{ |
1084 | convert::TryInto as _, |
1085 | ptr::{self, NonNull}, |
1086 | }; |
1087 | |
1088 | // This test synthesizes pointers with various metadata and uses Rust's |
1089 | // built-in APIs to confirm that Rust makes decisions about type layout |
1090 | // which are consistent with what we believe is guaranteed by the |
1091 | // language. If this test fails, it doesn't just mean our code is wrong |
1092 | // - it means we're misunderstanding the language's guarantees. |
1093 | |
1094 | #[derive (Debug)] |
1095 | struct MacroArgs { |
1096 | offset: usize, |
1097 | align: NonZeroUsize, |
1098 | elem_size: Option<usize>, |
1099 | } |
1100 | |
1101 | /// # Safety |
1102 | /// |
1103 | /// `test` promises to only call `addr_of_slice_field` on a `NonNull<T>` |
1104 | /// which points to a valid `T`. |
1105 | /// |
1106 | /// `with_elems` must produce a pointer which points to a valid `T`. |
1107 | fn test<T: ?Sized, W: Fn(usize) -> NonNull<T>>( |
1108 | args: MacroArgs, |
1109 | with_elems: W, |
1110 | addr_of_slice_field: Option<fn(NonNull<T>) -> NonNull<u8>>, |
1111 | ) { |
1112 | let dst = args.elem_size.is_some(); |
1113 | let layout = { |
1114 | let size_info = match args.elem_size { |
1115 | Some(elem_size) => { |
1116 | SizeInfo::SliceDst(TrailingSliceLayout { offset: args.offset, elem_size }) |
1117 | } |
1118 | None => SizeInfo::Sized { |
1119 | // Rust only supports types whose sizes are a multiple |
1120 | // of their alignment. If the macro created a type like |
1121 | // this: |
1122 | // |
1123 | // #[repr(C, align(2))] |
1124 | // struct Foo([u8; 1]); |
1125 | // |
1126 | // ...then Rust will automatically round the type's size |
1127 | // up to 2. |
1128 | size: args.offset + util::padding_needed_for(args.offset, args.align), |
1129 | }, |
1130 | }; |
1131 | DstLayout { size_info, align: args.align } |
1132 | }; |
1133 | |
1134 | for elems in 0..128 { |
1135 | let ptr = with_elems(elems); |
1136 | |
1137 | if let Some(addr_of_slice_field) = addr_of_slice_field { |
1138 | let slc_field_ptr = addr_of_slice_field(ptr).as_ptr(); |
1139 | // SAFETY: Both `slc_field_ptr` and `ptr` are pointers to |
1140 | // the same valid Rust object. |
1141 | #[allow (clippy::incompatible_msrv)] |
1142 | // Work around https://github.com/rust-lang/rust-clippy/issues/12280 |
1143 | let offset: usize = |
1144 | unsafe { slc_field_ptr.byte_offset_from(ptr.as_ptr()).try_into().unwrap() }; |
1145 | assert_eq!(offset, args.offset); |
1146 | } |
1147 | |
1148 | // SAFETY: `ptr` points to a valid `T`. |
1149 | let (size, align) = unsafe { |
1150 | (mem::size_of_val_raw(ptr.as_ptr()), mem::align_of_val_raw(ptr.as_ptr())) |
1151 | }; |
1152 | |
1153 | // Avoid expensive allocation when running under Miri. |
1154 | let assert_msg = if !cfg!(miri) { |
1155 | format!(" \n{:?} \nsize:{}, align:{}" , args, size, align) |
1156 | } else { |
1157 | String::new() |
1158 | }; |
1159 | |
1160 | let without_padding = |
1161 | args.offset + args.elem_size.map(|elem_size| elems * elem_size).unwrap_or(0); |
1162 | assert!(size >= without_padding, "{}" , assert_msg); |
1163 | assert_eq!(align, args.align.get(), "{}" , assert_msg); |
1164 | |
1165 | // This encodes the most important part of the test: our |
1166 | // understanding of how Rust determines the layout of repr(C) |
1167 | // types. Sized repr(C) types are trivial, but DST types have |
1168 | // some subtlety. Note that: |
1169 | // - For sized types, `without_padding` is just the size of the |
1170 | // type that we constructed for `Foo`. Since we may have |
1171 | // requested a larger alignment, `Foo` may actually be larger |
1172 | // than this, hence `padding_needed_for`. |
1173 | // - For unsized types, `without_padding` is dynamically |
1174 | // computed from the offset, the element size, and element |
1175 | // count. We expect that the size of the object should be |
1176 | // `offset + elem_size * elems` rounded up to the next |
1177 | // alignment. |
1178 | let expected_size = |
1179 | without_padding + util::padding_needed_for(without_padding, args.align); |
1180 | assert_eq!(expected_size, size, "{}" , assert_msg); |
1181 | |
1182 | // For zero-sized element types, |
1183 | // `validate_cast_and_convert_metadata` just panics, so we skip |
1184 | // testing those types. |
1185 | if args.elem_size.map(|elem_size| elem_size > 0).unwrap_or(true) { |
1186 | let addr = ptr.addr().get(); |
1187 | let (got_elems, got_split_at) = layout |
1188 | .validate_cast_and_convert_metadata(addr, size, CastType::Prefix) |
1189 | .unwrap(); |
1190 | // Avoid expensive allocation when running under Miri. |
1191 | let assert_msg = if !cfg!(miri) { |
1192 | format!( |
1193 | "{} \nvalidate_cast_and_convert_metadata({}, {})" , |
1194 | assert_msg, addr, size, |
1195 | ) |
1196 | } else { |
1197 | String::new() |
1198 | }; |
1199 | assert_eq!(got_split_at, size, "{}" , assert_msg); |
1200 | if dst { |
1201 | assert!(got_elems >= elems, "{}" , assert_msg); |
1202 | if got_elems != elems { |
1203 | // If `validate_cast_and_convert_metadata` |
1204 | // returned more elements than `elems`, that |
1205 | // means that `elems` is not the maximum number |
1206 | // of elements that can fit in `size` - in other |
1207 | // words, there is enough padding at the end of |
1208 | // the value to fit at least one more element. |
1209 | // If we use this metadata to synthesize a |
1210 | // pointer, despite having a different element |
1211 | // count, we still expect it to have the same |
1212 | // size. |
1213 | let got_ptr = with_elems(got_elems); |
1214 | // SAFETY: `got_ptr` is a pointer to a valid `T`. |
1215 | let size_of_got_ptr = unsafe { mem::size_of_val_raw(got_ptr.as_ptr()) }; |
1216 | assert_eq!(size_of_got_ptr, size, "{}" , assert_msg); |
1217 | } |
1218 | } else { |
1219 | // For sized casts, the returned element value is |
1220 | // technically meaningless, and we don't guarantee any |
1221 | // particular value. In practice, it's always zero. |
1222 | assert_eq!(got_elems, 0, "{}" , assert_msg) |
1223 | } |
1224 | } |
1225 | } |
1226 | } |
1227 | |
1228 | macro_rules! validate_against_rust { |
1229 | ($offset:literal, $align:literal $(, $elem_size:literal)?) => {{ |
1230 | #[repr(C, align($align))] |
1231 | struct Foo([u8; $offset]$(, [[u8; $elem_size]])?); |
1232 | |
1233 | let args = MacroArgs { |
1234 | offset: $offset, |
1235 | align: $align.try_into().unwrap(), |
1236 | elem_size: { |
1237 | #[allow(unused)] |
1238 | let ret = None::<usize>; |
1239 | $(let ret = Some($elem_size);)? |
1240 | ret |
1241 | } |
1242 | }; |
1243 | |
1244 | #[repr(C, align($align))] |
1245 | struct FooAlign; |
1246 | // Create an aligned buffer to use in order to synthesize |
1247 | // pointers to `Foo`. We don't ever load values from these |
1248 | // pointers - we just do arithmetic on them - so having a "real" |
1249 | // block of memory as opposed to a validly-aligned-but-dangling |
1250 | // pointer is only necessary to make Miri happy since we run it |
1251 | // with "strict provenance" checking enabled. |
1252 | let aligned_buf = Align::<_, FooAlign>::new([0u8; 1024]); |
1253 | let with_elems = |elems| { |
1254 | let slc = NonNull::slice_from_raw_parts(NonNull::from(&aligned_buf.t), elems); |
1255 | #[allow(clippy::as_conversions)] |
1256 | NonNull::new(slc.as_ptr() as *mut Foo).unwrap() |
1257 | }; |
1258 | let addr_of_slice_field = { |
1259 | #[allow(unused)] |
1260 | let f = None::<fn(NonNull<Foo>) -> NonNull<u8>>; |
1261 | $( |
1262 | // SAFETY: `test` promises to only call `f` with a `ptr` |
1263 | // to a valid `Foo`. |
1264 | let f: Option<fn(NonNull<Foo>) -> NonNull<u8>> = Some(|ptr: NonNull<Foo>| unsafe { |
1265 | NonNull::new(ptr::addr_of_mut!((*ptr.as_ptr()).1)).unwrap().cast::<u8>() |
1266 | }); |
1267 | let _ = $elem_size; |
1268 | )? |
1269 | f |
1270 | }; |
1271 | |
1272 | test::<Foo, _>(args, with_elems, addr_of_slice_field); |
1273 | }}; |
1274 | } |
1275 | |
1276 | // Every permutation of: |
1277 | // - offset in [0, 4] |
1278 | // - align in [1, 16] |
1279 | // - elem_size in [0, 4] (plus no elem_size) |
1280 | validate_against_rust!(0, 1); |
1281 | validate_against_rust!(0, 1, 0); |
1282 | validate_against_rust!(0, 1, 1); |
1283 | validate_against_rust!(0, 1, 2); |
1284 | validate_against_rust!(0, 1, 3); |
1285 | validate_against_rust!(0, 1, 4); |
1286 | validate_against_rust!(0, 2); |
1287 | validate_against_rust!(0, 2, 0); |
1288 | validate_against_rust!(0, 2, 1); |
1289 | validate_against_rust!(0, 2, 2); |
1290 | validate_against_rust!(0, 2, 3); |
1291 | validate_against_rust!(0, 2, 4); |
1292 | validate_against_rust!(0, 4); |
1293 | validate_against_rust!(0, 4, 0); |
1294 | validate_against_rust!(0, 4, 1); |
1295 | validate_against_rust!(0, 4, 2); |
1296 | validate_against_rust!(0, 4, 3); |
1297 | validate_against_rust!(0, 4, 4); |
1298 | validate_against_rust!(0, 8); |
1299 | validate_against_rust!(0, 8, 0); |
1300 | validate_against_rust!(0, 8, 1); |
1301 | validate_against_rust!(0, 8, 2); |
1302 | validate_against_rust!(0, 8, 3); |
1303 | validate_against_rust!(0, 8, 4); |
1304 | validate_against_rust!(0, 16); |
1305 | validate_against_rust!(0, 16, 0); |
1306 | validate_against_rust!(0, 16, 1); |
1307 | validate_against_rust!(0, 16, 2); |
1308 | validate_against_rust!(0, 16, 3); |
1309 | validate_against_rust!(0, 16, 4); |
1310 | validate_against_rust!(1, 1); |
1311 | validate_against_rust!(1, 1, 0); |
1312 | validate_against_rust!(1, 1, 1); |
1313 | validate_against_rust!(1, 1, 2); |
1314 | validate_against_rust!(1, 1, 3); |
1315 | validate_against_rust!(1, 1, 4); |
1316 | validate_against_rust!(1, 2); |
1317 | validate_against_rust!(1, 2, 0); |
1318 | validate_against_rust!(1, 2, 1); |
1319 | validate_against_rust!(1, 2, 2); |
1320 | validate_against_rust!(1, 2, 3); |
1321 | validate_against_rust!(1, 2, 4); |
1322 | validate_against_rust!(1, 4); |
1323 | validate_against_rust!(1, 4, 0); |
1324 | validate_against_rust!(1, 4, 1); |
1325 | validate_against_rust!(1, 4, 2); |
1326 | validate_against_rust!(1, 4, 3); |
1327 | validate_against_rust!(1, 4, 4); |
1328 | validate_against_rust!(1, 8); |
1329 | validate_against_rust!(1, 8, 0); |
1330 | validate_against_rust!(1, 8, 1); |
1331 | validate_against_rust!(1, 8, 2); |
1332 | validate_against_rust!(1, 8, 3); |
1333 | validate_against_rust!(1, 8, 4); |
1334 | validate_against_rust!(1, 16); |
1335 | validate_against_rust!(1, 16, 0); |
1336 | validate_against_rust!(1, 16, 1); |
1337 | validate_against_rust!(1, 16, 2); |
1338 | validate_against_rust!(1, 16, 3); |
1339 | validate_against_rust!(1, 16, 4); |
1340 | validate_against_rust!(2, 1); |
1341 | validate_against_rust!(2, 1, 0); |
1342 | validate_against_rust!(2, 1, 1); |
1343 | validate_against_rust!(2, 1, 2); |
1344 | validate_against_rust!(2, 1, 3); |
1345 | validate_against_rust!(2, 1, 4); |
1346 | validate_against_rust!(2, 2); |
1347 | validate_against_rust!(2, 2, 0); |
1348 | validate_against_rust!(2, 2, 1); |
1349 | validate_against_rust!(2, 2, 2); |
1350 | validate_against_rust!(2, 2, 3); |
1351 | validate_against_rust!(2, 2, 4); |
1352 | validate_against_rust!(2, 4); |
1353 | validate_against_rust!(2, 4, 0); |
1354 | validate_against_rust!(2, 4, 1); |
1355 | validate_against_rust!(2, 4, 2); |
1356 | validate_against_rust!(2, 4, 3); |
1357 | validate_against_rust!(2, 4, 4); |
1358 | validate_against_rust!(2, 8); |
1359 | validate_against_rust!(2, 8, 0); |
1360 | validate_against_rust!(2, 8, 1); |
1361 | validate_against_rust!(2, 8, 2); |
1362 | validate_against_rust!(2, 8, 3); |
1363 | validate_against_rust!(2, 8, 4); |
1364 | validate_against_rust!(2, 16); |
1365 | validate_against_rust!(2, 16, 0); |
1366 | validate_against_rust!(2, 16, 1); |
1367 | validate_against_rust!(2, 16, 2); |
1368 | validate_against_rust!(2, 16, 3); |
1369 | validate_against_rust!(2, 16, 4); |
1370 | validate_against_rust!(3, 1); |
1371 | validate_against_rust!(3, 1, 0); |
1372 | validate_against_rust!(3, 1, 1); |
1373 | validate_against_rust!(3, 1, 2); |
1374 | validate_against_rust!(3, 1, 3); |
1375 | validate_against_rust!(3, 1, 4); |
1376 | validate_against_rust!(3, 2); |
1377 | validate_against_rust!(3, 2, 0); |
1378 | validate_against_rust!(3, 2, 1); |
1379 | validate_against_rust!(3, 2, 2); |
1380 | validate_against_rust!(3, 2, 3); |
1381 | validate_against_rust!(3, 2, 4); |
1382 | validate_against_rust!(3, 4); |
1383 | validate_against_rust!(3, 4, 0); |
1384 | validate_against_rust!(3, 4, 1); |
1385 | validate_against_rust!(3, 4, 2); |
1386 | validate_against_rust!(3, 4, 3); |
1387 | validate_against_rust!(3, 4, 4); |
1388 | validate_against_rust!(3, 8); |
1389 | validate_against_rust!(3, 8, 0); |
1390 | validate_against_rust!(3, 8, 1); |
1391 | validate_against_rust!(3, 8, 2); |
1392 | validate_against_rust!(3, 8, 3); |
1393 | validate_against_rust!(3, 8, 4); |
1394 | validate_against_rust!(3, 16); |
1395 | validate_against_rust!(3, 16, 0); |
1396 | validate_against_rust!(3, 16, 1); |
1397 | validate_against_rust!(3, 16, 2); |
1398 | validate_against_rust!(3, 16, 3); |
1399 | validate_against_rust!(3, 16, 4); |
1400 | validate_against_rust!(4, 1); |
1401 | validate_against_rust!(4, 1, 0); |
1402 | validate_against_rust!(4, 1, 1); |
1403 | validate_against_rust!(4, 1, 2); |
1404 | validate_against_rust!(4, 1, 3); |
1405 | validate_against_rust!(4, 1, 4); |
1406 | validate_against_rust!(4, 2); |
1407 | validate_against_rust!(4, 2, 0); |
1408 | validate_against_rust!(4, 2, 1); |
1409 | validate_against_rust!(4, 2, 2); |
1410 | validate_against_rust!(4, 2, 3); |
1411 | validate_against_rust!(4, 2, 4); |
1412 | validate_against_rust!(4, 4); |
1413 | validate_against_rust!(4, 4, 0); |
1414 | validate_against_rust!(4, 4, 1); |
1415 | validate_against_rust!(4, 4, 2); |
1416 | validate_against_rust!(4, 4, 3); |
1417 | validate_against_rust!(4, 4, 4); |
1418 | validate_against_rust!(4, 8); |
1419 | validate_against_rust!(4, 8, 0); |
1420 | validate_against_rust!(4, 8, 1); |
1421 | validate_against_rust!(4, 8, 2); |
1422 | validate_against_rust!(4, 8, 3); |
1423 | validate_against_rust!(4, 8, 4); |
1424 | validate_against_rust!(4, 16); |
1425 | validate_against_rust!(4, 16, 0); |
1426 | validate_against_rust!(4, 16, 1); |
1427 | validate_against_rust!(4, 16, 2); |
1428 | validate_against_rust!(4, 16, 3); |
1429 | validate_against_rust!(4, 16, 4); |
1430 | } |
1431 | } |
1432 | |
1433 | #[cfg (kani)] |
1434 | mod proofs { |
1435 | use core::alloc::Layout; |
1436 | |
1437 | use super::*; |
1438 | |
1439 | impl kani::Arbitrary for DstLayout { |
1440 | fn any() -> Self { |
1441 | let align: NonZeroUsize = kani::any(); |
1442 | let size_info: SizeInfo = kani::any(); |
1443 | |
1444 | kani::assume(align.is_power_of_two()); |
1445 | kani::assume(align < DstLayout::THEORETICAL_MAX_ALIGN); |
1446 | |
1447 | // For testing purposes, we most care about instantiations of |
1448 | // `DstLayout` that can correspond to actual Rust types. We use |
1449 | // `Layout` to verify that our `DstLayout` satisfies the validity |
1450 | // conditions of Rust layouts. |
1451 | kani::assume( |
1452 | match size_info { |
1453 | SizeInfo::Sized { size } => Layout::from_size_align(size, align.get()), |
1454 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size: _ }) => { |
1455 | // `SliceDst`` cannot encode an exact size, but we know |
1456 | // it is at least `offset` bytes. |
1457 | Layout::from_size_align(offset, align.get()) |
1458 | } |
1459 | } |
1460 | .is_ok(), |
1461 | ); |
1462 | |
1463 | Self { align: align, size_info: size_info } |
1464 | } |
1465 | } |
1466 | |
1467 | impl kani::Arbitrary for SizeInfo { |
1468 | fn any() -> Self { |
1469 | let is_sized: bool = kani::any(); |
1470 | |
1471 | match is_sized { |
1472 | true => { |
1473 | let size: usize = kani::any(); |
1474 | |
1475 | kani::assume(size <= isize::MAX as _); |
1476 | |
1477 | SizeInfo::Sized { size } |
1478 | } |
1479 | false => SizeInfo::SliceDst(kani::any()), |
1480 | } |
1481 | } |
1482 | } |
1483 | |
1484 | impl kani::Arbitrary for TrailingSliceLayout { |
1485 | fn any() -> Self { |
1486 | let elem_size: usize = kani::any(); |
1487 | let offset: usize = kani::any(); |
1488 | |
1489 | kani::assume(elem_size < isize::MAX as _); |
1490 | kani::assume(offset < isize::MAX as _); |
1491 | |
1492 | TrailingSliceLayout { elem_size, offset } |
1493 | } |
1494 | } |
1495 | |
1496 | #[kani::proof] |
1497 | fn prove_dst_layout_extend() { |
1498 | use crate::util::{max, min, padding_needed_for}; |
1499 | |
1500 | let base: DstLayout = kani::any(); |
1501 | let field: DstLayout = kani::any(); |
1502 | let packed: Option<NonZeroUsize> = kani::any(); |
1503 | |
1504 | if let Some(max_align) = packed { |
1505 | kani::assume(max_align.is_power_of_two()); |
1506 | kani::assume(base.align <= max_align); |
1507 | } |
1508 | |
1509 | // The base can only be extended if it's sized. |
1510 | kani::assume(matches!(base.size_info, SizeInfo::Sized { .. })); |
1511 | let base_size = if let SizeInfo::Sized { size } = base.size_info { |
1512 | size |
1513 | } else { |
1514 | unreachable!(); |
1515 | }; |
1516 | |
1517 | // Under the above conditions, `DstLayout::extend` will not panic. |
1518 | let composite = base.extend(field, packed); |
1519 | |
1520 | // The field's alignment is clamped by `max_align` (i.e., the |
1521 | // `packed` attribute, if any) [1]. |
1522 | // |
1523 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
1524 | // |
1525 | // The alignments of each field, for the purpose of positioning |
1526 | // fields, is the smaller of the specified alignment and the |
1527 | // alignment of the field's type. |
1528 | let field_align = min(field.align, packed.unwrap_or(DstLayout::THEORETICAL_MAX_ALIGN)); |
1529 | |
1530 | // The struct's alignment is the maximum of its previous alignment and |
1531 | // `field_align`. |
1532 | assert_eq!(composite.align, max(base.align, field_align)); |
1533 | |
1534 | // Compute the minimum amount of inter-field padding needed to |
1535 | // satisfy the field's alignment, and offset of the trailing field. |
1536 | // [1] |
1537 | // |
1538 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
1539 | // |
1540 | // Inter-field padding is guaranteed to be the minimum required in |
1541 | // order to satisfy each field's (possibly altered) alignment. |
1542 | let padding = padding_needed_for(base_size, field_align); |
1543 | let offset = base_size + padding; |
1544 | |
1545 | // For testing purposes, we'll also construct `alloc::Layout` |
1546 | // stand-ins for `DstLayout`, and show that `extend` behaves |
1547 | // comparably on both types. |
1548 | let base_analog = Layout::from_size_align(base_size, base.align.get()).unwrap(); |
1549 | |
1550 | match field.size_info { |
1551 | SizeInfo::Sized { size: field_size } => { |
1552 | if let SizeInfo::Sized { size: composite_size } = composite.size_info { |
1553 | // If the trailing field is sized, the resulting layout will |
1554 | // be sized. Its size will be the sum of the preceding |
1555 | // layout, the size of the new field, and the size of |
1556 | // inter-field padding between the two. |
1557 | assert_eq!(composite_size, offset + field_size); |
1558 | |
1559 | let field_analog = |
1560 | Layout::from_size_align(field_size, field_align.get()).unwrap(); |
1561 | |
1562 | if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
1563 | { |
1564 | assert_eq!(actual_offset, offset); |
1565 | assert_eq!(actual_composite.size(), composite_size); |
1566 | assert_eq!(actual_composite.align(), composite.align.get()); |
1567 | } else { |
1568 | // An error here reflects that composite of `base` |
1569 | // and `field` cannot correspond to a real Rust type |
1570 | // fragment, because such a fragment would violate |
1571 | // the basic invariants of a valid Rust layout. At |
1572 | // the time of writing, `DstLayout` is a little more |
1573 | // permissive than `Layout`, so we don't assert |
1574 | // anything in this branch (e.g., unreachability). |
1575 | } |
1576 | } else { |
1577 | panic!("The composite of two sized layouts must be sized." ) |
1578 | } |
1579 | } |
1580 | SizeInfo::SliceDst(TrailingSliceLayout { |
1581 | offset: field_offset, |
1582 | elem_size: field_elem_size, |
1583 | }) => { |
1584 | if let SizeInfo::SliceDst(TrailingSliceLayout { |
1585 | offset: composite_offset, |
1586 | elem_size: composite_elem_size, |
1587 | }) = composite.size_info |
1588 | { |
1589 | // The offset of the trailing slice component is the sum |
1590 | // of the offset of the trailing field and the trailing |
1591 | // slice offset within that field. |
1592 | assert_eq!(composite_offset, offset + field_offset); |
1593 | // The elem size is unchanged. |
1594 | assert_eq!(composite_elem_size, field_elem_size); |
1595 | |
1596 | let field_analog = |
1597 | Layout::from_size_align(field_offset, field_align.get()).unwrap(); |
1598 | |
1599 | if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
1600 | { |
1601 | assert_eq!(actual_offset, offset); |
1602 | assert_eq!(actual_composite.size(), composite_offset); |
1603 | assert_eq!(actual_composite.align(), composite.align.get()); |
1604 | } else { |
1605 | // An error here reflects that composite of `base` |
1606 | // and `field` cannot correspond to a real Rust type |
1607 | // fragment, because such a fragment would violate |
1608 | // the basic invariants of a valid Rust layout. At |
1609 | // the time of writing, `DstLayout` is a little more |
1610 | // permissive than `Layout`, so we don't assert |
1611 | // anything in this branch (e.g., unreachability). |
1612 | } |
1613 | } else { |
1614 | panic!("The extension of a layout with a DST must result in a DST." ) |
1615 | } |
1616 | } |
1617 | } |
1618 | } |
1619 | |
1620 | #[kani::proof] |
1621 | #[kani::should_panic] |
1622 | fn prove_dst_layout_extend_dst_panics() { |
1623 | let base: DstLayout = kani::any(); |
1624 | let field: DstLayout = kani::any(); |
1625 | let packed: Option<NonZeroUsize> = kani::any(); |
1626 | |
1627 | if let Some(max_align) = packed { |
1628 | kani::assume(max_align.is_power_of_two()); |
1629 | kani::assume(base.align <= max_align); |
1630 | } |
1631 | |
1632 | kani::assume(matches!(base.size_info, SizeInfo::SliceDst(..))); |
1633 | |
1634 | let _ = base.extend(field, packed); |
1635 | } |
1636 | |
1637 | #[kani::proof] |
1638 | fn prove_dst_layout_pad_to_align() { |
1639 | use crate::util::padding_needed_for; |
1640 | |
1641 | let layout: DstLayout = kani::any(); |
1642 | |
1643 | let padded: DstLayout = layout.pad_to_align(); |
1644 | |
1645 | // Calling `pad_to_align` does not alter the `DstLayout`'s alignment. |
1646 | assert_eq!(padded.align, layout.align); |
1647 | |
1648 | if let SizeInfo::Sized { size: unpadded_size } = layout.size_info { |
1649 | if let SizeInfo::Sized { size: padded_size } = padded.size_info { |
1650 | // If the layout is sized, it will remain sized after padding is |
1651 | // added. Its sum will be its unpadded size and the size of the |
1652 | // trailing padding needed to satisfy its alignment |
1653 | // requirements. |
1654 | let padding = padding_needed_for(unpadded_size, layout.align); |
1655 | assert_eq!(padded_size, unpadded_size + padding); |
1656 | |
1657 | // Prove that calling `DstLayout::pad_to_align` behaves |
1658 | // identically to `Layout::pad_to_align`. |
1659 | let layout_analog = |
1660 | Layout::from_size_align(unpadded_size, layout.align.get()).unwrap(); |
1661 | let padded_analog = layout_analog.pad_to_align(); |
1662 | assert_eq!(padded_analog.align(), layout.align.get()); |
1663 | assert_eq!(padded_analog.size(), padded_size); |
1664 | } else { |
1665 | panic!("The padding of a sized layout must result in a sized layout." ) |
1666 | } |
1667 | } else { |
1668 | // If the layout is a DST, padding cannot be statically added. |
1669 | assert_eq!(padded.size_info, layout.size_info); |
1670 | } |
1671 | } |
1672 | } |
1673 | |