1 | /* |
2 | * Copyright (c) 2023. |
3 | * |
4 | * This software is free software; |
5 | * |
6 | * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license |
7 | */ |
8 | |
9 | pub fn upsample_horizontal( |
10 | input: &[i16], _ref: &[i16], _in_near: &[i16], _scratch: &mut [i16], output: &mut [i16] |
11 | ) { |
12 | assert_eq!( |
13 | input.len() * 2, |
14 | output.len(), |
15 | "Input length is not half the size of the output length" |
16 | ); |
17 | assert!( |
18 | output.len() > 4 && input.len() > 2, |
19 | "Too Short of a vector, cannot upsample" |
20 | ); |
21 | |
22 | output[0] = input[0]; |
23 | output[1] = (input[0] * 3 + input[1] + 2) >> 2; |
24 | |
25 | // This code is written for speed and not readability |
26 | // |
27 | // The readable code is |
28 | // |
29 | // for i in 1..input.len() - 1{ |
30 | // let sample = 3 * input[i] + 2; |
31 | // out[i * 2] = (sample + input[i - 1]) >> 2; |
32 | // out[i * 2 + 1] = (sample + input[i + 1]) >> 2; |
33 | // } |
34 | // |
35 | // The output of a pixel is determined by it's surrounding neighbours but we attach more weight to it's nearest |
36 | // neighbour (input[i]) than to the next nearest neighbour. |
37 | |
38 | for (output_window, input_window) in output[2..].chunks_exact_mut(2).zip(input.windows(3)) { |
39 | let sample = 3 * input_window[1] + 2; |
40 | |
41 | output_window[0] = (sample + input_window[0]) >> 2; |
42 | output_window[1] = (sample + input_window[2]) >> 2; |
43 | } |
44 | // Get lengths |
45 | let out_len = output.len() - 2; |
46 | let input_len = input.len() - 2; |
47 | |
48 | // slice the output vector |
49 | let f_out = &mut output[out_len..]; |
50 | let i_last = &input[input_len..]; |
51 | |
52 | // write out manually.. |
53 | f_out[0] = (3 * i_last[0] + i_last[1] + 2) >> 2; |
54 | f_out[1] = i_last[1]; |
55 | } |
56 | pub fn upsample_vertical( |
57 | input: &[i16], in_near: &[i16], in_far: &[i16], _scratch_space: &mut [i16], output: &mut [i16] |
58 | ) { |
59 | assert_eq!(input.len() * 2, output.len()); |
60 | assert_eq!(in_near.len(), input.len()); |
61 | assert_eq!(in_far.len(), input.len()); |
62 | |
63 | let middle: usize = output.len() / 2; |
64 | |
65 | let (out_top: &mut [i16], out_bottom: &mut [i16]) = output.split_at_mut(mid:middle); |
66 | |
67 | // for the first row, closest row is in_near |
68 | for ((near: &i16, far: &i16), x: &mut i16) in input.iter().zip(in_near.iter()).zip(out_top) { |
69 | *x = (((3 * near) + 2) + far) >> 2; |
70 | } |
71 | // for the second row, the closest row to input is in_far |
72 | for ((near: &i16, far: &i16), x: &mut i16) in input.iter().zip(in_far.iter()).zip(out_bottom) { |
73 | *x = (((3 * near) + 2) + far) >> 2; |
74 | } |
75 | } |
76 | |
77 | pub fn upsample_hv( |
78 | input: &[i16], in_near: &[i16], in_far: &[i16], scratch_space: &mut [i16], output: &mut [i16] |
79 | ) { |
80 | assert_eq!(input.len() * 4, output.len()); |
81 | |
82 | let mut t = [0]; |
83 | upsample_vertical(input, in_near, in_far, &mut t, scratch_space); |
84 | // horizontal upsampling must be done separate for every line |
85 | // Otherwise it introduces artifacts that may cause the edge colors |
86 | // to appear on the other line. |
87 | |
88 | // Since this is called for two scanlines/widths currently |
89 | // splitting the inputs and outputs into half ensures we only handle |
90 | // one scanline per iteration |
91 | let scratch_half = scratch_space.len() / 2; |
92 | |
93 | let output_half = output.len() / 2; |
94 | |
95 | upsample_horizontal( |
96 | &scratch_space[..scratch_half], |
97 | &[], |
98 | &[], |
99 | &mut t, |
100 | &mut output[..output_half] |
101 | ); |
102 | |
103 | upsample_horizontal( |
104 | &scratch_space[scratch_half..], |
105 | &[], |
106 | &[], |
107 | &mut t, |
108 | &mut output[output_half..] |
109 | ); |
110 | } |
111 | |