1 | use std::process::Child; |
2 | |
3 | use crate::stats::bivariate::regression::Slope; |
4 | use criterion_plot::prelude::*; |
5 | |
6 | use super::*; |
7 | use crate::report::{BenchmarkId, ComparisonData, MeasurementData, ReportContext}; |
8 | use crate::stats::bivariate::Data; |
9 | |
10 | use crate::estimate::{ConfidenceInterval, Estimate}; |
11 | |
12 | use crate::measurement::ValueFormatter; |
13 | |
14 | fn regression_figure( |
15 | formatter: &dyn ValueFormatter, |
16 | measurements: &MeasurementData<'_>, |
17 | size: Option<Size>, |
18 | ) -> Figure { |
19 | let slope_estimate = measurements.absolute_estimates.slope.as_ref().unwrap(); |
20 | let slope_dist = measurements.distributions.slope.as_ref().unwrap(); |
21 | let (lb, ub) = |
22 | slope_dist.confidence_interval(slope_estimate.confidence_interval.confidence_level); |
23 | |
24 | let data = &measurements.data; |
25 | let (max_iters, typical) = (data.x().max(), data.y().max()); |
26 | let mut scaled_y: Vec<f64> = data.y().iter().cloned().collect(); |
27 | let unit = formatter.scale_values(typical, &mut scaled_y); |
28 | let scaled_y = Sample::new(&scaled_y); |
29 | |
30 | let point_estimate = Slope::fit(&measurements.data).0; |
31 | let mut scaled_points = [point_estimate * max_iters, lb * max_iters, ub * max_iters]; |
32 | let _ = formatter.scale_values(typical, &mut scaled_points); |
33 | let [point, lb, ub] = scaled_points; |
34 | |
35 | let exponent = (max_iters.log10() / 3.).floor() as i32 * 3; |
36 | let x_scale = 10f64.powi(-exponent); |
37 | |
38 | let x_label = if exponent == 0 { |
39 | "Iterations" .to_owned() |
40 | } else { |
41 | format!("Iterations (x 10^{})" , exponent) |
42 | }; |
43 | |
44 | let mut figure = Figure::new(); |
45 | figure |
46 | .set(Font(DEFAULT_FONT)) |
47 | .set(size.unwrap_or(SIZE)) |
48 | .configure(Axis::BottomX, |a| { |
49 | a.configure(Grid::Major, |g| g.show()) |
50 | .set(Label(x_label)) |
51 | .set(ScaleFactor(x_scale)) |
52 | }) |
53 | .configure(Axis::LeftY, |a| { |
54 | a.configure(Grid::Major, |g| g.show()) |
55 | .set(Label(format!("Total sample time ({})" , unit))) |
56 | }) |
57 | .plot( |
58 | Points { |
59 | x: data.x().as_ref(), |
60 | y: scaled_y.as_ref(), |
61 | }, |
62 | |c| { |
63 | c.set(DARK_BLUE) |
64 | .set(Label("Sample" )) |
65 | .set(PointSize(0.5)) |
66 | .set(PointType::FilledCircle) |
67 | }, |
68 | ) |
69 | .plot( |
70 | Lines { |
71 | x: &[0., max_iters], |
72 | y: &[0., point], |
73 | }, |
74 | |c| { |
75 | c.set(DARK_BLUE) |
76 | .set(LINEWIDTH) |
77 | .set(Label("Linear regression" )) |
78 | .set(LineType::Solid) |
79 | }, |
80 | ) |
81 | .plot( |
82 | FilledCurve { |
83 | x: &[0., max_iters], |
84 | y1: &[0., lb], |
85 | y2: &[0., ub], |
86 | }, |
87 | |c| { |
88 | c.set(DARK_BLUE) |
89 | .set(Label("Confidence interval" )) |
90 | .set(Opacity(0.25)) |
91 | }, |
92 | ); |
93 | figure |
94 | } |
95 | |
96 | pub(crate) fn regression( |
97 | id: &BenchmarkId, |
98 | context: &ReportContext, |
99 | formatter: &dyn ValueFormatter, |
100 | measurements: &MeasurementData<'_>, |
101 | size: Option<Size>, |
102 | ) -> Child { |
103 | let mut figure = regression_figure(formatter, measurements, size); |
104 | figure.set(Title(gnuplot_escape(id.as_title()))); |
105 | figure.configure(Key, |k| { |
106 | k.set(Justification::Left) |
107 | .set(Order::SampleText) |
108 | .set(Position::Inside(Vertical::Top, Horizontal::Left)) |
109 | }); |
110 | |
111 | let path = context.report_path(id, "regression.svg" ); |
112 | debug_script(&path, &figure); |
113 | figure.set(Output(path)).draw().unwrap() |
114 | } |
115 | |
116 | pub(crate) fn regression_small( |
117 | id: &BenchmarkId, |
118 | context: &ReportContext, |
119 | formatter: &dyn ValueFormatter, |
120 | measurements: &MeasurementData<'_>, |
121 | size: Option<Size>, |
122 | ) -> Child { |
123 | let mut figure = regression_figure(formatter, measurements, size); |
124 | figure.configure(Key, |k| k.hide()); |
125 | |
126 | let path = context.report_path(id, "regression_small.svg" ); |
127 | debug_script(&path, &figure); |
128 | figure.set(Output(path)).draw().unwrap() |
129 | } |
130 | |
131 | fn regression_comparison_figure( |
132 | formatter: &dyn ValueFormatter, |
133 | measurements: &MeasurementData<'_>, |
134 | comparison: &ComparisonData, |
135 | base_data: &Data<'_, f64, f64>, |
136 | size: Option<Size>, |
137 | ) -> Figure { |
138 | let data = &measurements.data; |
139 | let max_iters = base_data.x().max().max(data.x().max()); |
140 | let typical = base_data.y().max().max(data.y().max()); |
141 | |
142 | let exponent = (max_iters.log10() / 3.).floor() as i32 * 3; |
143 | let x_scale = 10f64.powi(-exponent); |
144 | |
145 | let x_label = if exponent == 0 { |
146 | "Iterations" .to_owned() |
147 | } else { |
148 | format!("Iterations (x 10^{})" , exponent) |
149 | }; |
150 | |
151 | let Estimate { |
152 | confidence_interval: |
153 | ConfidenceInterval { |
154 | lower_bound: base_lb, |
155 | upper_bound: base_ub, |
156 | .. |
157 | }, |
158 | point_estimate: base_point, |
159 | .. |
160 | } = comparison.base_estimates.slope.as_ref().unwrap(); |
161 | |
162 | let Estimate { |
163 | confidence_interval: |
164 | ConfidenceInterval { |
165 | lower_bound: lb, |
166 | upper_bound: ub, |
167 | .. |
168 | }, |
169 | point_estimate: point, |
170 | .. |
171 | } = measurements.absolute_estimates.slope.as_ref().unwrap(); |
172 | |
173 | let mut points = [ |
174 | base_lb * max_iters, |
175 | base_point * max_iters, |
176 | base_ub * max_iters, |
177 | lb * max_iters, |
178 | point * max_iters, |
179 | ub * max_iters, |
180 | ]; |
181 | let unit = formatter.scale_values(typical, &mut points); |
182 | let [base_lb, base_point, base_ub, lb, point, ub] = points; |
183 | |
184 | let mut figure = Figure::new(); |
185 | figure |
186 | .set(Font(DEFAULT_FONT)) |
187 | .set(size.unwrap_or(SIZE)) |
188 | .configure(Axis::BottomX, |a| { |
189 | a.configure(Grid::Major, |g| g.show()) |
190 | .set(Label(x_label)) |
191 | .set(ScaleFactor(x_scale)) |
192 | }) |
193 | .configure(Axis::LeftY, |a| { |
194 | a.configure(Grid::Major, |g| g.show()) |
195 | .set(Label(format!("Total sample time ({})" , unit))) |
196 | }) |
197 | .configure(Key, |k| { |
198 | k.set(Justification::Left) |
199 | .set(Order::SampleText) |
200 | .set(Position::Inside(Vertical::Top, Horizontal::Left)) |
201 | }) |
202 | .plot( |
203 | FilledCurve { |
204 | x: &[0., max_iters], |
205 | y1: &[0., base_lb], |
206 | y2: &[0., base_ub], |
207 | }, |
208 | |c| c.set(DARK_RED).set(Opacity(0.25)), |
209 | ) |
210 | .plot( |
211 | FilledCurve { |
212 | x: &[0., max_iters], |
213 | y1: &[0., lb], |
214 | y2: &[0., ub], |
215 | }, |
216 | |c| c.set(DARK_BLUE).set(Opacity(0.25)), |
217 | ) |
218 | .plot( |
219 | Lines { |
220 | x: &[0., max_iters], |
221 | y: &[0., base_point], |
222 | }, |
223 | |c| { |
224 | c.set(DARK_RED) |
225 | .set(LINEWIDTH) |
226 | .set(Label("Base sample" )) |
227 | .set(LineType::Solid) |
228 | }, |
229 | ) |
230 | .plot( |
231 | Lines { |
232 | x: &[0., max_iters], |
233 | y: &[0., point], |
234 | }, |
235 | |c| { |
236 | c.set(DARK_BLUE) |
237 | .set(LINEWIDTH) |
238 | .set(Label("New sample" )) |
239 | .set(LineType::Solid) |
240 | }, |
241 | ); |
242 | figure |
243 | } |
244 | |
245 | pub(crate) fn regression_comparison( |
246 | id: &BenchmarkId, |
247 | context: &ReportContext, |
248 | formatter: &dyn ValueFormatter, |
249 | measurements: &MeasurementData<'_>, |
250 | comparison: &ComparisonData, |
251 | base_data: &Data<'_, f64, f64>, |
252 | size: Option<Size>, |
253 | ) -> Child { |
254 | let mut figure = |
255 | regression_comparison_figure(formatter, measurements, comparison, base_data, size); |
256 | figure.set(Title(gnuplot_escape(id.as_title()))); |
257 | |
258 | let path = context.report_path(id, "both/regression.svg" ); |
259 | debug_script(&path, &figure); |
260 | figure.set(Output(path)).draw().unwrap() |
261 | } |
262 | |
263 | pub(crate) fn regression_comparison_small( |
264 | id: &BenchmarkId, |
265 | context: &ReportContext, |
266 | formatter: &dyn ValueFormatter, |
267 | measurements: &MeasurementData<'_>, |
268 | comparison: &ComparisonData, |
269 | base_data: &Data<'_, f64, f64>, |
270 | size: Option<Size>, |
271 | ) -> Child { |
272 | let mut figure = |
273 | regression_comparison_figure(formatter, measurements, comparison, base_data, size); |
274 | figure.configure(Key, |k| k.hide()); |
275 | |
276 | let path = context.report_path(id, "relative_regression_small.svg" ); |
277 | debug_script(&path, &figure); |
278 | figure.set(Output(path)).draw().unwrap() |
279 | } |
280 | |