| 1 | /* |
| 2 | * Copyright (c) 2023. |
| 3 | * |
| 4 | * This software is free software; |
| 5 | * |
| 6 | * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license |
| 7 | */ |
| 8 | |
| 9 | pub fn upsample_horizontal( |
| 10 | input: &[i16], _ref: &[i16], _in_near: &[i16], _scratch: &mut [i16], output: &mut [i16] |
| 11 | ) { |
| 12 | assert_eq!( |
| 13 | input.len() * 2, |
| 14 | output.len(), |
| 15 | "Input length is not half the size of the output length" |
| 16 | ); |
| 17 | assert!( |
| 18 | output.len() > 4 && input.len() > 2, |
| 19 | "Too Short of a vector, cannot upsample" |
| 20 | ); |
| 21 | |
| 22 | output[0] = input[0]; |
| 23 | output[1] = (input[0] * 3 + input[1] + 2) >> 2; |
| 24 | |
| 25 | // This code is written for speed and not readability |
| 26 | // |
| 27 | // The readable code is |
| 28 | // |
| 29 | // for i in 1..input.len() - 1{ |
| 30 | // let sample = 3 * input[i] + 2; |
| 31 | // out[i * 2] = (sample + input[i - 1]) >> 2; |
| 32 | // out[i * 2 + 1] = (sample + input[i + 1]) >> 2; |
| 33 | // } |
| 34 | // |
| 35 | // The output of a pixel is determined by it's surrounding neighbours but we attach more weight to it's nearest |
| 36 | // neighbour (input[i]) than to the next nearest neighbour. |
| 37 | |
| 38 | for (output_window, input_window) in output[2..].chunks_exact_mut(2).zip(input.windows(3)) { |
| 39 | let sample = 3 * input_window[1] + 2; |
| 40 | |
| 41 | output_window[0] = (sample + input_window[0]) >> 2; |
| 42 | output_window[1] = (sample + input_window[2]) >> 2; |
| 43 | } |
| 44 | // Get lengths |
| 45 | let out_len = output.len() - 2; |
| 46 | let input_len = input.len() - 2; |
| 47 | |
| 48 | // slice the output vector |
| 49 | let f_out = &mut output[out_len..]; |
| 50 | let i_last = &input[input_len..]; |
| 51 | |
| 52 | // write out manually.. |
| 53 | f_out[0] = (3 * i_last[0] + i_last[1] + 2) >> 2; |
| 54 | f_out[1] = i_last[1]; |
| 55 | } |
| 56 | pub fn upsample_vertical( |
| 57 | input: &[i16], in_near: &[i16], in_far: &[i16], _scratch_space: &mut [i16], output: &mut [i16] |
| 58 | ) { |
| 59 | assert_eq!(input.len() * 2, output.len()); |
| 60 | assert_eq!(in_near.len(), input.len()); |
| 61 | assert_eq!(in_far.len(), input.len()); |
| 62 | |
| 63 | let middle: usize = output.len() / 2; |
| 64 | |
| 65 | let (out_top: &mut [i16], out_bottom: &mut [i16]) = output.split_at_mut(mid:middle); |
| 66 | |
| 67 | // for the first row, closest row is in_near |
| 68 | for ((near: &i16, far: &i16), x: &mut i16) in input.iter().zip(in_near.iter()).zip(out_top) { |
| 69 | *x = (((3 * near) + 2) + far) >> 2; |
| 70 | } |
| 71 | // for the second row, the closest row to input is in_far |
| 72 | for ((near: &i16, far: &i16), x: &mut i16) in input.iter().zip(in_far.iter()).zip(out_bottom) { |
| 73 | *x = (((3 * near) + 2) + far) >> 2; |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | pub fn upsample_hv( |
| 78 | input: &[i16], in_near: &[i16], in_far: &[i16], scratch_space: &mut [i16], output: &mut [i16] |
| 79 | ) { |
| 80 | assert_eq!(input.len() * 4, output.len()); |
| 81 | |
| 82 | let mut t = [0]; |
| 83 | upsample_vertical(input, in_near, in_far, &mut t, scratch_space); |
| 84 | // horizontal upsampling must be done separate for every line |
| 85 | // Otherwise it introduces artifacts that may cause the edge colors |
| 86 | // to appear on the other line. |
| 87 | |
| 88 | // Since this is called for two scanlines/widths currently |
| 89 | // splitting the inputs and outputs into half ensures we only handle |
| 90 | // one scanline per iteration |
| 91 | let scratch_half = scratch_space.len() / 2; |
| 92 | |
| 93 | let output_half = output.len() / 2; |
| 94 | |
| 95 | upsample_horizontal( |
| 96 | &scratch_space[..scratch_half], |
| 97 | &[], |
| 98 | &[], |
| 99 | &mut t, |
| 100 | &mut output[..output_half] |
| 101 | ); |
| 102 | |
| 103 | upsample_horizontal( |
| 104 | &scratch_space[scratch_half..], |
| 105 | &[], |
| 106 | &[], |
| 107 | &mut t, |
| 108 | &mut output[output_half..] |
| 109 | ); |
| 110 | } |
| 111 | |