| 1 | use std::process::Child; |
| 2 | |
| 3 | use crate::stats::bivariate::regression::Slope; |
| 4 | use criterion_plot::prelude::*; |
| 5 | |
| 6 | use super::*; |
| 7 | use crate::report::{BenchmarkId, ComparisonData, MeasurementData, ReportContext}; |
| 8 | use crate::stats::bivariate::Data; |
| 9 | |
| 10 | use crate::estimate::{ConfidenceInterval, Estimate}; |
| 11 | |
| 12 | use crate::measurement::ValueFormatter; |
| 13 | |
| 14 | fn regression_figure( |
| 15 | formatter: &dyn ValueFormatter, |
| 16 | measurements: &MeasurementData<'_>, |
| 17 | size: Option<Size>, |
| 18 | ) -> Figure { |
| 19 | let slope_estimate = measurements.absolute_estimates.slope.as_ref().unwrap(); |
| 20 | let slope_dist = measurements.distributions.slope.as_ref().unwrap(); |
| 21 | let (lb, ub) = |
| 22 | slope_dist.confidence_interval(slope_estimate.confidence_interval.confidence_level); |
| 23 | |
| 24 | let data = &measurements.data; |
| 25 | let (max_iters, typical) = (data.x().max(), data.y().max()); |
| 26 | let mut scaled_y: Vec<f64> = data.y().iter().cloned().collect(); |
| 27 | let unit = formatter.scale_values(typical, &mut scaled_y); |
| 28 | let scaled_y = Sample::new(&scaled_y); |
| 29 | |
| 30 | let point_estimate = Slope::fit(&measurements.data).0; |
| 31 | let mut scaled_points = [point_estimate * max_iters, lb * max_iters, ub * max_iters]; |
| 32 | let _ = formatter.scale_values(typical, &mut scaled_points); |
| 33 | let [point, lb, ub] = scaled_points; |
| 34 | |
| 35 | let exponent = (max_iters.log10() / 3.).floor() as i32 * 3; |
| 36 | let x_scale = 10f64.powi(-exponent); |
| 37 | |
| 38 | let x_label = if exponent == 0 { |
| 39 | "Iterations" .to_owned() |
| 40 | } else { |
| 41 | format!("Iterations (x 10^{})" , exponent) |
| 42 | }; |
| 43 | |
| 44 | let mut figure = Figure::new(); |
| 45 | figure |
| 46 | .set(Font(DEFAULT_FONT)) |
| 47 | .set(size.unwrap_or(SIZE)) |
| 48 | .configure(Axis::BottomX, |a| { |
| 49 | a.configure(Grid::Major, |g| g.show()) |
| 50 | .set(Label(x_label)) |
| 51 | .set(ScaleFactor(x_scale)) |
| 52 | }) |
| 53 | .configure(Axis::LeftY, |a| { |
| 54 | a.configure(Grid::Major, |g| g.show()) |
| 55 | .set(Label(format!("Total sample time ({})" , unit))) |
| 56 | }) |
| 57 | .plot( |
| 58 | Points { |
| 59 | x: data.x().as_ref(), |
| 60 | y: scaled_y.as_ref(), |
| 61 | }, |
| 62 | |c| { |
| 63 | c.set(DARK_BLUE) |
| 64 | .set(Label("Sample" )) |
| 65 | .set(PointSize(0.5)) |
| 66 | .set(PointType::FilledCircle) |
| 67 | }, |
| 68 | ) |
| 69 | .plot( |
| 70 | Lines { |
| 71 | x: &[0., max_iters], |
| 72 | y: &[0., point], |
| 73 | }, |
| 74 | |c| { |
| 75 | c.set(DARK_BLUE) |
| 76 | .set(LINEWIDTH) |
| 77 | .set(Label("Linear regression" )) |
| 78 | .set(LineType::Solid) |
| 79 | }, |
| 80 | ) |
| 81 | .plot( |
| 82 | FilledCurve { |
| 83 | x: &[0., max_iters], |
| 84 | y1: &[0., lb], |
| 85 | y2: &[0., ub], |
| 86 | }, |
| 87 | |c| { |
| 88 | c.set(DARK_BLUE) |
| 89 | .set(Label("Confidence interval" )) |
| 90 | .set(Opacity(0.25)) |
| 91 | }, |
| 92 | ); |
| 93 | figure |
| 94 | } |
| 95 | |
| 96 | pub(crate) fn regression( |
| 97 | id: &BenchmarkId, |
| 98 | context: &ReportContext, |
| 99 | formatter: &dyn ValueFormatter, |
| 100 | measurements: &MeasurementData<'_>, |
| 101 | size: Option<Size>, |
| 102 | ) -> Child { |
| 103 | let mut figure = regression_figure(formatter, measurements, size); |
| 104 | figure.set(Title(gnuplot_escape(id.as_title()))); |
| 105 | figure.configure(Key, |k| { |
| 106 | k.set(Justification::Left) |
| 107 | .set(Order::SampleText) |
| 108 | .set(Position::Inside(Vertical::Top, Horizontal::Left)) |
| 109 | }); |
| 110 | |
| 111 | let path = context.report_path(id, "regression.svg" ); |
| 112 | debug_script(&path, &figure); |
| 113 | figure.set(Output(path)).draw().unwrap() |
| 114 | } |
| 115 | |
| 116 | pub(crate) fn regression_small( |
| 117 | id: &BenchmarkId, |
| 118 | context: &ReportContext, |
| 119 | formatter: &dyn ValueFormatter, |
| 120 | measurements: &MeasurementData<'_>, |
| 121 | size: Option<Size>, |
| 122 | ) -> Child { |
| 123 | let mut figure = regression_figure(formatter, measurements, size); |
| 124 | figure.configure(Key, |k| k.hide()); |
| 125 | |
| 126 | let path = context.report_path(id, "regression_small.svg" ); |
| 127 | debug_script(&path, &figure); |
| 128 | figure.set(Output(path)).draw().unwrap() |
| 129 | } |
| 130 | |
| 131 | fn regression_comparison_figure( |
| 132 | formatter: &dyn ValueFormatter, |
| 133 | measurements: &MeasurementData<'_>, |
| 134 | comparison: &ComparisonData, |
| 135 | base_data: &Data<'_, f64, f64>, |
| 136 | size: Option<Size>, |
| 137 | ) -> Figure { |
| 138 | let data = &measurements.data; |
| 139 | let max_iters = base_data.x().max().max(data.x().max()); |
| 140 | let typical = base_data.y().max().max(data.y().max()); |
| 141 | |
| 142 | let exponent = (max_iters.log10() / 3.).floor() as i32 * 3; |
| 143 | let x_scale = 10f64.powi(-exponent); |
| 144 | |
| 145 | let x_label = if exponent == 0 { |
| 146 | "Iterations" .to_owned() |
| 147 | } else { |
| 148 | format!("Iterations (x 10^{})" , exponent) |
| 149 | }; |
| 150 | |
| 151 | let Estimate { |
| 152 | confidence_interval: |
| 153 | ConfidenceInterval { |
| 154 | lower_bound: base_lb, |
| 155 | upper_bound: base_ub, |
| 156 | .. |
| 157 | }, |
| 158 | point_estimate: base_point, |
| 159 | .. |
| 160 | } = comparison.base_estimates.slope.as_ref().unwrap(); |
| 161 | |
| 162 | let Estimate { |
| 163 | confidence_interval: |
| 164 | ConfidenceInterval { |
| 165 | lower_bound: lb, |
| 166 | upper_bound: ub, |
| 167 | .. |
| 168 | }, |
| 169 | point_estimate: point, |
| 170 | .. |
| 171 | } = measurements.absolute_estimates.slope.as_ref().unwrap(); |
| 172 | |
| 173 | let mut points = [ |
| 174 | base_lb * max_iters, |
| 175 | base_point * max_iters, |
| 176 | base_ub * max_iters, |
| 177 | lb * max_iters, |
| 178 | point * max_iters, |
| 179 | ub * max_iters, |
| 180 | ]; |
| 181 | let unit = formatter.scale_values(typical, &mut points); |
| 182 | let [base_lb, base_point, base_ub, lb, point, ub] = points; |
| 183 | |
| 184 | let mut figure = Figure::new(); |
| 185 | figure |
| 186 | .set(Font(DEFAULT_FONT)) |
| 187 | .set(size.unwrap_or(SIZE)) |
| 188 | .configure(Axis::BottomX, |a| { |
| 189 | a.configure(Grid::Major, |g| g.show()) |
| 190 | .set(Label(x_label)) |
| 191 | .set(ScaleFactor(x_scale)) |
| 192 | }) |
| 193 | .configure(Axis::LeftY, |a| { |
| 194 | a.configure(Grid::Major, |g| g.show()) |
| 195 | .set(Label(format!("Total sample time ({})" , unit))) |
| 196 | }) |
| 197 | .configure(Key, |k| { |
| 198 | k.set(Justification::Left) |
| 199 | .set(Order::SampleText) |
| 200 | .set(Position::Inside(Vertical::Top, Horizontal::Left)) |
| 201 | }) |
| 202 | .plot( |
| 203 | FilledCurve { |
| 204 | x: &[0., max_iters], |
| 205 | y1: &[0., base_lb], |
| 206 | y2: &[0., base_ub], |
| 207 | }, |
| 208 | |c| c.set(DARK_RED).set(Opacity(0.25)), |
| 209 | ) |
| 210 | .plot( |
| 211 | FilledCurve { |
| 212 | x: &[0., max_iters], |
| 213 | y1: &[0., lb], |
| 214 | y2: &[0., ub], |
| 215 | }, |
| 216 | |c| c.set(DARK_BLUE).set(Opacity(0.25)), |
| 217 | ) |
| 218 | .plot( |
| 219 | Lines { |
| 220 | x: &[0., max_iters], |
| 221 | y: &[0., base_point], |
| 222 | }, |
| 223 | |c| { |
| 224 | c.set(DARK_RED) |
| 225 | .set(LINEWIDTH) |
| 226 | .set(Label("Base sample" )) |
| 227 | .set(LineType::Solid) |
| 228 | }, |
| 229 | ) |
| 230 | .plot( |
| 231 | Lines { |
| 232 | x: &[0., max_iters], |
| 233 | y: &[0., point], |
| 234 | }, |
| 235 | |c| { |
| 236 | c.set(DARK_BLUE) |
| 237 | .set(LINEWIDTH) |
| 238 | .set(Label("New sample" )) |
| 239 | .set(LineType::Solid) |
| 240 | }, |
| 241 | ); |
| 242 | figure |
| 243 | } |
| 244 | |
| 245 | pub(crate) fn regression_comparison( |
| 246 | id: &BenchmarkId, |
| 247 | context: &ReportContext, |
| 248 | formatter: &dyn ValueFormatter, |
| 249 | measurements: &MeasurementData<'_>, |
| 250 | comparison: &ComparisonData, |
| 251 | base_data: &Data<'_, f64, f64>, |
| 252 | size: Option<Size>, |
| 253 | ) -> Child { |
| 254 | let mut figure = |
| 255 | regression_comparison_figure(formatter, measurements, comparison, base_data, size); |
| 256 | figure.set(Title(gnuplot_escape(id.as_title()))); |
| 257 | |
| 258 | let path = context.report_path(id, "both/regression.svg" ); |
| 259 | debug_script(&path, &figure); |
| 260 | figure.set(Output(path)).draw().unwrap() |
| 261 | } |
| 262 | |
| 263 | pub(crate) fn regression_comparison_small( |
| 264 | id: &BenchmarkId, |
| 265 | context: &ReportContext, |
| 266 | formatter: &dyn ValueFormatter, |
| 267 | measurements: &MeasurementData<'_>, |
| 268 | comparison: &ComparisonData, |
| 269 | base_data: &Data<'_, f64, f64>, |
| 270 | size: Option<Size>, |
| 271 | ) -> Child { |
| 272 | let mut figure = |
| 273 | regression_comparison_figure(formatter, measurements, comparison, base_data, size); |
| 274 | figure.configure(Key, |k| k.hide()); |
| 275 | |
| 276 | let path = context.report_path(id, "relative_regression_small.svg" ); |
| 277 | debug_script(&path, &figure); |
| 278 | figure.set(Output(path)).draw().unwrap() |
| 279 | } |
| 280 | |