1 | use core::num::FpCategory; |
2 | use core::ops::{Add, Div, Neg}; |
3 | |
4 | use core::f32; |
5 | use core::f64; |
6 | |
7 | use crate::{Num, NumCast, ToPrimitive}; |
8 | |
9 | /// Generic trait for floating point numbers that works with `no_std`. |
10 | /// |
11 | /// This trait implements a subset of the `Float` trait. |
12 | pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy { |
13 | /// Returns positive infinity. |
14 | /// |
15 | /// # Examples |
16 | /// |
17 | /// ``` |
18 | /// use num_traits::float::FloatCore; |
19 | /// use std::{f32, f64}; |
20 | /// |
21 | /// fn check<T: FloatCore>(x: T) { |
22 | /// assert!(T::infinity() == x); |
23 | /// } |
24 | /// |
25 | /// check(f32::INFINITY); |
26 | /// check(f64::INFINITY); |
27 | /// ``` |
28 | fn infinity() -> Self; |
29 | |
30 | /// Returns negative infinity. |
31 | /// |
32 | /// # Examples |
33 | /// |
34 | /// ``` |
35 | /// use num_traits::float::FloatCore; |
36 | /// use std::{f32, f64}; |
37 | /// |
38 | /// fn check<T: FloatCore>(x: T) { |
39 | /// assert!(T::neg_infinity() == x); |
40 | /// } |
41 | /// |
42 | /// check(f32::NEG_INFINITY); |
43 | /// check(f64::NEG_INFINITY); |
44 | /// ``` |
45 | fn neg_infinity() -> Self; |
46 | |
47 | /// Returns NaN. |
48 | /// |
49 | /// # Examples |
50 | /// |
51 | /// ``` |
52 | /// use num_traits::float::FloatCore; |
53 | /// |
54 | /// fn check<T: FloatCore>() { |
55 | /// let n = T::nan(); |
56 | /// assert!(n != n); |
57 | /// } |
58 | /// |
59 | /// check::<f32>(); |
60 | /// check::<f64>(); |
61 | /// ``` |
62 | fn nan() -> Self; |
63 | |
64 | /// Returns `-0.0`. |
65 | /// |
66 | /// # Examples |
67 | /// |
68 | /// ``` |
69 | /// use num_traits::float::FloatCore; |
70 | /// use std::{f32, f64}; |
71 | /// |
72 | /// fn check<T: FloatCore>(n: T) { |
73 | /// let z = T::neg_zero(); |
74 | /// assert!(z.is_zero()); |
75 | /// assert!(T::one() / z == n); |
76 | /// } |
77 | /// |
78 | /// check(f32::NEG_INFINITY); |
79 | /// check(f64::NEG_INFINITY); |
80 | /// ``` |
81 | fn neg_zero() -> Self; |
82 | |
83 | /// Returns the smallest finite value that this type can represent. |
84 | /// |
85 | /// # Examples |
86 | /// |
87 | /// ``` |
88 | /// use num_traits::float::FloatCore; |
89 | /// use std::{f32, f64}; |
90 | /// |
91 | /// fn check<T: FloatCore>(x: T) { |
92 | /// assert!(T::min_value() == x); |
93 | /// } |
94 | /// |
95 | /// check(f32::MIN); |
96 | /// check(f64::MIN); |
97 | /// ``` |
98 | fn min_value() -> Self; |
99 | |
100 | /// Returns the smallest positive, normalized value that this type can represent. |
101 | /// |
102 | /// # Examples |
103 | /// |
104 | /// ``` |
105 | /// use num_traits::float::FloatCore; |
106 | /// use std::{f32, f64}; |
107 | /// |
108 | /// fn check<T: FloatCore>(x: T) { |
109 | /// assert!(T::min_positive_value() == x); |
110 | /// } |
111 | /// |
112 | /// check(f32::MIN_POSITIVE); |
113 | /// check(f64::MIN_POSITIVE); |
114 | /// ``` |
115 | fn min_positive_value() -> Self; |
116 | |
117 | /// Returns epsilon, a small positive value. |
118 | /// |
119 | /// # Examples |
120 | /// |
121 | /// ``` |
122 | /// use num_traits::float::FloatCore; |
123 | /// use std::{f32, f64}; |
124 | /// |
125 | /// fn check<T: FloatCore>(x: T) { |
126 | /// assert!(T::epsilon() == x); |
127 | /// } |
128 | /// |
129 | /// check(f32::EPSILON); |
130 | /// check(f64::EPSILON); |
131 | /// ``` |
132 | fn epsilon() -> Self; |
133 | |
134 | /// Returns the largest finite value that this type can represent. |
135 | /// |
136 | /// # Examples |
137 | /// |
138 | /// ``` |
139 | /// use num_traits::float::FloatCore; |
140 | /// use std::{f32, f64}; |
141 | /// |
142 | /// fn check<T: FloatCore>(x: T) { |
143 | /// assert!(T::max_value() == x); |
144 | /// } |
145 | /// |
146 | /// check(f32::MAX); |
147 | /// check(f64::MAX); |
148 | /// ``` |
149 | fn max_value() -> Self; |
150 | |
151 | /// Returns `true` if the number is NaN. |
152 | /// |
153 | /// # Examples |
154 | /// |
155 | /// ``` |
156 | /// use num_traits::float::FloatCore; |
157 | /// use std::{f32, f64}; |
158 | /// |
159 | /// fn check<T: FloatCore>(x: T, p: bool) { |
160 | /// assert!(x.is_nan() == p); |
161 | /// } |
162 | /// |
163 | /// check(f32::NAN, true); |
164 | /// check(f32::INFINITY, false); |
165 | /// check(f64::NAN, true); |
166 | /// check(0.0f64, false); |
167 | /// ``` |
168 | #[inline ] |
169 | #[allow (clippy::eq_op)] |
170 | fn is_nan(self) -> bool { |
171 | self != self |
172 | } |
173 | |
174 | /// Returns `true` if the number is infinite. |
175 | /// |
176 | /// # Examples |
177 | /// |
178 | /// ``` |
179 | /// use num_traits::float::FloatCore; |
180 | /// use std::{f32, f64}; |
181 | /// |
182 | /// fn check<T: FloatCore>(x: T, p: bool) { |
183 | /// assert!(x.is_infinite() == p); |
184 | /// } |
185 | /// |
186 | /// check(f32::INFINITY, true); |
187 | /// check(f32::NEG_INFINITY, true); |
188 | /// check(f32::NAN, false); |
189 | /// check(f64::INFINITY, true); |
190 | /// check(f64::NEG_INFINITY, true); |
191 | /// check(0.0f64, false); |
192 | /// ``` |
193 | #[inline ] |
194 | fn is_infinite(self) -> bool { |
195 | self == Self::infinity() || self == Self::neg_infinity() |
196 | } |
197 | |
198 | /// Returns `true` if the number is neither infinite or NaN. |
199 | /// |
200 | /// # Examples |
201 | /// |
202 | /// ``` |
203 | /// use num_traits::float::FloatCore; |
204 | /// use std::{f32, f64}; |
205 | /// |
206 | /// fn check<T: FloatCore>(x: T, p: bool) { |
207 | /// assert!(x.is_finite() == p); |
208 | /// } |
209 | /// |
210 | /// check(f32::INFINITY, false); |
211 | /// check(f32::MAX, true); |
212 | /// check(f64::NEG_INFINITY, false); |
213 | /// check(f64::MIN_POSITIVE, true); |
214 | /// check(f64::NAN, false); |
215 | /// ``` |
216 | #[inline ] |
217 | fn is_finite(self) -> bool { |
218 | !(self.is_nan() || self.is_infinite()) |
219 | } |
220 | |
221 | /// Returns `true` if the number is neither zero, infinite, subnormal or NaN. |
222 | /// |
223 | /// # Examples |
224 | /// |
225 | /// ``` |
226 | /// use num_traits::float::FloatCore; |
227 | /// use std::{f32, f64}; |
228 | /// |
229 | /// fn check<T: FloatCore>(x: T, p: bool) { |
230 | /// assert!(x.is_normal() == p); |
231 | /// } |
232 | /// |
233 | /// check(f32::INFINITY, false); |
234 | /// check(f32::MAX, true); |
235 | /// check(f64::NEG_INFINITY, false); |
236 | /// check(f64::MIN_POSITIVE, true); |
237 | /// check(0.0f64, false); |
238 | /// ``` |
239 | #[inline ] |
240 | fn is_normal(self) -> bool { |
241 | self.classify() == FpCategory::Normal |
242 | } |
243 | |
244 | /// Returns `true` if the number is [subnormal]. |
245 | /// |
246 | /// ``` |
247 | /// use num_traits::float::FloatCore; |
248 | /// use std::f64; |
249 | /// |
250 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
251 | /// let max = f64::MAX; |
252 | /// let lower_than_min = 1.0e-308_f64; |
253 | /// let zero = 0.0_f64; |
254 | /// |
255 | /// assert!(!min.is_subnormal()); |
256 | /// assert!(!max.is_subnormal()); |
257 | /// |
258 | /// assert!(!zero.is_subnormal()); |
259 | /// assert!(!f64::NAN.is_subnormal()); |
260 | /// assert!(!f64::INFINITY.is_subnormal()); |
261 | /// // Values between `0` and `min` are Subnormal. |
262 | /// assert!(lower_than_min.is_subnormal()); |
263 | /// ``` |
264 | /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number |
265 | #[inline ] |
266 | fn is_subnormal(self) -> bool { |
267 | self.classify() == FpCategory::Subnormal |
268 | } |
269 | |
270 | /// Returns the floating point category of the number. If only one property |
271 | /// is going to be tested, it is generally faster to use the specific |
272 | /// predicate instead. |
273 | /// |
274 | /// # Examples |
275 | /// |
276 | /// ``` |
277 | /// use num_traits::float::FloatCore; |
278 | /// use std::{f32, f64}; |
279 | /// use std::num::FpCategory; |
280 | /// |
281 | /// fn check<T: FloatCore>(x: T, c: FpCategory) { |
282 | /// assert!(x.classify() == c); |
283 | /// } |
284 | /// |
285 | /// check(f32::INFINITY, FpCategory::Infinite); |
286 | /// check(f32::MAX, FpCategory::Normal); |
287 | /// check(f64::NAN, FpCategory::Nan); |
288 | /// check(f64::MIN_POSITIVE, FpCategory::Normal); |
289 | /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal); |
290 | /// check(0.0f64, FpCategory::Zero); |
291 | /// ``` |
292 | fn classify(self) -> FpCategory; |
293 | |
294 | /// Returns the largest integer less than or equal to a number. |
295 | /// |
296 | /// # Examples |
297 | /// |
298 | /// ``` |
299 | /// use num_traits::float::FloatCore; |
300 | /// use std::{f32, f64}; |
301 | /// |
302 | /// fn check<T: FloatCore>(x: T, y: T) { |
303 | /// assert!(x.floor() == y); |
304 | /// } |
305 | /// |
306 | /// check(f32::INFINITY, f32::INFINITY); |
307 | /// check(0.9f32, 0.0); |
308 | /// check(1.0f32, 1.0); |
309 | /// check(1.1f32, 1.0); |
310 | /// check(-0.0f64, 0.0); |
311 | /// check(-0.9f64, -1.0); |
312 | /// check(-1.0f64, -1.0); |
313 | /// check(-1.1f64, -2.0); |
314 | /// check(f64::MIN, f64::MIN); |
315 | /// ``` |
316 | #[inline ] |
317 | fn floor(self) -> Self { |
318 | let f = self.fract(); |
319 | if f.is_nan() || f.is_zero() { |
320 | self |
321 | } else if self < Self::zero() { |
322 | self - f - Self::one() |
323 | } else { |
324 | self - f |
325 | } |
326 | } |
327 | |
328 | /// Returns the smallest integer greater than or equal to a number. |
329 | /// |
330 | /// # Examples |
331 | /// |
332 | /// ``` |
333 | /// use num_traits::float::FloatCore; |
334 | /// use std::{f32, f64}; |
335 | /// |
336 | /// fn check<T: FloatCore>(x: T, y: T) { |
337 | /// assert!(x.ceil() == y); |
338 | /// } |
339 | /// |
340 | /// check(f32::INFINITY, f32::INFINITY); |
341 | /// check(0.9f32, 1.0); |
342 | /// check(1.0f32, 1.0); |
343 | /// check(1.1f32, 2.0); |
344 | /// check(-0.0f64, 0.0); |
345 | /// check(-0.9f64, -0.0); |
346 | /// check(-1.0f64, -1.0); |
347 | /// check(-1.1f64, -1.0); |
348 | /// check(f64::MIN, f64::MIN); |
349 | /// ``` |
350 | #[inline ] |
351 | fn ceil(self) -> Self { |
352 | let f = self.fract(); |
353 | if f.is_nan() || f.is_zero() { |
354 | self |
355 | } else if self > Self::zero() { |
356 | self - f + Self::one() |
357 | } else { |
358 | self - f |
359 | } |
360 | } |
361 | |
362 | /// Returns the nearest integer to a number. Round half-way cases away from `0.0`. |
363 | /// |
364 | /// # Examples |
365 | /// |
366 | /// ``` |
367 | /// use num_traits::float::FloatCore; |
368 | /// use std::{f32, f64}; |
369 | /// |
370 | /// fn check<T: FloatCore>(x: T, y: T) { |
371 | /// assert!(x.round() == y); |
372 | /// } |
373 | /// |
374 | /// check(f32::INFINITY, f32::INFINITY); |
375 | /// check(0.4f32, 0.0); |
376 | /// check(0.5f32, 1.0); |
377 | /// check(0.6f32, 1.0); |
378 | /// check(-0.4f64, 0.0); |
379 | /// check(-0.5f64, -1.0); |
380 | /// check(-0.6f64, -1.0); |
381 | /// check(f64::MIN, f64::MIN); |
382 | /// ``` |
383 | #[inline ] |
384 | fn round(self) -> Self { |
385 | let one = Self::one(); |
386 | let h = Self::from(0.5).expect("Unable to cast from 0.5" ); |
387 | let f = self.fract(); |
388 | if f.is_nan() || f.is_zero() { |
389 | self |
390 | } else if self > Self::zero() { |
391 | if f < h { |
392 | self - f |
393 | } else { |
394 | self - f + one |
395 | } |
396 | } else if -f < h { |
397 | self - f |
398 | } else { |
399 | self - f - one |
400 | } |
401 | } |
402 | |
403 | /// Return the integer part of a number. |
404 | /// |
405 | /// # Examples |
406 | /// |
407 | /// ``` |
408 | /// use num_traits::float::FloatCore; |
409 | /// use std::{f32, f64}; |
410 | /// |
411 | /// fn check<T: FloatCore>(x: T, y: T) { |
412 | /// assert!(x.trunc() == y); |
413 | /// } |
414 | /// |
415 | /// check(f32::INFINITY, f32::INFINITY); |
416 | /// check(0.9f32, 0.0); |
417 | /// check(1.0f32, 1.0); |
418 | /// check(1.1f32, 1.0); |
419 | /// check(-0.0f64, 0.0); |
420 | /// check(-0.9f64, -0.0); |
421 | /// check(-1.0f64, -1.0); |
422 | /// check(-1.1f64, -1.0); |
423 | /// check(f64::MIN, f64::MIN); |
424 | /// ``` |
425 | #[inline ] |
426 | fn trunc(self) -> Self { |
427 | let f = self.fract(); |
428 | if f.is_nan() { |
429 | self |
430 | } else { |
431 | self - f |
432 | } |
433 | } |
434 | |
435 | /// Returns the fractional part of a number. |
436 | /// |
437 | /// # Examples |
438 | /// |
439 | /// ``` |
440 | /// use num_traits::float::FloatCore; |
441 | /// use std::{f32, f64}; |
442 | /// |
443 | /// fn check<T: FloatCore>(x: T, y: T) { |
444 | /// assert!(x.fract() == y); |
445 | /// } |
446 | /// |
447 | /// check(f32::MAX, 0.0); |
448 | /// check(0.75f32, 0.75); |
449 | /// check(1.0f32, 0.0); |
450 | /// check(1.25f32, 0.25); |
451 | /// check(-0.0f64, 0.0); |
452 | /// check(-0.75f64, -0.75); |
453 | /// check(-1.0f64, 0.0); |
454 | /// check(-1.25f64, -0.25); |
455 | /// check(f64::MIN, 0.0); |
456 | /// ``` |
457 | #[inline ] |
458 | fn fract(self) -> Self { |
459 | if self.is_zero() { |
460 | Self::zero() |
461 | } else { |
462 | self % Self::one() |
463 | } |
464 | } |
465 | |
466 | /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the |
467 | /// number is `FloatCore::nan()`. |
468 | /// |
469 | /// # Examples |
470 | /// |
471 | /// ``` |
472 | /// use num_traits::float::FloatCore; |
473 | /// use std::{f32, f64}; |
474 | /// |
475 | /// fn check<T: FloatCore>(x: T, y: T) { |
476 | /// assert!(x.abs() == y); |
477 | /// } |
478 | /// |
479 | /// check(f32::INFINITY, f32::INFINITY); |
480 | /// check(1.0f32, 1.0); |
481 | /// check(0.0f64, 0.0); |
482 | /// check(-0.0f64, 0.0); |
483 | /// check(-1.0f64, 1.0); |
484 | /// check(f64::MIN, f64::MAX); |
485 | /// ``` |
486 | #[inline ] |
487 | fn abs(self) -> Self { |
488 | if self.is_sign_positive() { |
489 | return self; |
490 | } |
491 | if self.is_sign_negative() { |
492 | return -self; |
493 | } |
494 | Self::nan() |
495 | } |
496 | |
497 | /// Returns a number that represents the sign of `self`. |
498 | /// |
499 | /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()` |
500 | /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()` |
501 | /// - `FloatCore::nan()` if the number is `FloatCore::nan()` |
502 | /// |
503 | /// # Examples |
504 | /// |
505 | /// ``` |
506 | /// use num_traits::float::FloatCore; |
507 | /// use std::{f32, f64}; |
508 | /// |
509 | /// fn check<T: FloatCore>(x: T, y: T) { |
510 | /// assert!(x.signum() == y); |
511 | /// } |
512 | /// |
513 | /// check(f32::INFINITY, 1.0); |
514 | /// check(3.0f32, 1.0); |
515 | /// check(0.0f32, 1.0); |
516 | /// check(-0.0f64, -1.0); |
517 | /// check(-3.0f64, -1.0); |
518 | /// check(f64::MIN, -1.0); |
519 | /// ``` |
520 | #[inline ] |
521 | fn signum(self) -> Self { |
522 | if self.is_nan() { |
523 | Self::nan() |
524 | } else if self.is_sign_negative() { |
525 | -Self::one() |
526 | } else { |
527 | Self::one() |
528 | } |
529 | } |
530 | |
531 | /// Returns `true` if `self` is positive, including `+0.0` and |
532 | /// `FloatCore::infinity()`, and `FloatCore::nan()`. |
533 | /// |
534 | /// # Examples |
535 | /// |
536 | /// ``` |
537 | /// use num_traits::float::FloatCore; |
538 | /// use std::{f32, f64}; |
539 | /// |
540 | /// fn check<T: FloatCore>(x: T, p: bool) { |
541 | /// assert!(x.is_sign_positive() == p); |
542 | /// } |
543 | /// |
544 | /// check(f32::INFINITY, true); |
545 | /// check(f32::MAX, true); |
546 | /// check(0.0f32, true); |
547 | /// check(-0.0f64, false); |
548 | /// check(f64::NEG_INFINITY, false); |
549 | /// check(f64::MIN_POSITIVE, true); |
550 | /// check(f64::NAN, true); |
551 | /// check(-f64::NAN, false); |
552 | /// ``` |
553 | #[inline ] |
554 | fn is_sign_positive(self) -> bool { |
555 | !self.is_sign_negative() |
556 | } |
557 | |
558 | /// Returns `true` if `self` is negative, including `-0.0` and |
559 | /// `FloatCore::neg_infinity()`, and `-FloatCore::nan()`. |
560 | /// |
561 | /// # Examples |
562 | /// |
563 | /// ``` |
564 | /// use num_traits::float::FloatCore; |
565 | /// use std::{f32, f64}; |
566 | /// |
567 | /// fn check<T: FloatCore>(x: T, p: bool) { |
568 | /// assert!(x.is_sign_negative() == p); |
569 | /// } |
570 | /// |
571 | /// check(f32::INFINITY, false); |
572 | /// check(f32::MAX, false); |
573 | /// check(0.0f32, false); |
574 | /// check(-0.0f64, true); |
575 | /// check(f64::NEG_INFINITY, true); |
576 | /// check(f64::MIN_POSITIVE, false); |
577 | /// check(f64::NAN, false); |
578 | /// check(-f64::NAN, true); |
579 | /// ``` |
580 | #[inline ] |
581 | fn is_sign_negative(self) -> bool { |
582 | let (_, _, sign) = self.integer_decode(); |
583 | sign < 0 |
584 | } |
585 | |
586 | /// Returns the minimum of the two numbers. |
587 | /// |
588 | /// If one of the arguments is NaN, then the other argument is returned. |
589 | /// |
590 | /// # Examples |
591 | /// |
592 | /// ``` |
593 | /// use num_traits::float::FloatCore; |
594 | /// use std::{f32, f64}; |
595 | /// |
596 | /// fn check<T: FloatCore>(x: T, y: T, min: T) { |
597 | /// assert!(x.min(y) == min); |
598 | /// } |
599 | /// |
600 | /// check(1.0f32, 2.0, 1.0); |
601 | /// check(f32::NAN, 2.0, 2.0); |
602 | /// check(1.0f64, -2.0, -2.0); |
603 | /// check(1.0f64, f64::NAN, 1.0); |
604 | /// ``` |
605 | #[inline ] |
606 | fn min(self, other: Self) -> Self { |
607 | if self.is_nan() { |
608 | return other; |
609 | } |
610 | if other.is_nan() { |
611 | return self; |
612 | } |
613 | if self < other { |
614 | self |
615 | } else { |
616 | other |
617 | } |
618 | } |
619 | |
620 | /// Returns the maximum of the two numbers. |
621 | /// |
622 | /// If one of the arguments is NaN, then the other argument is returned. |
623 | /// |
624 | /// # Examples |
625 | /// |
626 | /// ``` |
627 | /// use num_traits::float::FloatCore; |
628 | /// use std::{f32, f64}; |
629 | /// |
630 | /// fn check<T: FloatCore>(x: T, y: T, max: T) { |
631 | /// assert!(x.max(y) == max); |
632 | /// } |
633 | /// |
634 | /// check(1.0f32, 2.0, 2.0); |
635 | /// check(1.0f32, f32::NAN, 1.0); |
636 | /// check(-1.0f64, 2.0, 2.0); |
637 | /// check(-1.0f64, f64::NAN, -1.0); |
638 | /// ``` |
639 | #[inline ] |
640 | fn max(self, other: Self) -> Self { |
641 | if self.is_nan() { |
642 | return other; |
643 | } |
644 | if other.is_nan() { |
645 | return self; |
646 | } |
647 | if self > other { |
648 | self |
649 | } else { |
650 | other |
651 | } |
652 | } |
653 | |
654 | /// Returns the reciprocal (multiplicative inverse) of the number. |
655 | /// |
656 | /// # Examples |
657 | /// |
658 | /// ``` |
659 | /// use num_traits::float::FloatCore; |
660 | /// use std::{f32, f64}; |
661 | /// |
662 | /// fn check<T: FloatCore>(x: T, y: T) { |
663 | /// assert!(x.recip() == y); |
664 | /// assert!(y.recip() == x); |
665 | /// } |
666 | /// |
667 | /// check(f32::INFINITY, 0.0); |
668 | /// check(2.0f32, 0.5); |
669 | /// check(-0.25f64, -4.0); |
670 | /// check(-0.0f64, f64::NEG_INFINITY); |
671 | /// ``` |
672 | #[inline ] |
673 | fn recip(self) -> Self { |
674 | Self::one() / self |
675 | } |
676 | |
677 | /// Raise a number to an integer power. |
678 | /// |
679 | /// Using this function is generally faster than using `powf` |
680 | /// |
681 | /// # Examples |
682 | /// |
683 | /// ``` |
684 | /// use num_traits::float::FloatCore; |
685 | /// |
686 | /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) { |
687 | /// assert!(x.powi(exp) == powi); |
688 | /// } |
689 | /// |
690 | /// check(9.0f32, 2, 81.0); |
691 | /// check(1.0f32, -2, 1.0); |
692 | /// check(10.0f64, 20, 1e20); |
693 | /// check(4.0f64, -2, 0.0625); |
694 | /// check(-1.0f64, std::i32::MIN, 1.0); |
695 | /// ``` |
696 | #[inline ] |
697 | fn powi(mut self, mut exp: i32) -> Self { |
698 | if exp < 0 { |
699 | exp = exp.wrapping_neg(); |
700 | self = self.recip(); |
701 | } |
702 | // It should always be possible to convert a positive `i32` to a `usize`. |
703 | // Note, `i32::MIN` will wrap and still be negative, so we need to convert |
704 | // to `u32` without sign-extension before growing to `usize`. |
705 | super::pow(self, (exp as u32).to_usize().unwrap()) |
706 | } |
707 | |
708 | /// Converts to degrees, assuming the number is in radians. |
709 | /// |
710 | /// # Examples |
711 | /// |
712 | /// ``` |
713 | /// use num_traits::float::FloatCore; |
714 | /// use std::{f32, f64}; |
715 | /// |
716 | /// fn check<T: FloatCore>(rad: T, deg: T) { |
717 | /// assert!(rad.to_degrees() == deg); |
718 | /// } |
719 | /// |
720 | /// check(0.0f32, 0.0); |
721 | /// check(f32::consts::PI, 180.0); |
722 | /// check(f64::consts::FRAC_PI_4, 45.0); |
723 | /// check(f64::INFINITY, f64::INFINITY); |
724 | /// ``` |
725 | fn to_degrees(self) -> Self; |
726 | |
727 | /// Converts to radians, assuming the number is in degrees. |
728 | /// |
729 | /// # Examples |
730 | /// |
731 | /// ``` |
732 | /// use num_traits::float::FloatCore; |
733 | /// use std::{f32, f64}; |
734 | /// |
735 | /// fn check<T: FloatCore>(deg: T, rad: T) { |
736 | /// assert!(deg.to_radians() == rad); |
737 | /// } |
738 | /// |
739 | /// check(0.0f32, 0.0); |
740 | /// check(180.0, f32::consts::PI); |
741 | /// check(45.0, f64::consts::FRAC_PI_4); |
742 | /// check(f64::INFINITY, f64::INFINITY); |
743 | /// ``` |
744 | fn to_radians(self) -> Self; |
745 | |
746 | /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. |
747 | /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. |
748 | /// |
749 | /// # Examples |
750 | /// |
751 | /// ``` |
752 | /// use num_traits::float::FloatCore; |
753 | /// use std::{f32, f64}; |
754 | /// |
755 | /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) { |
756 | /// let (mantissa, exponent, sign) = x.integer_decode(); |
757 | /// assert_eq!(mantissa, m); |
758 | /// assert_eq!(exponent, e); |
759 | /// assert_eq!(sign, s); |
760 | /// } |
761 | /// |
762 | /// check(2.0f32, 1 << 23, -22, 1); |
763 | /// check(-2.0f32, 1 << 23, -22, -1); |
764 | /// check(f32::INFINITY, 1 << 23, 105, 1); |
765 | /// check(f64::NEG_INFINITY, 1 << 52, 972, -1); |
766 | /// ``` |
767 | fn integer_decode(self) -> (u64, i16, i8); |
768 | } |
769 | |
770 | impl FloatCore for f32 { |
771 | constant! { |
772 | infinity() -> f32::INFINITY; |
773 | neg_infinity() -> f32::NEG_INFINITY; |
774 | nan() -> f32::NAN; |
775 | neg_zero() -> -0.0; |
776 | min_value() -> f32::MIN; |
777 | min_positive_value() -> f32::MIN_POSITIVE; |
778 | epsilon() -> f32::EPSILON; |
779 | max_value() -> f32::MAX; |
780 | } |
781 | |
782 | #[inline ] |
783 | fn integer_decode(self) -> (u64, i16, i8) { |
784 | integer_decode_f32(self) |
785 | } |
786 | |
787 | forward! { |
788 | Self::is_nan(self) -> bool; |
789 | Self::is_infinite(self) -> bool; |
790 | Self::is_finite(self) -> bool; |
791 | Self::is_normal(self) -> bool; |
792 | Self::classify(self) -> FpCategory; |
793 | Self::is_sign_positive(self) -> bool; |
794 | Self::is_sign_negative(self) -> bool; |
795 | Self::min(self, other: Self) -> Self; |
796 | Self::max(self, other: Self) -> Self; |
797 | Self::recip(self) -> Self; |
798 | Self::to_degrees(self) -> Self; |
799 | Self::to_radians(self) -> Self; |
800 | } |
801 | |
802 | #[cfg (has_is_subnormal)] |
803 | forward! { |
804 | Self::is_subnormal(self) -> bool; |
805 | } |
806 | |
807 | #[cfg (feature = "std" )] |
808 | forward! { |
809 | Self::floor(self) -> Self; |
810 | Self::ceil(self) -> Self; |
811 | Self::round(self) -> Self; |
812 | Self::trunc(self) -> Self; |
813 | Self::fract(self) -> Self; |
814 | Self::abs(self) -> Self; |
815 | Self::signum(self) -> Self; |
816 | Self::powi(self, n: i32) -> Self; |
817 | } |
818 | |
819 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
820 | forward! { |
821 | libm::floorf as floor(self) -> Self; |
822 | libm::ceilf as ceil(self) -> Self; |
823 | libm::roundf as round(self) -> Self; |
824 | libm::truncf as trunc(self) -> Self; |
825 | libm::fabsf as abs(self) -> Self; |
826 | } |
827 | |
828 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
829 | #[inline ] |
830 | fn fract(self) -> Self { |
831 | self - libm::truncf(self) |
832 | } |
833 | } |
834 | |
835 | impl FloatCore for f64 { |
836 | constant! { |
837 | infinity() -> f64::INFINITY; |
838 | neg_infinity() -> f64::NEG_INFINITY; |
839 | nan() -> f64::NAN; |
840 | neg_zero() -> -0.0; |
841 | min_value() -> f64::MIN; |
842 | min_positive_value() -> f64::MIN_POSITIVE; |
843 | epsilon() -> f64::EPSILON; |
844 | max_value() -> f64::MAX; |
845 | } |
846 | |
847 | #[inline ] |
848 | fn integer_decode(self) -> (u64, i16, i8) { |
849 | integer_decode_f64(self) |
850 | } |
851 | |
852 | forward! { |
853 | Self::is_nan(self) -> bool; |
854 | Self::is_infinite(self) -> bool; |
855 | Self::is_finite(self) -> bool; |
856 | Self::is_normal(self) -> bool; |
857 | Self::classify(self) -> FpCategory; |
858 | Self::is_sign_positive(self) -> bool; |
859 | Self::is_sign_negative(self) -> bool; |
860 | Self::min(self, other: Self) -> Self; |
861 | Self::max(self, other: Self) -> Self; |
862 | Self::recip(self) -> Self; |
863 | Self::to_degrees(self) -> Self; |
864 | Self::to_radians(self) -> Self; |
865 | } |
866 | |
867 | #[cfg (has_is_subnormal)] |
868 | forward! { |
869 | Self::is_subnormal(self) -> bool; |
870 | } |
871 | |
872 | #[cfg (feature = "std" )] |
873 | forward! { |
874 | Self::floor(self) -> Self; |
875 | Self::ceil(self) -> Self; |
876 | Self::round(self) -> Self; |
877 | Self::trunc(self) -> Self; |
878 | Self::fract(self) -> Self; |
879 | Self::abs(self) -> Self; |
880 | Self::signum(self) -> Self; |
881 | Self::powi(self, n: i32) -> Self; |
882 | } |
883 | |
884 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
885 | forward! { |
886 | libm::floor as floor(self) -> Self; |
887 | libm::ceil as ceil(self) -> Self; |
888 | libm::round as round(self) -> Self; |
889 | libm::trunc as trunc(self) -> Self; |
890 | libm::fabs as abs(self) -> Self; |
891 | } |
892 | |
893 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
894 | #[inline ] |
895 | fn fract(self) -> Self { |
896 | self - libm::trunc(self) |
897 | } |
898 | } |
899 | |
900 | // FIXME: these doctests aren't actually helpful, because they're using and |
901 | // testing the inherent methods directly, not going through `Float`. |
902 | |
903 | /// Generic trait for floating point numbers |
904 | /// |
905 | /// This trait is only available with the `std` feature, or with the `libm` feature otherwise. |
906 | #[cfg (any(feature = "std" , feature = "libm" ))] |
907 | pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> { |
908 | /// Returns the `NaN` value. |
909 | /// |
910 | /// ``` |
911 | /// use num_traits::Float; |
912 | /// |
913 | /// let nan: f32 = Float::nan(); |
914 | /// |
915 | /// assert!(nan.is_nan()); |
916 | /// ``` |
917 | fn nan() -> Self; |
918 | /// Returns the infinite value. |
919 | /// |
920 | /// ``` |
921 | /// use num_traits::Float; |
922 | /// use std::f32; |
923 | /// |
924 | /// let infinity: f32 = Float::infinity(); |
925 | /// |
926 | /// assert!(infinity.is_infinite()); |
927 | /// assert!(!infinity.is_finite()); |
928 | /// assert!(infinity > f32::MAX); |
929 | /// ``` |
930 | fn infinity() -> Self; |
931 | /// Returns the negative infinite value. |
932 | /// |
933 | /// ``` |
934 | /// use num_traits::Float; |
935 | /// use std::f32; |
936 | /// |
937 | /// let neg_infinity: f32 = Float::neg_infinity(); |
938 | /// |
939 | /// assert!(neg_infinity.is_infinite()); |
940 | /// assert!(!neg_infinity.is_finite()); |
941 | /// assert!(neg_infinity < f32::MIN); |
942 | /// ``` |
943 | fn neg_infinity() -> Self; |
944 | /// Returns `-0.0`. |
945 | /// |
946 | /// ``` |
947 | /// use num_traits::{Zero, Float}; |
948 | /// |
949 | /// let inf: f32 = Float::infinity(); |
950 | /// let zero: f32 = Zero::zero(); |
951 | /// let neg_zero: f32 = Float::neg_zero(); |
952 | /// |
953 | /// assert_eq!(zero, neg_zero); |
954 | /// assert_eq!(7.0f32/inf, zero); |
955 | /// assert_eq!(zero * 10.0, zero); |
956 | /// ``` |
957 | fn neg_zero() -> Self; |
958 | |
959 | /// Returns the smallest finite value that this type can represent. |
960 | /// |
961 | /// ``` |
962 | /// use num_traits::Float; |
963 | /// use std::f64; |
964 | /// |
965 | /// let x: f64 = Float::min_value(); |
966 | /// |
967 | /// assert_eq!(x, f64::MIN); |
968 | /// ``` |
969 | fn min_value() -> Self; |
970 | |
971 | /// Returns the smallest positive, normalized value that this type can represent. |
972 | /// |
973 | /// ``` |
974 | /// use num_traits::Float; |
975 | /// use std::f64; |
976 | /// |
977 | /// let x: f64 = Float::min_positive_value(); |
978 | /// |
979 | /// assert_eq!(x, f64::MIN_POSITIVE); |
980 | /// ``` |
981 | fn min_positive_value() -> Self; |
982 | |
983 | /// Returns epsilon, a small positive value. |
984 | /// |
985 | /// ``` |
986 | /// use num_traits::Float; |
987 | /// use std::f64; |
988 | /// |
989 | /// let x: f64 = Float::epsilon(); |
990 | /// |
991 | /// assert_eq!(x, f64::EPSILON); |
992 | /// ``` |
993 | /// |
994 | /// # Panics |
995 | /// |
996 | /// The default implementation will panic if `f32::EPSILON` cannot |
997 | /// be cast to `Self`. |
998 | fn epsilon() -> Self { |
999 | Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON" ) |
1000 | } |
1001 | |
1002 | /// Returns the largest finite value that this type can represent. |
1003 | /// |
1004 | /// ``` |
1005 | /// use num_traits::Float; |
1006 | /// use std::f64; |
1007 | /// |
1008 | /// let x: f64 = Float::max_value(); |
1009 | /// assert_eq!(x, f64::MAX); |
1010 | /// ``` |
1011 | fn max_value() -> Self; |
1012 | |
1013 | /// Returns `true` if this value is `NaN` and false otherwise. |
1014 | /// |
1015 | /// ``` |
1016 | /// use num_traits::Float; |
1017 | /// use std::f64; |
1018 | /// |
1019 | /// let nan = f64::NAN; |
1020 | /// let f = 7.0; |
1021 | /// |
1022 | /// assert!(nan.is_nan()); |
1023 | /// assert!(!f.is_nan()); |
1024 | /// ``` |
1025 | fn is_nan(self) -> bool; |
1026 | |
1027 | /// Returns `true` if this value is positive infinity or negative infinity and |
1028 | /// false otherwise. |
1029 | /// |
1030 | /// ``` |
1031 | /// use num_traits::Float; |
1032 | /// use std::f32; |
1033 | /// |
1034 | /// let f = 7.0f32; |
1035 | /// let inf: f32 = Float::infinity(); |
1036 | /// let neg_inf: f32 = Float::neg_infinity(); |
1037 | /// let nan: f32 = f32::NAN; |
1038 | /// |
1039 | /// assert!(!f.is_infinite()); |
1040 | /// assert!(!nan.is_infinite()); |
1041 | /// |
1042 | /// assert!(inf.is_infinite()); |
1043 | /// assert!(neg_inf.is_infinite()); |
1044 | /// ``` |
1045 | fn is_infinite(self) -> bool; |
1046 | |
1047 | /// Returns `true` if this number is neither infinite nor `NaN`. |
1048 | /// |
1049 | /// ``` |
1050 | /// use num_traits::Float; |
1051 | /// use std::f32; |
1052 | /// |
1053 | /// let f = 7.0f32; |
1054 | /// let inf: f32 = Float::infinity(); |
1055 | /// let neg_inf: f32 = Float::neg_infinity(); |
1056 | /// let nan: f32 = f32::NAN; |
1057 | /// |
1058 | /// assert!(f.is_finite()); |
1059 | /// |
1060 | /// assert!(!nan.is_finite()); |
1061 | /// assert!(!inf.is_finite()); |
1062 | /// assert!(!neg_inf.is_finite()); |
1063 | /// ``` |
1064 | fn is_finite(self) -> bool; |
1065 | |
1066 | /// Returns `true` if the number is neither zero, infinite, |
1067 | /// [subnormal][subnormal], or `NaN`. |
1068 | /// |
1069 | /// ``` |
1070 | /// use num_traits::Float; |
1071 | /// use std::f32; |
1072 | /// |
1073 | /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 |
1074 | /// let max = f32::MAX; |
1075 | /// let lower_than_min = 1.0e-40_f32; |
1076 | /// let zero = 0.0f32; |
1077 | /// |
1078 | /// assert!(min.is_normal()); |
1079 | /// assert!(max.is_normal()); |
1080 | /// |
1081 | /// assert!(!zero.is_normal()); |
1082 | /// assert!(!f32::NAN.is_normal()); |
1083 | /// assert!(!f32::INFINITY.is_normal()); |
1084 | /// // Values between `0` and `min` are Subnormal. |
1085 | /// assert!(!lower_than_min.is_normal()); |
1086 | /// ``` |
1087 | /// [subnormal]: http://en.wikipedia.org/wiki/Subnormal_number |
1088 | fn is_normal(self) -> bool; |
1089 | |
1090 | /// Returns `true` if the number is [subnormal]. |
1091 | /// |
1092 | /// ``` |
1093 | /// use num_traits::Float; |
1094 | /// use std::f64; |
1095 | /// |
1096 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
1097 | /// let max = f64::MAX; |
1098 | /// let lower_than_min = 1.0e-308_f64; |
1099 | /// let zero = 0.0_f64; |
1100 | /// |
1101 | /// assert!(!min.is_subnormal()); |
1102 | /// assert!(!max.is_subnormal()); |
1103 | /// |
1104 | /// assert!(!zero.is_subnormal()); |
1105 | /// assert!(!f64::NAN.is_subnormal()); |
1106 | /// assert!(!f64::INFINITY.is_subnormal()); |
1107 | /// // Values between `0` and `min` are Subnormal. |
1108 | /// assert!(lower_than_min.is_subnormal()); |
1109 | /// ``` |
1110 | /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number |
1111 | #[inline ] |
1112 | fn is_subnormal(self) -> bool { |
1113 | self.classify() == FpCategory::Subnormal |
1114 | } |
1115 | |
1116 | /// Returns the floating point category of the number. If only one property |
1117 | /// is going to be tested, it is generally faster to use the specific |
1118 | /// predicate instead. |
1119 | /// |
1120 | /// ``` |
1121 | /// use num_traits::Float; |
1122 | /// use std::num::FpCategory; |
1123 | /// use std::f32; |
1124 | /// |
1125 | /// let num = 12.4f32; |
1126 | /// let inf = f32::INFINITY; |
1127 | /// |
1128 | /// assert_eq!(num.classify(), FpCategory::Normal); |
1129 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
1130 | /// ``` |
1131 | fn classify(self) -> FpCategory; |
1132 | |
1133 | /// Returns the largest integer less than or equal to a number. |
1134 | /// |
1135 | /// ``` |
1136 | /// use num_traits::Float; |
1137 | /// |
1138 | /// let f = 3.99; |
1139 | /// let g = 3.0; |
1140 | /// |
1141 | /// assert_eq!(f.floor(), 3.0); |
1142 | /// assert_eq!(g.floor(), 3.0); |
1143 | /// ``` |
1144 | fn floor(self) -> Self; |
1145 | |
1146 | /// Returns the smallest integer greater than or equal to a number. |
1147 | /// |
1148 | /// ``` |
1149 | /// use num_traits::Float; |
1150 | /// |
1151 | /// let f = 3.01; |
1152 | /// let g = 4.0; |
1153 | /// |
1154 | /// assert_eq!(f.ceil(), 4.0); |
1155 | /// assert_eq!(g.ceil(), 4.0); |
1156 | /// ``` |
1157 | fn ceil(self) -> Self; |
1158 | |
1159 | /// Returns the nearest integer to a number. Round half-way cases away from |
1160 | /// `0.0`. |
1161 | /// |
1162 | /// ``` |
1163 | /// use num_traits::Float; |
1164 | /// |
1165 | /// let f = 3.3; |
1166 | /// let g = -3.3; |
1167 | /// |
1168 | /// assert_eq!(f.round(), 3.0); |
1169 | /// assert_eq!(g.round(), -3.0); |
1170 | /// ``` |
1171 | fn round(self) -> Self; |
1172 | |
1173 | /// Return the integer part of a number. |
1174 | /// |
1175 | /// ``` |
1176 | /// use num_traits::Float; |
1177 | /// |
1178 | /// let f = 3.3; |
1179 | /// let g = -3.7; |
1180 | /// |
1181 | /// assert_eq!(f.trunc(), 3.0); |
1182 | /// assert_eq!(g.trunc(), -3.0); |
1183 | /// ``` |
1184 | fn trunc(self) -> Self; |
1185 | |
1186 | /// Returns the fractional part of a number. |
1187 | /// |
1188 | /// ``` |
1189 | /// use num_traits::Float; |
1190 | /// |
1191 | /// let x = 3.5; |
1192 | /// let y = -3.5; |
1193 | /// let abs_difference_x = (x.fract() - 0.5).abs(); |
1194 | /// let abs_difference_y = (y.fract() - (-0.5)).abs(); |
1195 | /// |
1196 | /// assert!(abs_difference_x < 1e-10); |
1197 | /// assert!(abs_difference_y < 1e-10); |
1198 | /// ``` |
1199 | fn fract(self) -> Self; |
1200 | |
1201 | /// Computes the absolute value of `self`. Returns `Float::nan()` if the |
1202 | /// number is `Float::nan()`. |
1203 | /// |
1204 | /// ``` |
1205 | /// use num_traits::Float; |
1206 | /// use std::f64; |
1207 | /// |
1208 | /// let x = 3.5; |
1209 | /// let y = -3.5; |
1210 | /// |
1211 | /// let abs_difference_x = (x.abs() - x).abs(); |
1212 | /// let abs_difference_y = (y.abs() - (-y)).abs(); |
1213 | /// |
1214 | /// assert!(abs_difference_x < 1e-10); |
1215 | /// assert!(abs_difference_y < 1e-10); |
1216 | /// |
1217 | /// assert!(f64::NAN.abs().is_nan()); |
1218 | /// ``` |
1219 | fn abs(self) -> Self; |
1220 | |
1221 | /// Returns a number that represents the sign of `self`. |
1222 | /// |
1223 | /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` |
1224 | /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` |
1225 | /// - `Float::nan()` if the number is `Float::nan()` |
1226 | /// |
1227 | /// ``` |
1228 | /// use num_traits::Float; |
1229 | /// use std::f64; |
1230 | /// |
1231 | /// let f = 3.5; |
1232 | /// |
1233 | /// assert_eq!(f.signum(), 1.0); |
1234 | /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); |
1235 | /// |
1236 | /// assert!(f64::NAN.signum().is_nan()); |
1237 | /// ``` |
1238 | fn signum(self) -> Self; |
1239 | |
1240 | /// Returns `true` if `self` is positive, including `+0.0`, |
1241 | /// `Float::infinity()`, and `Float::nan()`. |
1242 | /// |
1243 | /// ``` |
1244 | /// use num_traits::Float; |
1245 | /// use std::f64; |
1246 | /// |
1247 | /// let nan: f64 = f64::NAN; |
1248 | /// let neg_nan: f64 = -f64::NAN; |
1249 | /// |
1250 | /// let f = 7.0; |
1251 | /// let g = -7.0; |
1252 | /// |
1253 | /// assert!(f.is_sign_positive()); |
1254 | /// assert!(!g.is_sign_positive()); |
1255 | /// assert!(nan.is_sign_positive()); |
1256 | /// assert!(!neg_nan.is_sign_positive()); |
1257 | /// ``` |
1258 | fn is_sign_positive(self) -> bool; |
1259 | |
1260 | /// Returns `true` if `self` is negative, including `-0.0`, |
1261 | /// `Float::neg_infinity()`, and `-Float::nan()`. |
1262 | /// |
1263 | /// ``` |
1264 | /// use num_traits::Float; |
1265 | /// use std::f64; |
1266 | /// |
1267 | /// let nan: f64 = f64::NAN; |
1268 | /// let neg_nan: f64 = -f64::NAN; |
1269 | /// |
1270 | /// let f = 7.0; |
1271 | /// let g = -7.0; |
1272 | /// |
1273 | /// assert!(!f.is_sign_negative()); |
1274 | /// assert!(g.is_sign_negative()); |
1275 | /// assert!(!nan.is_sign_negative()); |
1276 | /// assert!(neg_nan.is_sign_negative()); |
1277 | /// ``` |
1278 | fn is_sign_negative(self) -> bool; |
1279 | |
1280 | /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
1281 | /// error, yielding a more accurate result than an unfused multiply-add. |
1282 | /// |
1283 | /// Using `mul_add` can be more performant than an unfused multiply-add if |
1284 | /// the target architecture has a dedicated `fma` CPU instruction. |
1285 | /// |
1286 | /// ``` |
1287 | /// use num_traits::Float; |
1288 | /// |
1289 | /// let m = 10.0; |
1290 | /// let x = 4.0; |
1291 | /// let b = 60.0; |
1292 | /// |
1293 | /// // 100.0 |
1294 | /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); |
1295 | /// |
1296 | /// assert!(abs_difference < 1e-10); |
1297 | /// ``` |
1298 | fn mul_add(self, a: Self, b: Self) -> Self; |
1299 | /// Take the reciprocal (inverse) of a number, `1/x`. |
1300 | /// |
1301 | /// ``` |
1302 | /// use num_traits::Float; |
1303 | /// |
1304 | /// let x = 2.0; |
1305 | /// let abs_difference = (x.recip() - (1.0/x)).abs(); |
1306 | /// |
1307 | /// assert!(abs_difference < 1e-10); |
1308 | /// ``` |
1309 | fn recip(self) -> Self; |
1310 | |
1311 | /// Raise a number to an integer power. |
1312 | /// |
1313 | /// Using this function is generally faster than using `powf` |
1314 | /// |
1315 | /// ``` |
1316 | /// use num_traits::Float; |
1317 | /// |
1318 | /// let x = 2.0; |
1319 | /// let abs_difference = (x.powi(2) - x*x).abs(); |
1320 | /// |
1321 | /// assert!(abs_difference < 1e-10); |
1322 | /// ``` |
1323 | fn powi(self, n: i32) -> Self; |
1324 | |
1325 | /// Raise a number to a floating point power. |
1326 | /// |
1327 | /// ``` |
1328 | /// use num_traits::Float; |
1329 | /// |
1330 | /// let x = 2.0; |
1331 | /// let abs_difference = (x.powf(2.0) - x*x).abs(); |
1332 | /// |
1333 | /// assert!(abs_difference < 1e-10); |
1334 | /// ``` |
1335 | fn powf(self, n: Self) -> Self; |
1336 | |
1337 | /// Take the square root of a number. |
1338 | /// |
1339 | /// Returns NaN if `self` is a negative number. |
1340 | /// |
1341 | /// ``` |
1342 | /// use num_traits::Float; |
1343 | /// |
1344 | /// let positive = 4.0; |
1345 | /// let negative = -4.0; |
1346 | /// |
1347 | /// let abs_difference = (positive.sqrt() - 2.0).abs(); |
1348 | /// |
1349 | /// assert!(abs_difference < 1e-10); |
1350 | /// assert!(negative.sqrt().is_nan()); |
1351 | /// ``` |
1352 | fn sqrt(self) -> Self; |
1353 | |
1354 | /// Returns `e^(self)`, (the exponential function). |
1355 | /// |
1356 | /// ``` |
1357 | /// use num_traits::Float; |
1358 | /// |
1359 | /// let one = 1.0; |
1360 | /// // e^1 |
1361 | /// let e = one.exp(); |
1362 | /// |
1363 | /// // ln(e) - 1 == 0 |
1364 | /// let abs_difference = (e.ln() - 1.0).abs(); |
1365 | /// |
1366 | /// assert!(abs_difference < 1e-10); |
1367 | /// ``` |
1368 | fn exp(self) -> Self; |
1369 | |
1370 | /// Returns `2^(self)`. |
1371 | /// |
1372 | /// ``` |
1373 | /// use num_traits::Float; |
1374 | /// |
1375 | /// let f = 2.0; |
1376 | /// |
1377 | /// // 2^2 - 4 == 0 |
1378 | /// let abs_difference = (f.exp2() - 4.0).abs(); |
1379 | /// |
1380 | /// assert!(abs_difference < 1e-10); |
1381 | /// ``` |
1382 | fn exp2(self) -> Self; |
1383 | |
1384 | /// Returns the natural logarithm of the number. |
1385 | /// |
1386 | /// ``` |
1387 | /// use num_traits::Float; |
1388 | /// |
1389 | /// let one = 1.0; |
1390 | /// // e^1 |
1391 | /// let e = one.exp(); |
1392 | /// |
1393 | /// // ln(e) - 1 == 0 |
1394 | /// let abs_difference = (e.ln() - 1.0).abs(); |
1395 | /// |
1396 | /// assert!(abs_difference < 1e-10); |
1397 | /// ``` |
1398 | fn ln(self) -> Self; |
1399 | |
1400 | /// Returns the logarithm of the number with respect to an arbitrary base. |
1401 | /// |
1402 | /// ``` |
1403 | /// use num_traits::Float; |
1404 | /// |
1405 | /// let ten = 10.0; |
1406 | /// let two = 2.0; |
1407 | /// |
1408 | /// // log10(10) - 1 == 0 |
1409 | /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); |
1410 | /// |
1411 | /// // log2(2) - 1 == 0 |
1412 | /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); |
1413 | /// |
1414 | /// assert!(abs_difference_10 < 1e-10); |
1415 | /// assert!(abs_difference_2 < 1e-10); |
1416 | /// ``` |
1417 | fn log(self, base: Self) -> Self; |
1418 | |
1419 | /// Returns the base 2 logarithm of the number. |
1420 | /// |
1421 | /// ``` |
1422 | /// use num_traits::Float; |
1423 | /// |
1424 | /// let two = 2.0; |
1425 | /// |
1426 | /// // log2(2) - 1 == 0 |
1427 | /// let abs_difference = (two.log2() - 1.0).abs(); |
1428 | /// |
1429 | /// assert!(abs_difference < 1e-10); |
1430 | /// ``` |
1431 | fn log2(self) -> Self; |
1432 | |
1433 | /// Returns the base 10 logarithm of the number. |
1434 | /// |
1435 | /// ``` |
1436 | /// use num_traits::Float; |
1437 | /// |
1438 | /// let ten = 10.0; |
1439 | /// |
1440 | /// // log10(10) - 1 == 0 |
1441 | /// let abs_difference = (ten.log10() - 1.0).abs(); |
1442 | /// |
1443 | /// assert!(abs_difference < 1e-10); |
1444 | /// ``` |
1445 | fn log10(self) -> Self; |
1446 | |
1447 | /// Converts radians to degrees. |
1448 | /// |
1449 | /// ``` |
1450 | /// use std::f64::consts; |
1451 | /// |
1452 | /// let angle = consts::PI; |
1453 | /// |
1454 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
1455 | /// |
1456 | /// assert!(abs_difference < 1e-10); |
1457 | /// ``` |
1458 | #[inline ] |
1459 | fn to_degrees(self) -> Self { |
1460 | let halfpi = Self::zero().acos(); |
1461 | let ninety = Self::from(90u8).unwrap(); |
1462 | self * ninety / halfpi |
1463 | } |
1464 | |
1465 | /// Converts degrees to radians. |
1466 | /// |
1467 | /// ``` |
1468 | /// use std::f64::consts; |
1469 | /// |
1470 | /// let angle = 180.0_f64; |
1471 | /// |
1472 | /// let abs_difference = (angle.to_radians() - consts::PI).abs(); |
1473 | /// |
1474 | /// assert!(abs_difference < 1e-10); |
1475 | /// ``` |
1476 | #[inline ] |
1477 | fn to_radians(self) -> Self { |
1478 | let halfpi = Self::zero().acos(); |
1479 | let ninety = Self::from(90u8).unwrap(); |
1480 | self * halfpi / ninety |
1481 | } |
1482 | |
1483 | /// Returns the maximum of the two numbers. |
1484 | /// |
1485 | /// ``` |
1486 | /// use num_traits::Float; |
1487 | /// |
1488 | /// let x = 1.0; |
1489 | /// let y = 2.0; |
1490 | /// |
1491 | /// assert_eq!(x.max(y), y); |
1492 | /// ``` |
1493 | fn max(self, other: Self) -> Self; |
1494 | |
1495 | /// Returns the minimum of the two numbers. |
1496 | /// |
1497 | /// ``` |
1498 | /// use num_traits::Float; |
1499 | /// |
1500 | /// let x = 1.0; |
1501 | /// let y = 2.0; |
1502 | /// |
1503 | /// assert_eq!(x.min(y), x); |
1504 | /// ``` |
1505 | fn min(self, other: Self) -> Self; |
1506 | |
1507 | /// The positive difference of two numbers. |
1508 | /// |
1509 | /// * If `self <= other`: `0:0` |
1510 | /// * Else: `self - other` |
1511 | /// |
1512 | /// ``` |
1513 | /// use num_traits::Float; |
1514 | /// |
1515 | /// let x = 3.0; |
1516 | /// let y = -3.0; |
1517 | /// |
1518 | /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); |
1519 | /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); |
1520 | /// |
1521 | /// assert!(abs_difference_x < 1e-10); |
1522 | /// assert!(abs_difference_y < 1e-10); |
1523 | /// ``` |
1524 | fn abs_sub(self, other: Self) -> Self; |
1525 | |
1526 | /// Take the cubic root of a number. |
1527 | /// |
1528 | /// ``` |
1529 | /// use num_traits::Float; |
1530 | /// |
1531 | /// let x = 8.0; |
1532 | /// |
1533 | /// // x^(1/3) - 2 == 0 |
1534 | /// let abs_difference = (x.cbrt() - 2.0).abs(); |
1535 | /// |
1536 | /// assert!(abs_difference < 1e-10); |
1537 | /// ``` |
1538 | fn cbrt(self) -> Self; |
1539 | |
1540 | /// Calculate the length of the hypotenuse of a right-angle triangle given |
1541 | /// legs of length `x` and `y`. |
1542 | /// |
1543 | /// ``` |
1544 | /// use num_traits::Float; |
1545 | /// |
1546 | /// let x = 2.0; |
1547 | /// let y = 3.0; |
1548 | /// |
1549 | /// // sqrt(x^2 + y^2) |
1550 | /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); |
1551 | /// |
1552 | /// assert!(abs_difference < 1e-10); |
1553 | /// ``` |
1554 | fn hypot(self, other: Self) -> Self; |
1555 | |
1556 | /// Computes the sine of a number (in radians). |
1557 | /// |
1558 | /// ``` |
1559 | /// use num_traits::Float; |
1560 | /// use std::f64; |
1561 | /// |
1562 | /// let x = f64::consts::PI/2.0; |
1563 | /// |
1564 | /// let abs_difference = (x.sin() - 1.0).abs(); |
1565 | /// |
1566 | /// assert!(abs_difference < 1e-10); |
1567 | /// ``` |
1568 | fn sin(self) -> Self; |
1569 | |
1570 | /// Computes the cosine of a number (in radians). |
1571 | /// |
1572 | /// ``` |
1573 | /// use num_traits::Float; |
1574 | /// use std::f64; |
1575 | /// |
1576 | /// let x = 2.0*f64::consts::PI; |
1577 | /// |
1578 | /// let abs_difference = (x.cos() - 1.0).abs(); |
1579 | /// |
1580 | /// assert!(abs_difference < 1e-10); |
1581 | /// ``` |
1582 | fn cos(self) -> Self; |
1583 | |
1584 | /// Computes the tangent of a number (in radians). |
1585 | /// |
1586 | /// ``` |
1587 | /// use num_traits::Float; |
1588 | /// use std::f64; |
1589 | /// |
1590 | /// let x = f64::consts::PI/4.0; |
1591 | /// let abs_difference = (x.tan() - 1.0).abs(); |
1592 | /// |
1593 | /// assert!(abs_difference < 1e-14); |
1594 | /// ``` |
1595 | fn tan(self) -> Self; |
1596 | |
1597 | /// Computes the arcsine of a number. Return value is in radians in |
1598 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
1599 | /// [-1, 1]. |
1600 | /// |
1601 | /// ``` |
1602 | /// use num_traits::Float; |
1603 | /// use std::f64; |
1604 | /// |
1605 | /// let f = f64::consts::PI / 2.0; |
1606 | /// |
1607 | /// // asin(sin(pi/2)) |
1608 | /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); |
1609 | /// |
1610 | /// assert!(abs_difference < 1e-10); |
1611 | /// ``` |
1612 | fn asin(self) -> Self; |
1613 | |
1614 | /// Computes the arccosine of a number. Return value is in radians in |
1615 | /// the range [0, pi] or NaN if the number is outside the range |
1616 | /// [-1, 1]. |
1617 | /// |
1618 | /// ``` |
1619 | /// use num_traits::Float; |
1620 | /// use std::f64; |
1621 | /// |
1622 | /// let f = f64::consts::PI / 4.0; |
1623 | /// |
1624 | /// // acos(cos(pi/4)) |
1625 | /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); |
1626 | /// |
1627 | /// assert!(abs_difference < 1e-10); |
1628 | /// ``` |
1629 | fn acos(self) -> Self; |
1630 | |
1631 | /// Computes the arctangent of a number. Return value is in radians in the |
1632 | /// range [-pi/2, pi/2]; |
1633 | /// |
1634 | /// ``` |
1635 | /// use num_traits::Float; |
1636 | /// |
1637 | /// let f = 1.0; |
1638 | /// |
1639 | /// // atan(tan(1)) |
1640 | /// let abs_difference = (f.tan().atan() - 1.0).abs(); |
1641 | /// |
1642 | /// assert!(abs_difference < 1e-10); |
1643 | /// ``` |
1644 | fn atan(self) -> Self; |
1645 | |
1646 | /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). |
1647 | /// |
1648 | /// * `x = 0`, `y = 0`: `0` |
1649 | /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` |
1650 | /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` |
1651 | /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` |
1652 | /// |
1653 | /// ``` |
1654 | /// use num_traits::Float; |
1655 | /// use std::f64; |
1656 | /// |
1657 | /// let pi = f64::consts::PI; |
1658 | /// // All angles from horizontal right (+x) |
1659 | /// // 45 deg counter-clockwise |
1660 | /// let x1 = 3.0; |
1661 | /// let y1 = -3.0; |
1662 | /// |
1663 | /// // 135 deg clockwise |
1664 | /// let x2 = -3.0; |
1665 | /// let y2 = 3.0; |
1666 | /// |
1667 | /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); |
1668 | /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); |
1669 | /// |
1670 | /// assert!(abs_difference_1 < 1e-10); |
1671 | /// assert!(abs_difference_2 < 1e-10); |
1672 | /// ``` |
1673 | fn atan2(self, other: Self) -> Self; |
1674 | |
1675 | /// Simultaneously computes the sine and cosine of the number, `x`. Returns |
1676 | /// `(sin(x), cos(x))`. |
1677 | /// |
1678 | /// ``` |
1679 | /// use num_traits::Float; |
1680 | /// use std::f64; |
1681 | /// |
1682 | /// let x = f64::consts::PI/4.0; |
1683 | /// let f = x.sin_cos(); |
1684 | /// |
1685 | /// let abs_difference_0 = (f.0 - x.sin()).abs(); |
1686 | /// let abs_difference_1 = (f.1 - x.cos()).abs(); |
1687 | /// |
1688 | /// assert!(abs_difference_0 < 1e-10); |
1689 | /// assert!(abs_difference_0 < 1e-10); |
1690 | /// ``` |
1691 | fn sin_cos(self) -> (Self, Self); |
1692 | |
1693 | /// Returns `e^(self) - 1` in a way that is accurate even if the |
1694 | /// number is close to zero. |
1695 | /// |
1696 | /// ``` |
1697 | /// use num_traits::Float; |
1698 | /// |
1699 | /// let x = 7.0; |
1700 | /// |
1701 | /// // e^(ln(7)) - 1 |
1702 | /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); |
1703 | /// |
1704 | /// assert!(abs_difference < 1e-10); |
1705 | /// ``` |
1706 | fn exp_m1(self) -> Self; |
1707 | |
1708 | /// Returns `ln(1+n)` (natural logarithm) more accurately than if |
1709 | /// the operations were performed separately. |
1710 | /// |
1711 | /// ``` |
1712 | /// use num_traits::Float; |
1713 | /// use std::f64; |
1714 | /// |
1715 | /// let x = f64::consts::E - 1.0; |
1716 | /// |
1717 | /// // ln(1 + (e - 1)) == ln(e) == 1 |
1718 | /// let abs_difference = (x.ln_1p() - 1.0).abs(); |
1719 | /// |
1720 | /// assert!(abs_difference < 1e-10); |
1721 | /// ``` |
1722 | fn ln_1p(self) -> Self; |
1723 | |
1724 | /// Hyperbolic sine function. |
1725 | /// |
1726 | /// ``` |
1727 | /// use num_traits::Float; |
1728 | /// use std::f64; |
1729 | /// |
1730 | /// let e = f64::consts::E; |
1731 | /// let x = 1.0; |
1732 | /// |
1733 | /// let f = x.sinh(); |
1734 | /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` |
1735 | /// let g = (e*e - 1.0)/(2.0*e); |
1736 | /// let abs_difference = (f - g).abs(); |
1737 | /// |
1738 | /// assert!(abs_difference < 1e-10); |
1739 | /// ``` |
1740 | fn sinh(self) -> Self; |
1741 | |
1742 | /// Hyperbolic cosine function. |
1743 | /// |
1744 | /// ``` |
1745 | /// use num_traits::Float; |
1746 | /// use std::f64; |
1747 | /// |
1748 | /// let e = f64::consts::E; |
1749 | /// let x = 1.0; |
1750 | /// let f = x.cosh(); |
1751 | /// // Solving cosh() at 1 gives this result |
1752 | /// let g = (e*e + 1.0)/(2.0*e); |
1753 | /// let abs_difference = (f - g).abs(); |
1754 | /// |
1755 | /// // Same result |
1756 | /// assert!(abs_difference < 1.0e-10); |
1757 | /// ``` |
1758 | fn cosh(self) -> Self; |
1759 | |
1760 | /// Hyperbolic tangent function. |
1761 | /// |
1762 | /// ``` |
1763 | /// use num_traits::Float; |
1764 | /// use std::f64; |
1765 | /// |
1766 | /// let e = f64::consts::E; |
1767 | /// let x = 1.0; |
1768 | /// |
1769 | /// let f = x.tanh(); |
1770 | /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` |
1771 | /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); |
1772 | /// let abs_difference = (f - g).abs(); |
1773 | /// |
1774 | /// assert!(abs_difference < 1.0e-10); |
1775 | /// ``` |
1776 | fn tanh(self) -> Self; |
1777 | |
1778 | /// Inverse hyperbolic sine function. |
1779 | /// |
1780 | /// ``` |
1781 | /// use num_traits::Float; |
1782 | /// |
1783 | /// let x = 1.0; |
1784 | /// let f = x.sinh().asinh(); |
1785 | /// |
1786 | /// let abs_difference = (f - x).abs(); |
1787 | /// |
1788 | /// assert!(abs_difference < 1.0e-10); |
1789 | /// ``` |
1790 | fn asinh(self) -> Self; |
1791 | |
1792 | /// Inverse hyperbolic cosine function. |
1793 | /// |
1794 | /// ``` |
1795 | /// use num_traits::Float; |
1796 | /// |
1797 | /// let x = 1.0; |
1798 | /// let f = x.cosh().acosh(); |
1799 | /// |
1800 | /// let abs_difference = (f - x).abs(); |
1801 | /// |
1802 | /// assert!(abs_difference < 1.0e-10); |
1803 | /// ``` |
1804 | fn acosh(self) -> Self; |
1805 | |
1806 | /// Inverse hyperbolic tangent function. |
1807 | /// |
1808 | /// ``` |
1809 | /// use num_traits::Float; |
1810 | /// use std::f64; |
1811 | /// |
1812 | /// let e = f64::consts::E; |
1813 | /// let f = e.tanh().atanh(); |
1814 | /// |
1815 | /// let abs_difference = (f - e).abs(); |
1816 | /// |
1817 | /// assert!(abs_difference < 1.0e-10); |
1818 | /// ``` |
1819 | fn atanh(self) -> Self; |
1820 | |
1821 | /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. |
1822 | /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. |
1823 | /// |
1824 | /// ``` |
1825 | /// use num_traits::Float; |
1826 | /// |
1827 | /// let num = 2.0f32; |
1828 | /// |
1829 | /// // (8388608, -22, 1) |
1830 | /// let (mantissa, exponent, sign) = Float::integer_decode(num); |
1831 | /// let sign_f = sign as f32; |
1832 | /// let mantissa_f = mantissa as f32; |
1833 | /// let exponent_f = num.powf(exponent as f32); |
1834 | /// |
1835 | /// // 1 * 8388608 * 2^(-22) == 2 |
1836 | /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); |
1837 | /// |
1838 | /// assert!(abs_difference < 1e-10); |
1839 | /// ``` |
1840 | fn integer_decode(self) -> (u64, i16, i8); |
1841 | |
1842 | /// Returns a number composed of the magnitude of `self` and the sign of |
1843 | /// `sign`. |
1844 | /// |
1845 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise |
1846 | /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of |
1847 | /// `sign` is returned. |
1848 | /// |
1849 | /// # Examples |
1850 | /// |
1851 | /// ``` |
1852 | /// use num_traits::Float; |
1853 | /// |
1854 | /// let f = 3.5_f32; |
1855 | /// |
1856 | /// assert_eq!(f.copysign(0.42), 3.5_f32); |
1857 | /// assert_eq!(f.copysign(-0.42), -3.5_f32); |
1858 | /// assert_eq!((-f).copysign(0.42), 3.5_f32); |
1859 | /// assert_eq!((-f).copysign(-0.42), -3.5_f32); |
1860 | /// |
1861 | /// assert!(f32::nan().copysign(1.0).is_nan()); |
1862 | /// ``` |
1863 | fn copysign(self, sign: Self) -> Self { |
1864 | if self.is_sign_negative() == sign.is_sign_negative() { |
1865 | self |
1866 | } else { |
1867 | self.neg() |
1868 | } |
1869 | } |
1870 | } |
1871 | |
1872 | #[cfg (feature = "std" )] |
1873 | macro_rules! float_impl_std { |
1874 | ($T:ident $decode:ident) => { |
1875 | impl Float for $T { |
1876 | constant! { |
1877 | nan() -> $T::NAN; |
1878 | infinity() -> $T::INFINITY; |
1879 | neg_infinity() -> $T::NEG_INFINITY; |
1880 | neg_zero() -> -0.0; |
1881 | min_value() -> $T::MIN; |
1882 | min_positive_value() -> $T::MIN_POSITIVE; |
1883 | epsilon() -> $T::EPSILON; |
1884 | max_value() -> $T::MAX; |
1885 | } |
1886 | |
1887 | #[inline] |
1888 | #[allow(deprecated)] |
1889 | fn abs_sub(self, other: Self) -> Self { |
1890 | <$T>::abs_sub(self, other) |
1891 | } |
1892 | |
1893 | #[inline] |
1894 | fn integer_decode(self) -> (u64, i16, i8) { |
1895 | $decode(self) |
1896 | } |
1897 | |
1898 | forward! { |
1899 | Self::is_nan(self) -> bool; |
1900 | Self::is_infinite(self) -> bool; |
1901 | Self::is_finite(self) -> bool; |
1902 | Self::is_normal(self) -> bool; |
1903 | Self::classify(self) -> FpCategory; |
1904 | Self::floor(self) -> Self; |
1905 | Self::ceil(self) -> Self; |
1906 | Self::round(self) -> Self; |
1907 | Self::trunc(self) -> Self; |
1908 | Self::fract(self) -> Self; |
1909 | Self::abs(self) -> Self; |
1910 | Self::signum(self) -> Self; |
1911 | Self::is_sign_positive(self) -> bool; |
1912 | Self::is_sign_negative(self) -> bool; |
1913 | Self::mul_add(self, a: Self, b: Self) -> Self; |
1914 | Self::recip(self) -> Self; |
1915 | Self::powi(self, n: i32) -> Self; |
1916 | Self::powf(self, n: Self) -> Self; |
1917 | Self::sqrt(self) -> Self; |
1918 | Self::exp(self) -> Self; |
1919 | Self::exp2(self) -> Self; |
1920 | Self::ln(self) -> Self; |
1921 | Self::log(self, base: Self) -> Self; |
1922 | Self::log2(self) -> Self; |
1923 | Self::log10(self) -> Self; |
1924 | Self::to_degrees(self) -> Self; |
1925 | Self::to_radians(self) -> Self; |
1926 | Self::max(self, other: Self) -> Self; |
1927 | Self::min(self, other: Self) -> Self; |
1928 | Self::cbrt(self) -> Self; |
1929 | Self::hypot(self, other: Self) -> Self; |
1930 | Self::sin(self) -> Self; |
1931 | Self::cos(self) -> Self; |
1932 | Self::tan(self) -> Self; |
1933 | Self::asin(self) -> Self; |
1934 | Self::acos(self) -> Self; |
1935 | Self::atan(self) -> Self; |
1936 | Self::atan2(self, other: Self) -> Self; |
1937 | Self::sin_cos(self) -> (Self, Self); |
1938 | Self::exp_m1(self) -> Self; |
1939 | Self::ln_1p(self) -> Self; |
1940 | Self::sinh(self) -> Self; |
1941 | Self::cosh(self) -> Self; |
1942 | Self::tanh(self) -> Self; |
1943 | Self::asinh(self) -> Self; |
1944 | Self::acosh(self) -> Self; |
1945 | Self::atanh(self) -> Self; |
1946 | } |
1947 | |
1948 | #[cfg(has_copysign)] |
1949 | forward! { |
1950 | Self::copysign(self, sign: Self) -> Self; |
1951 | } |
1952 | |
1953 | #[cfg(has_is_subnormal)] |
1954 | forward! { |
1955 | Self::is_subnormal(self) -> bool; |
1956 | } |
1957 | } |
1958 | }; |
1959 | } |
1960 | |
1961 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
1962 | macro_rules! float_impl_libm { |
1963 | ($T:ident $decode:ident) => { |
1964 | constant! { |
1965 | nan() -> $T::NAN; |
1966 | infinity() -> $T::INFINITY; |
1967 | neg_infinity() -> $T::NEG_INFINITY; |
1968 | neg_zero() -> -0.0; |
1969 | min_value() -> $T::MIN; |
1970 | min_positive_value() -> $T::MIN_POSITIVE; |
1971 | epsilon() -> $T::EPSILON; |
1972 | max_value() -> $T::MAX; |
1973 | } |
1974 | |
1975 | #[inline] |
1976 | fn integer_decode(self) -> (u64, i16, i8) { |
1977 | $decode(self) |
1978 | } |
1979 | |
1980 | #[inline] |
1981 | fn fract(self) -> Self { |
1982 | self - Float::trunc(self) |
1983 | } |
1984 | |
1985 | #[inline] |
1986 | fn log(self, base: Self) -> Self { |
1987 | self.ln() / base.ln() |
1988 | } |
1989 | |
1990 | forward! { |
1991 | Self::is_nan(self) -> bool; |
1992 | Self::is_infinite(self) -> bool; |
1993 | Self::is_finite(self) -> bool; |
1994 | Self::is_normal(self) -> bool; |
1995 | Self::classify(self) -> FpCategory; |
1996 | Self::is_sign_positive(self) -> bool; |
1997 | Self::is_sign_negative(self) -> bool; |
1998 | Self::min(self, other: Self) -> Self; |
1999 | Self::max(self, other: Self) -> Self; |
2000 | Self::recip(self) -> Self; |
2001 | Self::to_degrees(self) -> Self; |
2002 | Self::to_radians(self) -> Self; |
2003 | } |
2004 | |
2005 | #[cfg(has_is_subnormal)] |
2006 | forward! { |
2007 | Self::is_subnormal(self) -> bool; |
2008 | } |
2009 | |
2010 | forward! { |
2011 | FloatCore::signum(self) -> Self; |
2012 | FloatCore::powi(self, n: i32) -> Self; |
2013 | } |
2014 | }; |
2015 | } |
2016 | |
2017 | fn integer_decode_f32(f: f32) -> (u64, i16, i8) { |
2018 | let bits: u32 = f.to_bits(); |
2019 | let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; |
2020 | let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; |
2021 | let mantissa = if exponent == 0 { |
2022 | (bits & 0x7fffff) << 1 |
2023 | } else { |
2024 | (bits & 0x7fffff) | 0x800000 |
2025 | }; |
2026 | // Exponent bias + mantissa shift |
2027 | exponent -= 127 + 23; |
2028 | (mantissa as u64, exponent, sign) |
2029 | } |
2030 | |
2031 | fn integer_decode_f64(f: f64) -> (u64, i16, i8) { |
2032 | let bits: u64 = f.to_bits(); |
2033 | let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; |
2034 | let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; |
2035 | let mantissa = if exponent == 0 { |
2036 | (bits & 0xfffffffffffff) << 1 |
2037 | } else { |
2038 | (bits & 0xfffffffffffff) | 0x10000000000000 |
2039 | }; |
2040 | // Exponent bias + mantissa shift |
2041 | exponent -= 1023 + 52; |
2042 | (mantissa, exponent, sign) |
2043 | } |
2044 | |
2045 | #[cfg (feature = "std" )] |
2046 | float_impl_std!(f32 integer_decode_f32); |
2047 | #[cfg (feature = "std" )] |
2048 | float_impl_std!(f64 integer_decode_f64); |
2049 | |
2050 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
2051 | impl Float for f32 { |
2052 | float_impl_libm!(f32 integer_decode_f32); |
2053 | |
2054 | #[inline ] |
2055 | #[allow (deprecated)] |
2056 | fn abs_sub(self, other: Self) -> Self { |
2057 | libm::fdimf(self, other) |
2058 | } |
2059 | |
2060 | forward! { |
2061 | libm::floorf as floor(self) -> Self; |
2062 | libm::ceilf as ceil(self) -> Self; |
2063 | libm::roundf as round(self) -> Self; |
2064 | libm::truncf as trunc(self) -> Self; |
2065 | libm::fabsf as abs(self) -> Self; |
2066 | libm::fmaf as mul_add(self, a: Self, b: Self) -> Self; |
2067 | libm::powf as powf(self, n: Self) -> Self; |
2068 | libm::sqrtf as sqrt(self) -> Self; |
2069 | libm::expf as exp(self) -> Self; |
2070 | libm::exp2f as exp2(self) -> Self; |
2071 | libm::logf as ln(self) -> Self; |
2072 | libm::log2f as log2(self) -> Self; |
2073 | libm::log10f as log10(self) -> Self; |
2074 | libm::cbrtf as cbrt(self) -> Self; |
2075 | libm::hypotf as hypot(self, other: Self) -> Self; |
2076 | libm::sinf as sin(self) -> Self; |
2077 | libm::cosf as cos(self) -> Self; |
2078 | libm::tanf as tan(self) -> Self; |
2079 | libm::asinf as asin(self) -> Self; |
2080 | libm::acosf as acos(self) -> Self; |
2081 | libm::atanf as atan(self) -> Self; |
2082 | libm::atan2f as atan2(self, other: Self) -> Self; |
2083 | libm::sincosf as sin_cos(self) -> (Self, Self); |
2084 | libm::expm1f as exp_m1(self) -> Self; |
2085 | libm::log1pf as ln_1p(self) -> Self; |
2086 | libm::sinhf as sinh(self) -> Self; |
2087 | libm::coshf as cosh(self) -> Self; |
2088 | libm::tanhf as tanh(self) -> Self; |
2089 | libm::asinhf as asinh(self) -> Self; |
2090 | libm::acoshf as acosh(self) -> Self; |
2091 | libm::atanhf as atanh(self) -> Self; |
2092 | libm::copysignf as copysign(self, other: Self) -> Self; |
2093 | } |
2094 | } |
2095 | |
2096 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
2097 | impl Float for f64 { |
2098 | float_impl_libm!(f64 integer_decode_f64); |
2099 | |
2100 | #[inline ] |
2101 | #[allow (deprecated)] |
2102 | fn abs_sub(self, other: Self) -> Self { |
2103 | libm::fdim(self, other) |
2104 | } |
2105 | |
2106 | forward! { |
2107 | libm::floor as floor(self) -> Self; |
2108 | libm::ceil as ceil(self) -> Self; |
2109 | libm::round as round(self) -> Self; |
2110 | libm::trunc as trunc(self) -> Self; |
2111 | libm::fabs as abs(self) -> Self; |
2112 | libm::fma as mul_add(self, a: Self, b: Self) -> Self; |
2113 | libm::pow as powf(self, n: Self) -> Self; |
2114 | libm::sqrt as sqrt(self) -> Self; |
2115 | libm::exp as exp(self) -> Self; |
2116 | libm::exp2 as exp2(self) -> Self; |
2117 | libm::log as ln(self) -> Self; |
2118 | libm::log2 as log2(self) -> Self; |
2119 | libm::log10 as log10(self) -> Self; |
2120 | libm::cbrt as cbrt(self) -> Self; |
2121 | libm::hypot as hypot(self, other: Self) -> Self; |
2122 | libm::sin as sin(self) -> Self; |
2123 | libm::cos as cos(self) -> Self; |
2124 | libm::tan as tan(self) -> Self; |
2125 | libm::asin as asin(self) -> Self; |
2126 | libm::acos as acos(self) -> Self; |
2127 | libm::atan as atan(self) -> Self; |
2128 | libm::atan2 as atan2(self, other: Self) -> Self; |
2129 | libm::sincos as sin_cos(self) -> (Self, Self); |
2130 | libm::expm1 as exp_m1(self) -> Self; |
2131 | libm::log1p as ln_1p(self) -> Self; |
2132 | libm::sinh as sinh(self) -> Self; |
2133 | libm::cosh as cosh(self) -> Self; |
2134 | libm::tanh as tanh(self) -> Self; |
2135 | libm::asinh as asinh(self) -> Self; |
2136 | libm::acosh as acosh(self) -> Self; |
2137 | libm::atanh as atanh(self) -> Self; |
2138 | libm::copysign as copysign(self, sign: Self) -> Self; |
2139 | } |
2140 | } |
2141 | |
2142 | macro_rules! float_const_impl { |
2143 | ($(#[$doc:meta] $constant:ident,)+) => ( |
2144 | #[allow(non_snake_case)] |
2145 | pub trait FloatConst { |
2146 | $(#[$doc] fn $constant() -> Self;)+ |
2147 | #[doc = "Return the full circle constant `τ`." ] |
2148 | #[inline] |
2149 | fn TAU() -> Self where Self: Sized + Add<Self, Output = Self> { |
2150 | Self::PI() + Self::PI() |
2151 | } |
2152 | #[doc = "Return `log10(2.0)`." ] |
2153 | #[inline] |
2154 | fn LOG10_2() -> Self where Self: Sized + Div<Self, Output = Self> { |
2155 | Self::LN_2() / Self::LN_10() |
2156 | } |
2157 | #[doc = "Return `log2(10.0)`." ] |
2158 | #[inline] |
2159 | fn LOG2_10() -> Self where Self: Sized + Div<Self, Output = Self> { |
2160 | Self::LN_10() / Self::LN_2() |
2161 | } |
2162 | } |
2163 | float_const_impl! { @float f32, $($constant,)+ } |
2164 | float_const_impl! { @float f64, $($constant,)+ } |
2165 | ); |
2166 | (@float $T:ident, $($constant:ident,)+) => ( |
2167 | impl FloatConst for $T { |
2168 | constant! { |
2169 | $( $constant() -> $T::consts::$constant; )+ |
2170 | TAU() -> 6.28318530717958647692528676655900577; |
2171 | LOG10_2() -> 0.301029995663981195213738894724493027; |
2172 | LOG2_10() -> 3.32192809488736234787031942948939018; |
2173 | } |
2174 | } |
2175 | ); |
2176 | } |
2177 | |
2178 | float_const_impl! { |
2179 | #[doc = "Return Euler’s number." ] |
2180 | E, |
2181 | #[doc = "Return `1.0 / π`." ] |
2182 | FRAC_1_PI, |
2183 | #[doc = "Return `1.0 / sqrt(2.0)`." ] |
2184 | FRAC_1_SQRT_2, |
2185 | #[doc = "Return `2.0 / π`." ] |
2186 | FRAC_2_PI, |
2187 | #[doc = "Return `2.0 / sqrt(π)`." ] |
2188 | FRAC_2_SQRT_PI, |
2189 | #[doc = "Return `π / 2.0`." ] |
2190 | FRAC_PI_2, |
2191 | #[doc = "Return `π / 3.0`." ] |
2192 | FRAC_PI_3, |
2193 | #[doc = "Return `π / 4.0`." ] |
2194 | FRAC_PI_4, |
2195 | #[doc = "Return `π / 6.0`." ] |
2196 | FRAC_PI_6, |
2197 | #[doc = "Return `π / 8.0`." ] |
2198 | FRAC_PI_8, |
2199 | #[doc = "Return `ln(10.0)`." ] |
2200 | LN_10, |
2201 | #[doc = "Return `ln(2.0)`." ] |
2202 | LN_2, |
2203 | #[doc = "Return `log10(e)`." ] |
2204 | LOG10_E, |
2205 | #[doc = "Return `log2(e)`." ] |
2206 | LOG2_E, |
2207 | #[doc = "Return Archimedes’ constant `π`." ] |
2208 | PI, |
2209 | #[doc = "Return `sqrt(2.0)`." ] |
2210 | SQRT_2, |
2211 | } |
2212 | |
2213 | #[cfg (test)] |
2214 | mod tests { |
2215 | use core::f64::consts; |
2216 | |
2217 | const DEG_RAD_PAIRS: [(f64, f64); 7] = [ |
2218 | (0.0, 0.), |
2219 | (22.5, consts::FRAC_PI_8), |
2220 | (30.0, consts::FRAC_PI_6), |
2221 | (45.0, consts::FRAC_PI_4), |
2222 | (60.0, consts::FRAC_PI_3), |
2223 | (90.0, consts::FRAC_PI_2), |
2224 | (180.0, consts::PI), |
2225 | ]; |
2226 | |
2227 | #[test] |
2228 | fn convert_deg_rad() { |
2229 | use crate::float::FloatCore; |
2230 | |
2231 | for &(deg, rad) in &DEG_RAD_PAIRS { |
2232 | assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6); |
2233 | assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6); |
2234 | |
2235 | let (deg, rad) = (deg as f32, rad as f32); |
2236 | assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5); |
2237 | assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5); |
2238 | } |
2239 | } |
2240 | |
2241 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2242 | #[test] |
2243 | fn convert_deg_rad_std() { |
2244 | for &(deg, rad) in &DEG_RAD_PAIRS { |
2245 | use crate::Float; |
2246 | |
2247 | assert!((Float::to_degrees(rad) - deg).abs() < 1e-6); |
2248 | assert!((Float::to_radians(deg) - rad).abs() < 1e-6); |
2249 | |
2250 | let (deg, rad) = (deg as f32, rad as f32); |
2251 | assert!((Float::to_degrees(rad) - deg).abs() < 1e-5); |
2252 | assert!((Float::to_radians(deg) - rad).abs() < 1e-5); |
2253 | } |
2254 | } |
2255 | |
2256 | #[test] |
2257 | fn to_degrees_rounding() { |
2258 | use crate::float::FloatCore; |
2259 | |
2260 | assert_eq!( |
2261 | FloatCore::to_degrees(1_f32), |
2262 | 57.2957795130823208767981548141051703 |
2263 | ); |
2264 | } |
2265 | |
2266 | #[test] |
2267 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2268 | fn extra_logs() { |
2269 | use crate::float::{Float, FloatConst}; |
2270 | |
2271 | fn check<F: Float + FloatConst>(diff: F) { |
2272 | let _2 = F::from(2.0).unwrap(); |
2273 | assert!((F::LOG10_2() - F::log10(_2)).abs() < diff); |
2274 | assert!((F::LOG10_2() - F::LN_2() / F::LN_10()).abs() < diff); |
2275 | |
2276 | let _10 = F::from(10.0).unwrap(); |
2277 | assert!((F::LOG2_10() - F::log2(_10)).abs() < diff); |
2278 | assert!((F::LOG2_10() - F::LN_10() / F::LN_2()).abs() < diff); |
2279 | } |
2280 | |
2281 | check::<f32>(1e-6); |
2282 | check::<f64>(1e-12); |
2283 | } |
2284 | |
2285 | #[test] |
2286 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2287 | fn copysign() { |
2288 | use crate::float::Float; |
2289 | test_copysign_generic(2.0_f32, -2.0_f32, f32::nan()); |
2290 | test_copysign_generic(2.0_f64, -2.0_f64, f64::nan()); |
2291 | test_copysignf(2.0_f32, -2.0_f32, f32::nan()); |
2292 | } |
2293 | |
2294 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2295 | fn test_copysignf(p: f32, n: f32, nan: f32) { |
2296 | use crate::float::Float; |
2297 | use core::ops::Neg; |
2298 | |
2299 | assert!(p.is_sign_positive()); |
2300 | assert!(n.is_sign_negative()); |
2301 | assert!(nan.is_nan()); |
2302 | |
2303 | assert_eq!(p, Float::copysign(p, p)); |
2304 | assert_eq!(p.neg(), Float::copysign(p, n)); |
2305 | |
2306 | assert_eq!(n, Float::copysign(n, n)); |
2307 | assert_eq!(n.neg(), Float::copysign(n, p)); |
2308 | |
2309 | assert!(Float::copysign(nan, p).is_sign_positive()); |
2310 | assert!(Float::copysign(nan, n).is_sign_negative()); |
2311 | } |
2312 | |
2313 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2314 | fn test_copysign_generic<F: crate::float::Float + ::core::fmt::Debug>(p: F, n: F, nan: F) { |
2315 | assert!(p.is_sign_positive()); |
2316 | assert!(n.is_sign_negative()); |
2317 | assert!(nan.is_nan()); |
2318 | assert!(!nan.is_subnormal()); |
2319 | |
2320 | assert_eq!(p, p.copysign(p)); |
2321 | assert_eq!(p.neg(), p.copysign(n)); |
2322 | |
2323 | assert_eq!(n, n.copysign(n)); |
2324 | assert_eq!(n.neg(), n.copysign(p)); |
2325 | |
2326 | assert!(nan.copysign(p).is_sign_positive()); |
2327 | assert!(nan.copysign(n).is_sign_negative()); |
2328 | } |
2329 | |
2330 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2331 | fn test_subnormal<F: crate::float::Float + ::core::fmt::Debug>() { |
2332 | let min_positive = F::min_positive_value(); |
2333 | let lower_than_min = min_positive / F::from(2.0f32).unwrap(); |
2334 | assert!(!min_positive.is_subnormal()); |
2335 | assert!(lower_than_min.is_subnormal()); |
2336 | } |
2337 | |
2338 | #[test] |
2339 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2340 | fn subnormal() { |
2341 | test_subnormal::<f64>(); |
2342 | test_subnormal::<f32>(); |
2343 | } |
2344 | } |
2345 | |