1 | #[cfg (feature = "bytemuck" )] |
2 | use bytemuck::{Pod, Zeroable}; |
3 | use core::{ |
4 | cmp::Ordering, |
5 | fmt::{ |
6 | Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, |
7 | }, |
8 | iter::{Product, Sum}, |
9 | num::{FpCategory, ParseFloatError}, |
10 | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, |
11 | str::FromStr, |
12 | }; |
13 | #[cfg (feature = "serde" )] |
14 | use serde::{Deserialize, Serialize}; |
15 | #[cfg (feature = "zerocopy" )] |
16 | use zerocopy::{AsBytes, FromBytes}; |
17 | |
18 | pub(crate) mod convert; |
19 | |
20 | /// A 16-bit floating point type implementing the [`bfloat16`] format. |
21 | /// |
22 | /// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard |
23 | /// `binary32`, a.k.a [`f32`]. [`bf16`] has approximately the same dynamic range as [`f32`] by |
24 | /// having a lower precision than [`f16`][crate::f16]. While [`f16`][crate::f16] has a precision of |
25 | /// 11 bits, [`bf16`] has a precision of only 8 bits. |
26 | /// |
27 | /// Like [`f16`][crate::f16], [`bf16`] does not offer arithmetic operations as it is intended for |
28 | /// compact storage rather than calculations. Operations should be performed with [`f32`] or |
29 | /// higher-precision types and converted to/from [`bf16`] as necessary. |
30 | /// |
31 | /// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format |
32 | #[allow (non_camel_case_types)] |
33 | #[derive(Clone, Copy, Default)] |
34 | #[repr (transparent)] |
35 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
36 | #[cfg_attr (feature = "bytemuck" , derive(Zeroable, Pod))] |
37 | #[cfg_attr (feature = "zerocopy" , derive(AsBytes, FromBytes))] |
38 | pub struct bf16(u16); |
39 | |
40 | impl bf16 { |
41 | /// Constructs a [`bf16`] value from the raw bits. |
42 | #[inline ] |
43 | pub const fn from_bits(bits: u16) -> bf16 { |
44 | bf16(bits) |
45 | } |
46 | |
47 | /// Constructs a [`bf16`] value from a 32-bit floating point value. |
48 | /// |
49 | /// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved. |
50 | /// Subnormal values that are too tiny to be represented will result in ±0. All other values |
51 | /// are truncated and rounded to the nearest representable value. |
52 | #[inline ] |
53 | pub fn from_f32(value: f32) -> bf16 { |
54 | bf16(convert::f32_to_bf16(value)) |
55 | } |
56 | |
57 | /// Constructs a [`bf16`] value from a 64-bit floating point value. |
58 | /// |
59 | /// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved. |
60 | /// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that |
61 | /// underflow the minimum exponent will result in subnormals or ±0. All other values are |
62 | /// truncated and rounded to the nearest representable value. |
63 | #[inline ] |
64 | pub fn from_f64(value: f64) -> bf16 { |
65 | bf16(convert::f64_to_bf16(value)) |
66 | } |
67 | |
68 | /// Converts a [`bf16`] into the underlying bit representation. |
69 | #[inline ] |
70 | pub const fn to_bits(self) -> u16 { |
71 | self.0 |
72 | } |
73 | |
74 | /// Returns the memory representation of the underlying bit representation as a byte array in |
75 | /// little-endian byte order. |
76 | /// |
77 | /// # Examples |
78 | /// |
79 | /// ```rust |
80 | /// # use half::prelude::*; |
81 | /// let bytes = bf16::from_f32(12.5).to_le_bytes(); |
82 | /// assert_eq!(bytes, [0x48, 0x41]); |
83 | /// ``` |
84 | #[inline ] |
85 | pub const fn to_le_bytes(self) -> [u8; 2] { |
86 | self.0.to_le_bytes() |
87 | } |
88 | |
89 | /// Returns the memory representation of the underlying bit representation as a byte array in |
90 | /// big-endian (network) byte order. |
91 | /// |
92 | /// # Examples |
93 | /// |
94 | /// ```rust |
95 | /// # use half::prelude::*; |
96 | /// let bytes = bf16::from_f32(12.5).to_be_bytes(); |
97 | /// assert_eq!(bytes, [0x41, 0x48]); |
98 | /// ``` |
99 | #[inline ] |
100 | pub const fn to_be_bytes(self) -> [u8; 2] { |
101 | self.0.to_be_bytes() |
102 | } |
103 | |
104 | /// Returns the memory representation of the underlying bit representation as a byte array in |
105 | /// native byte order. |
106 | /// |
107 | /// As the target platform's native endianness is used, portable code should use |
108 | /// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate, |
109 | /// instead. |
110 | /// |
111 | /// # Examples |
112 | /// |
113 | /// ```rust |
114 | /// # use half::prelude::*; |
115 | /// let bytes = bf16::from_f32(12.5).to_ne_bytes(); |
116 | /// assert_eq!(bytes, if cfg!(target_endian = "big" ) { |
117 | /// [0x41, 0x48] |
118 | /// } else { |
119 | /// [0x48, 0x41] |
120 | /// }); |
121 | /// ``` |
122 | #[inline ] |
123 | pub const fn to_ne_bytes(self) -> [u8; 2] { |
124 | self.0.to_ne_bytes() |
125 | } |
126 | |
127 | /// Creates a floating point value from its representation as a byte array in little endian. |
128 | /// |
129 | /// # Examples |
130 | /// |
131 | /// ```rust |
132 | /// # use half::prelude::*; |
133 | /// let value = bf16::from_le_bytes([0x48, 0x41]); |
134 | /// assert_eq!(value, bf16::from_f32(12.5)); |
135 | /// ``` |
136 | #[inline ] |
137 | pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 { |
138 | bf16::from_bits(u16::from_le_bytes(bytes)) |
139 | } |
140 | |
141 | /// Creates a floating point value from its representation as a byte array in big endian. |
142 | /// |
143 | /// # Examples |
144 | /// |
145 | /// ```rust |
146 | /// # use half::prelude::*; |
147 | /// let value = bf16::from_be_bytes([0x41, 0x48]); |
148 | /// assert_eq!(value, bf16::from_f32(12.5)); |
149 | /// ``` |
150 | #[inline ] |
151 | pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 { |
152 | bf16::from_bits(u16::from_be_bytes(bytes)) |
153 | } |
154 | |
155 | /// Creates a floating point value from its representation as a byte array in native endian. |
156 | /// |
157 | /// As the target platform's native endianness is used, portable code likely wants to use |
158 | /// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as |
159 | /// appropriate instead. |
160 | /// |
161 | /// # Examples |
162 | /// |
163 | /// ```rust |
164 | /// # use half::prelude::*; |
165 | /// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big" ) { |
166 | /// [0x41, 0x48] |
167 | /// } else { |
168 | /// [0x48, 0x41] |
169 | /// }); |
170 | /// assert_eq!(value, bf16::from_f32(12.5)); |
171 | /// ``` |
172 | #[inline ] |
173 | pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 { |
174 | bf16::from_bits(u16::from_ne_bytes(bytes)) |
175 | } |
176 | |
177 | /// Converts a [`bf16`] value into an [`f32`] value. |
178 | /// |
179 | /// This conversion is lossless as all values can be represented exactly in [`f32`]. |
180 | #[inline ] |
181 | pub fn to_f32(self) -> f32 { |
182 | convert::bf16_to_f32(self.0) |
183 | } |
184 | |
185 | /// Converts a [`bf16`] value into an [`f64`] value. |
186 | /// |
187 | /// This conversion is lossless as all values can be represented exactly in [`f64`]. |
188 | #[inline ] |
189 | pub fn to_f64(self) -> f64 { |
190 | convert::bf16_to_f64(self.0) |
191 | } |
192 | |
193 | /// Returns `true` if this value is NaN and `false` otherwise. |
194 | /// |
195 | /// # Examples |
196 | /// |
197 | /// ```rust |
198 | /// # use half::prelude::*; |
199 | /// |
200 | /// let nan = bf16::NAN; |
201 | /// let f = bf16::from_f32(7.0_f32); |
202 | /// |
203 | /// assert!(nan.is_nan()); |
204 | /// assert!(!f.is_nan()); |
205 | /// ``` |
206 | #[inline ] |
207 | pub const fn is_nan(self) -> bool { |
208 | self.0 & 0x7FFFu16 > 0x7F80u16 |
209 | } |
210 | |
211 | /// Returns `true` if this value is ±∞ and `false` otherwise. |
212 | /// |
213 | /// # Examples |
214 | /// |
215 | /// ```rust |
216 | /// # use half::prelude::*; |
217 | /// |
218 | /// let f = bf16::from_f32(7.0f32); |
219 | /// let inf = bf16::INFINITY; |
220 | /// let neg_inf = bf16::NEG_INFINITY; |
221 | /// let nan = bf16::NAN; |
222 | /// |
223 | /// assert!(!f.is_infinite()); |
224 | /// assert!(!nan.is_infinite()); |
225 | /// |
226 | /// assert!(inf.is_infinite()); |
227 | /// assert!(neg_inf.is_infinite()); |
228 | /// ``` |
229 | #[inline ] |
230 | pub const fn is_infinite(self) -> bool { |
231 | self.0 & 0x7FFFu16 == 0x7F80u16 |
232 | } |
233 | |
234 | /// Returns `true` if this number is neither infinite nor NaN. |
235 | /// |
236 | /// # Examples |
237 | /// |
238 | /// ```rust |
239 | /// # use half::prelude::*; |
240 | /// |
241 | /// let f = bf16::from_f32(7.0f32); |
242 | /// let inf = bf16::INFINITY; |
243 | /// let neg_inf = bf16::NEG_INFINITY; |
244 | /// let nan = bf16::NAN; |
245 | /// |
246 | /// assert!(f.is_finite()); |
247 | /// |
248 | /// assert!(!nan.is_finite()); |
249 | /// assert!(!inf.is_finite()); |
250 | /// assert!(!neg_inf.is_finite()); |
251 | /// ``` |
252 | #[inline ] |
253 | pub const fn is_finite(self) -> bool { |
254 | self.0 & 0x7F80u16 != 0x7F80u16 |
255 | } |
256 | |
257 | /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN. |
258 | /// |
259 | /// # Examples |
260 | /// |
261 | /// ```rust |
262 | /// # use half::prelude::*; |
263 | /// |
264 | /// let min = bf16::MIN_POSITIVE; |
265 | /// let max = bf16::MAX; |
266 | /// let lower_than_min = bf16::from_f32(1.0e-39_f32); |
267 | /// let zero = bf16::from_f32(0.0_f32); |
268 | /// |
269 | /// assert!(min.is_normal()); |
270 | /// assert!(max.is_normal()); |
271 | /// |
272 | /// assert!(!zero.is_normal()); |
273 | /// assert!(!bf16::NAN.is_normal()); |
274 | /// assert!(!bf16::INFINITY.is_normal()); |
275 | /// // Values between 0 and `min` are subnormal. |
276 | /// assert!(!lower_than_min.is_normal()); |
277 | /// ``` |
278 | #[inline ] |
279 | pub const fn is_normal(self) -> bool { |
280 | let exp = self.0 & 0x7F80u16; |
281 | exp != 0x7F80u16 && exp != 0 |
282 | } |
283 | |
284 | /// Returns the floating point category of the number. |
285 | /// |
286 | /// If only one property is going to be tested, it is generally faster to use the specific |
287 | /// predicate instead. |
288 | /// |
289 | /// # Examples |
290 | /// |
291 | /// ```rust |
292 | /// use std::num::FpCategory; |
293 | /// # use half::prelude::*; |
294 | /// |
295 | /// let num = bf16::from_f32(12.4_f32); |
296 | /// let inf = bf16::INFINITY; |
297 | /// |
298 | /// assert_eq!(num.classify(), FpCategory::Normal); |
299 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
300 | /// ``` |
301 | pub const fn classify(self) -> FpCategory { |
302 | let exp = self.0 & 0x7F80u16; |
303 | let man = self.0 & 0x007Fu16; |
304 | match (exp, man) { |
305 | (0, 0) => FpCategory::Zero, |
306 | (0, _) => FpCategory::Subnormal, |
307 | (0x7F80u16, 0) => FpCategory::Infinite, |
308 | (0x7F80u16, _) => FpCategory::Nan, |
309 | _ => FpCategory::Normal, |
310 | } |
311 | } |
312 | |
313 | /// Returns a number that represents the sign of `self`. |
314 | /// |
315 | /// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY] |
316 | /// * −1.0 if the number is negative, −0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY] |
317 | /// * [`NAN`][bf16::NAN] if the number is NaN |
318 | /// |
319 | /// # Examples |
320 | /// |
321 | /// ```rust |
322 | /// # use half::prelude::*; |
323 | /// |
324 | /// let f = bf16::from_f32(3.5_f32); |
325 | /// |
326 | /// assert_eq!(f.signum(), bf16::from_f32(1.0)); |
327 | /// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0)); |
328 | /// |
329 | /// assert!(bf16::NAN.signum().is_nan()); |
330 | /// ``` |
331 | pub const fn signum(self) -> bf16 { |
332 | if self.is_nan() { |
333 | self |
334 | } else if self.0 & 0x8000u16 != 0 { |
335 | Self::NEG_ONE |
336 | } else { |
337 | Self::ONE |
338 | } |
339 | } |
340 | |
341 | /// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a |
342 | /// positive sign bit and +∞. |
343 | /// |
344 | /// # Examples |
345 | /// |
346 | /// ```rust |
347 | /// # use half::prelude::*; |
348 | /// |
349 | /// let nan = bf16::NAN; |
350 | /// let f = bf16::from_f32(7.0_f32); |
351 | /// let g = bf16::from_f32(-7.0_f32); |
352 | /// |
353 | /// assert!(f.is_sign_positive()); |
354 | /// assert!(!g.is_sign_positive()); |
355 | /// // NaN can be either positive or negative |
356 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
357 | /// ``` |
358 | #[inline ] |
359 | pub const fn is_sign_positive(self) -> bool { |
360 | self.0 & 0x8000u16 == 0 |
361 | } |
362 | |
363 | /// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a |
364 | /// negative sign bit and −∞. |
365 | /// |
366 | /// # Examples |
367 | /// |
368 | /// ```rust |
369 | /// # use half::prelude::*; |
370 | /// |
371 | /// let nan = bf16::NAN; |
372 | /// let f = bf16::from_f32(7.0f32); |
373 | /// let g = bf16::from_f32(-7.0f32); |
374 | /// |
375 | /// assert!(!f.is_sign_negative()); |
376 | /// assert!(g.is_sign_negative()); |
377 | /// // NaN can be either positive or negative |
378 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
379 | /// ``` |
380 | #[inline ] |
381 | pub const fn is_sign_negative(self) -> bool { |
382 | self.0 & 0x8000u16 != 0 |
383 | } |
384 | |
385 | /// Returns a number composed of the magnitude of `self` and the sign of `sign`. |
386 | /// |
387 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
388 | /// If `self` is NaN, then NaN with the sign of `sign` is returned. |
389 | /// |
390 | /// # Examples |
391 | /// |
392 | /// ``` |
393 | /// # use half::prelude::*; |
394 | /// let f = bf16::from_f32(3.5); |
395 | /// |
396 | /// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5)); |
397 | /// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5)); |
398 | /// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5)); |
399 | /// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5)); |
400 | /// |
401 | /// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan()); |
402 | /// ``` |
403 | #[inline ] |
404 | pub const fn copysign(self, sign: bf16) -> bf16 { |
405 | bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16)) |
406 | } |
407 | |
408 | /// Returns the maximum of the two numbers. |
409 | /// |
410 | /// If one of the arguments is NaN, then the other argument is returned. |
411 | /// |
412 | /// # Examples |
413 | /// |
414 | /// ``` |
415 | /// # use half::prelude::*; |
416 | /// let x = bf16::from_f32(1.0); |
417 | /// let y = bf16::from_f32(2.0); |
418 | /// |
419 | /// assert_eq!(x.max(y), y); |
420 | /// ``` |
421 | #[inline ] |
422 | pub fn max(self, other: bf16) -> bf16 { |
423 | if other > self && !other.is_nan() { |
424 | other |
425 | } else { |
426 | self |
427 | } |
428 | } |
429 | |
430 | /// Returns the minimum of the two numbers. |
431 | /// |
432 | /// If one of the arguments is NaN, then the other argument is returned. |
433 | /// |
434 | /// # Examples |
435 | /// |
436 | /// ``` |
437 | /// # use half::prelude::*; |
438 | /// let x = bf16::from_f32(1.0); |
439 | /// let y = bf16::from_f32(2.0); |
440 | /// |
441 | /// assert_eq!(x.min(y), x); |
442 | /// ``` |
443 | #[inline ] |
444 | pub fn min(self, other: bf16) -> bf16 { |
445 | if other < self && !other.is_nan() { |
446 | other |
447 | } else { |
448 | self |
449 | } |
450 | } |
451 | |
452 | /// Restrict a value to a certain interval unless it is NaN. |
453 | /// |
454 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`. |
455 | /// Otherwise this returns `self`. |
456 | /// |
457 | /// Note that this function returns NaN if the initial value was NaN as well. |
458 | /// |
459 | /// # Panics |
460 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
461 | /// |
462 | /// # Examples |
463 | /// |
464 | /// ``` |
465 | /// # use half::prelude::*; |
466 | /// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0)); |
467 | /// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0)); |
468 | /// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0)); |
469 | /// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan()); |
470 | /// ``` |
471 | #[inline ] |
472 | pub fn clamp(self, min: bf16, max: bf16) -> bf16 { |
473 | assert!(min <= max); |
474 | let mut x = self; |
475 | if x < min { |
476 | x = min; |
477 | } |
478 | if x > max { |
479 | x = max; |
480 | } |
481 | x |
482 | } |
483 | |
484 | /// Approximate number of [`bf16`] significant digits in base 10 |
485 | pub const DIGITS: u32 = 2; |
486 | /// [`bf16`] |
487 | /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value |
488 | /// |
489 | /// This is the difference between 1.0 and the next largest representable number. |
490 | pub const EPSILON: bf16 = bf16(0x3C00u16); |
491 | /// [`bf16`] positive Infinity (+∞) |
492 | pub const INFINITY: bf16 = bf16(0x7F80u16); |
493 | /// Number of [`bf16`] significant digits in base 2 |
494 | pub const MANTISSA_DIGITS: u32 = 8; |
495 | /// Largest finite [`bf16`] value |
496 | pub const MAX: bf16 = bf16(0x7F7F); |
497 | /// Maximum possible [`bf16`] power of 10 exponent |
498 | pub const MAX_10_EXP: i32 = 38; |
499 | /// Maximum possible [`bf16`] power of 2 exponent |
500 | pub const MAX_EXP: i32 = 128; |
501 | /// Smallest finite [`bf16`] value |
502 | pub const MIN: bf16 = bf16(0xFF7F); |
503 | /// Minimum possible normal [`bf16`] power of 10 exponent |
504 | pub const MIN_10_EXP: i32 = -37; |
505 | /// One greater than the minimum possible normal [`bf16`] power of 2 exponent |
506 | pub const MIN_EXP: i32 = -125; |
507 | /// Smallest positive normal [`bf16`] value |
508 | pub const MIN_POSITIVE: bf16 = bf16(0x0080u16); |
509 | /// [`bf16`] Not a Number (NaN) |
510 | pub const NAN: bf16 = bf16(0x7FC0u16); |
511 | /// [`bf16`] negative infinity (-∞). |
512 | pub const NEG_INFINITY: bf16 = bf16(0xFF80u16); |
513 | /// The radix or base of the internal representation of [`bf16`] |
514 | pub const RADIX: u32 = 2; |
515 | |
516 | /// Minimum positive subnormal [`bf16`] value |
517 | pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16); |
518 | /// Maximum subnormal [`bf16`] value |
519 | pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16); |
520 | |
521 | /// [`bf16`] 1 |
522 | pub const ONE: bf16 = bf16(0x3F80u16); |
523 | /// [`bf16`] 0 |
524 | pub const ZERO: bf16 = bf16(0x0000u16); |
525 | /// [`bf16`] -0 |
526 | pub const NEG_ZERO: bf16 = bf16(0x8000u16); |
527 | /// [`bf16`] -1 |
528 | pub const NEG_ONE: bf16 = bf16(0xBF80u16); |
529 | |
530 | /// [`bf16`] Euler's number (ℯ) |
531 | pub const E: bf16 = bf16(0x402Eu16); |
532 | /// [`bf16`] Archimedes' constant (π) |
533 | pub const PI: bf16 = bf16(0x4049u16); |
534 | /// [`bf16`] 1/π |
535 | pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16); |
536 | /// [`bf16`] 1/√2 |
537 | pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16); |
538 | /// [`bf16`] 2/π |
539 | pub const FRAC_2_PI: bf16 = bf16(0x3F23u16); |
540 | /// [`bf16`] 2/√π |
541 | pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16); |
542 | /// [`bf16`] π/2 |
543 | pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16); |
544 | /// [`bf16`] π/3 |
545 | pub const FRAC_PI_3: bf16 = bf16(0x3F86u16); |
546 | /// [`bf16`] π/4 |
547 | pub const FRAC_PI_4: bf16 = bf16(0x3F49u16); |
548 | /// [`bf16`] π/6 |
549 | pub const FRAC_PI_6: bf16 = bf16(0x3F06u16); |
550 | /// [`bf16`] π/8 |
551 | pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16); |
552 | /// [`bf16`] 𝗅𝗇 10 |
553 | pub const LN_10: bf16 = bf16(0x4013u16); |
554 | /// [`bf16`] 𝗅𝗇 2 |
555 | pub const LN_2: bf16 = bf16(0x3F31u16); |
556 | /// [`bf16`] 𝗅𝗈𝗀₁₀ℯ |
557 | pub const LOG10_E: bf16 = bf16(0x3EDEu16); |
558 | /// [`bf16`] 𝗅𝗈𝗀₁₀2 |
559 | pub const LOG10_2: bf16 = bf16(0x3E9Au16); |
560 | /// [`bf16`] 𝗅𝗈𝗀₂ℯ |
561 | pub const LOG2_E: bf16 = bf16(0x3FB9u16); |
562 | /// [`bf16`] 𝗅𝗈𝗀₂10 |
563 | pub const LOG2_10: bf16 = bf16(0x4055u16); |
564 | /// [`bf16`] √2 |
565 | pub const SQRT_2: bf16 = bf16(0x3FB5u16); |
566 | } |
567 | |
568 | impl From<bf16> for f32 { |
569 | #[inline ] |
570 | fn from(x: bf16) -> f32 { |
571 | x.to_f32() |
572 | } |
573 | } |
574 | |
575 | impl From<bf16> for f64 { |
576 | #[inline ] |
577 | fn from(x: bf16) -> f64 { |
578 | x.to_f64() |
579 | } |
580 | } |
581 | |
582 | impl From<i8> for bf16 { |
583 | #[inline ] |
584 | fn from(x: i8) -> bf16 { |
585 | // Convert to f32, then to bf16 |
586 | bf16::from_f32(f32::from(x)) |
587 | } |
588 | } |
589 | |
590 | impl From<u8> for bf16 { |
591 | #[inline ] |
592 | fn from(x: u8) -> bf16 { |
593 | // Convert to f32, then to f16 |
594 | bf16::from_f32(f32::from(x)) |
595 | } |
596 | } |
597 | |
598 | impl PartialEq for bf16 { |
599 | fn eq(&self, other: &bf16) -> bool { |
600 | if self.is_nan() || other.is_nan() { |
601 | false |
602 | } else { |
603 | (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) |
604 | } |
605 | } |
606 | } |
607 | |
608 | impl PartialOrd for bf16 { |
609 | fn partial_cmp(&self, other: &bf16) -> Option<Ordering> { |
610 | if self.is_nan() || other.is_nan() { |
611 | None |
612 | } else { |
613 | let neg = self.0 & 0x8000u16 != 0; |
614 | let other_neg = other.0 & 0x8000u16 != 0; |
615 | match (neg, other_neg) { |
616 | (false, false) => Some(self.0.cmp(&other.0)), |
617 | (false, true) => { |
618 | if (self.0 | other.0) & 0x7FFFu16 == 0 { |
619 | Some(Ordering::Equal) |
620 | } else { |
621 | Some(Ordering::Greater) |
622 | } |
623 | } |
624 | (true, false) => { |
625 | if (self.0 | other.0) & 0x7FFFu16 == 0 { |
626 | Some(Ordering::Equal) |
627 | } else { |
628 | Some(Ordering::Less) |
629 | } |
630 | } |
631 | (true, true) => Some(other.0.cmp(&self.0)), |
632 | } |
633 | } |
634 | } |
635 | |
636 | fn lt(&self, other: &bf16) -> bool { |
637 | if self.is_nan() || other.is_nan() { |
638 | false |
639 | } else { |
640 | let neg = self.0 & 0x8000u16 != 0; |
641 | let other_neg = other.0 & 0x8000u16 != 0; |
642 | match (neg, other_neg) { |
643 | (false, false) => self.0 < other.0, |
644 | (false, true) => false, |
645 | (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, |
646 | (true, true) => self.0 > other.0, |
647 | } |
648 | } |
649 | } |
650 | |
651 | fn le(&self, other: &bf16) -> bool { |
652 | if self.is_nan() || other.is_nan() { |
653 | false |
654 | } else { |
655 | let neg = self.0 & 0x8000u16 != 0; |
656 | let other_neg = other.0 & 0x8000u16 != 0; |
657 | match (neg, other_neg) { |
658 | (false, false) => self.0 <= other.0, |
659 | (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, |
660 | (true, false) => true, |
661 | (true, true) => self.0 >= other.0, |
662 | } |
663 | } |
664 | } |
665 | |
666 | fn gt(&self, other: &bf16) -> bool { |
667 | if self.is_nan() || other.is_nan() { |
668 | false |
669 | } else { |
670 | let neg = self.0 & 0x8000u16 != 0; |
671 | let other_neg = other.0 & 0x8000u16 != 0; |
672 | match (neg, other_neg) { |
673 | (false, false) => self.0 > other.0, |
674 | (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, |
675 | (true, false) => false, |
676 | (true, true) => self.0 < other.0, |
677 | } |
678 | } |
679 | } |
680 | |
681 | fn ge(&self, other: &bf16) -> bool { |
682 | if self.is_nan() || other.is_nan() { |
683 | false |
684 | } else { |
685 | let neg = self.0 & 0x8000u16 != 0; |
686 | let other_neg = other.0 & 0x8000u16 != 0; |
687 | match (neg, other_neg) { |
688 | (false, false) => self.0 >= other.0, |
689 | (false, true) => true, |
690 | (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, |
691 | (true, true) => self.0 <= other.0, |
692 | } |
693 | } |
694 | } |
695 | } |
696 | |
697 | impl FromStr for bf16 { |
698 | type Err = ParseFloatError; |
699 | fn from_str(src: &str) -> Result<bf16, ParseFloatError> { |
700 | f32::from_str(src).map(bf16::from_f32) |
701 | } |
702 | } |
703 | |
704 | impl Debug for bf16 { |
705 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
706 | write!(f, "{:?}" , self.to_f32()) |
707 | } |
708 | } |
709 | |
710 | impl Display for bf16 { |
711 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
712 | write!(f, "{}" , self.to_f32()) |
713 | } |
714 | } |
715 | |
716 | impl LowerExp for bf16 { |
717 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
718 | write!(f, "{:e}" , self.to_f32()) |
719 | } |
720 | } |
721 | |
722 | impl UpperExp for bf16 { |
723 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
724 | write!(f, "{:E}" , self.to_f32()) |
725 | } |
726 | } |
727 | |
728 | impl Binary for bf16 { |
729 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
730 | write!(f, "{:b}" , self.0) |
731 | } |
732 | } |
733 | |
734 | impl Octal for bf16 { |
735 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
736 | write!(f, "{:o}" , self.0) |
737 | } |
738 | } |
739 | |
740 | impl LowerHex for bf16 { |
741 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
742 | write!(f, "{:x}" , self.0) |
743 | } |
744 | } |
745 | |
746 | impl UpperHex for bf16 { |
747 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
748 | write!(f, "{:X}" , self.0) |
749 | } |
750 | } |
751 | |
752 | impl Neg for bf16 { |
753 | type Output = Self; |
754 | |
755 | fn neg(self) -> Self::Output { |
756 | Self(self.0 ^ 0x8000) |
757 | } |
758 | } |
759 | |
760 | impl Add for bf16 { |
761 | type Output = Self; |
762 | |
763 | fn add(self, rhs: Self) -> Self::Output { |
764 | Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs)) |
765 | } |
766 | } |
767 | |
768 | impl Add<&bf16> for bf16 { |
769 | type Output = <bf16 as Add<bf16>>::Output; |
770 | |
771 | #[inline ] |
772 | fn add(self, rhs: &bf16) -> Self::Output { |
773 | self.add(*rhs) |
774 | } |
775 | } |
776 | |
777 | impl Add<&bf16> for &bf16 { |
778 | type Output = <bf16 as Add<bf16>>::Output; |
779 | |
780 | #[inline ] |
781 | fn add(self, rhs: &bf16) -> Self::Output { |
782 | (*self).add(*rhs) |
783 | } |
784 | } |
785 | |
786 | impl Add<bf16> for &bf16 { |
787 | type Output = <bf16 as Add<bf16>>::Output; |
788 | |
789 | #[inline ] |
790 | fn add(self, rhs: bf16) -> Self::Output { |
791 | (*self).add(rhs) |
792 | } |
793 | } |
794 | |
795 | impl AddAssign for bf16 { |
796 | #[inline ] |
797 | fn add_assign(&mut self, rhs: Self) { |
798 | *self = (*self).add(rhs); |
799 | } |
800 | } |
801 | |
802 | impl AddAssign<&bf16> for bf16 { |
803 | #[inline ] |
804 | fn add_assign(&mut self, rhs: &bf16) { |
805 | *self = (*self).add(rhs); |
806 | } |
807 | } |
808 | |
809 | impl Sub for bf16 { |
810 | type Output = Self; |
811 | |
812 | fn sub(self, rhs: Self) -> Self::Output { |
813 | Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs)) |
814 | } |
815 | } |
816 | |
817 | impl Sub<&bf16> for bf16 { |
818 | type Output = <bf16 as Sub<bf16>>::Output; |
819 | |
820 | #[inline ] |
821 | fn sub(self, rhs: &bf16) -> Self::Output { |
822 | self.sub(*rhs) |
823 | } |
824 | } |
825 | |
826 | impl Sub<&bf16> for &bf16 { |
827 | type Output = <bf16 as Sub<bf16>>::Output; |
828 | |
829 | #[inline ] |
830 | fn sub(self, rhs: &bf16) -> Self::Output { |
831 | (*self).sub(*rhs) |
832 | } |
833 | } |
834 | |
835 | impl Sub<bf16> for &bf16 { |
836 | type Output = <bf16 as Sub<bf16>>::Output; |
837 | |
838 | #[inline ] |
839 | fn sub(self, rhs: bf16) -> Self::Output { |
840 | (*self).sub(rhs) |
841 | } |
842 | } |
843 | |
844 | impl SubAssign for bf16 { |
845 | #[inline ] |
846 | fn sub_assign(&mut self, rhs: Self) { |
847 | *self = (*self).sub(rhs); |
848 | } |
849 | } |
850 | |
851 | impl SubAssign<&bf16> for bf16 { |
852 | #[inline ] |
853 | fn sub_assign(&mut self, rhs: &bf16) { |
854 | *self = (*self).sub(rhs); |
855 | } |
856 | } |
857 | |
858 | impl Mul for bf16 { |
859 | type Output = Self; |
860 | |
861 | fn mul(self, rhs: Self) -> Self::Output { |
862 | Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs)) |
863 | } |
864 | } |
865 | |
866 | impl Mul<&bf16> for bf16 { |
867 | type Output = <bf16 as Mul<bf16>>::Output; |
868 | |
869 | #[inline ] |
870 | fn mul(self, rhs: &bf16) -> Self::Output { |
871 | self.mul(*rhs) |
872 | } |
873 | } |
874 | |
875 | impl Mul<&bf16> for &bf16 { |
876 | type Output = <bf16 as Mul<bf16>>::Output; |
877 | |
878 | #[inline ] |
879 | fn mul(self, rhs: &bf16) -> Self::Output { |
880 | (*self).mul(*rhs) |
881 | } |
882 | } |
883 | |
884 | impl Mul<bf16> for &bf16 { |
885 | type Output = <bf16 as Mul<bf16>>::Output; |
886 | |
887 | #[inline ] |
888 | fn mul(self, rhs: bf16) -> Self::Output { |
889 | (*self).mul(rhs) |
890 | } |
891 | } |
892 | |
893 | impl MulAssign for bf16 { |
894 | #[inline ] |
895 | fn mul_assign(&mut self, rhs: Self) { |
896 | *self = (*self).mul(rhs); |
897 | } |
898 | } |
899 | |
900 | impl MulAssign<&bf16> for bf16 { |
901 | #[inline ] |
902 | fn mul_assign(&mut self, rhs: &bf16) { |
903 | *self = (*self).mul(rhs); |
904 | } |
905 | } |
906 | |
907 | impl Div for bf16 { |
908 | type Output = Self; |
909 | |
910 | fn div(self, rhs: Self) -> Self::Output { |
911 | Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs)) |
912 | } |
913 | } |
914 | |
915 | impl Div<&bf16> for bf16 { |
916 | type Output = <bf16 as Div<bf16>>::Output; |
917 | |
918 | #[inline ] |
919 | fn div(self, rhs: &bf16) -> Self::Output { |
920 | self.div(*rhs) |
921 | } |
922 | } |
923 | |
924 | impl Div<&bf16> for &bf16 { |
925 | type Output = <bf16 as Div<bf16>>::Output; |
926 | |
927 | #[inline ] |
928 | fn div(self, rhs: &bf16) -> Self::Output { |
929 | (*self).div(*rhs) |
930 | } |
931 | } |
932 | |
933 | impl Div<bf16> for &bf16 { |
934 | type Output = <bf16 as Div<bf16>>::Output; |
935 | |
936 | #[inline ] |
937 | fn div(self, rhs: bf16) -> Self::Output { |
938 | (*self).div(rhs) |
939 | } |
940 | } |
941 | |
942 | impl DivAssign for bf16 { |
943 | #[inline ] |
944 | fn div_assign(&mut self, rhs: Self) { |
945 | *self = (*self).div(rhs); |
946 | } |
947 | } |
948 | |
949 | impl DivAssign<&bf16> for bf16 { |
950 | #[inline ] |
951 | fn div_assign(&mut self, rhs: &bf16) { |
952 | *self = (*self).div(rhs); |
953 | } |
954 | } |
955 | |
956 | impl Rem for bf16 { |
957 | type Output = Self; |
958 | |
959 | fn rem(self, rhs: Self) -> Self::Output { |
960 | Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs)) |
961 | } |
962 | } |
963 | |
964 | impl Rem<&bf16> for bf16 { |
965 | type Output = <bf16 as Rem<bf16>>::Output; |
966 | |
967 | #[inline ] |
968 | fn rem(self, rhs: &bf16) -> Self::Output { |
969 | self.rem(*rhs) |
970 | } |
971 | } |
972 | |
973 | impl Rem<&bf16> for &bf16 { |
974 | type Output = <bf16 as Rem<bf16>>::Output; |
975 | |
976 | #[inline ] |
977 | fn rem(self, rhs: &bf16) -> Self::Output { |
978 | (*self).rem(*rhs) |
979 | } |
980 | } |
981 | |
982 | impl Rem<bf16> for &bf16 { |
983 | type Output = <bf16 as Rem<bf16>>::Output; |
984 | |
985 | #[inline ] |
986 | fn rem(self, rhs: bf16) -> Self::Output { |
987 | (*self).rem(rhs) |
988 | } |
989 | } |
990 | |
991 | impl RemAssign for bf16 { |
992 | #[inline ] |
993 | fn rem_assign(&mut self, rhs: Self) { |
994 | *self = (*self).rem(rhs); |
995 | } |
996 | } |
997 | |
998 | impl RemAssign<&bf16> for bf16 { |
999 | #[inline ] |
1000 | fn rem_assign(&mut self, rhs: &bf16) { |
1001 | *self = (*self).rem(rhs); |
1002 | } |
1003 | } |
1004 | |
1005 | impl Product for bf16 { |
1006 | #[inline ] |
1007 | fn product<I: Iterator<Item = Self>>(iter: I) -> Self { |
1008 | bf16::from_f32(iter.map(|f| f.to_f32()).product()) |
1009 | } |
1010 | } |
1011 | |
1012 | impl<'a> Product<&'a bf16> for bf16 { |
1013 | #[inline ] |
1014 | fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self { |
1015 | bf16::from_f32(iter.map(|f| f.to_f32()).product()) |
1016 | } |
1017 | } |
1018 | |
1019 | impl Sum for bf16 { |
1020 | #[inline ] |
1021 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
1022 | bf16::from_f32(iter.map(|f| f.to_f32()).sum()) |
1023 | } |
1024 | } |
1025 | |
1026 | impl<'a> Sum<&'a bf16> for bf16 { |
1027 | #[inline ] |
1028 | fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self { |
1029 | bf16::from_f32(iter.map(|f| f.to_f32()).product()) |
1030 | } |
1031 | } |
1032 | |
1033 | #[allow ( |
1034 | clippy::cognitive_complexity, |
1035 | clippy::float_cmp, |
1036 | clippy::neg_cmp_op_on_partial_ord |
1037 | )] |
1038 | #[cfg (test)] |
1039 | mod test { |
1040 | use super::*; |
1041 | use core::cmp::Ordering; |
1042 | #[cfg (feature = "num-traits" )] |
1043 | use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive}; |
1044 | use quickcheck_macros::quickcheck; |
1045 | |
1046 | #[cfg (feature = "num-traits" )] |
1047 | #[test] |
1048 | fn as_primitive() { |
1049 | let two = bf16::from_f32(2.0); |
1050 | assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two); |
1051 | assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2); |
1052 | |
1053 | assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two); |
1054 | assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0); |
1055 | |
1056 | assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two); |
1057 | assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0); |
1058 | } |
1059 | |
1060 | #[cfg (feature = "num-traits" )] |
1061 | #[test] |
1062 | fn to_primitive() { |
1063 | let two = bf16::from_f32(2.0); |
1064 | assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32); |
1065 | assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32); |
1066 | assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64); |
1067 | } |
1068 | |
1069 | #[cfg (feature = "num-traits" )] |
1070 | #[test] |
1071 | fn from_primitive() { |
1072 | let two = bf16::from_f32(2.0); |
1073 | assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two); |
1074 | assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two); |
1075 | assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two); |
1076 | } |
1077 | |
1078 | #[test] |
1079 | fn test_bf16_consts_from_f32() { |
1080 | let one = bf16::from_f32(1.0); |
1081 | let zero = bf16::from_f32(0.0); |
1082 | let neg_zero = bf16::from_f32(-0.0); |
1083 | let neg_one = bf16::from_f32(-1.0); |
1084 | let inf = bf16::from_f32(core::f32::INFINITY); |
1085 | let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY); |
1086 | let nan = bf16::from_f32(core::f32::NAN); |
1087 | |
1088 | assert_eq!(bf16::ONE, one); |
1089 | assert_eq!(bf16::ZERO, zero); |
1090 | assert!(zero.is_sign_positive()); |
1091 | assert_eq!(bf16::NEG_ZERO, neg_zero); |
1092 | assert!(neg_zero.is_sign_negative()); |
1093 | assert_eq!(bf16::NEG_ONE, neg_one); |
1094 | assert!(neg_one.is_sign_negative()); |
1095 | assert_eq!(bf16::INFINITY, inf); |
1096 | assert_eq!(bf16::NEG_INFINITY, neg_inf); |
1097 | assert!(nan.is_nan()); |
1098 | assert!(bf16::NAN.is_nan()); |
1099 | |
1100 | let e = bf16::from_f32(core::f32::consts::E); |
1101 | let pi = bf16::from_f32(core::f32::consts::PI); |
1102 | let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI); |
1103 | let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2); |
1104 | let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI); |
1105 | let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); |
1106 | let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2); |
1107 | let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3); |
1108 | let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4); |
1109 | let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6); |
1110 | let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8); |
1111 | let ln_10 = bf16::from_f32(core::f32::consts::LN_10); |
1112 | let ln_2 = bf16::from_f32(core::f32::consts::LN_2); |
1113 | let log10_e = bf16::from_f32(core::f32::consts::LOG10_E); |
1114 | // core::f32::consts::LOG10_2 requires rustc 1.43.0 |
1115 | let log10_2 = bf16::from_f32(2f32.log10()); |
1116 | let log2_e = bf16::from_f32(core::f32::consts::LOG2_E); |
1117 | // core::f32::consts::LOG2_10 requires rustc 1.43.0 |
1118 | let log2_10 = bf16::from_f32(10f32.log2()); |
1119 | let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2); |
1120 | |
1121 | assert_eq!(bf16::E, e); |
1122 | assert_eq!(bf16::PI, pi); |
1123 | assert_eq!(bf16::FRAC_1_PI, frac_1_pi); |
1124 | assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
1125 | assert_eq!(bf16::FRAC_2_PI, frac_2_pi); |
1126 | assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
1127 | assert_eq!(bf16::FRAC_PI_2, frac_pi_2); |
1128 | assert_eq!(bf16::FRAC_PI_3, frac_pi_3); |
1129 | assert_eq!(bf16::FRAC_PI_4, frac_pi_4); |
1130 | assert_eq!(bf16::FRAC_PI_6, frac_pi_6); |
1131 | assert_eq!(bf16::FRAC_PI_8, frac_pi_8); |
1132 | assert_eq!(bf16::LN_10, ln_10); |
1133 | assert_eq!(bf16::LN_2, ln_2); |
1134 | assert_eq!(bf16::LOG10_E, log10_e); |
1135 | assert_eq!(bf16::LOG10_2, log10_2); |
1136 | assert_eq!(bf16::LOG2_E, log2_e); |
1137 | assert_eq!(bf16::LOG2_10, log2_10); |
1138 | assert_eq!(bf16::SQRT_2, sqrt_2); |
1139 | } |
1140 | |
1141 | #[test] |
1142 | fn test_bf16_consts_from_f64() { |
1143 | let one = bf16::from_f64(1.0); |
1144 | let zero = bf16::from_f64(0.0); |
1145 | let neg_zero = bf16::from_f64(-0.0); |
1146 | let inf = bf16::from_f64(core::f64::INFINITY); |
1147 | let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY); |
1148 | let nan = bf16::from_f64(core::f64::NAN); |
1149 | |
1150 | assert_eq!(bf16::ONE, one); |
1151 | assert_eq!(bf16::ZERO, zero); |
1152 | assert_eq!(bf16::NEG_ZERO, neg_zero); |
1153 | assert_eq!(bf16::INFINITY, inf); |
1154 | assert_eq!(bf16::NEG_INFINITY, neg_inf); |
1155 | assert!(nan.is_nan()); |
1156 | assert!(bf16::NAN.is_nan()); |
1157 | |
1158 | let e = bf16::from_f64(core::f64::consts::E); |
1159 | let pi = bf16::from_f64(core::f64::consts::PI); |
1160 | let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI); |
1161 | let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2); |
1162 | let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI); |
1163 | let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); |
1164 | let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2); |
1165 | let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3); |
1166 | let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4); |
1167 | let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6); |
1168 | let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8); |
1169 | let ln_10 = bf16::from_f64(core::f64::consts::LN_10); |
1170 | let ln_2 = bf16::from_f64(core::f64::consts::LN_2); |
1171 | let log10_e = bf16::from_f64(core::f64::consts::LOG10_E); |
1172 | // core::f64::consts::LOG10_2 requires rustc 1.43.0 |
1173 | let log10_2 = bf16::from_f64(2f64.log10()); |
1174 | let log2_e = bf16::from_f64(core::f64::consts::LOG2_E); |
1175 | // core::f64::consts::LOG2_10 requires rustc 1.43.0 |
1176 | let log2_10 = bf16::from_f64(10f64.log2()); |
1177 | let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2); |
1178 | |
1179 | assert_eq!(bf16::E, e); |
1180 | assert_eq!(bf16::PI, pi); |
1181 | assert_eq!(bf16::FRAC_1_PI, frac_1_pi); |
1182 | assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
1183 | assert_eq!(bf16::FRAC_2_PI, frac_2_pi); |
1184 | assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
1185 | assert_eq!(bf16::FRAC_PI_2, frac_pi_2); |
1186 | assert_eq!(bf16::FRAC_PI_3, frac_pi_3); |
1187 | assert_eq!(bf16::FRAC_PI_4, frac_pi_4); |
1188 | assert_eq!(bf16::FRAC_PI_6, frac_pi_6); |
1189 | assert_eq!(bf16::FRAC_PI_8, frac_pi_8); |
1190 | assert_eq!(bf16::LN_10, ln_10); |
1191 | assert_eq!(bf16::LN_2, ln_2); |
1192 | assert_eq!(bf16::LOG10_E, log10_e); |
1193 | assert_eq!(bf16::LOG10_2, log10_2); |
1194 | assert_eq!(bf16::LOG2_E, log2_e); |
1195 | assert_eq!(bf16::LOG2_10, log2_10); |
1196 | assert_eq!(bf16::SQRT_2, sqrt_2); |
1197 | } |
1198 | |
1199 | #[test] |
1200 | fn test_nan_conversion_to_smaller() { |
1201 | let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); |
1202 | let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); |
1203 | let nan32 = f32::from_bits(0x7F80_0001u32); |
1204 | let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
1205 | let nan32_from_64 = nan64 as f32; |
1206 | let neg_nan32_from_64 = neg_nan64 as f32; |
1207 | let nan16_from_64 = bf16::from_f64(nan64); |
1208 | let neg_nan16_from_64 = bf16::from_f64(neg_nan64); |
1209 | let nan16_from_32 = bf16::from_f32(nan32); |
1210 | let neg_nan16_from_32 = bf16::from_f32(neg_nan32); |
1211 | |
1212 | assert!(nan64.is_nan() && nan64.is_sign_positive()); |
1213 | assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); |
1214 | assert!(nan32.is_nan() && nan32.is_sign_positive()); |
1215 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
1216 | assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive()); |
1217 | assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative()); |
1218 | assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive()); |
1219 | assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative()); |
1220 | assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive()); |
1221 | assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative()); |
1222 | } |
1223 | |
1224 | #[test] |
1225 | fn test_nan_conversion_to_larger() { |
1226 | let nan16 = bf16::from_bits(0x7F81u16); |
1227 | let neg_nan16 = bf16::from_bits(0xFF81u16); |
1228 | let nan32 = f32::from_bits(0x7F80_0001u32); |
1229 | let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
1230 | let nan32_from_16 = f32::from(nan16); |
1231 | let neg_nan32_from_16 = f32::from(neg_nan16); |
1232 | let nan64_from_16 = f64::from(nan16); |
1233 | let neg_nan64_from_16 = f64::from(neg_nan16); |
1234 | let nan64_from_32 = f64::from(nan32); |
1235 | let neg_nan64_from_32 = f64::from(neg_nan32); |
1236 | |
1237 | assert!(nan16.is_nan() && nan16.is_sign_positive()); |
1238 | assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); |
1239 | assert!(nan32.is_nan() && nan32.is_sign_positive()); |
1240 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
1241 | assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive()); |
1242 | assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative()); |
1243 | assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive()); |
1244 | assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative()); |
1245 | assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive()); |
1246 | assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative()); |
1247 | } |
1248 | |
1249 | #[test] |
1250 | fn test_bf16_to_f32() { |
1251 | let f = bf16::from_f32(7.0); |
1252 | assert_eq!(f.to_f32(), 7.0f32); |
1253 | |
1254 | // 7.1 is NOT exactly representable in 16-bit, it's rounded |
1255 | let f = bf16::from_f32(7.1); |
1256 | let diff = (f.to_f32() - 7.1f32).abs(); |
1257 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
1258 | assert!(diff <= 4.0 * bf16::EPSILON.to_f32()); |
1259 | |
1260 | let tiny32 = f32::from_bits(0x0001_0000u32); |
1261 | assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32); |
1262 | assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32); |
1263 | |
1264 | assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32)); |
1265 | assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32)); |
1266 | } |
1267 | |
1268 | #[test] |
1269 | fn test_bf16_to_f64() { |
1270 | let f = bf16::from_f64(7.0); |
1271 | assert_eq!(f.to_f64(), 7.0f64); |
1272 | |
1273 | // 7.1 is NOT exactly representable in 16-bit, it's rounded |
1274 | let f = bf16::from_f64(7.1); |
1275 | let diff = (f.to_f64() - 7.1f64).abs(); |
1276 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
1277 | assert!(diff <= 4.0 * bf16::EPSILON.to_f64()); |
1278 | |
1279 | let tiny64 = 2.0f64.powi(-133); |
1280 | assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64); |
1281 | assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64); |
1282 | |
1283 | assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64)); |
1284 | assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64)); |
1285 | } |
1286 | |
1287 | #[test] |
1288 | fn test_comparisons() { |
1289 | let zero = bf16::from_f64(0.0); |
1290 | let one = bf16::from_f64(1.0); |
1291 | let neg_zero = bf16::from_f64(-0.0); |
1292 | let neg_one = bf16::from_f64(-1.0); |
1293 | |
1294 | assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); |
1295 | assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); |
1296 | assert!(zero == neg_zero); |
1297 | assert!(neg_zero == zero); |
1298 | assert!(!(zero != neg_zero)); |
1299 | assert!(!(neg_zero != zero)); |
1300 | assert!(!(zero < neg_zero)); |
1301 | assert!(!(neg_zero < zero)); |
1302 | assert!(zero <= neg_zero); |
1303 | assert!(neg_zero <= zero); |
1304 | assert!(!(zero > neg_zero)); |
1305 | assert!(!(neg_zero > zero)); |
1306 | assert!(zero >= neg_zero); |
1307 | assert!(neg_zero >= zero); |
1308 | |
1309 | assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); |
1310 | assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); |
1311 | assert!(!(one == neg_zero)); |
1312 | assert!(!(neg_zero == one)); |
1313 | assert!(one != neg_zero); |
1314 | assert!(neg_zero != one); |
1315 | assert!(!(one < neg_zero)); |
1316 | assert!(neg_zero < one); |
1317 | assert!(!(one <= neg_zero)); |
1318 | assert!(neg_zero <= one); |
1319 | assert!(one > neg_zero); |
1320 | assert!(!(neg_zero > one)); |
1321 | assert!(one >= neg_zero); |
1322 | assert!(!(neg_zero >= one)); |
1323 | |
1324 | assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); |
1325 | assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); |
1326 | assert!(!(one == neg_one)); |
1327 | assert!(!(neg_one == one)); |
1328 | assert!(one != neg_one); |
1329 | assert!(neg_one != one); |
1330 | assert!(!(one < neg_one)); |
1331 | assert!(neg_one < one); |
1332 | assert!(!(one <= neg_one)); |
1333 | assert!(neg_one <= one); |
1334 | assert!(one > neg_one); |
1335 | assert!(!(neg_one > one)); |
1336 | assert!(one >= neg_one); |
1337 | assert!(!(neg_one >= one)); |
1338 | } |
1339 | |
1340 | #[test] |
1341 | #[allow (clippy::erasing_op, clippy::identity_op)] |
1342 | fn round_to_even_f32() { |
1343 | // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 |
1344 | let min_sub = bf16::from_bits(1); |
1345 | let min_sub_f = (-133f32).exp2(); |
1346 | assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); |
1347 | assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); |
1348 | |
1349 | // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) |
1350 | // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) |
1351 | // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) |
1352 | assert_eq!( |
1353 | bf16::from_f32(min_sub_f * 0.49).to_bits(), |
1354 | min_sub.to_bits() * 0 |
1355 | ); |
1356 | assert_eq!( |
1357 | bf16::from_f32(min_sub_f * 0.50).to_bits(), |
1358 | min_sub.to_bits() * 0 |
1359 | ); |
1360 | assert_eq!( |
1361 | bf16::from_f32(min_sub_f * 0.51).to_bits(), |
1362 | min_sub.to_bits() * 1 |
1363 | ); |
1364 | |
1365 | // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) |
1366 | // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) |
1367 | // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) |
1368 | assert_eq!( |
1369 | bf16::from_f32(min_sub_f * 1.49).to_bits(), |
1370 | min_sub.to_bits() * 1 |
1371 | ); |
1372 | assert_eq!( |
1373 | bf16::from_f32(min_sub_f * 1.50).to_bits(), |
1374 | min_sub.to_bits() * 2 |
1375 | ); |
1376 | assert_eq!( |
1377 | bf16::from_f32(min_sub_f * 1.51).to_bits(), |
1378 | min_sub.to_bits() * 2 |
1379 | ); |
1380 | |
1381 | // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) |
1382 | // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) |
1383 | // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) |
1384 | assert_eq!( |
1385 | bf16::from_f32(min_sub_f * 2.49).to_bits(), |
1386 | min_sub.to_bits() * 2 |
1387 | ); |
1388 | assert_eq!( |
1389 | bf16::from_f32(min_sub_f * 2.50).to_bits(), |
1390 | min_sub.to_bits() * 2 |
1391 | ); |
1392 | assert_eq!( |
1393 | bf16::from_f32(min_sub_f * 2.51).to_bits(), |
1394 | min_sub.to_bits() * 3 |
1395 | ); |
1396 | |
1397 | assert_eq!( |
1398 | bf16::from_f32(250.49f32).to_bits(), |
1399 | bf16::from_f32(250.0).to_bits() |
1400 | ); |
1401 | assert_eq!( |
1402 | bf16::from_f32(250.50f32).to_bits(), |
1403 | bf16::from_f32(250.0).to_bits() |
1404 | ); |
1405 | assert_eq!( |
1406 | bf16::from_f32(250.51f32).to_bits(), |
1407 | bf16::from_f32(251.0).to_bits() |
1408 | ); |
1409 | assert_eq!( |
1410 | bf16::from_f32(251.49f32).to_bits(), |
1411 | bf16::from_f32(251.0).to_bits() |
1412 | ); |
1413 | assert_eq!( |
1414 | bf16::from_f32(251.50f32).to_bits(), |
1415 | bf16::from_f32(252.0).to_bits() |
1416 | ); |
1417 | assert_eq!( |
1418 | bf16::from_f32(251.51f32).to_bits(), |
1419 | bf16::from_f32(252.0).to_bits() |
1420 | ); |
1421 | assert_eq!( |
1422 | bf16::from_f32(252.49f32).to_bits(), |
1423 | bf16::from_f32(252.0).to_bits() |
1424 | ); |
1425 | assert_eq!( |
1426 | bf16::from_f32(252.50f32).to_bits(), |
1427 | bf16::from_f32(252.0).to_bits() |
1428 | ); |
1429 | assert_eq!( |
1430 | bf16::from_f32(252.51f32).to_bits(), |
1431 | bf16::from_f32(253.0).to_bits() |
1432 | ); |
1433 | } |
1434 | |
1435 | #[test] |
1436 | #[allow (clippy::erasing_op, clippy::identity_op)] |
1437 | fn round_to_even_f64() { |
1438 | // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 |
1439 | let min_sub = bf16::from_bits(1); |
1440 | let min_sub_f = (-133f64).exp2(); |
1441 | assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); |
1442 | assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); |
1443 | |
1444 | // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) |
1445 | // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) |
1446 | // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) |
1447 | assert_eq!( |
1448 | bf16::from_f64(min_sub_f * 0.49).to_bits(), |
1449 | min_sub.to_bits() * 0 |
1450 | ); |
1451 | assert_eq!( |
1452 | bf16::from_f64(min_sub_f * 0.50).to_bits(), |
1453 | min_sub.to_bits() * 0 |
1454 | ); |
1455 | assert_eq!( |
1456 | bf16::from_f64(min_sub_f * 0.51).to_bits(), |
1457 | min_sub.to_bits() * 1 |
1458 | ); |
1459 | |
1460 | // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) |
1461 | // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) |
1462 | // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) |
1463 | assert_eq!( |
1464 | bf16::from_f64(min_sub_f * 1.49).to_bits(), |
1465 | min_sub.to_bits() * 1 |
1466 | ); |
1467 | assert_eq!( |
1468 | bf16::from_f64(min_sub_f * 1.50).to_bits(), |
1469 | min_sub.to_bits() * 2 |
1470 | ); |
1471 | assert_eq!( |
1472 | bf16::from_f64(min_sub_f * 1.51).to_bits(), |
1473 | min_sub.to_bits() * 2 |
1474 | ); |
1475 | |
1476 | // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) |
1477 | // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) |
1478 | // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) |
1479 | assert_eq!( |
1480 | bf16::from_f64(min_sub_f * 2.49).to_bits(), |
1481 | min_sub.to_bits() * 2 |
1482 | ); |
1483 | assert_eq!( |
1484 | bf16::from_f64(min_sub_f * 2.50).to_bits(), |
1485 | min_sub.to_bits() * 2 |
1486 | ); |
1487 | assert_eq!( |
1488 | bf16::from_f64(min_sub_f * 2.51).to_bits(), |
1489 | min_sub.to_bits() * 3 |
1490 | ); |
1491 | |
1492 | assert_eq!( |
1493 | bf16::from_f64(250.49f64).to_bits(), |
1494 | bf16::from_f64(250.0).to_bits() |
1495 | ); |
1496 | assert_eq!( |
1497 | bf16::from_f64(250.50f64).to_bits(), |
1498 | bf16::from_f64(250.0).to_bits() |
1499 | ); |
1500 | assert_eq!( |
1501 | bf16::from_f64(250.51f64).to_bits(), |
1502 | bf16::from_f64(251.0).to_bits() |
1503 | ); |
1504 | assert_eq!( |
1505 | bf16::from_f64(251.49f64).to_bits(), |
1506 | bf16::from_f64(251.0).to_bits() |
1507 | ); |
1508 | assert_eq!( |
1509 | bf16::from_f64(251.50f64).to_bits(), |
1510 | bf16::from_f64(252.0).to_bits() |
1511 | ); |
1512 | assert_eq!( |
1513 | bf16::from_f64(251.51f64).to_bits(), |
1514 | bf16::from_f64(252.0).to_bits() |
1515 | ); |
1516 | assert_eq!( |
1517 | bf16::from_f64(252.49f64).to_bits(), |
1518 | bf16::from_f64(252.0).to_bits() |
1519 | ); |
1520 | assert_eq!( |
1521 | bf16::from_f64(252.50f64).to_bits(), |
1522 | bf16::from_f64(252.0).to_bits() |
1523 | ); |
1524 | assert_eq!( |
1525 | bf16::from_f64(252.51f64).to_bits(), |
1526 | bf16::from_f64(253.0).to_bits() |
1527 | ); |
1528 | } |
1529 | |
1530 | impl quickcheck::Arbitrary for bf16 { |
1531 | fn arbitrary(g: &mut quickcheck::Gen) -> Self { |
1532 | bf16(u16::arbitrary(g)) |
1533 | } |
1534 | } |
1535 | |
1536 | #[quickcheck ] |
1537 | fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool { |
1538 | let roundtrip = bf16::from_f32(f.to_f32()); |
1539 | if f.is_nan() { |
1540 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
1541 | } else { |
1542 | f.0 == roundtrip.0 |
1543 | } |
1544 | } |
1545 | |
1546 | #[quickcheck ] |
1547 | fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool { |
1548 | let roundtrip = bf16::from_f64(f.to_f64()); |
1549 | if f.is_nan() { |
1550 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
1551 | } else { |
1552 | f.0 == roundtrip.0 |
1553 | } |
1554 | } |
1555 | } |
1556 | |