| 1 | // Copyright 2019 The Fuchsia Authors |
| 2 | // |
| 3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
| 4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| 5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| 6 | // This file may not be copied, modified, or distributed except according to |
| 7 | // those terms. |
| 8 | |
| 9 | //! Byte order-aware numeric primitives. |
| 10 | //! |
| 11 | //! This module contains equivalents of the native multi-byte integer types with |
| 12 | //! no alignment requirement and supporting byte order conversions. |
| 13 | //! |
| 14 | //! For each native multi-byte integer type - `u16`, `i16`, `u32`, etc - and |
| 15 | //! floating point type - `f32` and `f64` - an equivalent type is defined by |
| 16 | //! this module - [`U16`], [`I16`], [`U32`], [`F32`], [`F64`], etc. Unlike their |
| 17 | //! native counterparts, these types have alignment 1, and take a type parameter |
| 18 | //! specifying the byte order in which the bytes are stored in memory. Each type |
| 19 | //! implements this crate's relevant conversion and marker traits. |
| 20 | //! |
| 21 | //! These two properties, taken together, make these types useful for defining |
| 22 | //! data structures whose memory layout matches a wire format such as that of a |
| 23 | //! network protocol or a file format. Such formats often have multi-byte values |
| 24 | //! at offsets that do not respect the alignment requirements of the equivalent |
| 25 | //! native types, and stored in a byte order not necessarily the same as that of |
| 26 | //! the target platform. |
| 27 | //! |
| 28 | //! Type aliases are provided for common byte orders in the [`big_endian`], |
| 29 | //! [`little_endian`], [`network_endian`], and [`native_endian`] submodules. |
| 30 | //! |
| 31 | //! # Example |
| 32 | //! |
| 33 | //! One use of these types is for representing network packet formats, such as |
| 34 | //! UDP: |
| 35 | //! |
| 36 | //! ```rust |
| 37 | //! use zerocopy::{*, byteorder::network_endian::U16}; |
| 38 | //! # use zerocopy_derive::*; |
| 39 | //! |
| 40 | //! #[derive(FromBytes, IntoBytes, KnownLayout, Immutable, Unaligned)] |
| 41 | //! #[repr(C)] |
| 42 | //! struct UdpHeader { |
| 43 | //! src_port: U16, |
| 44 | //! dst_port: U16, |
| 45 | //! length: U16, |
| 46 | //! checksum: U16, |
| 47 | //! } |
| 48 | //! |
| 49 | //! #[derive(FromBytes, IntoBytes, KnownLayout, Immutable, Unaligned)] |
| 50 | //! #[repr(C, packed)] |
| 51 | //! struct UdpPacket { |
| 52 | //! header: UdpHeader, |
| 53 | //! body: [u8], |
| 54 | //! } |
| 55 | //! |
| 56 | //! impl UdpPacket { |
| 57 | //! fn parse(bytes: &[u8]) -> Option<&UdpPacket> { |
| 58 | //! UdpPacket::ref_from_bytes(bytes).ok() |
| 59 | //! } |
| 60 | //! } |
| 61 | //! ``` |
| 62 | |
| 63 | use core::{ |
| 64 | convert::{TryFrom, TryInto}, |
| 65 | fmt::{Binary, Debug, LowerHex, Octal, UpperHex}, |
| 66 | hash::Hash, |
| 67 | num::TryFromIntError, |
| 68 | }; |
| 69 | |
| 70 | use super::*; |
| 71 | |
| 72 | /// A type-level representation of byte order. |
| 73 | /// |
| 74 | /// This type is implemented by [`BigEndian`] and [`LittleEndian`], which |
| 75 | /// represent big-endian and little-endian byte order respectively. This module |
| 76 | /// also provides a number of useful aliases for those types: [`NativeEndian`], |
| 77 | /// [`NetworkEndian`], [`BE`], and [`LE`]. |
| 78 | /// |
| 79 | /// `ByteOrder` types can be used to specify the byte order of the types in this |
| 80 | /// module - for example, [`U32<BigEndian>`] is a 32-bit integer stored in |
| 81 | /// big-endian byte order. |
| 82 | /// |
| 83 | /// [`U32<BigEndian>`]: U32 |
| 84 | pub trait ByteOrder: |
| 85 | Copy + Clone + Debug + Display + Eq + PartialEq + Ord + PartialOrd + Hash + private::Sealed |
| 86 | { |
| 87 | #[doc (hidden)] |
| 88 | const ORDER: Order; |
| 89 | } |
| 90 | |
| 91 | mod private { |
| 92 | pub trait Sealed {} |
| 93 | |
| 94 | impl Sealed for super::BigEndian {} |
| 95 | impl Sealed for super::LittleEndian {} |
| 96 | } |
| 97 | |
| 98 | #[allow (missing_copy_implementations, missing_debug_implementations)] |
| 99 | #[doc (hidden)] |
| 100 | pub enum Order { |
| 101 | BigEndian, |
| 102 | LittleEndian, |
| 103 | } |
| 104 | |
| 105 | /// Big-endian byte order. |
| 106 | /// |
| 107 | /// See [`ByteOrder`] for more details. |
| 108 | #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] |
| 109 | pub enum BigEndian {} |
| 110 | |
| 111 | impl ByteOrder for BigEndian { |
| 112 | const ORDER: Order = Order::BigEndian; |
| 113 | } |
| 114 | |
| 115 | impl Display for BigEndian { |
| 116 | #[inline ] |
| 117 | fn fmt(&self, _: &mut Formatter<'_>) -> fmt::Result { |
| 118 | match *self {} |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | /// Little-endian byte order. |
| 123 | /// |
| 124 | /// See [`ByteOrder`] for more details. |
| 125 | #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] |
| 126 | pub enum LittleEndian {} |
| 127 | |
| 128 | impl ByteOrder for LittleEndian { |
| 129 | const ORDER: Order = Order::LittleEndian; |
| 130 | } |
| 131 | |
| 132 | impl Display for LittleEndian { |
| 133 | #[inline ] |
| 134 | fn fmt(&self, _: &mut Formatter<'_>) -> fmt::Result { |
| 135 | match *self {} |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | /// The endianness used by this platform. |
| 140 | /// |
| 141 | /// This is a type alias for [`BigEndian`] or [`LittleEndian`] depending on the |
| 142 | /// endianness of the target platform. |
| 143 | #[cfg (target_endian = "big" )] |
| 144 | pub type NativeEndian = BigEndian; |
| 145 | |
| 146 | /// The endianness used by this platform. |
| 147 | /// |
| 148 | /// This is a type alias for [`BigEndian`] or [`LittleEndian`] depending on the |
| 149 | /// endianness of the target platform. |
| 150 | #[cfg (target_endian = "little" )] |
| 151 | pub type NativeEndian = LittleEndian; |
| 152 | |
| 153 | /// The endianness used in many network protocols. |
| 154 | /// |
| 155 | /// This is a type alias for [`BigEndian`]. |
| 156 | pub type NetworkEndian = BigEndian; |
| 157 | |
| 158 | /// A type alias for [`BigEndian`]. |
| 159 | pub type BE = BigEndian; |
| 160 | |
| 161 | /// A type alias for [`LittleEndian`]. |
| 162 | pub type LE = LittleEndian; |
| 163 | |
| 164 | macro_rules! impl_fmt_trait { |
| 165 | ($name:ident, $native:ident, $trait:ident) => { |
| 166 | impl<O: ByteOrder> $trait for $name<O> { |
| 167 | #[inline(always)] |
| 168 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| 169 | $trait::fmt(&self.get(), f) |
| 170 | } |
| 171 | } |
| 172 | }; |
| 173 | } |
| 174 | |
| 175 | macro_rules! impl_fmt_traits { |
| 176 | ($name:ident, $native:ident, "floating point number" ) => { |
| 177 | impl_fmt_trait!($name, $native, Display); |
| 178 | }; |
| 179 | ($name:ident, $native:ident, "unsigned integer" ) => { |
| 180 | impl_fmt_traits!($name, $native, @all_types); |
| 181 | }; |
| 182 | ($name:ident, $native:ident, "signed integer" ) => { |
| 183 | impl_fmt_traits!($name, $native, @all_types); |
| 184 | }; |
| 185 | ($name:ident, $native:ident, @all_types) => { |
| 186 | impl_fmt_trait!($name, $native, Display); |
| 187 | impl_fmt_trait!($name, $native, Octal); |
| 188 | impl_fmt_trait!($name, $native, LowerHex); |
| 189 | impl_fmt_trait!($name, $native, UpperHex); |
| 190 | impl_fmt_trait!($name, $native, Binary); |
| 191 | }; |
| 192 | } |
| 193 | |
| 194 | macro_rules! impl_ops_traits { |
| 195 | ($name:ident, $native:ident, "floating point number" ) => { |
| 196 | impl_ops_traits!($name, $native, @all_types); |
| 197 | impl_ops_traits!($name, $native, @signed_integer_floating_point); |
| 198 | |
| 199 | impl<O: ByteOrder> PartialOrd for $name<O> { |
| 200 | #[inline(always)] |
| 201 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| 202 | self.get().partial_cmp(&other.get()) |
| 203 | } |
| 204 | } |
| 205 | }; |
| 206 | ($name:ident, $native:ident, "unsigned integer" ) => { |
| 207 | impl_ops_traits!($name, $native, @signed_unsigned_integer); |
| 208 | impl_ops_traits!($name, $native, @all_types); |
| 209 | }; |
| 210 | ($name:ident, $native:ident, "signed integer" ) => { |
| 211 | impl_ops_traits!($name, $native, @signed_unsigned_integer); |
| 212 | impl_ops_traits!($name, $native, @signed_integer_floating_point); |
| 213 | impl_ops_traits!($name, $native, @all_types); |
| 214 | }; |
| 215 | ($name:ident, $native:ident, @signed_unsigned_integer) => { |
| 216 | impl_ops_traits!(@without_byteorder_swap $name, $native, BitAnd, bitand, BitAndAssign, bitand_assign); |
| 217 | impl_ops_traits!(@without_byteorder_swap $name, $native, BitOr, bitor, BitOrAssign, bitor_assign); |
| 218 | impl_ops_traits!(@without_byteorder_swap $name, $native, BitXor, bitxor, BitXorAssign, bitxor_assign); |
| 219 | impl_ops_traits!(@with_byteorder_swap $name, $native, Shl, shl, ShlAssign, shl_assign); |
| 220 | impl_ops_traits!(@with_byteorder_swap $name, $native, Shr, shr, ShrAssign, shr_assign); |
| 221 | |
| 222 | impl<O> core::ops::Not for $name<O> { |
| 223 | type Output = $name<O>; |
| 224 | |
| 225 | #[inline(always)] |
| 226 | fn not(self) -> $name<O> { |
| 227 | let self_native = $native::from_ne_bytes(self.0); |
| 228 | $name((!self_native).to_ne_bytes(), PhantomData) |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | impl<O: ByteOrder> PartialOrd for $name<O> { |
| 233 | #[inline(always)] |
| 234 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| 235 | Some(self.cmp(other)) |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | impl<O: ByteOrder> Ord for $name<O> { |
| 240 | #[inline(always)] |
| 241 | fn cmp(&self, other: &Self) -> Ordering { |
| 242 | self.get().cmp(&other.get()) |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | impl<O: ByteOrder> PartialOrd<$native> for $name<O> { |
| 247 | #[inline(always)] |
| 248 | fn partial_cmp(&self, other: &$native) -> Option<Ordering> { |
| 249 | self.get().partial_cmp(other) |
| 250 | } |
| 251 | } |
| 252 | }; |
| 253 | ($name:ident, $native:ident, @signed_integer_floating_point) => { |
| 254 | impl<O: ByteOrder> core::ops::Neg for $name<O> { |
| 255 | type Output = $name<O>; |
| 256 | |
| 257 | #[inline(always)] |
| 258 | fn neg(self) -> $name<O> { |
| 259 | let self_native: $native = self.get(); |
| 260 | #[allow(clippy::arithmetic_side_effects)] |
| 261 | $name::<O>::new(-self_native) |
| 262 | } |
| 263 | } |
| 264 | }; |
| 265 | ($name:ident, $native:ident, @all_types) => { |
| 266 | impl_ops_traits!(@with_byteorder_swap $name, $native, Add, add, AddAssign, add_assign); |
| 267 | impl_ops_traits!(@with_byteorder_swap $name, $native, Div, div, DivAssign, div_assign); |
| 268 | impl_ops_traits!(@with_byteorder_swap $name, $native, Mul, mul, MulAssign, mul_assign); |
| 269 | impl_ops_traits!(@with_byteorder_swap $name, $native, Rem, rem, RemAssign, rem_assign); |
| 270 | impl_ops_traits!(@with_byteorder_swap $name, $native, Sub, sub, SubAssign, sub_assign); |
| 271 | }; |
| 272 | (@with_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { |
| 273 | impl<O: ByteOrder> core::ops::$trait<$name<O>> for $name<O> { |
| 274 | type Output = $name<O>; |
| 275 | |
| 276 | #[inline(always)] |
| 277 | fn $method(self, rhs: $name<O>) -> $name<O> { |
| 278 | let self_native: $native = self.get(); |
| 279 | let rhs_native: $native = rhs.get(); |
| 280 | let result_native = core::ops::$trait::$method(self_native, rhs_native); |
| 281 | $name::<O>::new(result_native) |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | impl<O: ByteOrder> core::ops::$trait<$name<O>> for $native { |
| 286 | type Output = $name<O>; |
| 287 | |
| 288 | #[inline(always)] |
| 289 | fn $method(self, rhs: $name<O>) -> $name<O> { |
| 290 | let rhs_native: $native = rhs.get(); |
| 291 | let result_native = core::ops::$trait::$method(self, rhs_native); |
| 292 | $name::<O>::new(result_native) |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | impl<O: ByteOrder> core::ops::$trait<$native> for $name<O> { |
| 297 | type Output = $name<O>; |
| 298 | |
| 299 | #[inline(always)] |
| 300 | fn $method(self, rhs: $native) -> $name<O> { |
| 301 | let self_native: $native = self.get(); |
| 302 | let result_native = core::ops::$trait::$method(self_native, rhs); |
| 303 | $name::<O>::new(result_native) |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $name<O> { |
| 308 | #[inline(always)] |
| 309 | fn $method_assign(&mut self, rhs: $name<O>) { |
| 310 | *self = core::ops::$trait::$method(*self, rhs); |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $native { |
| 315 | #[inline(always)] |
| 316 | fn $method_assign(&mut self, rhs: $name<O>) { |
| 317 | let rhs_native: $native = rhs.get(); |
| 318 | *self = core::ops::$trait::$method(*self, rhs_native); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | impl<O: ByteOrder> core::ops::$trait_assign<$native> for $name<O> { |
| 323 | #[inline(always)] |
| 324 | fn $method_assign(&mut self, rhs: $native) { |
| 325 | *self = core::ops::$trait::$method(*self, rhs); |
| 326 | } |
| 327 | } |
| 328 | }; |
| 329 | // Implement traits in terms of the same trait on the native type, but |
| 330 | // without performing a byte order swap when both operands are byteorder |
| 331 | // types. This only works for bitwise operations like `&`, `|`, etc. |
| 332 | // |
| 333 | // When only one operand is a byteorder type, we still need to perform a |
| 334 | // byteorder swap. |
| 335 | (@without_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { |
| 336 | impl<O: ByteOrder> core::ops::$trait<$name<O>> for $name<O> { |
| 337 | type Output = $name<O>; |
| 338 | |
| 339 | #[inline(always)] |
| 340 | fn $method(self, rhs: $name<O>) -> $name<O> { |
| 341 | let self_native = $native::from_ne_bytes(self.0); |
| 342 | let rhs_native = $native::from_ne_bytes(rhs.0); |
| 343 | let result_native = core::ops::$trait::$method(self_native, rhs_native); |
| 344 | $name(result_native.to_ne_bytes(), PhantomData) |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | impl<O: ByteOrder> core::ops::$trait<$name<O>> for $native { |
| 349 | type Output = $name<O>; |
| 350 | |
| 351 | #[inline(always)] |
| 352 | fn $method(self, rhs: $name<O>) -> $name<O> { |
| 353 | // No runtime cost - just byte packing |
| 354 | let rhs_native = $native::from_ne_bytes(rhs.0); |
| 355 | // (Maybe) runtime cost - byte order swap |
| 356 | let slf_byteorder = $name::<O>::new(self); |
| 357 | // No runtime cost - just byte packing |
| 358 | let slf_native = $native::from_ne_bytes(slf_byteorder.0); |
| 359 | // Runtime cost - perform the operation |
| 360 | let result_native = core::ops::$trait::$method(slf_native, rhs_native); |
| 361 | // No runtime cost - just byte unpacking |
| 362 | $name(result_native.to_ne_bytes(), PhantomData) |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | impl<O: ByteOrder> core::ops::$trait<$native> for $name<O> { |
| 367 | type Output = $name<O>; |
| 368 | |
| 369 | #[inline(always)] |
| 370 | fn $method(self, rhs: $native) -> $name<O> { |
| 371 | // (Maybe) runtime cost - byte order swap |
| 372 | let rhs_byteorder = $name::<O>::new(rhs); |
| 373 | // No runtime cost - just byte packing |
| 374 | let rhs_native = $native::from_ne_bytes(rhs_byteorder.0); |
| 375 | // No runtime cost - just byte packing |
| 376 | let slf_native = $native::from_ne_bytes(self.0); |
| 377 | // Runtime cost - perform the operation |
| 378 | let result_native = core::ops::$trait::$method(slf_native, rhs_native); |
| 379 | // No runtime cost - just byte unpacking |
| 380 | $name(result_native.to_ne_bytes(), PhantomData) |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $name<O> { |
| 385 | #[inline(always)] |
| 386 | fn $method_assign(&mut self, rhs: $name<O>) { |
| 387 | *self = core::ops::$trait::$method(*self, rhs); |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $native { |
| 392 | #[inline(always)] |
| 393 | fn $method_assign(&mut self, rhs: $name<O>) { |
| 394 | // (Maybe) runtime cost - byte order swap |
| 395 | let rhs_native = rhs.get(); |
| 396 | // Runtime cost - perform the operation |
| 397 | *self = core::ops::$trait::$method(*self, rhs_native); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | impl<O: ByteOrder> core::ops::$trait_assign<$native> for $name<O> { |
| 402 | #[inline(always)] |
| 403 | fn $method_assign(&mut self, rhs: $native) { |
| 404 | *self = core::ops::$trait::$method(*self, rhs); |
| 405 | } |
| 406 | } |
| 407 | }; |
| 408 | } |
| 409 | |
| 410 | macro_rules! doc_comment { |
| 411 | ($x:expr, $($tt:tt)*) => { |
| 412 | #[doc = $x] |
| 413 | $($tt)* |
| 414 | }; |
| 415 | } |
| 416 | |
| 417 | macro_rules! define_max_value_constant { |
| 418 | ($name:ident, $bytes:expr, "unsigned integer" ) => { |
| 419 | /// The maximum value. |
| 420 | /// |
| 421 | /// This constant should be preferred to constructing a new value using |
| 422 | /// `new`, as `new` may perform an endianness swap depending on the |
| 423 | /// endianness `O` and the endianness of the platform. |
| 424 | pub const MAX_VALUE: $name<O> = $name([0xFFu8; $bytes], PhantomData); |
| 425 | }; |
| 426 | // We don't provide maximum and minimum value constants for signed values |
| 427 | // and floats because there's no way to do it generically - it would require |
| 428 | // a different value depending on the value of the `ByteOrder` type |
| 429 | // parameter. Currently, one workaround would be to provide implementations |
| 430 | // for concrete implementations of that trait. In the long term, if we are |
| 431 | // ever able to make the `new` constructor a const fn, we could use that |
| 432 | // instead. |
| 433 | ($name:ident, $bytes:expr, "signed integer" ) => {}; |
| 434 | ($name:ident, $bytes:expr, "floating point number" ) => {}; |
| 435 | } |
| 436 | |
| 437 | macro_rules! define_type { |
| 438 | ( |
| 439 | $article:ident, |
| 440 | $description:expr, |
| 441 | $name:ident, |
| 442 | $native:ident, |
| 443 | $bits:expr, |
| 444 | $bytes:expr, |
| 445 | $from_be_fn:path, |
| 446 | $to_be_fn:path, |
| 447 | $from_le_fn:path, |
| 448 | $to_le_fn:path, |
| 449 | $number_kind:tt, |
| 450 | [$($larger_native:ty),*], |
| 451 | [$($larger_native_try:ty),*], |
| 452 | [$($larger_byteorder:ident),*], |
| 453 | [$($larger_byteorder_try:ident),*] |
| 454 | ) => { |
| 455 | doc_comment! { |
| 456 | concat!($description, " stored in a given byte order. |
| 457 | |
| 458 | `" , stringify!($name), "` is like the native `" , stringify!($native), "` type with |
| 459 | two major differences: First, it has no alignment requirement (its alignment is 1). |
| 460 | Second, the endianness of its memory layout is given by the type parameter `O`, |
| 461 | which can be any type which implements [`ByteOrder`]. In particular, this refers |
| 462 | to [`BigEndian`], [`LittleEndian`], [`NativeEndian`], and [`NetworkEndian`]. |
| 463 | |
| 464 | " , stringify!($article), " `" , stringify!($name), "` can be constructed using |
| 465 | the [`new`] method, and its contained value can be obtained as a native |
| 466 | `" ,stringify!($native), "` using the [`get`] method, or updated in place with |
| 467 | the [`set`] method. In all cases, if the endianness `O` is not the same as the |
| 468 | endianness of the current platform, an endianness swap will be performed in |
| 469 | order to uphold the invariants that a) the layout of `" , stringify!($name), "` |
| 470 | has endianness `O` and that, b) the layout of `" , stringify!($native), "` has |
| 471 | the platform's native endianness. |
| 472 | |
| 473 | `" , stringify!($name), "` implements [`FromBytes`], [`IntoBytes`], and [`Unaligned`], |
| 474 | making it useful for parsing and serialization. See the module documentation for an |
| 475 | example of how it can be used for parsing UDP packets. |
| 476 | |
| 477 | [`new`]: crate::byteorder::" , stringify!($name), "::new |
| 478 | [`get`]: crate::byteorder::" , stringify!($name), "::get |
| 479 | [`set`]: crate::byteorder::" , stringify!($name), "::set |
| 480 | [`FromBytes`]: crate::FromBytes |
| 481 | [`IntoBytes`]: crate::IntoBytes |
| 482 | [`Unaligned`]: crate::Unaligned" ), |
| 483 | #[derive(Copy, Clone, Eq, PartialEq, Hash)] |
| 484 | #[cfg_attr(any(feature = "derive" , test), derive(KnownLayout, Immutable, FromBytes, IntoBytes, Unaligned))] |
| 485 | #[repr(transparent)] |
| 486 | pub struct $name<O>([u8; $bytes], PhantomData<O>); |
| 487 | } |
| 488 | |
| 489 | #[cfg(not(any(feature = "derive" , test)))] |
| 490 | impl_known_layout!(O => $name<O>); |
| 491 | |
| 492 | safety_comment! { |
| 493 | /// SAFETY: |
| 494 | /// `$name<O>` is `repr(transparent)`, and so it has the same layout |
| 495 | /// as its only non-zero field, which is a `u8` array. `u8` arrays |
| 496 | /// are `Immutable`, `TryFromBytes`, `FromZeros`, `FromBytes`, |
| 497 | /// `IntoBytes`, and `Unaligned`. |
| 498 | impl_or_verify!(O => Immutable for $name<O>); |
| 499 | impl_or_verify!(O => TryFromBytes for $name<O>); |
| 500 | impl_or_verify!(O => FromZeros for $name<O>); |
| 501 | impl_or_verify!(O => FromBytes for $name<O>); |
| 502 | impl_or_verify!(O => IntoBytes for $name<O>); |
| 503 | impl_or_verify!(O => Unaligned for $name<O>); |
| 504 | } |
| 505 | |
| 506 | impl<O> Default for $name<O> { |
| 507 | #[inline(always)] |
| 508 | fn default() -> $name<O> { |
| 509 | $name::ZERO |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | impl<O> $name<O> { |
| 514 | /// The value zero. |
| 515 | /// |
| 516 | /// This constant should be preferred to constructing a new value |
| 517 | /// using `new`, as `new` may perform an endianness swap depending |
| 518 | /// on the endianness and platform. |
| 519 | pub const ZERO: $name<O> = $name([0u8; $bytes], PhantomData); |
| 520 | |
| 521 | define_max_value_constant!($name, $bytes, $number_kind); |
| 522 | |
| 523 | /// Constructs a new value from bytes which are already in `O` byte |
| 524 | /// order. |
| 525 | #[must_use = "has no side effects" ] |
| 526 | #[inline(always)] |
| 527 | pub const fn from_bytes(bytes: [u8; $bytes]) -> $name<O> { |
| 528 | $name(bytes, PhantomData) |
| 529 | } |
| 530 | |
| 531 | /// Extracts the bytes of `self` without swapping the byte order. |
| 532 | /// |
| 533 | /// The returned bytes will be in `O` byte order. |
| 534 | #[must_use = "has no side effects" ] |
| 535 | #[inline(always)] |
| 536 | pub const fn to_bytes(self) -> [u8; $bytes] { |
| 537 | self.0 |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | impl<O: ByteOrder> $name<O> { |
| 542 | maybe_const_trait_bounded_fn! { |
| 543 | /// Constructs a new value, possibly performing an endianness |
| 544 | /// swap to guarantee that the returned value has endianness |
| 545 | /// `O`. |
| 546 | #[must_use = "has no side effects" ] |
| 547 | #[inline(always)] |
| 548 | pub const fn new(n: $native) -> $name<O> { |
| 549 | let bytes = match O::ORDER { |
| 550 | Order::BigEndian => $to_be_fn(n), |
| 551 | Order::LittleEndian => $to_le_fn(n), |
| 552 | }; |
| 553 | |
| 554 | $name(bytes, PhantomData) |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | maybe_const_trait_bounded_fn! { |
| 559 | /// Returns the value as a primitive type, possibly performing |
| 560 | /// an endianness swap to guarantee that the return value has |
| 561 | /// the endianness of the native platform. |
| 562 | #[must_use = "has no side effects" ] |
| 563 | #[inline(always)] |
| 564 | pub const fn get(self) -> $native { |
| 565 | match O::ORDER { |
| 566 | Order::BigEndian => $from_be_fn(self.0), |
| 567 | Order::LittleEndian => $from_le_fn(self.0), |
| 568 | } |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | /// Updates the value in place as a primitive type, possibly |
| 573 | /// performing an endianness swap to guarantee that the stored value |
| 574 | /// has the endianness `O`. |
| 575 | #[inline(always)] |
| 576 | pub fn set(&mut self, n: $native) { |
| 577 | *self = Self::new(n); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | // The reasoning behind which traits to implement here is to only |
| 582 | // implement traits which won't cause inference issues. Notably, |
| 583 | // comparison traits like PartialEq and PartialOrd tend to cause |
| 584 | // inference issues. |
| 585 | |
| 586 | impl<O: ByteOrder> From<$name<O>> for [u8; $bytes] { |
| 587 | #[inline(always)] |
| 588 | fn from(x: $name<O>) -> [u8; $bytes] { |
| 589 | x.0 |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | impl<O: ByteOrder> From<[u8; $bytes]> for $name<O> { |
| 594 | #[inline(always)] |
| 595 | fn from(bytes: [u8; $bytes]) -> $name<O> { |
| 596 | $name(bytes, PhantomData) |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | impl<O: ByteOrder> From<$name<O>> for $native { |
| 601 | #[inline(always)] |
| 602 | fn from(x: $name<O>) -> $native { |
| 603 | x.get() |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | impl<O: ByteOrder> From<$native> for $name<O> { |
| 608 | #[inline(always)] |
| 609 | fn from(x: $native) -> $name<O> { |
| 610 | $name::new(x) |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | $( |
| 615 | impl<O: ByteOrder> From<$name<O>> for $larger_native { |
| 616 | #[inline(always)] |
| 617 | fn from(x: $name<O>) -> $larger_native { |
| 618 | x.get().into() |
| 619 | } |
| 620 | } |
| 621 | )* |
| 622 | |
| 623 | $( |
| 624 | impl<O: ByteOrder> TryFrom<$larger_native_try> for $name<O> { |
| 625 | type Error = TryFromIntError; |
| 626 | #[inline(always)] |
| 627 | fn try_from(x: $larger_native_try) -> Result<$name<O>, TryFromIntError> { |
| 628 | $native::try_from(x).map($name::new) |
| 629 | } |
| 630 | } |
| 631 | )* |
| 632 | |
| 633 | $( |
| 634 | impl<O: ByteOrder, P: ByteOrder> From<$name<O>> for $larger_byteorder<P> { |
| 635 | #[inline(always)] |
| 636 | fn from(x: $name<O>) -> $larger_byteorder<P> { |
| 637 | $larger_byteorder::new(x.get().into()) |
| 638 | } |
| 639 | } |
| 640 | )* |
| 641 | |
| 642 | $( |
| 643 | impl<O: ByteOrder, P: ByteOrder> TryFrom<$larger_byteorder_try<P>> for $name<O> { |
| 644 | type Error = TryFromIntError; |
| 645 | #[inline(always)] |
| 646 | fn try_from(x: $larger_byteorder_try<P>) -> Result<$name<O>, TryFromIntError> { |
| 647 | x.get().try_into().map($name::new) |
| 648 | } |
| 649 | } |
| 650 | )* |
| 651 | |
| 652 | impl<O> AsRef<[u8; $bytes]> for $name<O> { |
| 653 | #[inline(always)] |
| 654 | fn as_ref(&self) -> &[u8; $bytes] { |
| 655 | &self.0 |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | impl<O> AsMut<[u8; $bytes]> for $name<O> { |
| 660 | #[inline(always)] |
| 661 | fn as_mut(&mut self) -> &mut [u8; $bytes] { |
| 662 | &mut self.0 |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | impl<O> PartialEq<$name<O>> for [u8; $bytes] { |
| 667 | #[inline(always)] |
| 668 | fn eq(&self, other: &$name<O>) -> bool { |
| 669 | self.eq(&other.0) |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | impl<O> PartialEq<[u8; $bytes]> for $name<O> { |
| 674 | #[inline(always)] |
| 675 | fn eq(&self, other: &[u8; $bytes]) -> bool { |
| 676 | self.0.eq(other) |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | impl<O: ByteOrder> PartialEq<$native> for $name<O> { |
| 681 | #[inline(always)] |
| 682 | fn eq(&self, other: &$native) -> bool { |
| 683 | self.get().eq(other) |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | impl_fmt_traits!($name, $native, $number_kind); |
| 688 | impl_ops_traits!($name, $native, $number_kind); |
| 689 | |
| 690 | impl<O: ByteOrder> Debug for $name<O> { |
| 691 | #[inline] |
| 692 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| 693 | // This results in a format like "U16(42)". |
| 694 | f.debug_tuple(stringify!($name)).field(&self.get()).finish() |
| 695 | } |
| 696 | } |
| 697 | }; |
| 698 | } |
| 699 | |
| 700 | define_type!( |
| 701 | A, |
| 702 | "A 16-bit unsigned integer" , |
| 703 | U16, |
| 704 | u16, |
| 705 | 16, |
| 706 | 2, |
| 707 | u16::from_be_bytes, |
| 708 | u16::to_be_bytes, |
| 709 | u16::from_le_bytes, |
| 710 | u16::to_le_bytes, |
| 711 | "unsigned integer" , |
| 712 | [u32, u64, u128, usize], |
| 713 | [u32, u64, u128, usize], |
| 714 | [U32, U64, U128, Usize], |
| 715 | [U32, U64, U128, Usize] |
| 716 | ); |
| 717 | define_type!( |
| 718 | A, |
| 719 | "A 32-bit unsigned integer" , |
| 720 | U32, |
| 721 | u32, |
| 722 | 32, |
| 723 | 4, |
| 724 | u32::from_be_bytes, |
| 725 | u32::to_be_bytes, |
| 726 | u32::from_le_bytes, |
| 727 | u32::to_le_bytes, |
| 728 | "unsigned integer" , |
| 729 | [u64, u128], |
| 730 | [u64, u128], |
| 731 | [U64, U128], |
| 732 | [U64, U128] |
| 733 | ); |
| 734 | define_type!( |
| 735 | A, |
| 736 | "A 64-bit unsigned integer" , |
| 737 | U64, |
| 738 | u64, |
| 739 | 64, |
| 740 | 8, |
| 741 | u64::from_be_bytes, |
| 742 | u64::to_be_bytes, |
| 743 | u64::from_le_bytes, |
| 744 | u64::to_le_bytes, |
| 745 | "unsigned integer" , |
| 746 | [u128], |
| 747 | [u128], |
| 748 | [U128], |
| 749 | [U128] |
| 750 | ); |
| 751 | define_type!( |
| 752 | A, |
| 753 | "A 128-bit unsigned integer" , |
| 754 | U128, |
| 755 | u128, |
| 756 | 128, |
| 757 | 16, |
| 758 | u128::from_be_bytes, |
| 759 | u128::to_be_bytes, |
| 760 | u128::from_le_bytes, |
| 761 | u128::to_le_bytes, |
| 762 | "unsigned integer" , |
| 763 | [], |
| 764 | [], |
| 765 | [], |
| 766 | [] |
| 767 | ); |
| 768 | define_type!( |
| 769 | A, |
| 770 | "A word-sized unsigned integer" , |
| 771 | Usize, |
| 772 | usize, |
| 773 | mem::size_of::<usize>() * 8, |
| 774 | mem::size_of::<usize>(), |
| 775 | usize::from_be_bytes, |
| 776 | usize::to_be_bytes, |
| 777 | usize::from_le_bytes, |
| 778 | usize::to_le_bytes, |
| 779 | "unsigned integer" , |
| 780 | [], |
| 781 | [], |
| 782 | [], |
| 783 | [] |
| 784 | ); |
| 785 | define_type!( |
| 786 | An, |
| 787 | "A 16-bit signed integer" , |
| 788 | I16, |
| 789 | i16, |
| 790 | 16, |
| 791 | 2, |
| 792 | i16::from_be_bytes, |
| 793 | i16::to_be_bytes, |
| 794 | i16::from_le_bytes, |
| 795 | i16::to_le_bytes, |
| 796 | "signed integer" , |
| 797 | [i32, i64, i128, isize], |
| 798 | [i32, i64, i128, isize], |
| 799 | [I32, I64, I128, Isize], |
| 800 | [I32, I64, I128, Isize] |
| 801 | ); |
| 802 | define_type!( |
| 803 | An, |
| 804 | "A 32-bit signed integer" , |
| 805 | I32, |
| 806 | i32, |
| 807 | 32, |
| 808 | 4, |
| 809 | i32::from_be_bytes, |
| 810 | i32::to_be_bytes, |
| 811 | i32::from_le_bytes, |
| 812 | i32::to_le_bytes, |
| 813 | "signed integer" , |
| 814 | [i64, i128], |
| 815 | [i64, i128], |
| 816 | [I64, I128], |
| 817 | [I64, I128] |
| 818 | ); |
| 819 | define_type!( |
| 820 | An, |
| 821 | "A 64-bit signed integer" , |
| 822 | I64, |
| 823 | i64, |
| 824 | 64, |
| 825 | 8, |
| 826 | i64::from_be_bytes, |
| 827 | i64::to_be_bytes, |
| 828 | i64::from_le_bytes, |
| 829 | i64::to_le_bytes, |
| 830 | "signed integer" , |
| 831 | [i128], |
| 832 | [i128], |
| 833 | [I128], |
| 834 | [I128] |
| 835 | ); |
| 836 | define_type!( |
| 837 | An, |
| 838 | "A 128-bit signed integer" , |
| 839 | I128, |
| 840 | i128, |
| 841 | 128, |
| 842 | 16, |
| 843 | i128::from_be_bytes, |
| 844 | i128::to_be_bytes, |
| 845 | i128::from_le_bytes, |
| 846 | i128::to_le_bytes, |
| 847 | "signed integer" , |
| 848 | [], |
| 849 | [], |
| 850 | [], |
| 851 | [] |
| 852 | ); |
| 853 | define_type!( |
| 854 | An, |
| 855 | "A word-sized signed integer" , |
| 856 | Isize, |
| 857 | isize, |
| 858 | mem::size_of::<isize>() * 8, |
| 859 | mem::size_of::<isize>(), |
| 860 | isize::from_be_bytes, |
| 861 | isize::to_be_bytes, |
| 862 | isize::from_le_bytes, |
| 863 | isize::to_le_bytes, |
| 864 | "signed integer" , |
| 865 | [], |
| 866 | [], |
| 867 | [], |
| 868 | [] |
| 869 | ); |
| 870 | |
| 871 | // TODO(https://github.com/rust-lang/rust/issues/72447): Use the endianness |
| 872 | // conversion methods directly once those are const-stable. |
| 873 | macro_rules! define_float_conversion { |
| 874 | ($ty:ty, $bits:ident, $bytes:expr, $mod:ident) => { |
| 875 | mod $mod { |
| 876 | use super::*; |
| 877 | |
| 878 | define_float_conversion!($ty, $bits, $bytes, from_be_bytes, to_be_bytes); |
| 879 | define_float_conversion!($ty, $bits, $bytes, from_le_bytes, to_le_bytes); |
| 880 | } |
| 881 | }; |
| 882 | ($ty:ty, $bits:ident, $bytes:expr, $from:ident, $to:ident) => { |
| 883 | // Clippy: The suggestion of using `from_bits()` instead doesn't work |
| 884 | // because `from_bits` is not const-stable on our MSRV. |
| 885 | #[allow(clippy::transmute_int_to_float)] |
| 886 | pub(crate) const fn $from(bytes: [u8; $bytes]) -> $ty { |
| 887 | transmute!($bits::$from(bytes)) |
| 888 | } |
| 889 | |
| 890 | pub(crate) const fn $to(f: $ty) -> [u8; $bytes] { |
| 891 | // Clippy: The suggestion of using `f.to_bits()` instead doesn't |
| 892 | // work because `to_bits` is not const-stable on our MSRV. |
| 893 | #[allow(clippy::transmute_float_to_int)] |
| 894 | let bits: $bits = transmute!(f); |
| 895 | bits.$to() |
| 896 | } |
| 897 | }; |
| 898 | } |
| 899 | |
| 900 | define_float_conversion!(f32, u32, 4, f32_ext); |
| 901 | define_float_conversion!(f64, u64, 8, f64_ext); |
| 902 | |
| 903 | define_type!( |
| 904 | An, |
| 905 | "A 32-bit floating point number" , |
| 906 | F32, |
| 907 | f32, |
| 908 | 32, |
| 909 | 4, |
| 910 | f32_ext::from_be_bytes, |
| 911 | f32_ext::to_be_bytes, |
| 912 | f32_ext::from_le_bytes, |
| 913 | f32_ext::to_le_bytes, |
| 914 | "floating point number" , |
| 915 | [f64], |
| 916 | [], |
| 917 | [F64], |
| 918 | [] |
| 919 | ); |
| 920 | define_type!( |
| 921 | An, |
| 922 | "A 64-bit floating point number" , |
| 923 | F64, |
| 924 | f64, |
| 925 | 64, |
| 926 | 8, |
| 927 | f64_ext::from_be_bytes, |
| 928 | f64_ext::to_be_bytes, |
| 929 | f64_ext::from_le_bytes, |
| 930 | f64_ext::to_le_bytes, |
| 931 | "floating point number" , |
| 932 | [], |
| 933 | [], |
| 934 | [], |
| 935 | [] |
| 936 | ); |
| 937 | |
| 938 | macro_rules! module { |
| 939 | ($name:ident, $trait:ident, $endianness_str:expr) => { |
| 940 | /// Numeric primitives stored in |
| 941 | #[doc = $endianness_str] |
| 942 | /// byte order. |
| 943 | pub mod $name { |
| 944 | use super::$trait; |
| 945 | |
| 946 | module!(@ty U16, $trait, "16-bit unsigned integer" , $endianness_str); |
| 947 | module!(@ty U32, $trait, "32-bit unsigned integer" , $endianness_str); |
| 948 | module!(@ty U64, $trait, "64-bit unsigned integer" , $endianness_str); |
| 949 | module!(@ty U128, $trait, "128-bit unsigned integer" , $endianness_str); |
| 950 | module!(@ty I16, $trait, "16-bit signed integer" , $endianness_str); |
| 951 | module!(@ty I32, $trait, "32-bit signed integer" , $endianness_str); |
| 952 | module!(@ty I64, $trait, "64-bit signed integer" , $endianness_str); |
| 953 | module!(@ty I128, $trait, "128-bit signed integer" , $endianness_str); |
| 954 | module!(@ty F32, $trait, "32-bit floating point number" , $endianness_str); |
| 955 | module!(@ty F64, $trait, "64-bit floating point number" , $endianness_str); |
| 956 | } |
| 957 | }; |
| 958 | (@ty $ty:ident, $trait:ident, $desc_str:expr, $endianness_str:expr) => { |
| 959 | /// A |
| 960 | #[doc = $desc_str] |
| 961 | /// stored in |
| 962 | #[doc = $endianness_str] |
| 963 | /// byte order. |
| 964 | pub type $ty = crate::byteorder::$ty<$trait>; |
| 965 | }; |
| 966 | } |
| 967 | |
| 968 | module!(big_endian, BigEndian, "big-endian" ); |
| 969 | module!(little_endian, LittleEndian, "little-endian" ); |
| 970 | module!(network_endian, NetworkEndian, "network-endian" ); |
| 971 | module!(native_endian, NativeEndian, "native-endian" ); |
| 972 | |
| 973 | #[cfg (any(test, kani))] |
| 974 | mod tests { |
| 975 | use super::*; |
| 976 | |
| 977 | #[cfg (not(kani))] |
| 978 | mod compatibility { |
| 979 | pub(super) use rand::{ |
| 980 | distributions::{Distribution, Standard}, |
| 981 | rngs::SmallRng, |
| 982 | Rng, SeedableRng, |
| 983 | }; |
| 984 | |
| 985 | pub(crate) trait Arbitrary {} |
| 986 | |
| 987 | impl<T> Arbitrary for T {} |
| 988 | } |
| 989 | |
| 990 | #[cfg (kani)] |
| 991 | mod compatibility { |
| 992 | pub(crate) use kani::Arbitrary; |
| 993 | |
| 994 | pub(crate) struct SmallRng; |
| 995 | |
| 996 | impl SmallRng { |
| 997 | pub(crate) fn seed_from_u64(_state: u64) -> Self { |
| 998 | Self |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | pub(crate) trait Rng { |
| 1003 | fn sample<T, D: Distribution<T>>(&mut self, _distr: D) -> T |
| 1004 | where |
| 1005 | T: Arbitrary, |
| 1006 | { |
| 1007 | kani::any() |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | impl Rng for SmallRng {} |
| 1012 | |
| 1013 | pub(crate) trait Distribution<T> {} |
| 1014 | impl<T, U> Distribution<T> for U {} |
| 1015 | |
| 1016 | pub(crate) struct Standard; |
| 1017 | } |
| 1018 | |
| 1019 | use compatibility::*; |
| 1020 | |
| 1021 | // A native integer type (u16, i32, etc). |
| 1022 | trait Native: Arbitrary + FromBytes + IntoBytes + Immutable + Copy + PartialEq + Debug { |
| 1023 | const ZERO: Self; |
| 1024 | const MAX_VALUE: Self; |
| 1025 | |
| 1026 | type Distribution: Distribution<Self>; |
| 1027 | const DIST: Self::Distribution; |
| 1028 | |
| 1029 | fn rand<R: Rng>(rng: &mut R) -> Self { |
| 1030 | rng.sample(Self::DIST) |
| 1031 | } |
| 1032 | |
| 1033 | #[cfg_attr (kani, allow(unused))] |
| 1034 | fn checked_add(self, rhs: Self) -> Option<Self>; |
| 1035 | |
| 1036 | #[cfg_attr (kani, allow(unused))] |
| 1037 | fn checked_div(self, rhs: Self) -> Option<Self>; |
| 1038 | |
| 1039 | #[cfg_attr (kani, allow(unused))] |
| 1040 | fn checked_mul(self, rhs: Self) -> Option<Self>; |
| 1041 | |
| 1042 | #[cfg_attr (kani, allow(unused))] |
| 1043 | fn checked_rem(self, rhs: Self) -> Option<Self>; |
| 1044 | |
| 1045 | #[cfg_attr (kani, allow(unused))] |
| 1046 | fn checked_sub(self, rhs: Self) -> Option<Self>; |
| 1047 | |
| 1048 | #[cfg_attr (kani, allow(unused))] |
| 1049 | fn checked_shl(self, rhs: Self) -> Option<Self>; |
| 1050 | |
| 1051 | #[cfg_attr (kani, allow(unused))] |
| 1052 | fn checked_shr(self, rhs: Self) -> Option<Self>; |
| 1053 | |
| 1054 | fn is_nan(self) -> bool; |
| 1055 | |
| 1056 | /// For `f32` and `f64`, NaN values are not considered equal to |
| 1057 | /// themselves. This method is like `assert_eq!`, but it treats NaN |
| 1058 | /// values as equal. |
| 1059 | fn assert_eq_or_nan(self, other: Self) { |
| 1060 | let slf = (!self.is_nan()).then(|| self); |
| 1061 | let other = (!other.is_nan()).then(|| other); |
| 1062 | assert_eq!(slf, other); |
| 1063 | } |
| 1064 | } |
| 1065 | |
| 1066 | trait ByteArray: |
| 1067 | FromBytes + IntoBytes + Immutable + Copy + AsRef<[u8]> + AsMut<[u8]> + Debug + Default + Eq |
| 1068 | { |
| 1069 | /// Invert the order of the bytes in the array. |
| 1070 | fn invert(self) -> Self; |
| 1071 | } |
| 1072 | |
| 1073 | trait ByteOrderType: |
| 1074 | FromBytes + IntoBytes + Unaligned + Copy + Eq + Debug + Hash + From<Self::Native> |
| 1075 | { |
| 1076 | type Native: Native; |
| 1077 | type ByteArray: ByteArray; |
| 1078 | |
| 1079 | const ZERO: Self; |
| 1080 | |
| 1081 | fn new(native: Self::Native) -> Self; |
| 1082 | fn get(self) -> Self::Native; |
| 1083 | fn set(&mut self, native: Self::Native); |
| 1084 | fn from_bytes(bytes: Self::ByteArray) -> Self; |
| 1085 | fn into_bytes(self) -> Self::ByteArray; |
| 1086 | |
| 1087 | /// For `f32` and `f64`, NaN values are not considered equal to |
| 1088 | /// themselves. This method is like `assert_eq!`, but it treats NaN |
| 1089 | /// values as equal. |
| 1090 | fn assert_eq_or_nan(self, other: Self) { |
| 1091 | let slf = (!self.get().is_nan()).then(|| self); |
| 1092 | let other = (!other.get().is_nan()).then(|| other); |
| 1093 | assert_eq!(slf, other); |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | trait ByteOrderTypeUnsigned: ByteOrderType { |
| 1098 | const MAX_VALUE: Self; |
| 1099 | } |
| 1100 | |
| 1101 | macro_rules! impl_byte_array { |
| 1102 | ($bytes:expr) => { |
| 1103 | impl ByteArray for [u8; $bytes] { |
| 1104 | fn invert(mut self) -> [u8; $bytes] { |
| 1105 | self.reverse(); |
| 1106 | self |
| 1107 | } |
| 1108 | } |
| 1109 | }; |
| 1110 | } |
| 1111 | |
| 1112 | impl_byte_array!(2); |
| 1113 | impl_byte_array!(4); |
| 1114 | impl_byte_array!(8); |
| 1115 | impl_byte_array!(16); |
| 1116 | |
| 1117 | macro_rules! impl_byte_order_type_unsigned { |
| 1118 | ($name:ident, unsigned) => { |
| 1119 | impl<O: ByteOrder> ByteOrderTypeUnsigned for $name<O> { |
| 1120 | const MAX_VALUE: $name<O> = $name::MAX_VALUE; |
| 1121 | } |
| 1122 | }; |
| 1123 | ($name:ident, signed) => {}; |
| 1124 | } |
| 1125 | |
| 1126 | macro_rules! impl_traits { |
| 1127 | ($name:ident, $native:ident, $sign:ident $(, @$float:ident)?) => { |
| 1128 | impl Native for $native { |
| 1129 | // For some types, `0 as $native` is required (for example, when |
| 1130 | // `$native` is a floating-point type; `0` is an integer), but |
| 1131 | // for other types, it's a trivial cast. In all cases, Clippy |
| 1132 | // thinks it's dangerous. |
| 1133 | #[allow(trivial_numeric_casts, clippy::as_conversions)] |
| 1134 | const ZERO: $native = 0 as $native; |
| 1135 | const MAX_VALUE: $native = $native::MAX; |
| 1136 | |
| 1137 | type Distribution = Standard; |
| 1138 | const DIST: Standard = Standard; |
| 1139 | |
| 1140 | impl_traits!(@float_dependent_methods $(@$float)?); |
| 1141 | } |
| 1142 | |
| 1143 | impl<O: ByteOrder> ByteOrderType for $name<O> { |
| 1144 | type Native = $native; |
| 1145 | type ByteArray = [u8; mem::size_of::<$native>()]; |
| 1146 | |
| 1147 | const ZERO: $name<O> = $name::ZERO; |
| 1148 | |
| 1149 | fn new(native: $native) -> $name<O> { |
| 1150 | $name::new(native) |
| 1151 | } |
| 1152 | |
| 1153 | fn get(self) -> $native { |
| 1154 | $name::get(self) |
| 1155 | } |
| 1156 | |
| 1157 | fn set(&mut self, native: $native) { |
| 1158 | $name::set(self, native) |
| 1159 | } |
| 1160 | |
| 1161 | fn from_bytes(bytes: [u8; mem::size_of::<$native>()]) -> $name<O> { |
| 1162 | $name::from(bytes) |
| 1163 | } |
| 1164 | |
| 1165 | fn into_bytes(self) -> [u8; mem::size_of::<$native>()] { |
| 1166 | <[u8; mem::size_of::<$native>()]>::from(self) |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | impl_byte_order_type_unsigned!($name, $sign); |
| 1171 | }; |
| 1172 | (@float_dependent_methods) => { |
| 1173 | fn checked_add(self, rhs: Self) -> Option<Self> { self.checked_add(rhs) } |
| 1174 | fn checked_div(self, rhs: Self) -> Option<Self> { self.checked_div(rhs) } |
| 1175 | fn checked_mul(self, rhs: Self) -> Option<Self> { self.checked_mul(rhs) } |
| 1176 | fn checked_rem(self, rhs: Self) -> Option<Self> { self.checked_rem(rhs) } |
| 1177 | fn checked_sub(self, rhs: Self) -> Option<Self> { self.checked_sub(rhs) } |
| 1178 | fn checked_shl(self, rhs: Self) -> Option<Self> { self.checked_shl(rhs.try_into().unwrap_or(u32::MAX)) } |
| 1179 | fn checked_shr(self, rhs: Self) -> Option<Self> { self.checked_shr(rhs.try_into().unwrap_or(u32::MAX)) } |
| 1180 | fn is_nan(self) -> bool { false } |
| 1181 | }; |
| 1182 | (@float_dependent_methods @float) => { |
| 1183 | fn checked_add(self, rhs: Self) -> Option<Self> { Some(self + rhs) } |
| 1184 | fn checked_div(self, rhs: Self) -> Option<Self> { Some(self / rhs) } |
| 1185 | fn checked_mul(self, rhs: Self) -> Option<Self> { Some(self * rhs) } |
| 1186 | fn checked_rem(self, rhs: Self) -> Option<Self> { Some(self % rhs) } |
| 1187 | fn checked_sub(self, rhs: Self) -> Option<Self> { Some(self - rhs) } |
| 1188 | fn checked_shl(self, _rhs: Self) -> Option<Self> { unimplemented!() } |
| 1189 | fn checked_shr(self, _rhs: Self) -> Option<Self> { unimplemented!() } |
| 1190 | fn is_nan(self) -> bool { self.is_nan() } |
| 1191 | }; |
| 1192 | } |
| 1193 | |
| 1194 | impl_traits!(U16, u16, unsigned); |
| 1195 | impl_traits!(U32, u32, unsigned); |
| 1196 | impl_traits!(U64, u64, unsigned); |
| 1197 | impl_traits!(U128, u128, unsigned); |
| 1198 | impl_traits!(Usize, usize, unsigned); |
| 1199 | impl_traits!(I16, i16, signed); |
| 1200 | impl_traits!(I32, i32, signed); |
| 1201 | impl_traits!(I64, i64, signed); |
| 1202 | impl_traits!(I128, i128, signed); |
| 1203 | impl_traits!(Isize, isize, unsigned); |
| 1204 | impl_traits!(F32, f32, signed, @float); |
| 1205 | impl_traits!(F64, f64, signed, @float); |
| 1206 | |
| 1207 | macro_rules! call_for_unsigned_types { |
| 1208 | ($fn:ident, $byteorder:ident) => { |
| 1209 | $fn::<U16<$byteorder>>(); |
| 1210 | $fn::<U32<$byteorder>>(); |
| 1211 | $fn::<U64<$byteorder>>(); |
| 1212 | $fn::<U128<$byteorder>>(); |
| 1213 | $fn::<Usize<$byteorder>>(); |
| 1214 | }; |
| 1215 | } |
| 1216 | |
| 1217 | macro_rules! call_for_signed_types { |
| 1218 | ($fn:ident, $byteorder:ident) => { |
| 1219 | $fn::<I16<$byteorder>>(); |
| 1220 | $fn::<I32<$byteorder>>(); |
| 1221 | $fn::<I64<$byteorder>>(); |
| 1222 | $fn::<I128<$byteorder>>(); |
| 1223 | $fn::<Isize<$byteorder>>(); |
| 1224 | }; |
| 1225 | } |
| 1226 | |
| 1227 | macro_rules! call_for_float_types { |
| 1228 | ($fn:ident, $byteorder:ident) => { |
| 1229 | $fn::<F32<$byteorder>>(); |
| 1230 | $fn::<F64<$byteorder>>(); |
| 1231 | }; |
| 1232 | } |
| 1233 | |
| 1234 | macro_rules! call_for_all_types { |
| 1235 | ($fn:ident, $byteorder:ident) => { |
| 1236 | call_for_unsigned_types!($fn, $byteorder); |
| 1237 | call_for_signed_types!($fn, $byteorder); |
| 1238 | call_for_float_types!($fn, $byteorder); |
| 1239 | }; |
| 1240 | } |
| 1241 | |
| 1242 | #[cfg (target_endian = "big" )] |
| 1243 | type NonNativeEndian = LittleEndian; |
| 1244 | #[cfg (target_endian = "little" )] |
| 1245 | type NonNativeEndian = BigEndian; |
| 1246 | |
| 1247 | // We use a `u64` seed so that we can use `SeedableRng::seed_from_u64`. |
| 1248 | // `SmallRng`'s `SeedableRng::Seed` differs by platform, so if we wanted to |
| 1249 | // call `SeedableRng::from_seed`, which takes a `Seed`, we would need |
| 1250 | // conditional compilation by `target_pointer_width`. |
| 1251 | const RNG_SEED: u64 = 0x7A03CAE2F32B5B8F; |
| 1252 | |
| 1253 | const RAND_ITERS: usize = if cfg!(any(miri, kani)) { |
| 1254 | // The tests below which use this constant used to take a very long time |
| 1255 | // on Miri, which slows down local development and CI jobs. We're not |
| 1256 | // using Miri to check for the correctness of our code, but rather its |
| 1257 | // soundness, and at least in the context of these particular tests, a |
| 1258 | // single loop iteration is just as good for surfacing UB as multiple |
| 1259 | // iterations are. |
| 1260 | // |
| 1261 | // As of the writing of this comment, here's one set of measurements: |
| 1262 | // |
| 1263 | // $ # RAND_ITERS == 1 |
| 1264 | // $ cargo miri test -- -Z unstable-options --report-time endian |
| 1265 | // test byteorder::tests::test_native_endian ... ok <0.049s> |
| 1266 | // test byteorder::tests::test_non_native_endian ... ok <0.061s> |
| 1267 | // |
| 1268 | // $ # RAND_ITERS == 1024 |
| 1269 | // $ cargo miri test -- -Z unstable-options --report-time endian |
| 1270 | // test byteorder::tests::test_native_endian ... ok <25.716s> |
| 1271 | // test byteorder::tests::test_non_native_endian ... ok <38.127s> |
| 1272 | 1 |
| 1273 | } else { |
| 1274 | 1024 |
| 1275 | }; |
| 1276 | |
| 1277 | #[test] |
| 1278 | fn test_const_methods() { |
| 1279 | use big_endian::*; |
| 1280 | |
| 1281 | #[rustversion::since(1.61.0)] |
| 1282 | const _U: U16 = U16::new(0); |
| 1283 | #[rustversion::since(1.61.0)] |
| 1284 | const _NATIVE: u16 = _U.get(); |
| 1285 | const _FROM_BYTES: U16 = U16::from_bytes([0, 1]); |
| 1286 | const _BYTES: [u8; 2] = _FROM_BYTES.to_bytes(); |
| 1287 | } |
| 1288 | |
| 1289 | #[cfg_attr (test, test)] |
| 1290 | #[cfg_attr (kani, kani::proof)] |
| 1291 | fn test_zero() { |
| 1292 | fn test_zero<T: ByteOrderType>() { |
| 1293 | assert_eq!(T::ZERO.get(), T::Native::ZERO); |
| 1294 | } |
| 1295 | |
| 1296 | call_for_all_types!(test_zero, NativeEndian); |
| 1297 | call_for_all_types!(test_zero, NonNativeEndian); |
| 1298 | } |
| 1299 | |
| 1300 | #[cfg_attr (test, test)] |
| 1301 | #[cfg_attr (kani, kani::proof)] |
| 1302 | fn test_max_value() { |
| 1303 | fn test_max_value<T: ByteOrderTypeUnsigned>() { |
| 1304 | assert_eq!(T::MAX_VALUE.get(), T::Native::MAX_VALUE); |
| 1305 | } |
| 1306 | |
| 1307 | call_for_unsigned_types!(test_max_value, NativeEndian); |
| 1308 | call_for_unsigned_types!(test_max_value, NonNativeEndian); |
| 1309 | } |
| 1310 | |
| 1311 | #[cfg_attr (test, test)] |
| 1312 | #[cfg_attr (kani, kani::proof)] |
| 1313 | fn test_endian() { |
| 1314 | fn test<T: ByteOrderType>(invert: bool) { |
| 1315 | let mut r = SmallRng::seed_from_u64(RNG_SEED); |
| 1316 | for _ in 0..RAND_ITERS { |
| 1317 | let native = T::Native::rand(&mut r); |
| 1318 | let mut bytes = T::ByteArray::default(); |
| 1319 | bytes.as_mut_bytes().copy_from_slice(native.as_bytes()); |
| 1320 | if invert { |
| 1321 | bytes = bytes.invert(); |
| 1322 | } |
| 1323 | let mut from_native = T::new(native); |
| 1324 | let from_bytes = T::from_bytes(bytes); |
| 1325 | |
| 1326 | from_native.assert_eq_or_nan(from_bytes); |
| 1327 | from_native.get().assert_eq_or_nan(native); |
| 1328 | from_bytes.get().assert_eq_or_nan(native); |
| 1329 | |
| 1330 | assert_eq!(from_native.into_bytes(), bytes); |
| 1331 | assert_eq!(from_bytes.into_bytes(), bytes); |
| 1332 | |
| 1333 | let updated = T::Native::rand(&mut r); |
| 1334 | from_native.set(updated); |
| 1335 | from_native.get().assert_eq_or_nan(updated); |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | fn test_native<T: ByteOrderType>() { |
| 1340 | test::<T>(false); |
| 1341 | } |
| 1342 | |
| 1343 | fn test_non_native<T: ByteOrderType>() { |
| 1344 | test::<T>(true); |
| 1345 | } |
| 1346 | |
| 1347 | call_for_all_types!(test_native, NativeEndian); |
| 1348 | call_for_all_types!(test_non_native, NonNativeEndian); |
| 1349 | } |
| 1350 | |
| 1351 | #[test] |
| 1352 | fn test_ops_impls() { |
| 1353 | // Test implementations of traits in `core::ops`. Some of these are |
| 1354 | // fairly banal, but some are optimized to perform the operation without |
| 1355 | // swapping byte order (namely, bit-wise operations which are identical |
| 1356 | // regardless of byte order). These are important to test, and while |
| 1357 | // we're testing those anyway, it's trivial to test all of the impls. |
| 1358 | |
| 1359 | fn test<T, FTT, FTN, FNT, FNN, FNNChecked, FATT, FATN, FANT>( |
| 1360 | op_t_t: FTT, |
| 1361 | op_t_n: FTN, |
| 1362 | op_n_t: FNT, |
| 1363 | op_n_n: FNN, |
| 1364 | op_n_n_checked: Option<FNNChecked>, |
| 1365 | op_assign: Option<(FATT, FATN, FANT)>, |
| 1366 | ) where |
| 1367 | T: ByteOrderType, |
| 1368 | FTT: Fn(T, T) -> T, |
| 1369 | FTN: Fn(T, T::Native) -> T, |
| 1370 | FNT: Fn(T::Native, T) -> T, |
| 1371 | FNN: Fn(T::Native, T::Native) -> T::Native, |
| 1372 | FNNChecked: Fn(T::Native, T::Native) -> Option<T::Native>, |
| 1373 | |
| 1374 | FATT: Fn(&mut T, T), |
| 1375 | FATN: Fn(&mut T, T::Native), |
| 1376 | FANT: Fn(&mut T::Native, T), |
| 1377 | { |
| 1378 | let mut r = SmallRng::seed_from_u64(RNG_SEED); |
| 1379 | for _ in 0..RAND_ITERS { |
| 1380 | let n0 = T::Native::rand(&mut r); |
| 1381 | let n1 = T::Native::rand(&mut r); |
| 1382 | let t0 = T::new(n0); |
| 1383 | let t1 = T::new(n1); |
| 1384 | |
| 1385 | // If this operation would overflow/underflow, skip it rather |
| 1386 | // than attempt to catch and recover from panics. |
| 1387 | if matches!(&op_n_n_checked, Some(checked) if checked(n0, n1).is_none()) { |
| 1388 | continue; |
| 1389 | } |
| 1390 | |
| 1391 | let t_t_res = op_t_t(t0, t1); |
| 1392 | let t_n_res = op_t_n(t0, n1); |
| 1393 | let n_t_res = op_n_t(n0, t1); |
| 1394 | let n_n_res = op_n_n(n0, n1); |
| 1395 | |
| 1396 | // For `f32` and `f64`, NaN values are not considered equal to |
| 1397 | // themselves. We store `Option<f32>`/`Option<f64>` and store |
| 1398 | // NaN as `None` so they can still be compared. |
| 1399 | let val_or_none = |t: T| (!T::Native::is_nan(t.get())).then(|| t.get()); |
| 1400 | let t_t_res = val_or_none(t_t_res); |
| 1401 | let t_n_res = val_or_none(t_n_res); |
| 1402 | let n_t_res = val_or_none(n_t_res); |
| 1403 | let n_n_res = (!T::Native::is_nan(n_n_res)).then(|| n_n_res); |
| 1404 | assert_eq!(t_t_res, n_n_res); |
| 1405 | assert_eq!(t_n_res, n_n_res); |
| 1406 | assert_eq!(n_t_res, n_n_res); |
| 1407 | |
| 1408 | if let Some((op_assign_t_t, op_assign_t_n, op_assign_n_t)) = &op_assign { |
| 1409 | let mut t_t_res = t0; |
| 1410 | op_assign_t_t(&mut t_t_res, t1); |
| 1411 | let mut t_n_res = t0; |
| 1412 | op_assign_t_n(&mut t_n_res, n1); |
| 1413 | let mut n_t_res = n0; |
| 1414 | op_assign_n_t(&mut n_t_res, t1); |
| 1415 | |
| 1416 | // For `f32` and `f64`, NaN values are not considered equal to |
| 1417 | // themselves. We store `Option<f32>`/`Option<f64>` and store |
| 1418 | // NaN as `None` so they can still be compared. |
| 1419 | let t_t_res = val_or_none(t_t_res); |
| 1420 | let t_n_res = val_or_none(t_n_res); |
| 1421 | let n_t_res = (!T::Native::is_nan(n_t_res)).then(|| n_t_res); |
| 1422 | assert_eq!(t_t_res, n_n_res); |
| 1423 | assert_eq!(t_n_res, n_n_res); |
| 1424 | assert_eq!(n_t_res, n_n_res); |
| 1425 | } |
| 1426 | } |
| 1427 | } |
| 1428 | |
| 1429 | macro_rules! test { |
| 1430 | ( |
| 1431 | @binary |
| 1432 | $trait:ident, |
| 1433 | $method:ident $([$checked_method:ident])?, |
| 1434 | $trait_assign:ident, |
| 1435 | $method_assign:ident, |
| 1436 | $($call_for_macros:ident),* |
| 1437 | ) => {{ |
| 1438 | fn t<T>() |
| 1439 | where |
| 1440 | T: ByteOrderType, |
| 1441 | T: core::ops::$trait<T, Output = T>, |
| 1442 | T: core::ops::$trait<T::Native, Output = T>, |
| 1443 | T::Native: core::ops::$trait<T, Output = T>, |
| 1444 | T::Native: core::ops::$trait<T::Native, Output = T::Native>, |
| 1445 | |
| 1446 | T: core::ops::$trait_assign<T>, |
| 1447 | T: core::ops::$trait_assign<T::Native>, |
| 1448 | T::Native: core::ops::$trait_assign<T>, |
| 1449 | T::Native: core::ops::$trait_assign<T::Native>, |
| 1450 | { |
| 1451 | test::<T, _, _, _, _, _, _, _, _>( |
| 1452 | core::ops::$trait::$method, |
| 1453 | core::ops::$trait::$method, |
| 1454 | core::ops::$trait::$method, |
| 1455 | core::ops::$trait::$method, |
| 1456 | { |
| 1457 | #[allow(unused_mut, unused_assignments)] |
| 1458 | let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>; |
| 1459 | $( |
| 1460 | op_native_checked = Some(T::Native::$checked_method); |
| 1461 | )? |
| 1462 | op_native_checked |
| 1463 | }, |
| 1464 | Some(( |
| 1465 | <T as core::ops::$trait_assign<T>>::$method_assign, |
| 1466 | <T as core::ops::$trait_assign::<T::Native>>::$method_assign, |
| 1467 | <T::Native as core::ops::$trait_assign::<T>>::$method_assign |
| 1468 | )), |
| 1469 | ); |
| 1470 | } |
| 1471 | |
| 1472 | $( |
| 1473 | $call_for_macros!(t, NativeEndian); |
| 1474 | $call_for_macros!(t, NonNativeEndian); |
| 1475 | )* |
| 1476 | }}; |
| 1477 | ( |
| 1478 | @unary |
| 1479 | $trait:ident, |
| 1480 | $method:ident, |
| 1481 | $($call_for_macros:ident),* |
| 1482 | ) => {{ |
| 1483 | fn t<T>() |
| 1484 | where |
| 1485 | T: ByteOrderType, |
| 1486 | T: core::ops::$trait<Output = T>, |
| 1487 | T::Native: core::ops::$trait<Output = T::Native>, |
| 1488 | { |
| 1489 | test::<T, _, _, _, _, _, _, _, _>( |
| 1490 | |slf, _rhs| core::ops::$trait::$method(slf), |
| 1491 | |slf, _rhs| core::ops::$trait::$method(slf), |
| 1492 | |slf, _rhs| core::ops::$trait::$method(slf).into(), |
| 1493 | |slf, _rhs| core::ops::$trait::$method(slf), |
| 1494 | None::<fn(T::Native, T::Native) -> Option<T::Native>>, |
| 1495 | None::<(fn(&mut T, T), fn(&mut T, T::Native), fn(&mut T::Native, T))>, |
| 1496 | ); |
| 1497 | } |
| 1498 | |
| 1499 | $( |
| 1500 | $call_for_macros!(t, NativeEndian); |
| 1501 | $call_for_macros!(t, NonNativeEndian); |
| 1502 | )* |
| 1503 | }}; |
| 1504 | } |
| 1505 | |
| 1506 | test!(@binary Add, add[checked_add], AddAssign, add_assign, call_for_all_types); |
| 1507 | test!(@binary Div, div[checked_div], DivAssign, div_assign, call_for_all_types); |
| 1508 | test!(@binary Mul, mul[checked_mul], MulAssign, mul_assign, call_for_all_types); |
| 1509 | test!(@binary Rem, rem[checked_rem], RemAssign, rem_assign, call_for_all_types); |
| 1510 | test!(@binary Sub, sub[checked_sub], SubAssign, sub_assign, call_for_all_types); |
| 1511 | |
| 1512 | test!(@binary BitAnd, bitand, BitAndAssign, bitand_assign, call_for_unsigned_types, call_for_signed_types); |
| 1513 | test!(@binary BitOr, bitor, BitOrAssign, bitor_assign, call_for_unsigned_types, call_for_signed_types); |
| 1514 | test!(@binary BitXor, bitxor, BitXorAssign, bitxor_assign, call_for_unsigned_types, call_for_signed_types); |
| 1515 | test!(@binary Shl, shl[checked_shl], ShlAssign, shl_assign, call_for_unsigned_types, call_for_signed_types); |
| 1516 | test!(@binary Shr, shr[checked_shr], ShrAssign, shr_assign, call_for_unsigned_types, call_for_signed_types); |
| 1517 | |
| 1518 | test!(@unary Not, not, call_for_signed_types, call_for_unsigned_types); |
| 1519 | test!(@unary Neg, neg, call_for_signed_types, call_for_float_types); |
| 1520 | } |
| 1521 | |
| 1522 | #[test] |
| 1523 | fn test_debug_impl() { |
| 1524 | // Ensure that Debug applies format options to the inner value. |
| 1525 | let val = U16::<LE>::new(10); |
| 1526 | assert_eq!(format!("{:?}" , val), "U16(10)" ); |
| 1527 | assert_eq!(format!("{:03?}" , val), "U16(010)" ); |
| 1528 | assert_eq!(format!("{:x?}" , val), "U16(a)" ); |
| 1529 | } |
| 1530 | } |
| 1531 | |