1 | // Copyright 2019 The Fuchsia Authors |
2 | // |
3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
6 | // This file may not be copied, modified, or distributed except according to |
7 | // those terms. |
8 | |
9 | //! Byte order-aware numeric primitives. |
10 | //! |
11 | //! This module contains equivalents of the native multi-byte integer types with |
12 | //! no alignment requirement and supporting byte order conversions. |
13 | //! |
14 | //! For each native multi-byte integer type - `u16`, `i16`, `u32`, etc - and |
15 | //! floating point type - `f32` and `f64` - an equivalent type is defined by |
16 | //! this module - [`U16`], [`I16`], [`U32`], [`F32`], [`F64`], etc. Unlike their |
17 | //! native counterparts, these types have alignment 1, and take a type parameter |
18 | //! specifying the byte order in which the bytes are stored in memory. Each type |
19 | //! implements this crate's relevant conversion and marker traits. |
20 | //! |
21 | //! These two properties, taken together, make these types useful for defining |
22 | //! data structures whose memory layout matches a wire format such as that of a |
23 | //! network protocol or a file format. Such formats often have multi-byte values |
24 | //! at offsets that do not respect the alignment requirements of the equivalent |
25 | //! native types, and stored in a byte order not necessarily the same as that of |
26 | //! the target platform. |
27 | //! |
28 | //! Type aliases are provided for common byte orders in the [`big_endian`], |
29 | //! [`little_endian`], [`network_endian`], and [`native_endian`] submodules. |
30 | //! |
31 | //! # Example |
32 | //! |
33 | //! One use of these types is for representing network packet formats, such as |
34 | //! UDP: |
35 | //! |
36 | //! ```rust |
37 | //! use zerocopy::{*, byteorder::network_endian::U16}; |
38 | //! # use zerocopy_derive::*; |
39 | //! |
40 | //! #[derive(FromBytes, IntoBytes, KnownLayout, Immutable, Unaligned)] |
41 | //! #[repr(C)] |
42 | //! struct UdpHeader { |
43 | //! src_port: U16, |
44 | //! dst_port: U16, |
45 | //! length: U16, |
46 | //! checksum: U16, |
47 | //! } |
48 | //! |
49 | //! #[derive(FromBytes, IntoBytes, KnownLayout, Immutable, Unaligned)] |
50 | //! #[repr(C, packed)] |
51 | //! struct UdpPacket { |
52 | //! header: UdpHeader, |
53 | //! body: [u8], |
54 | //! } |
55 | //! |
56 | //! impl UdpPacket { |
57 | //! fn parse(bytes: &[u8]) -> Option<&UdpPacket> { |
58 | //! UdpPacket::ref_from_bytes(bytes).ok() |
59 | //! } |
60 | //! } |
61 | //! ``` |
62 | |
63 | use core::{ |
64 | convert::{TryFrom, TryInto}, |
65 | fmt::{Binary, Debug, LowerHex, Octal, UpperHex}, |
66 | hash::Hash, |
67 | num::TryFromIntError, |
68 | }; |
69 | |
70 | use super::*; |
71 | |
72 | /// A type-level representation of byte order. |
73 | /// |
74 | /// This type is implemented by [`BigEndian`] and [`LittleEndian`], which |
75 | /// represent big-endian and little-endian byte order respectively. This module |
76 | /// also provides a number of useful aliases for those types: [`NativeEndian`], |
77 | /// [`NetworkEndian`], [`BE`], and [`LE`]. |
78 | /// |
79 | /// `ByteOrder` types can be used to specify the byte order of the types in this |
80 | /// module - for example, [`U32<BigEndian>`] is a 32-bit integer stored in |
81 | /// big-endian byte order. |
82 | /// |
83 | /// [`U32<BigEndian>`]: U32 |
84 | pub trait ByteOrder: |
85 | Copy + Clone + Debug + Display + Eq + PartialEq + Ord + PartialOrd + Hash + private::Sealed |
86 | { |
87 | #[doc (hidden)] |
88 | const ORDER: Order; |
89 | } |
90 | |
91 | mod private { |
92 | pub trait Sealed {} |
93 | |
94 | impl Sealed for super::BigEndian {} |
95 | impl Sealed for super::LittleEndian {} |
96 | } |
97 | |
98 | #[allow (missing_copy_implementations, missing_debug_implementations)] |
99 | #[doc (hidden)] |
100 | pub enum Order { |
101 | BigEndian, |
102 | LittleEndian, |
103 | } |
104 | |
105 | /// Big-endian byte order. |
106 | /// |
107 | /// See [`ByteOrder`] for more details. |
108 | #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] |
109 | pub enum BigEndian {} |
110 | |
111 | impl ByteOrder for BigEndian { |
112 | const ORDER: Order = Order::BigEndian; |
113 | } |
114 | |
115 | impl Display for BigEndian { |
116 | #[inline ] |
117 | fn fmt(&self, _: &mut Formatter<'_>) -> fmt::Result { |
118 | match *self {} |
119 | } |
120 | } |
121 | |
122 | /// Little-endian byte order. |
123 | /// |
124 | /// See [`ByteOrder`] for more details. |
125 | #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] |
126 | pub enum LittleEndian {} |
127 | |
128 | impl ByteOrder for LittleEndian { |
129 | const ORDER: Order = Order::LittleEndian; |
130 | } |
131 | |
132 | impl Display for LittleEndian { |
133 | #[inline ] |
134 | fn fmt(&self, _: &mut Formatter<'_>) -> fmt::Result { |
135 | match *self {} |
136 | } |
137 | } |
138 | |
139 | /// The endianness used by this platform. |
140 | /// |
141 | /// This is a type alias for [`BigEndian`] or [`LittleEndian`] depending on the |
142 | /// endianness of the target platform. |
143 | #[cfg (target_endian = "big" )] |
144 | pub type NativeEndian = BigEndian; |
145 | |
146 | /// The endianness used by this platform. |
147 | /// |
148 | /// This is a type alias for [`BigEndian`] or [`LittleEndian`] depending on the |
149 | /// endianness of the target platform. |
150 | #[cfg (target_endian = "little" )] |
151 | pub type NativeEndian = LittleEndian; |
152 | |
153 | /// The endianness used in many network protocols. |
154 | /// |
155 | /// This is a type alias for [`BigEndian`]. |
156 | pub type NetworkEndian = BigEndian; |
157 | |
158 | /// A type alias for [`BigEndian`]. |
159 | pub type BE = BigEndian; |
160 | |
161 | /// A type alias for [`LittleEndian`]. |
162 | pub type LE = LittleEndian; |
163 | |
164 | macro_rules! impl_fmt_trait { |
165 | ($name:ident, $native:ident, $trait:ident) => { |
166 | impl<O: ByteOrder> $trait for $name<O> { |
167 | #[inline(always)] |
168 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
169 | $trait::fmt(&self.get(), f) |
170 | } |
171 | } |
172 | }; |
173 | } |
174 | |
175 | macro_rules! impl_fmt_traits { |
176 | ($name:ident, $native:ident, "floating point number" ) => { |
177 | impl_fmt_trait!($name, $native, Display); |
178 | }; |
179 | ($name:ident, $native:ident, "unsigned integer" ) => { |
180 | impl_fmt_traits!($name, $native, @all_types); |
181 | }; |
182 | ($name:ident, $native:ident, "signed integer" ) => { |
183 | impl_fmt_traits!($name, $native, @all_types); |
184 | }; |
185 | ($name:ident, $native:ident, @all_types) => { |
186 | impl_fmt_trait!($name, $native, Display); |
187 | impl_fmt_trait!($name, $native, Octal); |
188 | impl_fmt_trait!($name, $native, LowerHex); |
189 | impl_fmt_trait!($name, $native, UpperHex); |
190 | impl_fmt_trait!($name, $native, Binary); |
191 | }; |
192 | } |
193 | |
194 | macro_rules! impl_ops_traits { |
195 | ($name:ident, $native:ident, "floating point number" ) => { |
196 | impl_ops_traits!($name, $native, @all_types); |
197 | impl_ops_traits!($name, $native, @signed_integer_floating_point); |
198 | |
199 | impl<O: ByteOrder> PartialOrd for $name<O> { |
200 | #[inline(always)] |
201 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
202 | self.get().partial_cmp(&other.get()) |
203 | } |
204 | } |
205 | }; |
206 | ($name:ident, $native:ident, "unsigned integer" ) => { |
207 | impl_ops_traits!($name, $native, @signed_unsigned_integer); |
208 | impl_ops_traits!($name, $native, @all_types); |
209 | }; |
210 | ($name:ident, $native:ident, "signed integer" ) => { |
211 | impl_ops_traits!($name, $native, @signed_unsigned_integer); |
212 | impl_ops_traits!($name, $native, @signed_integer_floating_point); |
213 | impl_ops_traits!($name, $native, @all_types); |
214 | }; |
215 | ($name:ident, $native:ident, @signed_unsigned_integer) => { |
216 | impl_ops_traits!(@without_byteorder_swap $name, $native, BitAnd, bitand, BitAndAssign, bitand_assign); |
217 | impl_ops_traits!(@without_byteorder_swap $name, $native, BitOr, bitor, BitOrAssign, bitor_assign); |
218 | impl_ops_traits!(@without_byteorder_swap $name, $native, BitXor, bitxor, BitXorAssign, bitxor_assign); |
219 | impl_ops_traits!(@with_byteorder_swap $name, $native, Shl, shl, ShlAssign, shl_assign); |
220 | impl_ops_traits!(@with_byteorder_swap $name, $native, Shr, shr, ShrAssign, shr_assign); |
221 | |
222 | impl<O> core::ops::Not for $name<O> { |
223 | type Output = $name<O>; |
224 | |
225 | #[inline(always)] |
226 | fn not(self) -> $name<O> { |
227 | let self_native = $native::from_ne_bytes(self.0); |
228 | $name((!self_native).to_ne_bytes(), PhantomData) |
229 | } |
230 | } |
231 | |
232 | impl<O: ByteOrder> PartialOrd for $name<O> { |
233 | #[inline(always)] |
234 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
235 | Some(self.cmp(other)) |
236 | } |
237 | } |
238 | |
239 | impl<O: ByteOrder> Ord for $name<O> { |
240 | #[inline(always)] |
241 | fn cmp(&self, other: &Self) -> Ordering { |
242 | self.get().cmp(&other.get()) |
243 | } |
244 | } |
245 | |
246 | impl<O: ByteOrder> PartialOrd<$native> for $name<O> { |
247 | #[inline(always)] |
248 | fn partial_cmp(&self, other: &$native) -> Option<Ordering> { |
249 | self.get().partial_cmp(other) |
250 | } |
251 | } |
252 | }; |
253 | ($name:ident, $native:ident, @signed_integer_floating_point) => { |
254 | impl<O: ByteOrder> core::ops::Neg for $name<O> { |
255 | type Output = $name<O>; |
256 | |
257 | #[inline(always)] |
258 | fn neg(self) -> $name<O> { |
259 | let self_native: $native = self.get(); |
260 | #[allow(clippy::arithmetic_side_effects)] |
261 | $name::<O>::new(-self_native) |
262 | } |
263 | } |
264 | }; |
265 | ($name:ident, $native:ident, @all_types) => { |
266 | impl_ops_traits!(@with_byteorder_swap $name, $native, Add, add, AddAssign, add_assign); |
267 | impl_ops_traits!(@with_byteorder_swap $name, $native, Div, div, DivAssign, div_assign); |
268 | impl_ops_traits!(@with_byteorder_swap $name, $native, Mul, mul, MulAssign, mul_assign); |
269 | impl_ops_traits!(@with_byteorder_swap $name, $native, Rem, rem, RemAssign, rem_assign); |
270 | impl_ops_traits!(@with_byteorder_swap $name, $native, Sub, sub, SubAssign, sub_assign); |
271 | }; |
272 | (@with_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { |
273 | impl<O: ByteOrder> core::ops::$trait<$name<O>> for $name<O> { |
274 | type Output = $name<O>; |
275 | |
276 | #[inline(always)] |
277 | fn $method(self, rhs: $name<O>) -> $name<O> { |
278 | let self_native: $native = self.get(); |
279 | let rhs_native: $native = rhs.get(); |
280 | let result_native = core::ops::$trait::$method(self_native, rhs_native); |
281 | $name::<O>::new(result_native) |
282 | } |
283 | } |
284 | |
285 | impl<O: ByteOrder> core::ops::$trait<$name<O>> for $native { |
286 | type Output = $name<O>; |
287 | |
288 | #[inline(always)] |
289 | fn $method(self, rhs: $name<O>) -> $name<O> { |
290 | let rhs_native: $native = rhs.get(); |
291 | let result_native = core::ops::$trait::$method(self, rhs_native); |
292 | $name::<O>::new(result_native) |
293 | } |
294 | } |
295 | |
296 | impl<O: ByteOrder> core::ops::$trait<$native> for $name<O> { |
297 | type Output = $name<O>; |
298 | |
299 | #[inline(always)] |
300 | fn $method(self, rhs: $native) -> $name<O> { |
301 | let self_native: $native = self.get(); |
302 | let result_native = core::ops::$trait::$method(self_native, rhs); |
303 | $name::<O>::new(result_native) |
304 | } |
305 | } |
306 | |
307 | impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $name<O> { |
308 | #[inline(always)] |
309 | fn $method_assign(&mut self, rhs: $name<O>) { |
310 | *self = core::ops::$trait::$method(*self, rhs); |
311 | } |
312 | } |
313 | |
314 | impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $native { |
315 | #[inline(always)] |
316 | fn $method_assign(&mut self, rhs: $name<O>) { |
317 | let rhs_native: $native = rhs.get(); |
318 | *self = core::ops::$trait::$method(*self, rhs_native); |
319 | } |
320 | } |
321 | |
322 | impl<O: ByteOrder> core::ops::$trait_assign<$native> for $name<O> { |
323 | #[inline(always)] |
324 | fn $method_assign(&mut self, rhs: $native) { |
325 | *self = core::ops::$trait::$method(*self, rhs); |
326 | } |
327 | } |
328 | }; |
329 | // Implement traits in terms of the same trait on the native type, but |
330 | // without performing a byte order swap when both operands are byteorder |
331 | // types. This only works for bitwise operations like `&`, `|`, etc. |
332 | // |
333 | // When only one operand is a byteorder type, we still need to perform a |
334 | // byteorder swap. |
335 | (@without_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { |
336 | impl<O: ByteOrder> core::ops::$trait<$name<O>> for $name<O> { |
337 | type Output = $name<O>; |
338 | |
339 | #[inline(always)] |
340 | fn $method(self, rhs: $name<O>) -> $name<O> { |
341 | let self_native = $native::from_ne_bytes(self.0); |
342 | let rhs_native = $native::from_ne_bytes(rhs.0); |
343 | let result_native = core::ops::$trait::$method(self_native, rhs_native); |
344 | $name(result_native.to_ne_bytes(), PhantomData) |
345 | } |
346 | } |
347 | |
348 | impl<O: ByteOrder> core::ops::$trait<$name<O>> for $native { |
349 | type Output = $name<O>; |
350 | |
351 | #[inline(always)] |
352 | fn $method(self, rhs: $name<O>) -> $name<O> { |
353 | // No runtime cost - just byte packing |
354 | let rhs_native = $native::from_ne_bytes(rhs.0); |
355 | // (Maybe) runtime cost - byte order swap |
356 | let slf_byteorder = $name::<O>::new(self); |
357 | // No runtime cost - just byte packing |
358 | let slf_native = $native::from_ne_bytes(slf_byteorder.0); |
359 | // Runtime cost - perform the operation |
360 | let result_native = core::ops::$trait::$method(slf_native, rhs_native); |
361 | // No runtime cost - just byte unpacking |
362 | $name(result_native.to_ne_bytes(), PhantomData) |
363 | } |
364 | } |
365 | |
366 | impl<O: ByteOrder> core::ops::$trait<$native> for $name<O> { |
367 | type Output = $name<O>; |
368 | |
369 | #[inline(always)] |
370 | fn $method(self, rhs: $native) -> $name<O> { |
371 | // (Maybe) runtime cost - byte order swap |
372 | let rhs_byteorder = $name::<O>::new(rhs); |
373 | // No runtime cost - just byte packing |
374 | let rhs_native = $native::from_ne_bytes(rhs_byteorder.0); |
375 | // No runtime cost - just byte packing |
376 | let slf_native = $native::from_ne_bytes(self.0); |
377 | // Runtime cost - perform the operation |
378 | let result_native = core::ops::$trait::$method(slf_native, rhs_native); |
379 | // No runtime cost - just byte unpacking |
380 | $name(result_native.to_ne_bytes(), PhantomData) |
381 | } |
382 | } |
383 | |
384 | impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $name<O> { |
385 | #[inline(always)] |
386 | fn $method_assign(&mut self, rhs: $name<O>) { |
387 | *self = core::ops::$trait::$method(*self, rhs); |
388 | } |
389 | } |
390 | |
391 | impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $native { |
392 | #[inline(always)] |
393 | fn $method_assign(&mut self, rhs: $name<O>) { |
394 | // (Maybe) runtime cost - byte order swap |
395 | let rhs_native = rhs.get(); |
396 | // Runtime cost - perform the operation |
397 | *self = core::ops::$trait::$method(*self, rhs_native); |
398 | } |
399 | } |
400 | |
401 | impl<O: ByteOrder> core::ops::$trait_assign<$native> for $name<O> { |
402 | #[inline(always)] |
403 | fn $method_assign(&mut self, rhs: $native) { |
404 | *self = core::ops::$trait::$method(*self, rhs); |
405 | } |
406 | } |
407 | }; |
408 | } |
409 | |
410 | macro_rules! doc_comment { |
411 | ($x:expr, $($tt:tt)*) => { |
412 | #[doc = $x] |
413 | $($tt)* |
414 | }; |
415 | } |
416 | |
417 | macro_rules! define_max_value_constant { |
418 | ($name:ident, $bytes:expr, "unsigned integer" ) => { |
419 | /// The maximum value. |
420 | /// |
421 | /// This constant should be preferred to constructing a new value using |
422 | /// `new`, as `new` may perform an endianness swap depending on the |
423 | /// endianness `O` and the endianness of the platform. |
424 | pub const MAX_VALUE: $name<O> = $name([0xFFu8; $bytes], PhantomData); |
425 | }; |
426 | // We don't provide maximum and minimum value constants for signed values |
427 | // and floats because there's no way to do it generically - it would require |
428 | // a different value depending on the value of the `ByteOrder` type |
429 | // parameter. Currently, one workaround would be to provide implementations |
430 | // for concrete implementations of that trait. In the long term, if we are |
431 | // ever able to make the `new` constructor a const fn, we could use that |
432 | // instead. |
433 | ($name:ident, $bytes:expr, "signed integer" ) => {}; |
434 | ($name:ident, $bytes:expr, "floating point number" ) => {}; |
435 | } |
436 | |
437 | macro_rules! define_type { |
438 | ( |
439 | $article:ident, |
440 | $description:expr, |
441 | $name:ident, |
442 | $native:ident, |
443 | $bits:expr, |
444 | $bytes:expr, |
445 | $from_be_fn:path, |
446 | $to_be_fn:path, |
447 | $from_le_fn:path, |
448 | $to_le_fn:path, |
449 | $number_kind:tt, |
450 | [$($larger_native:ty),*], |
451 | [$($larger_native_try:ty),*], |
452 | [$($larger_byteorder:ident),*], |
453 | [$($larger_byteorder_try:ident),*] |
454 | ) => { |
455 | doc_comment! { |
456 | concat!($description, " stored in a given byte order. |
457 | |
458 | `" , stringify!($name), "` is like the native `" , stringify!($native), "` type with |
459 | two major differences: First, it has no alignment requirement (its alignment is 1). |
460 | Second, the endianness of its memory layout is given by the type parameter `O`, |
461 | which can be any type which implements [`ByteOrder`]. In particular, this refers |
462 | to [`BigEndian`], [`LittleEndian`], [`NativeEndian`], and [`NetworkEndian`]. |
463 | |
464 | " , stringify!($article), " `" , stringify!($name), "` can be constructed using |
465 | the [`new`] method, and its contained value can be obtained as a native |
466 | `" ,stringify!($native), "` using the [`get`] method, or updated in place with |
467 | the [`set`] method. In all cases, if the endianness `O` is not the same as the |
468 | endianness of the current platform, an endianness swap will be performed in |
469 | order to uphold the invariants that a) the layout of `" , stringify!($name), "` |
470 | has endianness `O` and that, b) the layout of `" , stringify!($native), "` has |
471 | the platform's native endianness. |
472 | |
473 | `" , stringify!($name), "` implements [`FromBytes`], [`IntoBytes`], and [`Unaligned`], |
474 | making it useful for parsing and serialization. See the module documentation for an |
475 | example of how it can be used for parsing UDP packets. |
476 | |
477 | [`new`]: crate::byteorder::" , stringify!($name), "::new |
478 | [`get`]: crate::byteorder::" , stringify!($name), "::get |
479 | [`set`]: crate::byteorder::" , stringify!($name), "::set |
480 | [`FromBytes`]: crate::FromBytes |
481 | [`IntoBytes`]: crate::IntoBytes |
482 | [`Unaligned`]: crate::Unaligned" ), |
483 | #[derive(Copy, Clone, Eq, PartialEq, Hash)] |
484 | #[cfg_attr(any(feature = "derive" , test), derive(KnownLayout, Immutable, FromBytes, IntoBytes, Unaligned))] |
485 | #[repr(transparent)] |
486 | pub struct $name<O>([u8; $bytes], PhantomData<O>); |
487 | } |
488 | |
489 | #[cfg(not(any(feature = "derive" , test)))] |
490 | impl_known_layout!(O => $name<O>); |
491 | |
492 | safety_comment! { |
493 | /// SAFETY: |
494 | /// `$name<O>` is `repr(transparent)`, and so it has the same layout |
495 | /// as its only non-zero field, which is a `u8` array. `u8` arrays |
496 | /// are `Immutable`, `TryFromBytes`, `FromZeros`, `FromBytes`, |
497 | /// `IntoBytes`, and `Unaligned`. |
498 | impl_or_verify!(O => Immutable for $name<O>); |
499 | impl_or_verify!(O => TryFromBytes for $name<O>); |
500 | impl_or_verify!(O => FromZeros for $name<O>); |
501 | impl_or_verify!(O => FromBytes for $name<O>); |
502 | impl_or_verify!(O => IntoBytes for $name<O>); |
503 | impl_or_verify!(O => Unaligned for $name<O>); |
504 | } |
505 | |
506 | impl<O> Default for $name<O> { |
507 | #[inline(always)] |
508 | fn default() -> $name<O> { |
509 | $name::ZERO |
510 | } |
511 | } |
512 | |
513 | impl<O> $name<O> { |
514 | /// The value zero. |
515 | /// |
516 | /// This constant should be preferred to constructing a new value |
517 | /// using `new`, as `new` may perform an endianness swap depending |
518 | /// on the endianness and platform. |
519 | pub const ZERO: $name<O> = $name([0u8; $bytes], PhantomData); |
520 | |
521 | define_max_value_constant!($name, $bytes, $number_kind); |
522 | |
523 | /// Constructs a new value from bytes which are already in `O` byte |
524 | /// order. |
525 | #[must_use = "has no side effects" ] |
526 | #[inline(always)] |
527 | pub const fn from_bytes(bytes: [u8; $bytes]) -> $name<O> { |
528 | $name(bytes, PhantomData) |
529 | } |
530 | |
531 | /// Extracts the bytes of `self` without swapping the byte order. |
532 | /// |
533 | /// The returned bytes will be in `O` byte order. |
534 | #[must_use = "has no side effects" ] |
535 | #[inline(always)] |
536 | pub const fn to_bytes(self) -> [u8; $bytes] { |
537 | self.0 |
538 | } |
539 | } |
540 | |
541 | impl<O: ByteOrder> $name<O> { |
542 | maybe_const_trait_bounded_fn! { |
543 | /// Constructs a new value, possibly performing an endianness |
544 | /// swap to guarantee that the returned value has endianness |
545 | /// `O`. |
546 | #[must_use = "has no side effects" ] |
547 | #[inline(always)] |
548 | pub const fn new(n: $native) -> $name<O> { |
549 | let bytes = match O::ORDER { |
550 | Order::BigEndian => $to_be_fn(n), |
551 | Order::LittleEndian => $to_le_fn(n), |
552 | }; |
553 | |
554 | $name(bytes, PhantomData) |
555 | } |
556 | } |
557 | |
558 | maybe_const_trait_bounded_fn! { |
559 | /// Returns the value as a primitive type, possibly performing |
560 | /// an endianness swap to guarantee that the return value has |
561 | /// the endianness of the native platform. |
562 | #[must_use = "has no side effects" ] |
563 | #[inline(always)] |
564 | pub const fn get(self) -> $native { |
565 | match O::ORDER { |
566 | Order::BigEndian => $from_be_fn(self.0), |
567 | Order::LittleEndian => $from_le_fn(self.0), |
568 | } |
569 | } |
570 | } |
571 | |
572 | /// Updates the value in place as a primitive type, possibly |
573 | /// performing an endianness swap to guarantee that the stored value |
574 | /// has the endianness `O`. |
575 | #[inline(always)] |
576 | pub fn set(&mut self, n: $native) { |
577 | *self = Self::new(n); |
578 | } |
579 | } |
580 | |
581 | // The reasoning behind which traits to implement here is to only |
582 | // implement traits which won't cause inference issues. Notably, |
583 | // comparison traits like PartialEq and PartialOrd tend to cause |
584 | // inference issues. |
585 | |
586 | impl<O: ByteOrder> From<$name<O>> for [u8; $bytes] { |
587 | #[inline(always)] |
588 | fn from(x: $name<O>) -> [u8; $bytes] { |
589 | x.0 |
590 | } |
591 | } |
592 | |
593 | impl<O: ByteOrder> From<[u8; $bytes]> for $name<O> { |
594 | #[inline(always)] |
595 | fn from(bytes: [u8; $bytes]) -> $name<O> { |
596 | $name(bytes, PhantomData) |
597 | } |
598 | } |
599 | |
600 | impl<O: ByteOrder> From<$name<O>> for $native { |
601 | #[inline(always)] |
602 | fn from(x: $name<O>) -> $native { |
603 | x.get() |
604 | } |
605 | } |
606 | |
607 | impl<O: ByteOrder> From<$native> for $name<O> { |
608 | #[inline(always)] |
609 | fn from(x: $native) -> $name<O> { |
610 | $name::new(x) |
611 | } |
612 | } |
613 | |
614 | $( |
615 | impl<O: ByteOrder> From<$name<O>> for $larger_native { |
616 | #[inline(always)] |
617 | fn from(x: $name<O>) -> $larger_native { |
618 | x.get().into() |
619 | } |
620 | } |
621 | )* |
622 | |
623 | $( |
624 | impl<O: ByteOrder> TryFrom<$larger_native_try> for $name<O> { |
625 | type Error = TryFromIntError; |
626 | #[inline(always)] |
627 | fn try_from(x: $larger_native_try) -> Result<$name<O>, TryFromIntError> { |
628 | $native::try_from(x).map($name::new) |
629 | } |
630 | } |
631 | )* |
632 | |
633 | $( |
634 | impl<O: ByteOrder, P: ByteOrder> From<$name<O>> for $larger_byteorder<P> { |
635 | #[inline(always)] |
636 | fn from(x: $name<O>) -> $larger_byteorder<P> { |
637 | $larger_byteorder::new(x.get().into()) |
638 | } |
639 | } |
640 | )* |
641 | |
642 | $( |
643 | impl<O: ByteOrder, P: ByteOrder> TryFrom<$larger_byteorder_try<P>> for $name<O> { |
644 | type Error = TryFromIntError; |
645 | #[inline(always)] |
646 | fn try_from(x: $larger_byteorder_try<P>) -> Result<$name<O>, TryFromIntError> { |
647 | x.get().try_into().map($name::new) |
648 | } |
649 | } |
650 | )* |
651 | |
652 | impl<O> AsRef<[u8; $bytes]> for $name<O> { |
653 | #[inline(always)] |
654 | fn as_ref(&self) -> &[u8; $bytes] { |
655 | &self.0 |
656 | } |
657 | } |
658 | |
659 | impl<O> AsMut<[u8; $bytes]> for $name<O> { |
660 | #[inline(always)] |
661 | fn as_mut(&mut self) -> &mut [u8; $bytes] { |
662 | &mut self.0 |
663 | } |
664 | } |
665 | |
666 | impl<O> PartialEq<$name<O>> for [u8; $bytes] { |
667 | #[inline(always)] |
668 | fn eq(&self, other: &$name<O>) -> bool { |
669 | self.eq(&other.0) |
670 | } |
671 | } |
672 | |
673 | impl<O> PartialEq<[u8; $bytes]> for $name<O> { |
674 | #[inline(always)] |
675 | fn eq(&self, other: &[u8; $bytes]) -> bool { |
676 | self.0.eq(other) |
677 | } |
678 | } |
679 | |
680 | impl<O: ByteOrder> PartialEq<$native> for $name<O> { |
681 | #[inline(always)] |
682 | fn eq(&self, other: &$native) -> bool { |
683 | self.get().eq(other) |
684 | } |
685 | } |
686 | |
687 | impl_fmt_traits!($name, $native, $number_kind); |
688 | impl_ops_traits!($name, $native, $number_kind); |
689 | |
690 | impl<O: ByteOrder> Debug for $name<O> { |
691 | #[inline] |
692 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
693 | // This results in a format like "U16(42)". |
694 | f.debug_tuple(stringify!($name)).field(&self.get()).finish() |
695 | } |
696 | } |
697 | }; |
698 | } |
699 | |
700 | define_type!( |
701 | A, |
702 | "A 16-bit unsigned integer" , |
703 | U16, |
704 | u16, |
705 | 16, |
706 | 2, |
707 | u16::from_be_bytes, |
708 | u16::to_be_bytes, |
709 | u16::from_le_bytes, |
710 | u16::to_le_bytes, |
711 | "unsigned integer" , |
712 | [u32, u64, u128, usize], |
713 | [u32, u64, u128, usize], |
714 | [U32, U64, U128, Usize], |
715 | [U32, U64, U128, Usize] |
716 | ); |
717 | define_type!( |
718 | A, |
719 | "A 32-bit unsigned integer" , |
720 | U32, |
721 | u32, |
722 | 32, |
723 | 4, |
724 | u32::from_be_bytes, |
725 | u32::to_be_bytes, |
726 | u32::from_le_bytes, |
727 | u32::to_le_bytes, |
728 | "unsigned integer" , |
729 | [u64, u128], |
730 | [u64, u128], |
731 | [U64, U128], |
732 | [U64, U128] |
733 | ); |
734 | define_type!( |
735 | A, |
736 | "A 64-bit unsigned integer" , |
737 | U64, |
738 | u64, |
739 | 64, |
740 | 8, |
741 | u64::from_be_bytes, |
742 | u64::to_be_bytes, |
743 | u64::from_le_bytes, |
744 | u64::to_le_bytes, |
745 | "unsigned integer" , |
746 | [u128], |
747 | [u128], |
748 | [U128], |
749 | [U128] |
750 | ); |
751 | define_type!( |
752 | A, |
753 | "A 128-bit unsigned integer" , |
754 | U128, |
755 | u128, |
756 | 128, |
757 | 16, |
758 | u128::from_be_bytes, |
759 | u128::to_be_bytes, |
760 | u128::from_le_bytes, |
761 | u128::to_le_bytes, |
762 | "unsigned integer" , |
763 | [], |
764 | [], |
765 | [], |
766 | [] |
767 | ); |
768 | define_type!( |
769 | A, |
770 | "A word-sized unsigned integer" , |
771 | Usize, |
772 | usize, |
773 | mem::size_of::<usize>() * 8, |
774 | mem::size_of::<usize>(), |
775 | usize::from_be_bytes, |
776 | usize::to_be_bytes, |
777 | usize::from_le_bytes, |
778 | usize::to_le_bytes, |
779 | "unsigned integer" , |
780 | [], |
781 | [], |
782 | [], |
783 | [] |
784 | ); |
785 | define_type!( |
786 | An, |
787 | "A 16-bit signed integer" , |
788 | I16, |
789 | i16, |
790 | 16, |
791 | 2, |
792 | i16::from_be_bytes, |
793 | i16::to_be_bytes, |
794 | i16::from_le_bytes, |
795 | i16::to_le_bytes, |
796 | "signed integer" , |
797 | [i32, i64, i128, isize], |
798 | [i32, i64, i128, isize], |
799 | [I32, I64, I128, Isize], |
800 | [I32, I64, I128, Isize] |
801 | ); |
802 | define_type!( |
803 | An, |
804 | "A 32-bit signed integer" , |
805 | I32, |
806 | i32, |
807 | 32, |
808 | 4, |
809 | i32::from_be_bytes, |
810 | i32::to_be_bytes, |
811 | i32::from_le_bytes, |
812 | i32::to_le_bytes, |
813 | "signed integer" , |
814 | [i64, i128], |
815 | [i64, i128], |
816 | [I64, I128], |
817 | [I64, I128] |
818 | ); |
819 | define_type!( |
820 | An, |
821 | "A 64-bit signed integer" , |
822 | I64, |
823 | i64, |
824 | 64, |
825 | 8, |
826 | i64::from_be_bytes, |
827 | i64::to_be_bytes, |
828 | i64::from_le_bytes, |
829 | i64::to_le_bytes, |
830 | "signed integer" , |
831 | [i128], |
832 | [i128], |
833 | [I128], |
834 | [I128] |
835 | ); |
836 | define_type!( |
837 | An, |
838 | "A 128-bit signed integer" , |
839 | I128, |
840 | i128, |
841 | 128, |
842 | 16, |
843 | i128::from_be_bytes, |
844 | i128::to_be_bytes, |
845 | i128::from_le_bytes, |
846 | i128::to_le_bytes, |
847 | "signed integer" , |
848 | [], |
849 | [], |
850 | [], |
851 | [] |
852 | ); |
853 | define_type!( |
854 | An, |
855 | "A word-sized signed integer" , |
856 | Isize, |
857 | isize, |
858 | mem::size_of::<isize>() * 8, |
859 | mem::size_of::<isize>(), |
860 | isize::from_be_bytes, |
861 | isize::to_be_bytes, |
862 | isize::from_le_bytes, |
863 | isize::to_le_bytes, |
864 | "signed integer" , |
865 | [], |
866 | [], |
867 | [], |
868 | [] |
869 | ); |
870 | |
871 | // TODO(https://github.com/rust-lang/rust/issues/72447): Use the endianness |
872 | // conversion methods directly once those are const-stable. |
873 | macro_rules! define_float_conversion { |
874 | ($ty:ty, $bits:ident, $bytes:expr, $mod:ident) => { |
875 | mod $mod { |
876 | use super::*; |
877 | |
878 | define_float_conversion!($ty, $bits, $bytes, from_be_bytes, to_be_bytes); |
879 | define_float_conversion!($ty, $bits, $bytes, from_le_bytes, to_le_bytes); |
880 | } |
881 | }; |
882 | ($ty:ty, $bits:ident, $bytes:expr, $from:ident, $to:ident) => { |
883 | // Clippy: The suggestion of using `from_bits()` instead doesn't work |
884 | // because `from_bits` is not const-stable on our MSRV. |
885 | #[allow(clippy::transmute_int_to_float)] |
886 | pub(crate) const fn $from(bytes: [u8; $bytes]) -> $ty { |
887 | transmute!($bits::$from(bytes)) |
888 | } |
889 | |
890 | pub(crate) const fn $to(f: $ty) -> [u8; $bytes] { |
891 | // Clippy: The suggestion of using `f.to_bits()` instead doesn't |
892 | // work because `to_bits` is not const-stable on our MSRV. |
893 | #[allow(clippy::transmute_float_to_int)] |
894 | let bits: $bits = transmute!(f); |
895 | bits.$to() |
896 | } |
897 | }; |
898 | } |
899 | |
900 | define_float_conversion!(f32, u32, 4, f32_ext); |
901 | define_float_conversion!(f64, u64, 8, f64_ext); |
902 | |
903 | define_type!( |
904 | An, |
905 | "A 32-bit floating point number" , |
906 | F32, |
907 | f32, |
908 | 32, |
909 | 4, |
910 | f32_ext::from_be_bytes, |
911 | f32_ext::to_be_bytes, |
912 | f32_ext::from_le_bytes, |
913 | f32_ext::to_le_bytes, |
914 | "floating point number" , |
915 | [f64], |
916 | [], |
917 | [F64], |
918 | [] |
919 | ); |
920 | define_type!( |
921 | An, |
922 | "A 64-bit floating point number" , |
923 | F64, |
924 | f64, |
925 | 64, |
926 | 8, |
927 | f64_ext::from_be_bytes, |
928 | f64_ext::to_be_bytes, |
929 | f64_ext::from_le_bytes, |
930 | f64_ext::to_le_bytes, |
931 | "floating point number" , |
932 | [], |
933 | [], |
934 | [], |
935 | [] |
936 | ); |
937 | |
938 | macro_rules! module { |
939 | ($name:ident, $trait:ident, $endianness_str:expr) => { |
940 | /// Numeric primitives stored in |
941 | #[doc = $endianness_str] |
942 | /// byte order. |
943 | pub mod $name { |
944 | use super::$trait; |
945 | |
946 | module!(@ty U16, $trait, "16-bit unsigned integer" , $endianness_str); |
947 | module!(@ty U32, $trait, "32-bit unsigned integer" , $endianness_str); |
948 | module!(@ty U64, $trait, "64-bit unsigned integer" , $endianness_str); |
949 | module!(@ty U128, $trait, "128-bit unsigned integer" , $endianness_str); |
950 | module!(@ty I16, $trait, "16-bit signed integer" , $endianness_str); |
951 | module!(@ty I32, $trait, "32-bit signed integer" , $endianness_str); |
952 | module!(@ty I64, $trait, "64-bit signed integer" , $endianness_str); |
953 | module!(@ty I128, $trait, "128-bit signed integer" , $endianness_str); |
954 | module!(@ty F32, $trait, "32-bit floating point number" , $endianness_str); |
955 | module!(@ty F64, $trait, "64-bit floating point number" , $endianness_str); |
956 | } |
957 | }; |
958 | (@ty $ty:ident, $trait:ident, $desc_str:expr, $endianness_str:expr) => { |
959 | /// A |
960 | #[doc = $desc_str] |
961 | /// stored in |
962 | #[doc = $endianness_str] |
963 | /// byte order. |
964 | pub type $ty = crate::byteorder::$ty<$trait>; |
965 | }; |
966 | } |
967 | |
968 | module!(big_endian, BigEndian, "big-endian" ); |
969 | module!(little_endian, LittleEndian, "little-endian" ); |
970 | module!(network_endian, NetworkEndian, "network-endian" ); |
971 | module!(native_endian, NativeEndian, "native-endian" ); |
972 | |
973 | #[cfg (any(test, kani))] |
974 | mod tests { |
975 | use super::*; |
976 | |
977 | #[cfg (not(kani))] |
978 | mod compatibility { |
979 | pub(super) use rand::{ |
980 | distributions::{Distribution, Standard}, |
981 | rngs::SmallRng, |
982 | Rng, SeedableRng, |
983 | }; |
984 | |
985 | pub(crate) trait Arbitrary {} |
986 | |
987 | impl<T> Arbitrary for T {} |
988 | } |
989 | |
990 | #[cfg (kani)] |
991 | mod compatibility { |
992 | pub(crate) use kani::Arbitrary; |
993 | |
994 | pub(crate) struct SmallRng; |
995 | |
996 | impl SmallRng { |
997 | pub(crate) fn seed_from_u64(_state: u64) -> Self { |
998 | Self |
999 | } |
1000 | } |
1001 | |
1002 | pub(crate) trait Rng { |
1003 | fn sample<T, D: Distribution<T>>(&mut self, _distr: D) -> T |
1004 | where |
1005 | T: Arbitrary, |
1006 | { |
1007 | kani::any() |
1008 | } |
1009 | } |
1010 | |
1011 | impl Rng for SmallRng {} |
1012 | |
1013 | pub(crate) trait Distribution<T> {} |
1014 | impl<T, U> Distribution<T> for U {} |
1015 | |
1016 | pub(crate) struct Standard; |
1017 | } |
1018 | |
1019 | use compatibility::*; |
1020 | |
1021 | // A native integer type (u16, i32, etc). |
1022 | trait Native: Arbitrary + FromBytes + IntoBytes + Immutable + Copy + PartialEq + Debug { |
1023 | const ZERO: Self; |
1024 | const MAX_VALUE: Self; |
1025 | |
1026 | type Distribution: Distribution<Self>; |
1027 | const DIST: Self::Distribution; |
1028 | |
1029 | fn rand<R: Rng>(rng: &mut R) -> Self { |
1030 | rng.sample(Self::DIST) |
1031 | } |
1032 | |
1033 | #[cfg_attr (kani, allow(unused))] |
1034 | fn checked_add(self, rhs: Self) -> Option<Self>; |
1035 | |
1036 | #[cfg_attr (kani, allow(unused))] |
1037 | fn checked_div(self, rhs: Self) -> Option<Self>; |
1038 | |
1039 | #[cfg_attr (kani, allow(unused))] |
1040 | fn checked_mul(self, rhs: Self) -> Option<Self>; |
1041 | |
1042 | #[cfg_attr (kani, allow(unused))] |
1043 | fn checked_rem(self, rhs: Self) -> Option<Self>; |
1044 | |
1045 | #[cfg_attr (kani, allow(unused))] |
1046 | fn checked_sub(self, rhs: Self) -> Option<Self>; |
1047 | |
1048 | #[cfg_attr (kani, allow(unused))] |
1049 | fn checked_shl(self, rhs: Self) -> Option<Self>; |
1050 | |
1051 | #[cfg_attr (kani, allow(unused))] |
1052 | fn checked_shr(self, rhs: Self) -> Option<Self>; |
1053 | |
1054 | fn is_nan(self) -> bool; |
1055 | |
1056 | /// For `f32` and `f64`, NaN values are not considered equal to |
1057 | /// themselves. This method is like `assert_eq!`, but it treats NaN |
1058 | /// values as equal. |
1059 | fn assert_eq_or_nan(self, other: Self) { |
1060 | let slf = (!self.is_nan()).then(|| self); |
1061 | let other = (!other.is_nan()).then(|| other); |
1062 | assert_eq!(slf, other); |
1063 | } |
1064 | } |
1065 | |
1066 | trait ByteArray: |
1067 | FromBytes + IntoBytes + Immutable + Copy + AsRef<[u8]> + AsMut<[u8]> + Debug + Default + Eq |
1068 | { |
1069 | /// Invert the order of the bytes in the array. |
1070 | fn invert(self) -> Self; |
1071 | } |
1072 | |
1073 | trait ByteOrderType: |
1074 | FromBytes + IntoBytes + Unaligned + Copy + Eq + Debug + Hash + From<Self::Native> |
1075 | { |
1076 | type Native: Native; |
1077 | type ByteArray: ByteArray; |
1078 | |
1079 | const ZERO: Self; |
1080 | |
1081 | fn new(native: Self::Native) -> Self; |
1082 | fn get(self) -> Self::Native; |
1083 | fn set(&mut self, native: Self::Native); |
1084 | fn from_bytes(bytes: Self::ByteArray) -> Self; |
1085 | fn into_bytes(self) -> Self::ByteArray; |
1086 | |
1087 | /// For `f32` and `f64`, NaN values are not considered equal to |
1088 | /// themselves. This method is like `assert_eq!`, but it treats NaN |
1089 | /// values as equal. |
1090 | fn assert_eq_or_nan(self, other: Self) { |
1091 | let slf = (!self.get().is_nan()).then(|| self); |
1092 | let other = (!other.get().is_nan()).then(|| other); |
1093 | assert_eq!(slf, other); |
1094 | } |
1095 | } |
1096 | |
1097 | trait ByteOrderTypeUnsigned: ByteOrderType { |
1098 | const MAX_VALUE: Self; |
1099 | } |
1100 | |
1101 | macro_rules! impl_byte_array { |
1102 | ($bytes:expr) => { |
1103 | impl ByteArray for [u8; $bytes] { |
1104 | fn invert(mut self) -> [u8; $bytes] { |
1105 | self.reverse(); |
1106 | self |
1107 | } |
1108 | } |
1109 | }; |
1110 | } |
1111 | |
1112 | impl_byte_array!(2); |
1113 | impl_byte_array!(4); |
1114 | impl_byte_array!(8); |
1115 | impl_byte_array!(16); |
1116 | |
1117 | macro_rules! impl_byte_order_type_unsigned { |
1118 | ($name:ident, unsigned) => { |
1119 | impl<O: ByteOrder> ByteOrderTypeUnsigned for $name<O> { |
1120 | const MAX_VALUE: $name<O> = $name::MAX_VALUE; |
1121 | } |
1122 | }; |
1123 | ($name:ident, signed) => {}; |
1124 | } |
1125 | |
1126 | macro_rules! impl_traits { |
1127 | ($name:ident, $native:ident, $sign:ident $(, @$float:ident)?) => { |
1128 | impl Native for $native { |
1129 | // For some types, `0 as $native` is required (for example, when |
1130 | // `$native` is a floating-point type; `0` is an integer), but |
1131 | // for other types, it's a trivial cast. In all cases, Clippy |
1132 | // thinks it's dangerous. |
1133 | #[allow(trivial_numeric_casts, clippy::as_conversions)] |
1134 | const ZERO: $native = 0 as $native; |
1135 | const MAX_VALUE: $native = $native::MAX; |
1136 | |
1137 | type Distribution = Standard; |
1138 | const DIST: Standard = Standard; |
1139 | |
1140 | impl_traits!(@float_dependent_methods $(@$float)?); |
1141 | } |
1142 | |
1143 | impl<O: ByteOrder> ByteOrderType for $name<O> { |
1144 | type Native = $native; |
1145 | type ByteArray = [u8; mem::size_of::<$native>()]; |
1146 | |
1147 | const ZERO: $name<O> = $name::ZERO; |
1148 | |
1149 | fn new(native: $native) -> $name<O> { |
1150 | $name::new(native) |
1151 | } |
1152 | |
1153 | fn get(self) -> $native { |
1154 | $name::get(self) |
1155 | } |
1156 | |
1157 | fn set(&mut self, native: $native) { |
1158 | $name::set(self, native) |
1159 | } |
1160 | |
1161 | fn from_bytes(bytes: [u8; mem::size_of::<$native>()]) -> $name<O> { |
1162 | $name::from(bytes) |
1163 | } |
1164 | |
1165 | fn into_bytes(self) -> [u8; mem::size_of::<$native>()] { |
1166 | <[u8; mem::size_of::<$native>()]>::from(self) |
1167 | } |
1168 | } |
1169 | |
1170 | impl_byte_order_type_unsigned!($name, $sign); |
1171 | }; |
1172 | (@float_dependent_methods) => { |
1173 | fn checked_add(self, rhs: Self) -> Option<Self> { self.checked_add(rhs) } |
1174 | fn checked_div(self, rhs: Self) -> Option<Self> { self.checked_div(rhs) } |
1175 | fn checked_mul(self, rhs: Self) -> Option<Self> { self.checked_mul(rhs) } |
1176 | fn checked_rem(self, rhs: Self) -> Option<Self> { self.checked_rem(rhs) } |
1177 | fn checked_sub(self, rhs: Self) -> Option<Self> { self.checked_sub(rhs) } |
1178 | fn checked_shl(self, rhs: Self) -> Option<Self> { self.checked_shl(rhs.try_into().unwrap_or(u32::MAX)) } |
1179 | fn checked_shr(self, rhs: Self) -> Option<Self> { self.checked_shr(rhs.try_into().unwrap_or(u32::MAX)) } |
1180 | fn is_nan(self) -> bool { false } |
1181 | }; |
1182 | (@float_dependent_methods @float) => { |
1183 | fn checked_add(self, rhs: Self) -> Option<Self> { Some(self + rhs) } |
1184 | fn checked_div(self, rhs: Self) -> Option<Self> { Some(self / rhs) } |
1185 | fn checked_mul(self, rhs: Self) -> Option<Self> { Some(self * rhs) } |
1186 | fn checked_rem(self, rhs: Self) -> Option<Self> { Some(self % rhs) } |
1187 | fn checked_sub(self, rhs: Self) -> Option<Self> { Some(self - rhs) } |
1188 | fn checked_shl(self, _rhs: Self) -> Option<Self> { unimplemented!() } |
1189 | fn checked_shr(self, _rhs: Self) -> Option<Self> { unimplemented!() } |
1190 | fn is_nan(self) -> bool { self.is_nan() } |
1191 | }; |
1192 | } |
1193 | |
1194 | impl_traits!(U16, u16, unsigned); |
1195 | impl_traits!(U32, u32, unsigned); |
1196 | impl_traits!(U64, u64, unsigned); |
1197 | impl_traits!(U128, u128, unsigned); |
1198 | impl_traits!(Usize, usize, unsigned); |
1199 | impl_traits!(I16, i16, signed); |
1200 | impl_traits!(I32, i32, signed); |
1201 | impl_traits!(I64, i64, signed); |
1202 | impl_traits!(I128, i128, signed); |
1203 | impl_traits!(Isize, isize, unsigned); |
1204 | impl_traits!(F32, f32, signed, @float); |
1205 | impl_traits!(F64, f64, signed, @float); |
1206 | |
1207 | macro_rules! call_for_unsigned_types { |
1208 | ($fn:ident, $byteorder:ident) => { |
1209 | $fn::<U16<$byteorder>>(); |
1210 | $fn::<U32<$byteorder>>(); |
1211 | $fn::<U64<$byteorder>>(); |
1212 | $fn::<U128<$byteorder>>(); |
1213 | $fn::<Usize<$byteorder>>(); |
1214 | }; |
1215 | } |
1216 | |
1217 | macro_rules! call_for_signed_types { |
1218 | ($fn:ident, $byteorder:ident) => { |
1219 | $fn::<I16<$byteorder>>(); |
1220 | $fn::<I32<$byteorder>>(); |
1221 | $fn::<I64<$byteorder>>(); |
1222 | $fn::<I128<$byteorder>>(); |
1223 | $fn::<Isize<$byteorder>>(); |
1224 | }; |
1225 | } |
1226 | |
1227 | macro_rules! call_for_float_types { |
1228 | ($fn:ident, $byteorder:ident) => { |
1229 | $fn::<F32<$byteorder>>(); |
1230 | $fn::<F64<$byteorder>>(); |
1231 | }; |
1232 | } |
1233 | |
1234 | macro_rules! call_for_all_types { |
1235 | ($fn:ident, $byteorder:ident) => { |
1236 | call_for_unsigned_types!($fn, $byteorder); |
1237 | call_for_signed_types!($fn, $byteorder); |
1238 | call_for_float_types!($fn, $byteorder); |
1239 | }; |
1240 | } |
1241 | |
1242 | #[cfg (target_endian = "big" )] |
1243 | type NonNativeEndian = LittleEndian; |
1244 | #[cfg (target_endian = "little" )] |
1245 | type NonNativeEndian = BigEndian; |
1246 | |
1247 | // We use a `u64` seed so that we can use `SeedableRng::seed_from_u64`. |
1248 | // `SmallRng`'s `SeedableRng::Seed` differs by platform, so if we wanted to |
1249 | // call `SeedableRng::from_seed`, which takes a `Seed`, we would need |
1250 | // conditional compilation by `target_pointer_width`. |
1251 | const RNG_SEED: u64 = 0x7A03CAE2F32B5B8F; |
1252 | |
1253 | const RAND_ITERS: usize = if cfg!(any(miri, kani)) { |
1254 | // The tests below which use this constant used to take a very long time |
1255 | // on Miri, which slows down local development and CI jobs. We're not |
1256 | // using Miri to check for the correctness of our code, but rather its |
1257 | // soundness, and at least in the context of these particular tests, a |
1258 | // single loop iteration is just as good for surfacing UB as multiple |
1259 | // iterations are. |
1260 | // |
1261 | // As of the writing of this comment, here's one set of measurements: |
1262 | // |
1263 | // $ # RAND_ITERS == 1 |
1264 | // $ cargo miri test -- -Z unstable-options --report-time endian |
1265 | // test byteorder::tests::test_native_endian ... ok <0.049s> |
1266 | // test byteorder::tests::test_non_native_endian ... ok <0.061s> |
1267 | // |
1268 | // $ # RAND_ITERS == 1024 |
1269 | // $ cargo miri test -- -Z unstable-options --report-time endian |
1270 | // test byteorder::tests::test_native_endian ... ok <25.716s> |
1271 | // test byteorder::tests::test_non_native_endian ... ok <38.127s> |
1272 | 1 |
1273 | } else { |
1274 | 1024 |
1275 | }; |
1276 | |
1277 | #[test] |
1278 | fn test_const_methods() { |
1279 | use big_endian::*; |
1280 | |
1281 | #[rustversion::since(1.61.0)] |
1282 | const _U: U16 = U16::new(0); |
1283 | #[rustversion::since(1.61.0)] |
1284 | const _NATIVE: u16 = _U.get(); |
1285 | const _FROM_BYTES: U16 = U16::from_bytes([0, 1]); |
1286 | const _BYTES: [u8; 2] = _FROM_BYTES.to_bytes(); |
1287 | } |
1288 | |
1289 | #[cfg_attr (test, test)] |
1290 | #[cfg_attr (kani, kani::proof)] |
1291 | fn test_zero() { |
1292 | fn test_zero<T: ByteOrderType>() { |
1293 | assert_eq!(T::ZERO.get(), T::Native::ZERO); |
1294 | } |
1295 | |
1296 | call_for_all_types!(test_zero, NativeEndian); |
1297 | call_for_all_types!(test_zero, NonNativeEndian); |
1298 | } |
1299 | |
1300 | #[cfg_attr (test, test)] |
1301 | #[cfg_attr (kani, kani::proof)] |
1302 | fn test_max_value() { |
1303 | fn test_max_value<T: ByteOrderTypeUnsigned>() { |
1304 | assert_eq!(T::MAX_VALUE.get(), T::Native::MAX_VALUE); |
1305 | } |
1306 | |
1307 | call_for_unsigned_types!(test_max_value, NativeEndian); |
1308 | call_for_unsigned_types!(test_max_value, NonNativeEndian); |
1309 | } |
1310 | |
1311 | #[cfg_attr (test, test)] |
1312 | #[cfg_attr (kani, kani::proof)] |
1313 | fn test_endian() { |
1314 | fn test<T: ByteOrderType>(invert: bool) { |
1315 | let mut r = SmallRng::seed_from_u64(RNG_SEED); |
1316 | for _ in 0..RAND_ITERS { |
1317 | let native = T::Native::rand(&mut r); |
1318 | let mut bytes = T::ByteArray::default(); |
1319 | bytes.as_mut_bytes().copy_from_slice(native.as_bytes()); |
1320 | if invert { |
1321 | bytes = bytes.invert(); |
1322 | } |
1323 | let mut from_native = T::new(native); |
1324 | let from_bytes = T::from_bytes(bytes); |
1325 | |
1326 | from_native.assert_eq_or_nan(from_bytes); |
1327 | from_native.get().assert_eq_or_nan(native); |
1328 | from_bytes.get().assert_eq_or_nan(native); |
1329 | |
1330 | assert_eq!(from_native.into_bytes(), bytes); |
1331 | assert_eq!(from_bytes.into_bytes(), bytes); |
1332 | |
1333 | let updated = T::Native::rand(&mut r); |
1334 | from_native.set(updated); |
1335 | from_native.get().assert_eq_or_nan(updated); |
1336 | } |
1337 | } |
1338 | |
1339 | fn test_native<T: ByteOrderType>() { |
1340 | test::<T>(false); |
1341 | } |
1342 | |
1343 | fn test_non_native<T: ByteOrderType>() { |
1344 | test::<T>(true); |
1345 | } |
1346 | |
1347 | call_for_all_types!(test_native, NativeEndian); |
1348 | call_for_all_types!(test_non_native, NonNativeEndian); |
1349 | } |
1350 | |
1351 | #[test] |
1352 | fn test_ops_impls() { |
1353 | // Test implementations of traits in `core::ops`. Some of these are |
1354 | // fairly banal, but some are optimized to perform the operation without |
1355 | // swapping byte order (namely, bit-wise operations which are identical |
1356 | // regardless of byte order). These are important to test, and while |
1357 | // we're testing those anyway, it's trivial to test all of the impls. |
1358 | |
1359 | fn test<T, FTT, FTN, FNT, FNN, FNNChecked, FATT, FATN, FANT>( |
1360 | op_t_t: FTT, |
1361 | op_t_n: FTN, |
1362 | op_n_t: FNT, |
1363 | op_n_n: FNN, |
1364 | op_n_n_checked: Option<FNNChecked>, |
1365 | op_assign: Option<(FATT, FATN, FANT)>, |
1366 | ) where |
1367 | T: ByteOrderType, |
1368 | FTT: Fn(T, T) -> T, |
1369 | FTN: Fn(T, T::Native) -> T, |
1370 | FNT: Fn(T::Native, T) -> T, |
1371 | FNN: Fn(T::Native, T::Native) -> T::Native, |
1372 | FNNChecked: Fn(T::Native, T::Native) -> Option<T::Native>, |
1373 | |
1374 | FATT: Fn(&mut T, T), |
1375 | FATN: Fn(&mut T, T::Native), |
1376 | FANT: Fn(&mut T::Native, T), |
1377 | { |
1378 | let mut r = SmallRng::seed_from_u64(RNG_SEED); |
1379 | for _ in 0..RAND_ITERS { |
1380 | let n0 = T::Native::rand(&mut r); |
1381 | let n1 = T::Native::rand(&mut r); |
1382 | let t0 = T::new(n0); |
1383 | let t1 = T::new(n1); |
1384 | |
1385 | // If this operation would overflow/underflow, skip it rather |
1386 | // than attempt to catch and recover from panics. |
1387 | if matches!(&op_n_n_checked, Some(checked) if checked(n0, n1).is_none()) { |
1388 | continue; |
1389 | } |
1390 | |
1391 | let t_t_res = op_t_t(t0, t1); |
1392 | let t_n_res = op_t_n(t0, n1); |
1393 | let n_t_res = op_n_t(n0, t1); |
1394 | let n_n_res = op_n_n(n0, n1); |
1395 | |
1396 | // For `f32` and `f64`, NaN values are not considered equal to |
1397 | // themselves. We store `Option<f32>`/`Option<f64>` and store |
1398 | // NaN as `None` so they can still be compared. |
1399 | let val_or_none = |t: T| (!T::Native::is_nan(t.get())).then(|| t.get()); |
1400 | let t_t_res = val_or_none(t_t_res); |
1401 | let t_n_res = val_or_none(t_n_res); |
1402 | let n_t_res = val_or_none(n_t_res); |
1403 | let n_n_res = (!T::Native::is_nan(n_n_res)).then(|| n_n_res); |
1404 | assert_eq!(t_t_res, n_n_res); |
1405 | assert_eq!(t_n_res, n_n_res); |
1406 | assert_eq!(n_t_res, n_n_res); |
1407 | |
1408 | if let Some((op_assign_t_t, op_assign_t_n, op_assign_n_t)) = &op_assign { |
1409 | let mut t_t_res = t0; |
1410 | op_assign_t_t(&mut t_t_res, t1); |
1411 | let mut t_n_res = t0; |
1412 | op_assign_t_n(&mut t_n_res, n1); |
1413 | let mut n_t_res = n0; |
1414 | op_assign_n_t(&mut n_t_res, t1); |
1415 | |
1416 | // For `f32` and `f64`, NaN values are not considered equal to |
1417 | // themselves. We store `Option<f32>`/`Option<f64>` and store |
1418 | // NaN as `None` so they can still be compared. |
1419 | let t_t_res = val_or_none(t_t_res); |
1420 | let t_n_res = val_or_none(t_n_res); |
1421 | let n_t_res = (!T::Native::is_nan(n_t_res)).then(|| n_t_res); |
1422 | assert_eq!(t_t_res, n_n_res); |
1423 | assert_eq!(t_n_res, n_n_res); |
1424 | assert_eq!(n_t_res, n_n_res); |
1425 | } |
1426 | } |
1427 | } |
1428 | |
1429 | macro_rules! test { |
1430 | ( |
1431 | @binary |
1432 | $trait:ident, |
1433 | $method:ident $([$checked_method:ident])?, |
1434 | $trait_assign:ident, |
1435 | $method_assign:ident, |
1436 | $($call_for_macros:ident),* |
1437 | ) => {{ |
1438 | fn t<T>() |
1439 | where |
1440 | T: ByteOrderType, |
1441 | T: core::ops::$trait<T, Output = T>, |
1442 | T: core::ops::$trait<T::Native, Output = T>, |
1443 | T::Native: core::ops::$trait<T, Output = T>, |
1444 | T::Native: core::ops::$trait<T::Native, Output = T::Native>, |
1445 | |
1446 | T: core::ops::$trait_assign<T>, |
1447 | T: core::ops::$trait_assign<T::Native>, |
1448 | T::Native: core::ops::$trait_assign<T>, |
1449 | T::Native: core::ops::$trait_assign<T::Native>, |
1450 | { |
1451 | test::<T, _, _, _, _, _, _, _, _>( |
1452 | core::ops::$trait::$method, |
1453 | core::ops::$trait::$method, |
1454 | core::ops::$trait::$method, |
1455 | core::ops::$trait::$method, |
1456 | { |
1457 | #[allow(unused_mut, unused_assignments)] |
1458 | let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>; |
1459 | $( |
1460 | op_native_checked = Some(T::Native::$checked_method); |
1461 | )? |
1462 | op_native_checked |
1463 | }, |
1464 | Some(( |
1465 | <T as core::ops::$trait_assign<T>>::$method_assign, |
1466 | <T as core::ops::$trait_assign::<T::Native>>::$method_assign, |
1467 | <T::Native as core::ops::$trait_assign::<T>>::$method_assign |
1468 | )), |
1469 | ); |
1470 | } |
1471 | |
1472 | $( |
1473 | $call_for_macros!(t, NativeEndian); |
1474 | $call_for_macros!(t, NonNativeEndian); |
1475 | )* |
1476 | }}; |
1477 | ( |
1478 | @unary |
1479 | $trait:ident, |
1480 | $method:ident, |
1481 | $($call_for_macros:ident),* |
1482 | ) => {{ |
1483 | fn t<T>() |
1484 | where |
1485 | T: ByteOrderType, |
1486 | T: core::ops::$trait<Output = T>, |
1487 | T::Native: core::ops::$trait<Output = T::Native>, |
1488 | { |
1489 | test::<T, _, _, _, _, _, _, _, _>( |
1490 | |slf, _rhs| core::ops::$trait::$method(slf), |
1491 | |slf, _rhs| core::ops::$trait::$method(slf), |
1492 | |slf, _rhs| core::ops::$trait::$method(slf).into(), |
1493 | |slf, _rhs| core::ops::$trait::$method(slf), |
1494 | None::<fn(T::Native, T::Native) -> Option<T::Native>>, |
1495 | None::<(fn(&mut T, T), fn(&mut T, T::Native), fn(&mut T::Native, T))>, |
1496 | ); |
1497 | } |
1498 | |
1499 | $( |
1500 | $call_for_macros!(t, NativeEndian); |
1501 | $call_for_macros!(t, NonNativeEndian); |
1502 | )* |
1503 | }}; |
1504 | } |
1505 | |
1506 | test!(@binary Add, add[checked_add], AddAssign, add_assign, call_for_all_types); |
1507 | test!(@binary Div, div[checked_div], DivAssign, div_assign, call_for_all_types); |
1508 | test!(@binary Mul, mul[checked_mul], MulAssign, mul_assign, call_for_all_types); |
1509 | test!(@binary Rem, rem[checked_rem], RemAssign, rem_assign, call_for_all_types); |
1510 | test!(@binary Sub, sub[checked_sub], SubAssign, sub_assign, call_for_all_types); |
1511 | |
1512 | test!(@binary BitAnd, bitand, BitAndAssign, bitand_assign, call_for_unsigned_types, call_for_signed_types); |
1513 | test!(@binary BitOr, bitor, BitOrAssign, bitor_assign, call_for_unsigned_types, call_for_signed_types); |
1514 | test!(@binary BitXor, bitxor, BitXorAssign, bitxor_assign, call_for_unsigned_types, call_for_signed_types); |
1515 | test!(@binary Shl, shl[checked_shl], ShlAssign, shl_assign, call_for_unsigned_types, call_for_signed_types); |
1516 | test!(@binary Shr, shr[checked_shr], ShrAssign, shr_assign, call_for_unsigned_types, call_for_signed_types); |
1517 | |
1518 | test!(@unary Not, not, call_for_signed_types, call_for_unsigned_types); |
1519 | test!(@unary Neg, neg, call_for_signed_types, call_for_float_types); |
1520 | } |
1521 | |
1522 | #[test] |
1523 | fn test_debug_impl() { |
1524 | // Ensure that Debug applies format options to the inner value. |
1525 | let val = U16::<LE>::new(10); |
1526 | assert_eq!(format!("{:?}" , val), "U16(10)" ); |
1527 | assert_eq!(format!("{:03?}" , val), "U16(010)" ); |
1528 | assert_eq!(format!("{:x?}" , val), "U16(a)" ); |
1529 | } |
1530 | } |
1531 | |