| 1 | use core::num::FpCategory; |
| 2 | use core::ops::{Add, Div, Neg}; |
| 3 | |
| 4 | use core::f32; |
| 5 | use core::f64; |
| 6 | |
| 7 | use crate::{Num, NumCast, ToPrimitive}; |
| 8 | |
| 9 | /// Generic trait for floating point numbers that works with `no_std`. |
| 10 | /// |
| 11 | /// This trait implements a subset of the `Float` trait. |
| 12 | pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy { |
| 13 | /// Returns positive infinity. |
| 14 | /// |
| 15 | /// # Examples |
| 16 | /// |
| 17 | /// ``` |
| 18 | /// use num_traits::float::FloatCore; |
| 19 | /// use std::{f32, f64}; |
| 20 | /// |
| 21 | /// fn check<T: FloatCore>(x: T) { |
| 22 | /// assert!(T::infinity() == x); |
| 23 | /// } |
| 24 | /// |
| 25 | /// check(f32::INFINITY); |
| 26 | /// check(f64::INFINITY); |
| 27 | /// ``` |
| 28 | fn infinity() -> Self; |
| 29 | |
| 30 | /// Returns negative infinity. |
| 31 | /// |
| 32 | /// # Examples |
| 33 | /// |
| 34 | /// ``` |
| 35 | /// use num_traits::float::FloatCore; |
| 36 | /// use std::{f32, f64}; |
| 37 | /// |
| 38 | /// fn check<T: FloatCore>(x: T) { |
| 39 | /// assert!(T::neg_infinity() == x); |
| 40 | /// } |
| 41 | /// |
| 42 | /// check(f32::NEG_INFINITY); |
| 43 | /// check(f64::NEG_INFINITY); |
| 44 | /// ``` |
| 45 | fn neg_infinity() -> Self; |
| 46 | |
| 47 | /// Returns NaN. |
| 48 | /// |
| 49 | /// # Examples |
| 50 | /// |
| 51 | /// ``` |
| 52 | /// use num_traits::float::FloatCore; |
| 53 | /// |
| 54 | /// fn check<T: FloatCore>() { |
| 55 | /// let n = T::nan(); |
| 56 | /// assert!(n != n); |
| 57 | /// } |
| 58 | /// |
| 59 | /// check::<f32>(); |
| 60 | /// check::<f64>(); |
| 61 | /// ``` |
| 62 | fn nan() -> Self; |
| 63 | |
| 64 | /// Returns `-0.0`. |
| 65 | /// |
| 66 | /// # Examples |
| 67 | /// |
| 68 | /// ``` |
| 69 | /// use num_traits::float::FloatCore; |
| 70 | /// use std::{f32, f64}; |
| 71 | /// |
| 72 | /// fn check<T: FloatCore>(n: T) { |
| 73 | /// let z = T::neg_zero(); |
| 74 | /// assert!(z.is_zero()); |
| 75 | /// assert!(T::one() / z == n); |
| 76 | /// } |
| 77 | /// |
| 78 | /// check(f32::NEG_INFINITY); |
| 79 | /// check(f64::NEG_INFINITY); |
| 80 | /// ``` |
| 81 | fn neg_zero() -> Self; |
| 82 | |
| 83 | /// Returns the smallest finite value that this type can represent. |
| 84 | /// |
| 85 | /// # Examples |
| 86 | /// |
| 87 | /// ``` |
| 88 | /// use num_traits::float::FloatCore; |
| 89 | /// use std::{f32, f64}; |
| 90 | /// |
| 91 | /// fn check<T: FloatCore>(x: T) { |
| 92 | /// assert!(T::min_value() == x); |
| 93 | /// } |
| 94 | /// |
| 95 | /// check(f32::MIN); |
| 96 | /// check(f64::MIN); |
| 97 | /// ``` |
| 98 | fn min_value() -> Self; |
| 99 | |
| 100 | /// Returns the smallest positive, normalized value that this type can represent. |
| 101 | /// |
| 102 | /// # Examples |
| 103 | /// |
| 104 | /// ``` |
| 105 | /// use num_traits::float::FloatCore; |
| 106 | /// use std::{f32, f64}; |
| 107 | /// |
| 108 | /// fn check<T: FloatCore>(x: T) { |
| 109 | /// assert!(T::min_positive_value() == x); |
| 110 | /// } |
| 111 | /// |
| 112 | /// check(f32::MIN_POSITIVE); |
| 113 | /// check(f64::MIN_POSITIVE); |
| 114 | /// ``` |
| 115 | fn min_positive_value() -> Self; |
| 116 | |
| 117 | /// Returns epsilon, a small positive value. |
| 118 | /// |
| 119 | /// # Examples |
| 120 | /// |
| 121 | /// ``` |
| 122 | /// use num_traits::float::FloatCore; |
| 123 | /// use std::{f32, f64}; |
| 124 | /// |
| 125 | /// fn check<T: FloatCore>(x: T) { |
| 126 | /// assert!(T::epsilon() == x); |
| 127 | /// } |
| 128 | /// |
| 129 | /// check(f32::EPSILON); |
| 130 | /// check(f64::EPSILON); |
| 131 | /// ``` |
| 132 | fn epsilon() -> Self; |
| 133 | |
| 134 | /// Returns the largest finite value that this type can represent. |
| 135 | /// |
| 136 | /// # Examples |
| 137 | /// |
| 138 | /// ``` |
| 139 | /// use num_traits::float::FloatCore; |
| 140 | /// use std::{f32, f64}; |
| 141 | /// |
| 142 | /// fn check<T: FloatCore>(x: T) { |
| 143 | /// assert!(T::max_value() == x); |
| 144 | /// } |
| 145 | /// |
| 146 | /// check(f32::MAX); |
| 147 | /// check(f64::MAX); |
| 148 | /// ``` |
| 149 | fn max_value() -> Self; |
| 150 | |
| 151 | /// Returns `true` if the number is NaN. |
| 152 | /// |
| 153 | /// # Examples |
| 154 | /// |
| 155 | /// ``` |
| 156 | /// use num_traits::float::FloatCore; |
| 157 | /// use std::{f32, f64}; |
| 158 | /// |
| 159 | /// fn check<T: FloatCore>(x: T, p: bool) { |
| 160 | /// assert!(x.is_nan() == p); |
| 161 | /// } |
| 162 | /// |
| 163 | /// check(f32::NAN, true); |
| 164 | /// check(f32::INFINITY, false); |
| 165 | /// check(f64::NAN, true); |
| 166 | /// check(0.0f64, false); |
| 167 | /// ``` |
| 168 | #[inline ] |
| 169 | #[allow (clippy::eq_op)] |
| 170 | fn is_nan(self) -> bool { |
| 171 | self != self |
| 172 | } |
| 173 | |
| 174 | /// Returns `true` if the number is infinite. |
| 175 | /// |
| 176 | /// # Examples |
| 177 | /// |
| 178 | /// ``` |
| 179 | /// use num_traits::float::FloatCore; |
| 180 | /// use std::{f32, f64}; |
| 181 | /// |
| 182 | /// fn check<T: FloatCore>(x: T, p: bool) { |
| 183 | /// assert!(x.is_infinite() == p); |
| 184 | /// } |
| 185 | /// |
| 186 | /// check(f32::INFINITY, true); |
| 187 | /// check(f32::NEG_INFINITY, true); |
| 188 | /// check(f32::NAN, false); |
| 189 | /// check(f64::INFINITY, true); |
| 190 | /// check(f64::NEG_INFINITY, true); |
| 191 | /// check(0.0f64, false); |
| 192 | /// ``` |
| 193 | #[inline ] |
| 194 | fn is_infinite(self) -> bool { |
| 195 | self == Self::infinity() || self == Self::neg_infinity() |
| 196 | } |
| 197 | |
| 198 | /// Returns `true` if the number is neither infinite or NaN. |
| 199 | /// |
| 200 | /// # Examples |
| 201 | /// |
| 202 | /// ``` |
| 203 | /// use num_traits::float::FloatCore; |
| 204 | /// use std::{f32, f64}; |
| 205 | /// |
| 206 | /// fn check<T: FloatCore>(x: T, p: bool) { |
| 207 | /// assert!(x.is_finite() == p); |
| 208 | /// } |
| 209 | /// |
| 210 | /// check(f32::INFINITY, false); |
| 211 | /// check(f32::MAX, true); |
| 212 | /// check(f64::NEG_INFINITY, false); |
| 213 | /// check(f64::MIN_POSITIVE, true); |
| 214 | /// check(f64::NAN, false); |
| 215 | /// ``` |
| 216 | #[inline ] |
| 217 | fn is_finite(self) -> bool { |
| 218 | !(self.is_nan() || self.is_infinite()) |
| 219 | } |
| 220 | |
| 221 | /// Returns `true` if the number is neither zero, infinite, subnormal or NaN. |
| 222 | /// |
| 223 | /// # Examples |
| 224 | /// |
| 225 | /// ``` |
| 226 | /// use num_traits::float::FloatCore; |
| 227 | /// use std::{f32, f64}; |
| 228 | /// |
| 229 | /// fn check<T: FloatCore>(x: T, p: bool) { |
| 230 | /// assert!(x.is_normal() == p); |
| 231 | /// } |
| 232 | /// |
| 233 | /// check(f32::INFINITY, false); |
| 234 | /// check(f32::MAX, true); |
| 235 | /// check(f64::NEG_INFINITY, false); |
| 236 | /// check(f64::MIN_POSITIVE, true); |
| 237 | /// check(0.0f64, false); |
| 238 | /// ``` |
| 239 | #[inline ] |
| 240 | fn is_normal(self) -> bool { |
| 241 | self.classify() == FpCategory::Normal |
| 242 | } |
| 243 | |
| 244 | /// Returns `true` if the number is [subnormal]. |
| 245 | /// |
| 246 | /// ``` |
| 247 | /// use num_traits::float::FloatCore; |
| 248 | /// use std::f64; |
| 249 | /// |
| 250 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
| 251 | /// let max = f64::MAX; |
| 252 | /// let lower_than_min = 1.0e-308_f64; |
| 253 | /// let zero = 0.0_f64; |
| 254 | /// |
| 255 | /// assert!(!min.is_subnormal()); |
| 256 | /// assert!(!max.is_subnormal()); |
| 257 | /// |
| 258 | /// assert!(!zero.is_subnormal()); |
| 259 | /// assert!(!f64::NAN.is_subnormal()); |
| 260 | /// assert!(!f64::INFINITY.is_subnormal()); |
| 261 | /// // Values between `0` and `min` are Subnormal. |
| 262 | /// assert!(lower_than_min.is_subnormal()); |
| 263 | /// ``` |
| 264 | /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number |
| 265 | #[inline ] |
| 266 | fn is_subnormal(self) -> bool { |
| 267 | self.classify() == FpCategory::Subnormal |
| 268 | } |
| 269 | |
| 270 | /// Returns the floating point category of the number. If only one property |
| 271 | /// is going to be tested, it is generally faster to use the specific |
| 272 | /// predicate instead. |
| 273 | /// |
| 274 | /// # Examples |
| 275 | /// |
| 276 | /// ``` |
| 277 | /// use num_traits::float::FloatCore; |
| 278 | /// use std::{f32, f64}; |
| 279 | /// use std::num::FpCategory; |
| 280 | /// |
| 281 | /// fn check<T: FloatCore>(x: T, c: FpCategory) { |
| 282 | /// assert!(x.classify() == c); |
| 283 | /// } |
| 284 | /// |
| 285 | /// check(f32::INFINITY, FpCategory::Infinite); |
| 286 | /// check(f32::MAX, FpCategory::Normal); |
| 287 | /// check(f64::NAN, FpCategory::Nan); |
| 288 | /// check(f64::MIN_POSITIVE, FpCategory::Normal); |
| 289 | /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal); |
| 290 | /// check(0.0f64, FpCategory::Zero); |
| 291 | /// ``` |
| 292 | fn classify(self) -> FpCategory; |
| 293 | |
| 294 | /// Returns the largest integer less than or equal to a number. |
| 295 | /// |
| 296 | /// # Examples |
| 297 | /// |
| 298 | /// ``` |
| 299 | /// use num_traits::float::FloatCore; |
| 300 | /// use std::{f32, f64}; |
| 301 | /// |
| 302 | /// fn check<T: FloatCore>(x: T, y: T) { |
| 303 | /// assert!(x.floor() == y); |
| 304 | /// } |
| 305 | /// |
| 306 | /// check(f32::INFINITY, f32::INFINITY); |
| 307 | /// check(0.9f32, 0.0); |
| 308 | /// check(1.0f32, 1.0); |
| 309 | /// check(1.1f32, 1.0); |
| 310 | /// check(-0.0f64, 0.0); |
| 311 | /// check(-0.9f64, -1.0); |
| 312 | /// check(-1.0f64, -1.0); |
| 313 | /// check(-1.1f64, -2.0); |
| 314 | /// check(f64::MIN, f64::MIN); |
| 315 | /// ``` |
| 316 | #[inline ] |
| 317 | fn floor(self) -> Self { |
| 318 | let f = self.fract(); |
| 319 | if f.is_nan() || f.is_zero() { |
| 320 | self |
| 321 | } else if self < Self::zero() { |
| 322 | self - f - Self::one() |
| 323 | } else { |
| 324 | self - f |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | /// Returns the smallest integer greater than or equal to a number. |
| 329 | /// |
| 330 | /// # Examples |
| 331 | /// |
| 332 | /// ``` |
| 333 | /// use num_traits::float::FloatCore; |
| 334 | /// use std::{f32, f64}; |
| 335 | /// |
| 336 | /// fn check<T: FloatCore>(x: T, y: T) { |
| 337 | /// assert!(x.ceil() == y); |
| 338 | /// } |
| 339 | /// |
| 340 | /// check(f32::INFINITY, f32::INFINITY); |
| 341 | /// check(0.9f32, 1.0); |
| 342 | /// check(1.0f32, 1.0); |
| 343 | /// check(1.1f32, 2.0); |
| 344 | /// check(-0.0f64, 0.0); |
| 345 | /// check(-0.9f64, -0.0); |
| 346 | /// check(-1.0f64, -1.0); |
| 347 | /// check(-1.1f64, -1.0); |
| 348 | /// check(f64::MIN, f64::MIN); |
| 349 | /// ``` |
| 350 | #[inline ] |
| 351 | fn ceil(self) -> Self { |
| 352 | let f = self.fract(); |
| 353 | if f.is_nan() || f.is_zero() { |
| 354 | self |
| 355 | } else if self > Self::zero() { |
| 356 | self - f + Self::one() |
| 357 | } else { |
| 358 | self - f |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | /// Returns the nearest integer to a number. Round half-way cases away from `0.0`. |
| 363 | /// |
| 364 | /// # Examples |
| 365 | /// |
| 366 | /// ``` |
| 367 | /// use num_traits::float::FloatCore; |
| 368 | /// use std::{f32, f64}; |
| 369 | /// |
| 370 | /// fn check<T: FloatCore>(x: T, y: T) { |
| 371 | /// assert!(x.round() == y); |
| 372 | /// } |
| 373 | /// |
| 374 | /// check(f32::INFINITY, f32::INFINITY); |
| 375 | /// check(0.4f32, 0.0); |
| 376 | /// check(0.5f32, 1.0); |
| 377 | /// check(0.6f32, 1.0); |
| 378 | /// check(-0.4f64, 0.0); |
| 379 | /// check(-0.5f64, -1.0); |
| 380 | /// check(-0.6f64, -1.0); |
| 381 | /// check(f64::MIN, f64::MIN); |
| 382 | /// ``` |
| 383 | #[inline ] |
| 384 | fn round(self) -> Self { |
| 385 | let one = Self::one(); |
| 386 | let h = Self::from(0.5).expect("Unable to cast from 0.5" ); |
| 387 | let f = self.fract(); |
| 388 | if f.is_nan() || f.is_zero() { |
| 389 | self |
| 390 | } else if self > Self::zero() { |
| 391 | if f < h { |
| 392 | self - f |
| 393 | } else { |
| 394 | self - f + one |
| 395 | } |
| 396 | } else if -f < h { |
| 397 | self - f |
| 398 | } else { |
| 399 | self - f - one |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | /// Return the integer part of a number. |
| 404 | /// |
| 405 | /// # Examples |
| 406 | /// |
| 407 | /// ``` |
| 408 | /// use num_traits::float::FloatCore; |
| 409 | /// use std::{f32, f64}; |
| 410 | /// |
| 411 | /// fn check<T: FloatCore>(x: T, y: T) { |
| 412 | /// assert!(x.trunc() == y); |
| 413 | /// } |
| 414 | /// |
| 415 | /// check(f32::INFINITY, f32::INFINITY); |
| 416 | /// check(0.9f32, 0.0); |
| 417 | /// check(1.0f32, 1.0); |
| 418 | /// check(1.1f32, 1.0); |
| 419 | /// check(-0.0f64, 0.0); |
| 420 | /// check(-0.9f64, -0.0); |
| 421 | /// check(-1.0f64, -1.0); |
| 422 | /// check(-1.1f64, -1.0); |
| 423 | /// check(f64::MIN, f64::MIN); |
| 424 | /// ``` |
| 425 | #[inline ] |
| 426 | fn trunc(self) -> Self { |
| 427 | let f = self.fract(); |
| 428 | if f.is_nan() { |
| 429 | self |
| 430 | } else { |
| 431 | self - f |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | /// Returns the fractional part of a number. |
| 436 | /// |
| 437 | /// # Examples |
| 438 | /// |
| 439 | /// ``` |
| 440 | /// use num_traits::float::FloatCore; |
| 441 | /// use std::{f32, f64}; |
| 442 | /// |
| 443 | /// fn check<T: FloatCore>(x: T, y: T) { |
| 444 | /// assert!(x.fract() == y); |
| 445 | /// } |
| 446 | /// |
| 447 | /// check(f32::MAX, 0.0); |
| 448 | /// check(0.75f32, 0.75); |
| 449 | /// check(1.0f32, 0.0); |
| 450 | /// check(1.25f32, 0.25); |
| 451 | /// check(-0.0f64, 0.0); |
| 452 | /// check(-0.75f64, -0.75); |
| 453 | /// check(-1.0f64, 0.0); |
| 454 | /// check(-1.25f64, -0.25); |
| 455 | /// check(f64::MIN, 0.0); |
| 456 | /// ``` |
| 457 | #[inline ] |
| 458 | fn fract(self) -> Self { |
| 459 | if self.is_zero() { |
| 460 | Self::zero() |
| 461 | } else { |
| 462 | self % Self::one() |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the |
| 467 | /// number is `FloatCore::nan()`. |
| 468 | /// |
| 469 | /// # Examples |
| 470 | /// |
| 471 | /// ``` |
| 472 | /// use num_traits::float::FloatCore; |
| 473 | /// use std::{f32, f64}; |
| 474 | /// |
| 475 | /// fn check<T: FloatCore>(x: T, y: T) { |
| 476 | /// assert!(x.abs() == y); |
| 477 | /// } |
| 478 | /// |
| 479 | /// check(f32::INFINITY, f32::INFINITY); |
| 480 | /// check(1.0f32, 1.0); |
| 481 | /// check(0.0f64, 0.0); |
| 482 | /// check(-0.0f64, 0.0); |
| 483 | /// check(-1.0f64, 1.0); |
| 484 | /// check(f64::MIN, f64::MAX); |
| 485 | /// ``` |
| 486 | #[inline ] |
| 487 | fn abs(self) -> Self { |
| 488 | if self.is_sign_positive() { |
| 489 | return self; |
| 490 | } |
| 491 | if self.is_sign_negative() { |
| 492 | return -self; |
| 493 | } |
| 494 | Self::nan() |
| 495 | } |
| 496 | |
| 497 | /// Returns a number that represents the sign of `self`. |
| 498 | /// |
| 499 | /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()` |
| 500 | /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()` |
| 501 | /// - `FloatCore::nan()` if the number is `FloatCore::nan()` |
| 502 | /// |
| 503 | /// # Examples |
| 504 | /// |
| 505 | /// ``` |
| 506 | /// use num_traits::float::FloatCore; |
| 507 | /// use std::{f32, f64}; |
| 508 | /// |
| 509 | /// fn check<T: FloatCore>(x: T, y: T) { |
| 510 | /// assert!(x.signum() == y); |
| 511 | /// } |
| 512 | /// |
| 513 | /// check(f32::INFINITY, 1.0); |
| 514 | /// check(3.0f32, 1.0); |
| 515 | /// check(0.0f32, 1.0); |
| 516 | /// check(-0.0f64, -1.0); |
| 517 | /// check(-3.0f64, -1.0); |
| 518 | /// check(f64::MIN, -1.0); |
| 519 | /// ``` |
| 520 | #[inline ] |
| 521 | fn signum(self) -> Self { |
| 522 | if self.is_nan() { |
| 523 | Self::nan() |
| 524 | } else if self.is_sign_negative() { |
| 525 | -Self::one() |
| 526 | } else { |
| 527 | Self::one() |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | /// Returns `true` if `self` is positive, including `+0.0` and |
| 532 | /// `FloatCore::infinity()`, and `FloatCore::nan()`. |
| 533 | /// |
| 534 | /// # Examples |
| 535 | /// |
| 536 | /// ``` |
| 537 | /// use num_traits::float::FloatCore; |
| 538 | /// use std::{f32, f64}; |
| 539 | /// |
| 540 | /// fn check<T: FloatCore>(x: T, p: bool) { |
| 541 | /// assert!(x.is_sign_positive() == p); |
| 542 | /// } |
| 543 | /// |
| 544 | /// check(f32::INFINITY, true); |
| 545 | /// check(f32::MAX, true); |
| 546 | /// check(0.0f32, true); |
| 547 | /// check(-0.0f64, false); |
| 548 | /// check(f64::NEG_INFINITY, false); |
| 549 | /// check(f64::MIN_POSITIVE, true); |
| 550 | /// check(f64::NAN, true); |
| 551 | /// check(-f64::NAN, false); |
| 552 | /// ``` |
| 553 | #[inline ] |
| 554 | fn is_sign_positive(self) -> bool { |
| 555 | !self.is_sign_negative() |
| 556 | } |
| 557 | |
| 558 | /// Returns `true` if `self` is negative, including `-0.0` and |
| 559 | /// `FloatCore::neg_infinity()`, and `-FloatCore::nan()`. |
| 560 | /// |
| 561 | /// # Examples |
| 562 | /// |
| 563 | /// ``` |
| 564 | /// use num_traits::float::FloatCore; |
| 565 | /// use std::{f32, f64}; |
| 566 | /// |
| 567 | /// fn check<T: FloatCore>(x: T, p: bool) { |
| 568 | /// assert!(x.is_sign_negative() == p); |
| 569 | /// } |
| 570 | /// |
| 571 | /// check(f32::INFINITY, false); |
| 572 | /// check(f32::MAX, false); |
| 573 | /// check(0.0f32, false); |
| 574 | /// check(-0.0f64, true); |
| 575 | /// check(f64::NEG_INFINITY, true); |
| 576 | /// check(f64::MIN_POSITIVE, false); |
| 577 | /// check(f64::NAN, false); |
| 578 | /// check(-f64::NAN, true); |
| 579 | /// ``` |
| 580 | #[inline ] |
| 581 | fn is_sign_negative(self) -> bool { |
| 582 | let (_, _, sign) = self.integer_decode(); |
| 583 | sign < 0 |
| 584 | } |
| 585 | |
| 586 | /// Returns the minimum of the two numbers. |
| 587 | /// |
| 588 | /// If one of the arguments is NaN, then the other argument is returned. |
| 589 | /// |
| 590 | /// # Examples |
| 591 | /// |
| 592 | /// ``` |
| 593 | /// use num_traits::float::FloatCore; |
| 594 | /// use std::{f32, f64}; |
| 595 | /// |
| 596 | /// fn check<T: FloatCore>(x: T, y: T, min: T) { |
| 597 | /// assert!(x.min(y) == min); |
| 598 | /// } |
| 599 | /// |
| 600 | /// check(1.0f32, 2.0, 1.0); |
| 601 | /// check(f32::NAN, 2.0, 2.0); |
| 602 | /// check(1.0f64, -2.0, -2.0); |
| 603 | /// check(1.0f64, f64::NAN, 1.0); |
| 604 | /// ``` |
| 605 | #[inline ] |
| 606 | fn min(self, other: Self) -> Self { |
| 607 | if self.is_nan() { |
| 608 | return other; |
| 609 | } |
| 610 | if other.is_nan() { |
| 611 | return self; |
| 612 | } |
| 613 | if self < other { |
| 614 | self |
| 615 | } else { |
| 616 | other |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | /// Returns the maximum of the two numbers. |
| 621 | /// |
| 622 | /// If one of the arguments is NaN, then the other argument is returned. |
| 623 | /// |
| 624 | /// # Examples |
| 625 | /// |
| 626 | /// ``` |
| 627 | /// use num_traits::float::FloatCore; |
| 628 | /// use std::{f32, f64}; |
| 629 | /// |
| 630 | /// fn check<T: FloatCore>(x: T, y: T, max: T) { |
| 631 | /// assert!(x.max(y) == max); |
| 632 | /// } |
| 633 | /// |
| 634 | /// check(1.0f32, 2.0, 2.0); |
| 635 | /// check(1.0f32, f32::NAN, 1.0); |
| 636 | /// check(-1.0f64, 2.0, 2.0); |
| 637 | /// check(-1.0f64, f64::NAN, -1.0); |
| 638 | /// ``` |
| 639 | #[inline ] |
| 640 | fn max(self, other: Self) -> Self { |
| 641 | if self.is_nan() { |
| 642 | return other; |
| 643 | } |
| 644 | if other.is_nan() { |
| 645 | return self; |
| 646 | } |
| 647 | if self > other { |
| 648 | self |
| 649 | } else { |
| 650 | other |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | /// Returns the reciprocal (multiplicative inverse) of the number. |
| 655 | /// |
| 656 | /// # Examples |
| 657 | /// |
| 658 | /// ``` |
| 659 | /// use num_traits::float::FloatCore; |
| 660 | /// use std::{f32, f64}; |
| 661 | /// |
| 662 | /// fn check<T: FloatCore>(x: T, y: T) { |
| 663 | /// assert!(x.recip() == y); |
| 664 | /// assert!(y.recip() == x); |
| 665 | /// } |
| 666 | /// |
| 667 | /// check(f32::INFINITY, 0.0); |
| 668 | /// check(2.0f32, 0.5); |
| 669 | /// check(-0.25f64, -4.0); |
| 670 | /// check(-0.0f64, f64::NEG_INFINITY); |
| 671 | /// ``` |
| 672 | #[inline ] |
| 673 | fn recip(self) -> Self { |
| 674 | Self::one() / self |
| 675 | } |
| 676 | |
| 677 | /// Raise a number to an integer power. |
| 678 | /// |
| 679 | /// Using this function is generally faster than using `powf` |
| 680 | /// |
| 681 | /// # Examples |
| 682 | /// |
| 683 | /// ``` |
| 684 | /// use num_traits::float::FloatCore; |
| 685 | /// |
| 686 | /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) { |
| 687 | /// assert!(x.powi(exp) == powi); |
| 688 | /// } |
| 689 | /// |
| 690 | /// check(9.0f32, 2, 81.0); |
| 691 | /// check(1.0f32, -2, 1.0); |
| 692 | /// check(10.0f64, 20, 1e20); |
| 693 | /// check(4.0f64, -2, 0.0625); |
| 694 | /// check(-1.0f64, std::i32::MIN, 1.0); |
| 695 | /// ``` |
| 696 | #[inline ] |
| 697 | fn powi(mut self, mut exp: i32) -> Self { |
| 698 | if exp < 0 { |
| 699 | exp = exp.wrapping_neg(); |
| 700 | self = self.recip(); |
| 701 | } |
| 702 | // It should always be possible to convert a positive `i32` to a `usize`. |
| 703 | // Note, `i32::MIN` will wrap and still be negative, so we need to convert |
| 704 | // to `u32` without sign-extension before growing to `usize`. |
| 705 | super::pow(self, (exp as u32).to_usize().unwrap()) |
| 706 | } |
| 707 | |
| 708 | /// Converts to degrees, assuming the number is in radians. |
| 709 | /// |
| 710 | /// # Examples |
| 711 | /// |
| 712 | /// ``` |
| 713 | /// use num_traits::float::FloatCore; |
| 714 | /// use std::{f32, f64}; |
| 715 | /// |
| 716 | /// fn check<T: FloatCore>(rad: T, deg: T) { |
| 717 | /// assert!(rad.to_degrees() == deg); |
| 718 | /// } |
| 719 | /// |
| 720 | /// check(0.0f32, 0.0); |
| 721 | /// check(f32::consts::PI, 180.0); |
| 722 | /// check(f64::consts::FRAC_PI_4, 45.0); |
| 723 | /// check(f64::INFINITY, f64::INFINITY); |
| 724 | /// ``` |
| 725 | fn to_degrees(self) -> Self; |
| 726 | |
| 727 | /// Converts to radians, assuming the number is in degrees. |
| 728 | /// |
| 729 | /// # Examples |
| 730 | /// |
| 731 | /// ``` |
| 732 | /// use num_traits::float::FloatCore; |
| 733 | /// use std::{f32, f64}; |
| 734 | /// |
| 735 | /// fn check<T: FloatCore>(deg: T, rad: T) { |
| 736 | /// assert!(deg.to_radians() == rad); |
| 737 | /// } |
| 738 | /// |
| 739 | /// check(0.0f32, 0.0); |
| 740 | /// check(180.0, f32::consts::PI); |
| 741 | /// check(45.0, f64::consts::FRAC_PI_4); |
| 742 | /// check(f64::INFINITY, f64::INFINITY); |
| 743 | /// ``` |
| 744 | fn to_radians(self) -> Self; |
| 745 | |
| 746 | /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. |
| 747 | /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. |
| 748 | /// |
| 749 | /// # Examples |
| 750 | /// |
| 751 | /// ``` |
| 752 | /// use num_traits::float::FloatCore; |
| 753 | /// use std::{f32, f64}; |
| 754 | /// |
| 755 | /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) { |
| 756 | /// let (mantissa, exponent, sign) = x.integer_decode(); |
| 757 | /// assert_eq!(mantissa, m); |
| 758 | /// assert_eq!(exponent, e); |
| 759 | /// assert_eq!(sign, s); |
| 760 | /// } |
| 761 | /// |
| 762 | /// check(2.0f32, 1 << 23, -22, 1); |
| 763 | /// check(-2.0f32, 1 << 23, -22, -1); |
| 764 | /// check(f32::INFINITY, 1 << 23, 105, 1); |
| 765 | /// check(f64::NEG_INFINITY, 1 << 52, 972, -1); |
| 766 | /// ``` |
| 767 | fn integer_decode(self) -> (u64, i16, i8); |
| 768 | } |
| 769 | |
| 770 | impl FloatCore for f32 { |
| 771 | constant! { |
| 772 | infinity() -> f32::INFINITY; |
| 773 | neg_infinity() -> f32::NEG_INFINITY; |
| 774 | nan() -> f32::NAN; |
| 775 | neg_zero() -> -0.0; |
| 776 | min_value() -> f32::MIN; |
| 777 | min_positive_value() -> f32::MIN_POSITIVE; |
| 778 | epsilon() -> f32::EPSILON; |
| 779 | max_value() -> f32::MAX; |
| 780 | } |
| 781 | |
| 782 | #[inline ] |
| 783 | fn integer_decode(self) -> (u64, i16, i8) { |
| 784 | integer_decode_f32(self) |
| 785 | } |
| 786 | |
| 787 | forward! { |
| 788 | Self::is_nan(self) -> bool; |
| 789 | Self::is_infinite(self) -> bool; |
| 790 | Self::is_finite(self) -> bool; |
| 791 | Self::is_normal(self) -> bool; |
| 792 | Self::classify(self) -> FpCategory; |
| 793 | Self::is_sign_positive(self) -> bool; |
| 794 | Self::is_sign_negative(self) -> bool; |
| 795 | Self::min(self, other: Self) -> Self; |
| 796 | Self::max(self, other: Self) -> Self; |
| 797 | Self::recip(self) -> Self; |
| 798 | Self::to_degrees(self) -> Self; |
| 799 | Self::to_radians(self) -> Self; |
| 800 | } |
| 801 | |
| 802 | #[cfg (has_is_subnormal)] |
| 803 | forward! { |
| 804 | Self::is_subnormal(self) -> bool; |
| 805 | } |
| 806 | |
| 807 | #[cfg (feature = "std" )] |
| 808 | forward! { |
| 809 | Self::floor(self) -> Self; |
| 810 | Self::ceil(self) -> Self; |
| 811 | Self::round(self) -> Self; |
| 812 | Self::trunc(self) -> Self; |
| 813 | Self::fract(self) -> Self; |
| 814 | Self::abs(self) -> Self; |
| 815 | Self::signum(self) -> Self; |
| 816 | Self::powi(self, n: i32) -> Self; |
| 817 | } |
| 818 | |
| 819 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
| 820 | forward! { |
| 821 | libm::floorf as floor(self) -> Self; |
| 822 | libm::ceilf as ceil(self) -> Self; |
| 823 | libm::roundf as round(self) -> Self; |
| 824 | libm::truncf as trunc(self) -> Self; |
| 825 | libm::fabsf as abs(self) -> Self; |
| 826 | } |
| 827 | |
| 828 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
| 829 | #[inline ] |
| 830 | fn fract(self) -> Self { |
| 831 | self - libm::truncf(self) |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | impl FloatCore for f64 { |
| 836 | constant! { |
| 837 | infinity() -> f64::INFINITY; |
| 838 | neg_infinity() -> f64::NEG_INFINITY; |
| 839 | nan() -> f64::NAN; |
| 840 | neg_zero() -> -0.0; |
| 841 | min_value() -> f64::MIN; |
| 842 | min_positive_value() -> f64::MIN_POSITIVE; |
| 843 | epsilon() -> f64::EPSILON; |
| 844 | max_value() -> f64::MAX; |
| 845 | } |
| 846 | |
| 847 | #[inline ] |
| 848 | fn integer_decode(self) -> (u64, i16, i8) { |
| 849 | integer_decode_f64(self) |
| 850 | } |
| 851 | |
| 852 | forward! { |
| 853 | Self::is_nan(self) -> bool; |
| 854 | Self::is_infinite(self) -> bool; |
| 855 | Self::is_finite(self) -> bool; |
| 856 | Self::is_normal(self) -> bool; |
| 857 | Self::classify(self) -> FpCategory; |
| 858 | Self::is_sign_positive(self) -> bool; |
| 859 | Self::is_sign_negative(self) -> bool; |
| 860 | Self::min(self, other: Self) -> Self; |
| 861 | Self::max(self, other: Self) -> Self; |
| 862 | Self::recip(self) -> Self; |
| 863 | Self::to_degrees(self) -> Self; |
| 864 | Self::to_radians(self) -> Self; |
| 865 | } |
| 866 | |
| 867 | #[cfg (has_is_subnormal)] |
| 868 | forward! { |
| 869 | Self::is_subnormal(self) -> bool; |
| 870 | } |
| 871 | |
| 872 | #[cfg (feature = "std" )] |
| 873 | forward! { |
| 874 | Self::floor(self) -> Self; |
| 875 | Self::ceil(self) -> Self; |
| 876 | Self::round(self) -> Self; |
| 877 | Self::trunc(self) -> Self; |
| 878 | Self::fract(self) -> Self; |
| 879 | Self::abs(self) -> Self; |
| 880 | Self::signum(self) -> Self; |
| 881 | Self::powi(self, n: i32) -> Self; |
| 882 | } |
| 883 | |
| 884 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
| 885 | forward! { |
| 886 | libm::floor as floor(self) -> Self; |
| 887 | libm::ceil as ceil(self) -> Self; |
| 888 | libm::round as round(self) -> Self; |
| 889 | libm::trunc as trunc(self) -> Self; |
| 890 | libm::fabs as abs(self) -> Self; |
| 891 | } |
| 892 | |
| 893 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
| 894 | #[inline ] |
| 895 | fn fract(self) -> Self { |
| 896 | self - libm::trunc(self) |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | // FIXME: these doctests aren't actually helpful, because they're using and |
| 901 | // testing the inherent methods directly, not going through `Float`. |
| 902 | |
| 903 | /// Generic trait for floating point numbers |
| 904 | /// |
| 905 | /// This trait is only available with the `std` feature, or with the `libm` feature otherwise. |
| 906 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 907 | pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> { |
| 908 | /// Returns the `NaN` value. |
| 909 | /// |
| 910 | /// ``` |
| 911 | /// use num_traits::Float; |
| 912 | /// |
| 913 | /// let nan: f32 = Float::nan(); |
| 914 | /// |
| 915 | /// assert!(nan.is_nan()); |
| 916 | /// ``` |
| 917 | fn nan() -> Self; |
| 918 | /// Returns the infinite value. |
| 919 | /// |
| 920 | /// ``` |
| 921 | /// use num_traits::Float; |
| 922 | /// use std::f32; |
| 923 | /// |
| 924 | /// let infinity: f32 = Float::infinity(); |
| 925 | /// |
| 926 | /// assert!(infinity.is_infinite()); |
| 927 | /// assert!(!infinity.is_finite()); |
| 928 | /// assert!(infinity > f32::MAX); |
| 929 | /// ``` |
| 930 | fn infinity() -> Self; |
| 931 | /// Returns the negative infinite value. |
| 932 | /// |
| 933 | /// ``` |
| 934 | /// use num_traits::Float; |
| 935 | /// use std::f32; |
| 936 | /// |
| 937 | /// let neg_infinity: f32 = Float::neg_infinity(); |
| 938 | /// |
| 939 | /// assert!(neg_infinity.is_infinite()); |
| 940 | /// assert!(!neg_infinity.is_finite()); |
| 941 | /// assert!(neg_infinity < f32::MIN); |
| 942 | /// ``` |
| 943 | fn neg_infinity() -> Self; |
| 944 | /// Returns `-0.0`. |
| 945 | /// |
| 946 | /// ``` |
| 947 | /// use num_traits::{Zero, Float}; |
| 948 | /// |
| 949 | /// let inf: f32 = Float::infinity(); |
| 950 | /// let zero: f32 = Zero::zero(); |
| 951 | /// let neg_zero: f32 = Float::neg_zero(); |
| 952 | /// |
| 953 | /// assert_eq!(zero, neg_zero); |
| 954 | /// assert_eq!(7.0f32/inf, zero); |
| 955 | /// assert_eq!(zero * 10.0, zero); |
| 956 | /// ``` |
| 957 | fn neg_zero() -> Self; |
| 958 | |
| 959 | /// Returns the smallest finite value that this type can represent. |
| 960 | /// |
| 961 | /// ``` |
| 962 | /// use num_traits::Float; |
| 963 | /// use std::f64; |
| 964 | /// |
| 965 | /// let x: f64 = Float::min_value(); |
| 966 | /// |
| 967 | /// assert_eq!(x, f64::MIN); |
| 968 | /// ``` |
| 969 | fn min_value() -> Self; |
| 970 | |
| 971 | /// Returns the smallest positive, normalized value that this type can represent. |
| 972 | /// |
| 973 | /// ``` |
| 974 | /// use num_traits::Float; |
| 975 | /// use std::f64; |
| 976 | /// |
| 977 | /// let x: f64 = Float::min_positive_value(); |
| 978 | /// |
| 979 | /// assert_eq!(x, f64::MIN_POSITIVE); |
| 980 | /// ``` |
| 981 | fn min_positive_value() -> Self; |
| 982 | |
| 983 | /// Returns epsilon, a small positive value. |
| 984 | /// |
| 985 | /// ``` |
| 986 | /// use num_traits::Float; |
| 987 | /// use std::f64; |
| 988 | /// |
| 989 | /// let x: f64 = Float::epsilon(); |
| 990 | /// |
| 991 | /// assert_eq!(x, f64::EPSILON); |
| 992 | /// ``` |
| 993 | /// |
| 994 | /// # Panics |
| 995 | /// |
| 996 | /// The default implementation will panic if `f32::EPSILON` cannot |
| 997 | /// be cast to `Self`. |
| 998 | fn epsilon() -> Self { |
| 999 | Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON" ) |
| 1000 | } |
| 1001 | |
| 1002 | /// Returns the largest finite value that this type can represent. |
| 1003 | /// |
| 1004 | /// ``` |
| 1005 | /// use num_traits::Float; |
| 1006 | /// use std::f64; |
| 1007 | /// |
| 1008 | /// let x: f64 = Float::max_value(); |
| 1009 | /// assert_eq!(x, f64::MAX); |
| 1010 | /// ``` |
| 1011 | fn max_value() -> Self; |
| 1012 | |
| 1013 | /// Returns `true` if this value is `NaN` and false otherwise. |
| 1014 | /// |
| 1015 | /// ``` |
| 1016 | /// use num_traits::Float; |
| 1017 | /// use std::f64; |
| 1018 | /// |
| 1019 | /// let nan = f64::NAN; |
| 1020 | /// let f = 7.0; |
| 1021 | /// |
| 1022 | /// assert!(nan.is_nan()); |
| 1023 | /// assert!(!f.is_nan()); |
| 1024 | /// ``` |
| 1025 | fn is_nan(self) -> bool; |
| 1026 | |
| 1027 | /// Returns `true` if this value is positive infinity or negative infinity and |
| 1028 | /// false otherwise. |
| 1029 | /// |
| 1030 | /// ``` |
| 1031 | /// use num_traits::Float; |
| 1032 | /// use std::f32; |
| 1033 | /// |
| 1034 | /// let f = 7.0f32; |
| 1035 | /// let inf: f32 = Float::infinity(); |
| 1036 | /// let neg_inf: f32 = Float::neg_infinity(); |
| 1037 | /// let nan: f32 = f32::NAN; |
| 1038 | /// |
| 1039 | /// assert!(!f.is_infinite()); |
| 1040 | /// assert!(!nan.is_infinite()); |
| 1041 | /// |
| 1042 | /// assert!(inf.is_infinite()); |
| 1043 | /// assert!(neg_inf.is_infinite()); |
| 1044 | /// ``` |
| 1045 | fn is_infinite(self) -> bool; |
| 1046 | |
| 1047 | /// Returns `true` if this number is neither infinite nor `NaN`. |
| 1048 | /// |
| 1049 | /// ``` |
| 1050 | /// use num_traits::Float; |
| 1051 | /// use std::f32; |
| 1052 | /// |
| 1053 | /// let f = 7.0f32; |
| 1054 | /// let inf: f32 = Float::infinity(); |
| 1055 | /// let neg_inf: f32 = Float::neg_infinity(); |
| 1056 | /// let nan: f32 = f32::NAN; |
| 1057 | /// |
| 1058 | /// assert!(f.is_finite()); |
| 1059 | /// |
| 1060 | /// assert!(!nan.is_finite()); |
| 1061 | /// assert!(!inf.is_finite()); |
| 1062 | /// assert!(!neg_inf.is_finite()); |
| 1063 | /// ``` |
| 1064 | fn is_finite(self) -> bool; |
| 1065 | |
| 1066 | /// Returns `true` if the number is neither zero, infinite, |
| 1067 | /// [subnormal][subnormal], or `NaN`. |
| 1068 | /// |
| 1069 | /// ``` |
| 1070 | /// use num_traits::Float; |
| 1071 | /// use std::f32; |
| 1072 | /// |
| 1073 | /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 |
| 1074 | /// let max = f32::MAX; |
| 1075 | /// let lower_than_min = 1.0e-40_f32; |
| 1076 | /// let zero = 0.0f32; |
| 1077 | /// |
| 1078 | /// assert!(min.is_normal()); |
| 1079 | /// assert!(max.is_normal()); |
| 1080 | /// |
| 1081 | /// assert!(!zero.is_normal()); |
| 1082 | /// assert!(!f32::NAN.is_normal()); |
| 1083 | /// assert!(!f32::INFINITY.is_normal()); |
| 1084 | /// // Values between `0` and `min` are Subnormal. |
| 1085 | /// assert!(!lower_than_min.is_normal()); |
| 1086 | /// ``` |
| 1087 | /// [subnormal]: http://en.wikipedia.org/wiki/Subnormal_number |
| 1088 | fn is_normal(self) -> bool; |
| 1089 | |
| 1090 | /// Returns `true` if the number is [subnormal]. |
| 1091 | /// |
| 1092 | /// ``` |
| 1093 | /// use num_traits::Float; |
| 1094 | /// use std::f64; |
| 1095 | /// |
| 1096 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
| 1097 | /// let max = f64::MAX; |
| 1098 | /// let lower_than_min = 1.0e-308_f64; |
| 1099 | /// let zero = 0.0_f64; |
| 1100 | /// |
| 1101 | /// assert!(!min.is_subnormal()); |
| 1102 | /// assert!(!max.is_subnormal()); |
| 1103 | /// |
| 1104 | /// assert!(!zero.is_subnormal()); |
| 1105 | /// assert!(!f64::NAN.is_subnormal()); |
| 1106 | /// assert!(!f64::INFINITY.is_subnormal()); |
| 1107 | /// // Values between `0` and `min` are Subnormal. |
| 1108 | /// assert!(lower_than_min.is_subnormal()); |
| 1109 | /// ``` |
| 1110 | /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number |
| 1111 | #[inline ] |
| 1112 | fn is_subnormal(self) -> bool { |
| 1113 | self.classify() == FpCategory::Subnormal |
| 1114 | } |
| 1115 | |
| 1116 | /// Returns the floating point category of the number. If only one property |
| 1117 | /// is going to be tested, it is generally faster to use the specific |
| 1118 | /// predicate instead. |
| 1119 | /// |
| 1120 | /// ``` |
| 1121 | /// use num_traits::Float; |
| 1122 | /// use std::num::FpCategory; |
| 1123 | /// use std::f32; |
| 1124 | /// |
| 1125 | /// let num = 12.4f32; |
| 1126 | /// let inf = f32::INFINITY; |
| 1127 | /// |
| 1128 | /// assert_eq!(num.classify(), FpCategory::Normal); |
| 1129 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
| 1130 | /// ``` |
| 1131 | fn classify(self) -> FpCategory; |
| 1132 | |
| 1133 | /// Returns the largest integer less than or equal to a number. |
| 1134 | /// |
| 1135 | /// ``` |
| 1136 | /// use num_traits::Float; |
| 1137 | /// |
| 1138 | /// let f = 3.99; |
| 1139 | /// let g = 3.0; |
| 1140 | /// |
| 1141 | /// assert_eq!(f.floor(), 3.0); |
| 1142 | /// assert_eq!(g.floor(), 3.0); |
| 1143 | /// ``` |
| 1144 | fn floor(self) -> Self; |
| 1145 | |
| 1146 | /// Returns the smallest integer greater than or equal to a number. |
| 1147 | /// |
| 1148 | /// ``` |
| 1149 | /// use num_traits::Float; |
| 1150 | /// |
| 1151 | /// let f = 3.01; |
| 1152 | /// let g = 4.0; |
| 1153 | /// |
| 1154 | /// assert_eq!(f.ceil(), 4.0); |
| 1155 | /// assert_eq!(g.ceil(), 4.0); |
| 1156 | /// ``` |
| 1157 | fn ceil(self) -> Self; |
| 1158 | |
| 1159 | /// Returns the nearest integer to a number. Round half-way cases away from |
| 1160 | /// `0.0`. |
| 1161 | /// |
| 1162 | /// ``` |
| 1163 | /// use num_traits::Float; |
| 1164 | /// |
| 1165 | /// let f = 3.3; |
| 1166 | /// let g = -3.3; |
| 1167 | /// |
| 1168 | /// assert_eq!(f.round(), 3.0); |
| 1169 | /// assert_eq!(g.round(), -3.0); |
| 1170 | /// ``` |
| 1171 | fn round(self) -> Self; |
| 1172 | |
| 1173 | /// Return the integer part of a number. |
| 1174 | /// |
| 1175 | /// ``` |
| 1176 | /// use num_traits::Float; |
| 1177 | /// |
| 1178 | /// let f = 3.3; |
| 1179 | /// let g = -3.7; |
| 1180 | /// |
| 1181 | /// assert_eq!(f.trunc(), 3.0); |
| 1182 | /// assert_eq!(g.trunc(), -3.0); |
| 1183 | /// ``` |
| 1184 | fn trunc(self) -> Self; |
| 1185 | |
| 1186 | /// Returns the fractional part of a number. |
| 1187 | /// |
| 1188 | /// ``` |
| 1189 | /// use num_traits::Float; |
| 1190 | /// |
| 1191 | /// let x = 3.5; |
| 1192 | /// let y = -3.5; |
| 1193 | /// let abs_difference_x = (x.fract() - 0.5).abs(); |
| 1194 | /// let abs_difference_y = (y.fract() - (-0.5)).abs(); |
| 1195 | /// |
| 1196 | /// assert!(abs_difference_x < 1e-10); |
| 1197 | /// assert!(abs_difference_y < 1e-10); |
| 1198 | /// ``` |
| 1199 | fn fract(self) -> Self; |
| 1200 | |
| 1201 | /// Computes the absolute value of `self`. Returns `Float::nan()` if the |
| 1202 | /// number is `Float::nan()`. |
| 1203 | /// |
| 1204 | /// ``` |
| 1205 | /// use num_traits::Float; |
| 1206 | /// use std::f64; |
| 1207 | /// |
| 1208 | /// let x = 3.5; |
| 1209 | /// let y = -3.5; |
| 1210 | /// |
| 1211 | /// let abs_difference_x = (x.abs() - x).abs(); |
| 1212 | /// let abs_difference_y = (y.abs() - (-y)).abs(); |
| 1213 | /// |
| 1214 | /// assert!(abs_difference_x < 1e-10); |
| 1215 | /// assert!(abs_difference_y < 1e-10); |
| 1216 | /// |
| 1217 | /// assert!(f64::NAN.abs().is_nan()); |
| 1218 | /// ``` |
| 1219 | fn abs(self) -> Self; |
| 1220 | |
| 1221 | /// Returns a number that represents the sign of `self`. |
| 1222 | /// |
| 1223 | /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` |
| 1224 | /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` |
| 1225 | /// - `Float::nan()` if the number is `Float::nan()` |
| 1226 | /// |
| 1227 | /// ``` |
| 1228 | /// use num_traits::Float; |
| 1229 | /// use std::f64; |
| 1230 | /// |
| 1231 | /// let f = 3.5; |
| 1232 | /// |
| 1233 | /// assert_eq!(f.signum(), 1.0); |
| 1234 | /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); |
| 1235 | /// |
| 1236 | /// assert!(f64::NAN.signum().is_nan()); |
| 1237 | /// ``` |
| 1238 | fn signum(self) -> Self; |
| 1239 | |
| 1240 | /// Returns `true` if `self` is positive, including `+0.0`, |
| 1241 | /// `Float::infinity()`, and `Float::nan()`. |
| 1242 | /// |
| 1243 | /// ``` |
| 1244 | /// use num_traits::Float; |
| 1245 | /// use std::f64; |
| 1246 | /// |
| 1247 | /// let nan: f64 = f64::NAN; |
| 1248 | /// let neg_nan: f64 = -f64::NAN; |
| 1249 | /// |
| 1250 | /// let f = 7.0; |
| 1251 | /// let g = -7.0; |
| 1252 | /// |
| 1253 | /// assert!(f.is_sign_positive()); |
| 1254 | /// assert!(!g.is_sign_positive()); |
| 1255 | /// assert!(nan.is_sign_positive()); |
| 1256 | /// assert!(!neg_nan.is_sign_positive()); |
| 1257 | /// ``` |
| 1258 | fn is_sign_positive(self) -> bool; |
| 1259 | |
| 1260 | /// Returns `true` if `self` is negative, including `-0.0`, |
| 1261 | /// `Float::neg_infinity()`, and `-Float::nan()`. |
| 1262 | /// |
| 1263 | /// ``` |
| 1264 | /// use num_traits::Float; |
| 1265 | /// use std::f64; |
| 1266 | /// |
| 1267 | /// let nan: f64 = f64::NAN; |
| 1268 | /// let neg_nan: f64 = -f64::NAN; |
| 1269 | /// |
| 1270 | /// let f = 7.0; |
| 1271 | /// let g = -7.0; |
| 1272 | /// |
| 1273 | /// assert!(!f.is_sign_negative()); |
| 1274 | /// assert!(g.is_sign_negative()); |
| 1275 | /// assert!(!nan.is_sign_negative()); |
| 1276 | /// assert!(neg_nan.is_sign_negative()); |
| 1277 | /// ``` |
| 1278 | fn is_sign_negative(self) -> bool; |
| 1279 | |
| 1280 | /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
| 1281 | /// error, yielding a more accurate result than an unfused multiply-add. |
| 1282 | /// |
| 1283 | /// Using `mul_add` can be more performant than an unfused multiply-add if |
| 1284 | /// the target architecture has a dedicated `fma` CPU instruction. |
| 1285 | /// |
| 1286 | /// ``` |
| 1287 | /// use num_traits::Float; |
| 1288 | /// |
| 1289 | /// let m = 10.0; |
| 1290 | /// let x = 4.0; |
| 1291 | /// let b = 60.0; |
| 1292 | /// |
| 1293 | /// // 100.0 |
| 1294 | /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); |
| 1295 | /// |
| 1296 | /// assert!(abs_difference < 1e-10); |
| 1297 | /// ``` |
| 1298 | fn mul_add(self, a: Self, b: Self) -> Self; |
| 1299 | /// Take the reciprocal (inverse) of a number, `1/x`. |
| 1300 | /// |
| 1301 | /// ``` |
| 1302 | /// use num_traits::Float; |
| 1303 | /// |
| 1304 | /// let x = 2.0; |
| 1305 | /// let abs_difference = (x.recip() - (1.0/x)).abs(); |
| 1306 | /// |
| 1307 | /// assert!(abs_difference < 1e-10); |
| 1308 | /// ``` |
| 1309 | fn recip(self) -> Self; |
| 1310 | |
| 1311 | /// Raise a number to an integer power. |
| 1312 | /// |
| 1313 | /// Using this function is generally faster than using `powf` |
| 1314 | /// |
| 1315 | /// ``` |
| 1316 | /// use num_traits::Float; |
| 1317 | /// |
| 1318 | /// let x = 2.0; |
| 1319 | /// let abs_difference = (x.powi(2) - x*x).abs(); |
| 1320 | /// |
| 1321 | /// assert!(abs_difference < 1e-10); |
| 1322 | /// ``` |
| 1323 | fn powi(self, n: i32) -> Self; |
| 1324 | |
| 1325 | /// Raise a number to a floating point power. |
| 1326 | /// |
| 1327 | /// ``` |
| 1328 | /// use num_traits::Float; |
| 1329 | /// |
| 1330 | /// let x = 2.0; |
| 1331 | /// let abs_difference = (x.powf(2.0) - x*x).abs(); |
| 1332 | /// |
| 1333 | /// assert!(abs_difference < 1e-10); |
| 1334 | /// ``` |
| 1335 | fn powf(self, n: Self) -> Self; |
| 1336 | |
| 1337 | /// Take the square root of a number. |
| 1338 | /// |
| 1339 | /// Returns NaN if `self` is a negative number. |
| 1340 | /// |
| 1341 | /// ``` |
| 1342 | /// use num_traits::Float; |
| 1343 | /// |
| 1344 | /// let positive = 4.0; |
| 1345 | /// let negative = -4.0; |
| 1346 | /// |
| 1347 | /// let abs_difference = (positive.sqrt() - 2.0).abs(); |
| 1348 | /// |
| 1349 | /// assert!(abs_difference < 1e-10); |
| 1350 | /// assert!(negative.sqrt().is_nan()); |
| 1351 | /// ``` |
| 1352 | fn sqrt(self) -> Self; |
| 1353 | |
| 1354 | /// Returns `e^(self)`, (the exponential function). |
| 1355 | /// |
| 1356 | /// ``` |
| 1357 | /// use num_traits::Float; |
| 1358 | /// |
| 1359 | /// let one = 1.0; |
| 1360 | /// // e^1 |
| 1361 | /// let e = one.exp(); |
| 1362 | /// |
| 1363 | /// // ln(e) - 1 == 0 |
| 1364 | /// let abs_difference = (e.ln() - 1.0).abs(); |
| 1365 | /// |
| 1366 | /// assert!(abs_difference < 1e-10); |
| 1367 | /// ``` |
| 1368 | fn exp(self) -> Self; |
| 1369 | |
| 1370 | /// Returns `2^(self)`. |
| 1371 | /// |
| 1372 | /// ``` |
| 1373 | /// use num_traits::Float; |
| 1374 | /// |
| 1375 | /// let f = 2.0; |
| 1376 | /// |
| 1377 | /// // 2^2 - 4 == 0 |
| 1378 | /// let abs_difference = (f.exp2() - 4.0).abs(); |
| 1379 | /// |
| 1380 | /// assert!(abs_difference < 1e-10); |
| 1381 | /// ``` |
| 1382 | fn exp2(self) -> Self; |
| 1383 | |
| 1384 | /// Returns the natural logarithm of the number. |
| 1385 | /// |
| 1386 | /// ``` |
| 1387 | /// use num_traits::Float; |
| 1388 | /// |
| 1389 | /// let one = 1.0; |
| 1390 | /// // e^1 |
| 1391 | /// let e = one.exp(); |
| 1392 | /// |
| 1393 | /// // ln(e) - 1 == 0 |
| 1394 | /// let abs_difference = (e.ln() - 1.0).abs(); |
| 1395 | /// |
| 1396 | /// assert!(abs_difference < 1e-10); |
| 1397 | /// ``` |
| 1398 | fn ln(self) -> Self; |
| 1399 | |
| 1400 | /// Returns the logarithm of the number with respect to an arbitrary base. |
| 1401 | /// |
| 1402 | /// ``` |
| 1403 | /// use num_traits::Float; |
| 1404 | /// |
| 1405 | /// let ten = 10.0; |
| 1406 | /// let two = 2.0; |
| 1407 | /// |
| 1408 | /// // log10(10) - 1 == 0 |
| 1409 | /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); |
| 1410 | /// |
| 1411 | /// // log2(2) - 1 == 0 |
| 1412 | /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); |
| 1413 | /// |
| 1414 | /// assert!(abs_difference_10 < 1e-10); |
| 1415 | /// assert!(abs_difference_2 < 1e-10); |
| 1416 | /// ``` |
| 1417 | fn log(self, base: Self) -> Self; |
| 1418 | |
| 1419 | /// Returns the base 2 logarithm of the number. |
| 1420 | /// |
| 1421 | /// ``` |
| 1422 | /// use num_traits::Float; |
| 1423 | /// |
| 1424 | /// let two = 2.0; |
| 1425 | /// |
| 1426 | /// // log2(2) - 1 == 0 |
| 1427 | /// let abs_difference = (two.log2() - 1.0).abs(); |
| 1428 | /// |
| 1429 | /// assert!(abs_difference < 1e-10); |
| 1430 | /// ``` |
| 1431 | fn log2(self) -> Self; |
| 1432 | |
| 1433 | /// Returns the base 10 logarithm of the number. |
| 1434 | /// |
| 1435 | /// ``` |
| 1436 | /// use num_traits::Float; |
| 1437 | /// |
| 1438 | /// let ten = 10.0; |
| 1439 | /// |
| 1440 | /// // log10(10) - 1 == 0 |
| 1441 | /// let abs_difference = (ten.log10() - 1.0).abs(); |
| 1442 | /// |
| 1443 | /// assert!(abs_difference < 1e-10); |
| 1444 | /// ``` |
| 1445 | fn log10(self) -> Self; |
| 1446 | |
| 1447 | /// Converts radians to degrees. |
| 1448 | /// |
| 1449 | /// ``` |
| 1450 | /// use std::f64::consts; |
| 1451 | /// |
| 1452 | /// let angle = consts::PI; |
| 1453 | /// |
| 1454 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
| 1455 | /// |
| 1456 | /// assert!(abs_difference < 1e-10); |
| 1457 | /// ``` |
| 1458 | #[inline ] |
| 1459 | fn to_degrees(self) -> Self { |
| 1460 | let halfpi = Self::zero().acos(); |
| 1461 | let ninety = Self::from(90u8).unwrap(); |
| 1462 | self * ninety / halfpi |
| 1463 | } |
| 1464 | |
| 1465 | /// Converts degrees to radians. |
| 1466 | /// |
| 1467 | /// ``` |
| 1468 | /// use std::f64::consts; |
| 1469 | /// |
| 1470 | /// let angle = 180.0_f64; |
| 1471 | /// |
| 1472 | /// let abs_difference = (angle.to_radians() - consts::PI).abs(); |
| 1473 | /// |
| 1474 | /// assert!(abs_difference < 1e-10); |
| 1475 | /// ``` |
| 1476 | #[inline ] |
| 1477 | fn to_radians(self) -> Self { |
| 1478 | let halfpi = Self::zero().acos(); |
| 1479 | let ninety = Self::from(90u8).unwrap(); |
| 1480 | self * halfpi / ninety |
| 1481 | } |
| 1482 | |
| 1483 | /// Returns the maximum of the two numbers. |
| 1484 | /// |
| 1485 | /// ``` |
| 1486 | /// use num_traits::Float; |
| 1487 | /// |
| 1488 | /// let x = 1.0; |
| 1489 | /// let y = 2.0; |
| 1490 | /// |
| 1491 | /// assert_eq!(x.max(y), y); |
| 1492 | /// ``` |
| 1493 | fn max(self, other: Self) -> Self; |
| 1494 | |
| 1495 | /// Returns the minimum of the two numbers. |
| 1496 | /// |
| 1497 | /// ``` |
| 1498 | /// use num_traits::Float; |
| 1499 | /// |
| 1500 | /// let x = 1.0; |
| 1501 | /// let y = 2.0; |
| 1502 | /// |
| 1503 | /// assert_eq!(x.min(y), x); |
| 1504 | /// ``` |
| 1505 | fn min(self, other: Self) -> Self; |
| 1506 | |
| 1507 | /// The positive difference of two numbers. |
| 1508 | /// |
| 1509 | /// * If `self <= other`: `0:0` |
| 1510 | /// * Else: `self - other` |
| 1511 | /// |
| 1512 | /// ``` |
| 1513 | /// use num_traits::Float; |
| 1514 | /// |
| 1515 | /// let x = 3.0; |
| 1516 | /// let y = -3.0; |
| 1517 | /// |
| 1518 | /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); |
| 1519 | /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); |
| 1520 | /// |
| 1521 | /// assert!(abs_difference_x < 1e-10); |
| 1522 | /// assert!(abs_difference_y < 1e-10); |
| 1523 | /// ``` |
| 1524 | fn abs_sub(self, other: Self) -> Self; |
| 1525 | |
| 1526 | /// Take the cubic root of a number. |
| 1527 | /// |
| 1528 | /// ``` |
| 1529 | /// use num_traits::Float; |
| 1530 | /// |
| 1531 | /// let x = 8.0; |
| 1532 | /// |
| 1533 | /// // x^(1/3) - 2 == 0 |
| 1534 | /// let abs_difference = (x.cbrt() - 2.0).abs(); |
| 1535 | /// |
| 1536 | /// assert!(abs_difference < 1e-10); |
| 1537 | /// ``` |
| 1538 | fn cbrt(self) -> Self; |
| 1539 | |
| 1540 | /// Calculate the length of the hypotenuse of a right-angle triangle given |
| 1541 | /// legs of length `x` and `y`. |
| 1542 | /// |
| 1543 | /// ``` |
| 1544 | /// use num_traits::Float; |
| 1545 | /// |
| 1546 | /// let x = 2.0; |
| 1547 | /// let y = 3.0; |
| 1548 | /// |
| 1549 | /// // sqrt(x^2 + y^2) |
| 1550 | /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); |
| 1551 | /// |
| 1552 | /// assert!(abs_difference < 1e-10); |
| 1553 | /// ``` |
| 1554 | fn hypot(self, other: Self) -> Self; |
| 1555 | |
| 1556 | /// Computes the sine of a number (in radians). |
| 1557 | /// |
| 1558 | /// ``` |
| 1559 | /// use num_traits::Float; |
| 1560 | /// use std::f64; |
| 1561 | /// |
| 1562 | /// let x = f64::consts::PI/2.0; |
| 1563 | /// |
| 1564 | /// let abs_difference = (x.sin() - 1.0).abs(); |
| 1565 | /// |
| 1566 | /// assert!(abs_difference < 1e-10); |
| 1567 | /// ``` |
| 1568 | fn sin(self) -> Self; |
| 1569 | |
| 1570 | /// Computes the cosine of a number (in radians). |
| 1571 | /// |
| 1572 | /// ``` |
| 1573 | /// use num_traits::Float; |
| 1574 | /// use std::f64; |
| 1575 | /// |
| 1576 | /// let x = 2.0*f64::consts::PI; |
| 1577 | /// |
| 1578 | /// let abs_difference = (x.cos() - 1.0).abs(); |
| 1579 | /// |
| 1580 | /// assert!(abs_difference < 1e-10); |
| 1581 | /// ``` |
| 1582 | fn cos(self) -> Self; |
| 1583 | |
| 1584 | /// Computes the tangent of a number (in radians). |
| 1585 | /// |
| 1586 | /// ``` |
| 1587 | /// use num_traits::Float; |
| 1588 | /// use std::f64; |
| 1589 | /// |
| 1590 | /// let x = f64::consts::PI/4.0; |
| 1591 | /// let abs_difference = (x.tan() - 1.0).abs(); |
| 1592 | /// |
| 1593 | /// assert!(abs_difference < 1e-14); |
| 1594 | /// ``` |
| 1595 | fn tan(self) -> Self; |
| 1596 | |
| 1597 | /// Computes the arcsine of a number. Return value is in radians in |
| 1598 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
| 1599 | /// [-1, 1]. |
| 1600 | /// |
| 1601 | /// ``` |
| 1602 | /// use num_traits::Float; |
| 1603 | /// use std::f64; |
| 1604 | /// |
| 1605 | /// let f = f64::consts::PI / 2.0; |
| 1606 | /// |
| 1607 | /// // asin(sin(pi/2)) |
| 1608 | /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); |
| 1609 | /// |
| 1610 | /// assert!(abs_difference < 1e-10); |
| 1611 | /// ``` |
| 1612 | fn asin(self) -> Self; |
| 1613 | |
| 1614 | /// Computes the arccosine of a number. Return value is in radians in |
| 1615 | /// the range [0, pi] or NaN if the number is outside the range |
| 1616 | /// [-1, 1]. |
| 1617 | /// |
| 1618 | /// ``` |
| 1619 | /// use num_traits::Float; |
| 1620 | /// use std::f64; |
| 1621 | /// |
| 1622 | /// let f = f64::consts::PI / 4.0; |
| 1623 | /// |
| 1624 | /// // acos(cos(pi/4)) |
| 1625 | /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); |
| 1626 | /// |
| 1627 | /// assert!(abs_difference < 1e-10); |
| 1628 | /// ``` |
| 1629 | fn acos(self) -> Self; |
| 1630 | |
| 1631 | /// Computes the arctangent of a number. Return value is in radians in the |
| 1632 | /// range [-pi/2, pi/2]; |
| 1633 | /// |
| 1634 | /// ``` |
| 1635 | /// use num_traits::Float; |
| 1636 | /// |
| 1637 | /// let f = 1.0; |
| 1638 | /// |
| 1639 | /// // atan(tan(1)) |
| 1640 | /// let abs_difference = (f.tan().atan() - 1.0).abs(); |
| 1641 | /// |
| 1642 | /// assert!(abs_difference < 1e-10); |
| 1643 | /// ``` |
| 1644 | fn atan(self) -> Self; |
| 1645 | |
| 1646 | /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). |
| 1647 | /// |
| 1648 | /// * `x = 0`, `y = 0`: `0` |
| 1649 | /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` |
| 1650 | /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` |
| 1651 | /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` |
| 1652 | /// |
| 1653 | /// ``` |
| 1654 | /// use num_traits::Float; |
| 1655 | /// use std::f64; |
| 1656 | /// |
| 1657 | /// let pi = f64::consts::PI; |
| 1658 | /// // All angles from horizontal right (+x) |
| 1659 | /// // 45 deg counter-clockwise |
| 1660 | /// let x1 = 3.0; |
| 1661 | /// let y1 = -3.0; |
| 1662 | /// |
| 1663 | /// // 135 deg clockwise |
| 1664 | /// let x2 = -3.0; |
| 1665 | /// let y2 = 3.0; |
| 1666 | /// |
| 1667 | /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); |
| 1668 | /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); |
| 1669 | /// |
| 1670 | /// assert!(abs_difference_1 < 1e-10); |
| 1671 | /// assert!(abs_difference_2 < 1e-10); |
| 1672 | /// ``` |
| 1673 | fn atan2(self, other: Self) -> Self; |
| 1674 | |
| 1675 | /// Simultaneously computes the sine and cosine of the number, `x`. Returns |
| 1676 | /// `(sin(x), cos(x))`. |
| 1677 | /// |
| 1678 | /// ``` |
| 1679 | /// use num_traits::Float; |
| 1680 | /// use std::f64; |
| 1681 | /// |
| 1682 | /// let x = f64::consts::PI/4.0; |
| 1683 | /// let f = x.sin_cos(); |
| 1684 | /// |
| 1685 | /// let abs_difference_0 = (f.0 - x.sin()).abs(); |
| 1686 | /// let abs_difference_1 = (f.1 - x.cos()).abs(); |
| 1687 | /// |
| 1688 | /// assert!(abs_difference_0 < 1e-10); |
| 1689 | /// assert!(abs_difference_0 < 1e-10); |
| 1690 | /// ``` |
| 1691 | fn sin_cos(self) -> (Self, Self); |
| 1692 | |
| 1693 | /// Returns `e^(self) - 1` in a way that is accurate even if the |
| 1694 | /// number is close to zero. |
| 1695 | /// |
| 1696 | /// ``` |
| 1697 | /// use num_traits::Float; |
| 1698 | /// |
| 1699 | /// let x = 7.0; |
| 1700 | /// |
| 1701 | /// // e^(ln(7)) - 1 |
| 1702 | /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); |
| 1703 | /// |
| 1704 | /// assert!(abs_difference < 1e-10); |
| 1705 | /// ``` |
| 1706 | fn exp_m1(self) -> Self; |
| 1707 | |
| 1708 | /// Returns `ln(1+n)` (natural logarithm) more accurately than if |
| 1709 | /// the operations were performed separately. |
| 1710 | /// |
| 1711 | /// ``` |
| 1712 | /// use num_traits::Float; |
| 1713 | /// use std::f64; |
| 1714 | /// |
| 1715 | /// let x = f64::consts::E - 1.0; |
| 1716 | /// |
| 1717 | /// // ln(1 + (e - 1)) == ln(e) == 1 |
| 1718 | /// let abs_difference = (x.ln_1p() - 1.0).abs(); |
| 1719 | /// |
| 1720 | /// assert!(abs_difference < 1e-10); |
| 1721 | /// ``` |
| 1722 | fn ln_1p(self) -> Self; |
| 1723 | |
| 1724 | /// Hyperbolic sine function. |
| 1725 | /// |
| 1726 | /// ``` |
| 1727 | /// use num_traits::Float; |
| 1728 | /// use std::f64; |
| 1729 | /// |
| 1730 | /// let e = f64::consts::E; |
| 1731 | /// let x = 1.0; |
| 1732 | /// |
| 1733 | /// let f = x.sinh(); |
| 1734 | /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` |
| 1735 | /// let g = (e*e - 1.0)/(2.0*e); |
| 1736 | /// let abs_difference = (f - g).abs(); |
| 1737 | /// |
| 1738 | /// assert!(abs_difference < 1e-10); |
| 1739 | /// ``` |
| 1740 | fn sinh(self) -> Self; |
| 1741 | |
| 1742 | /// Hyperbolic cosine function. |
| 1743 | /// |
| 1744 | /// ``` |
| 1745 | /// use num_traits::Float; |
| 1746 | /// use std::f64; |
| 1747 | /// |
| 1748 | /// let e = f64::consts::E; |
| 1749 | /// let x = 1.0; |
| 1750 | /// let f = x.cosh(); |
| 1751 | /// // Solving cosh() at 1 gives this result |
| 1752 | /// let g = (e*e + 1.0)/(2.0*e); |
| 1753 | /// let abs_difference = (f - g).abs(); |
| 1754 | /// |
| 1755 | /// // Same result |
| 1756 | /// assert!(abs_difference < 1.0e-10); |
| 1757 | /// ``` |
| 1758 | fn cosh(self) -> Self; |
| 1759 | |
| 1760 | /// Hyperbolic tangent function. |
| 1761 | /// |
| 1762 | /// ``` |
| 1763 | /// use num_traits::Float; |
| 1764 | /// use std::f64; |
| 1765 | /// |
| 1766 | /// let e = f64::consts::E; |
| 1767 | /// let x = 1.0; |
| 1768 | /// |
| 1769 | /// let f = x.tanh(); |
| 1770 | /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` |
| 1771 | /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); |
| 1772 | /// let abs_difference = (f - g).abs(); |
| 1773 | /// |
| 1774 | /// assert!(abs_difference < 1.0e-10); |
| 1775 | /// ``` |
| 1776 | fn tanh(self) -> Self; |
| 1777 | |
| 1778 | /// Inverse hyperbolic sine function. |
| 1779 | /// |
| 1780 | /// ``` |
| 1781 | /// use num_traits::Float; |
| 1782 | /// |
| 1783 | /// let x = 1.0; |
| 1784 | /// let f = x.sinh().asinh(); |
| 1785 | /// |
| 1786 | /// let abs_difference = (f - x).abs(); |
| 1787 | /// |
| 1788 | /// assert!(abs_difference < 1.0e-10); |
| 1789 | /// ``` |
| 1790 | fn asinh(self) -> Self; |
| 1791 | |
| 1792 | /// Inverse hyperbolic cosine function. |
| 1793 | /// |
| 1794 | /// ``` |
| 1795 | /// use num_traits::Float; |
| 1796 | /// |
| 1797 | /// let x = 1.0; |
| 1798 | /// let f = x.cosh().acosh(); |
| 1799 | /// |
| 1800 | /// let abs_difference = (f - x).abs(); |
| 1801 | /// |
| 1802 | /// assert!(abs_difference < 1.0e-10); |
| 1803 | /// ``` |
| 1804 | fn acosh(self) -> Self; |
| 1805 | |
| 1806 | /// Inverse hyperbolic tangent function. |
| 1807 | /// |
| 1808 | /// ``` |
| 1809 | /// use num_traits::Float; |
| 1810 | /// use std::f64; |
| 1811 | /// |
| 1812 | /// let e = f64::consts::E; |
| 1813 | /// let f = e.tanh().atanh(); |
| 1814 | /// |
| 1815 | /// let abs_difference = (f - e).abs(); |
| 1816 | /// |
| 1817 | /// assert!(abs_difference < 1.0e-10); |
| 1818 | /// ``` |
| 1819 | fn atanh(self) -> Self; |
| 1820 | |
| 1821 | /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. |
| 1822 | /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. |
| 1823 | /// |
| 1824 | /// ``` |
| 1825 | /// use num_traits::Float; |
| 1826 | /// |
| 1827 | /// let num = 2.0f32; |
| 1828 | /// |
| 1829 | /// // (8388608, -22, 1) |
| 1830 | /// let (mantissa, exponent, sign) = Float::integer_decode(num); |
| 1831 | /// let sign_f = sign as f32; |
| 1832 | /// let mantissa_f = mantissa as f32; |
| 1833 | /// let exponent_f = num.powf(exponent as f32); |
| 1834 | /// |
| 1835 | /// // 1 * 8388608 * 2^(-22) == 2 |
| 1836 | /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); |
| 1837 | /// |
| 1838 | /// assert!(abs_difference < 1e-10); |
| 1839 | /// ``` |
| 1840 | fn integer_decode(self) -> (u64, i16, i8); |
| 1841 | |
| 1842 | /// Returns a number composed of the magnitude of `self` and the sign of |
| 1843 | /// `sign`. |
| 1844 | /// |
| 1845 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise |
| 1846 | /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of |
| 1847 | /// `sign` is returned. |
| 1848 | /// |
| 1849 | /// # Examples |
| 1850 | /// |
| 1851 | /// ``` |
| 1852 | /// use num_traits::Float; |
| 1853 | /// |
| 1854 | /// let f = 3.5_f32; |
| 1855 | /// |
| 1856 | /// assert_eq!(f.copysign(0.42), 3.5_f32); |
| 1857 | /// assert_eq!(f.copysign(-0.42), -3.5_f32); |
| 1858 | /// assert_eq!((-f).copysign(0.42), 3.5_f32); |
| 1859 | /// assert_eq!((-f).copysign(-0.42), -3.5_f32); |
| 1860 | /// |
| 1861 | /// assert!(f32::nan().copysign(1.0).is_nan()); |
| 1862 | /// ``` |
| 1863 | fn copysign(self, sign: Self) -> Self { |
| 1864 | if self.is_sign_negative() == sign.is_sign_negative() { |
| 1865 | self |
| 1866 | } else { |
| 1867 | self.neg() |
| 1868 | } |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | #[cfg (feature = "std" )] |
| 1873 | macro_rules! float_impl_std { |
| 1874 | ($T:ident $decode:ident) => { |
| 1875 | impl Float for $T { |
| 1876 | constant! { |
| 1877 | nan() -> $T::NAN; |
| 1878 | infinity() -> $T::INFINITY; |
| 1879 | neg_infinity() -> $T::NEG_INFINITY; |
| 1880 | neg_zero() -> -0.0; |
| 1881 | min_value() -> $T::MIN; |
| 1882 | min_positive_value() -> $T::MIN_POSITIVE; |
| 1883 | epsilon() -> $T::EPSILON; |
| 1884 | max_value() -> $T::MAX; |
| 1885 | } |
| 1886 | |
| 1887 | #[inline] |
| 1888 | #[allow(deprecated)] |
| 1889 | fn abs_sub(self, other: Self) -> Self { |
| 1890 | <$T>::abs_sub(self, other) |
| 1891 | } |
| 1892 | |
| 1893 | #[inline] |
| 1894 | fn integer_decode(self) -> (u64, i16, i8) { |
| 1895 | $decode(self) |
| 1896 | } |
| 1897 | |
| 1898 | forward! { |
| 1899 | Self::is_nan(self) -> bool; |
| 1900 | Self::is_infinite(self) -> bool; |
| 1901 | Self::is_finite(self) -> bool; |
| 1902 | Self::is_normal(self) -> bool; |
| 1903 | Self::classify(self) -> FpCategory; |
| 1904 | Self::floor(self) -> Self; |
| 1905 | Self::ceil(self) -> Self; |
| 1906 | Self::round(self) -> Self; |
| 1907 | Self::trunc(self) -> Self; |
| 1908 | Self::fract(self) -> Self; |
| 1909 | Self::abs(self) -> Self; |
| 1910 | Self::signum(self) -> Self; |
| 1911 | Self::is_sign_positive(self) -> bool; |
| 1912 | Self::is_sign_negative(self) -> bool; |
| 1913 | Self::mul_add(self, a: Self, b: Self) -> Self; |
| 1914 | Self::recip(self) -> Self; |
| 1915 | Self::powi(self, n: i32) -> Self; |
| 1916 | Self::powf(self, n: Self) -> Self; |
| 1917 | Self::sqrt(self) -> Self; |
| 1918 | Self::exp(self) -> Self; |
| 1919 | Self::exp2(self) -> Self; |
| 1920 | Self::ln(self) -> Self; |
| 1921 | Self::log(self, base: Self) -> Self; |
| 1922 | Self::log2(self) -> Self; |
| 1923 | Self::log10(self) -> Self; |
| 1924 | Self::to_degrees(self) -> Self; |
| 1925 | Self::to_radians(self) -> Self; |
| 1926 | Self::max(self, other: Self) -> Self; |
| 1927 | Self::min(self, other: Self) -> Self; |
| 1928 | Self::cbrt(self) -> Self; |
| 1929 | Self::hypot(self, other: Self) -> Self; |
| 1930 | Self::sin(self) -> Self; |
| 1931 | Self::cos(self) -> Self; |
| 1932 | Self::tan(self) -> Self; |
| 1933 | Self::asin(self) -> Self; |
| 1934 | Self::acos(self) -> Self; |
| 1935 | Self::atan(self) -> Self; |
| 1936 | Self::atan2(self, other: Self) -> Self; |
| 1937 | Self::sin_cos(self) -> (Self, Self); |
| 1938 | Self::exp_m1(self) -> Self; |
| 1939 | Self::ln_1p(self) -> Self; |
| 1940 | Self::sinh(self) -> Self; |
| 1941 | Self::cosh(self) -> Self; |
| 1942 | Self::tanh(self) -> Self; |
| 1943 | Self::asinh(self) -> Self; |
| 1944 | Self::acosh(self) -> Self; |
| 1945 | Self::atanh(self) -> Self; |
| 1946 | } |
| 1947 | |
| 1948 | #[cfg(has_copysign)] |
| 1949 | forward! { |
| 1950 | Self::copysign(self, sign: Self) -> Self; |
| 1951 | } |
| 1952 | |
| 1953 | #[cfg(has_is_subnormal)] |
| 1954 | forward! { |
| 1955 | Self::is_subnormal(self) -> bool; |
| 1956 | } |
| 1957 | } |
| 1958 | }; |
| 1959 | } |
| 1960 | |
| 1961 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
| 1962 | macro_rules! float_impl_libm { |
| 1963 | ($T:ident $decode:ident) => { |
| 1964 | constant! { |
| 1965 | nan() -> $T::NAN; |
| 1966 | infinity() -> $T::INFINITY; |
| 1967 | neg_infinity() -> $T::NEG_INFINITY; |
| 1968 | neg_zero() -> -0.0; |
| 1969 | min_value() -> $T::MIN; |
| 1970 | min_positive_value() -> $T::MIN_POSITIVE; |
| 1971 | epsilon() -> $T::EPSILON; |
| 1972 | max_value() -> $T::MAX; |
| 1973 | } |
| 1974 | |
| 1975 | #[inline] |
| 1976 | fn integer_decode(self) -> (u64, i16, i8) { |
| 1977 | $decode(self) |
| 1978 | } |
| 1979 | |
| 1980 | #[inline] |
| 1981 | fn fract(self) -> Self { |
| 1982 | self - Float::trunc(self) |
| 1983 | } |
| 1984 | |
| 1985 | #[inline] |
| 1986 | fn log(self, base: Self) -> Self { |
| 1987 | self.ln() / base.ln() |
| 1988 | } |
| 1989 | |
| 1990 | forward! { |
| 1991 | Self::is_nan(self) -> bool; |
| 1992 | Self::is_infinite(self) -> bool; |
| 1993 | Self::is_finite(self) -> bool; |
| 1994 | Self::is_normal(self) -> bool; |
| 1995 | Self::classify(self) -> FpCategory; |
| 1996 | Self::is_sign_positive(self) -> bool; |
| 1997 | Self::is_sign_negative(self) -> bool; |
| 1998 | Self::min(self, other: Self) -> Self; |
| 1999 | Self::max(self, other: Self) -> Self; |
| 2000 | Self::recip(self) -> Self; |
| 2001 | Self::to_degrees(self) -> Self; |
| 2002 | Self::to_radians(self) -> Self; |
| 2003 | } |
| 2004 | |
| 2005 | #[cfg(has_is_subnormal)] |
| 2006 | forward! { |
| 2007 | Self::is_subnormal(self) -> bool; |
| 2008 | } |
| 2009 | |
| 2010 | forward! { |
| 2011 | FloatCore::signum(self) -> Self; |
| 2012 | FloatCore::powi(self, n: i32) -> Self; |
| 2013 | } |
| 2014 | }; |
| 2015 | } |
| 2016 | |
| 2017 | fn integer_decode_f32(f: f32) -> (u64, i16, i8) { |
| 2018 | let bits: u32 = f.to_bits(); |
| 2019 | let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; |
| 2020 | let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; |
| 2021 | let mantissa = if exponent == 0 { |
| 2022 | (bits & 0x7fffff) << 1 |
| 2023 | } else { |
| 2024 | (bits & 0x7fffff) | 0x800000 |
| 2025 | }; |
| 2026 | // Exponent bias + mantissa shift |
| 2027 | exponent -= 127 + 23; |
| 2028 | (mantissa as u64, exponent, sign) |
| 2029 | } |
| 2030 | |
| 2031 | fn integer_decode_f64(f: f64) -> (u64, i16, i8) { |
| 2032 | let bits: u64 = f.to_bits(); |
| 2033 | let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; |
| 2034 | let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; |
| 2035 | let mantissa = if exponent == 0 { |
| 2036 | (bits & 0xfffffffffffff) << 1 |
| 2037 | } else { |
| 2038 | (bits & 0xfffffffffffff) | 0x10000000000000 |
| 2039 | }; |
| 2040 | // Exponent bias + mantissa shift |
| 2041 | exponent -= 1023 + 52; |
| 2042 | (mantissa, exponent, sign) |
| 2043 | } |
| 2044 | |
| 2045 | #[cfg (feature = "std" )] |
| 2046 | float_impl_std!(f32 integer_decode_f32); |
| 2047 | #[cfg (feature = "std" )] |
| 2048 | float_impl_std!(f64 integer_decode_f64); |
| 2049 | |
| 2050 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
| 2051 | impl Float for f32 { |
| 2052 | float_impl_libm!(f32 integer_decode_f32); |
| 2053 | |
| 2054 | #[inline ] |
| 2055 | #[allow (deprecated)] |
| 2056 | fn abs_sub(self, other: Self) -> Self { |
| 2057 | libm::fdimf(self, other) |
| 2058 | } |
| 2059 | |
| 2060 | forward! { |
| 2061 | libm::floorf as floor(self) -> Self; |
| 2062 | libm::ceilf as ceil(self) -> Self; |
| 2063 | libm::roundf as round(self) -> Self; |
| 2064 | libm::truncf as trunc(self) -> Self; |
| 2065 | libm::fabsf as abs(self) -> Self; |
| 2066 | libm::fmaf as mul_add(self, a: Self, b: Self) -> Self; |
| 2067 | libm::powf as powf(self, n: Self) -> Self; |
| 2068 | libm::sqrtf as sqrt(self) -> Self; |
| 2069 | libm::expf as exp(self) -> Self; |
| 2070 | libm::exp2f as exp2(self) -> Self; |
| 2071 | libm::logf as ln(self) -> Self; |
| 2072 | libm::log2f as log2(self) -> Self; |
| 2073 | libm::log10f as log10(self) -> Self; |
| 2074 | libm::cbrtf as cbrt(self) -> Self; |
| 2075 | libm::hypotf as hypot(self, other: Self) -> Self; |
| 2076 | libm::sinf as sin(self) -> Self; |
| 2077 | libm::cosf as cos(self) -> Self; |
| 2078 | libm::tanf as tan(self) -> Self; |
| 2079 | libm::asinf as asin(self) -> Self; |
| 2080 | libm::acosf as acos(self) -> Self; |
| 2081 | libm::atanf as atan(self) -> Self; |
| 2082 | libm::atan2f as atan2(self, other: Self) -> Self; |
| 2083 | libm::sincosf as sin_cos(self) -> (Self, Self); |
| 2084 | libm::expm1f as exp_m1(self) -> Self; |
| 2085 | libm::log1pf as ln_1p(self) -> Self; |
| 2086 | libm::sinhf as sinh(self) -> Self; |
| 2087 | libm::coshf as cosh(self) -> Self; |
| 2088 | libm::tanhf as tanh(self) -> Self; |
| 2089 | libm::asinhf as asinh(self) -> Self; |
| 2090 | libm::acoshf as acosh(self) -> Self; |
| 2091 | libm::atanhf as atanh(self) -> Self; |
| 2092 | libm::copysignf as copysign(self, other: Self) -> Self; |
| 2093 | } |
| 2094 | } |
| 2095 | |
| 2096 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
| 2097 | impl Float for f64 { |
| 2098 | float_impl_libm!(f64 integer_decode_f64); |
| 2099 | |
| 2100 | #[inline ] |
| 2101 | #[allow (deprecated)] |
| 2102 | fn abs_sub(self, other: Self) -> Self { |
| 2103 | libm::fdim(self, other) |
| 2104 | } |
| 2105 | |
| 2106 | forward! { |
| 2107 | libm::floor as floor(self) -> Self; |
| 2108 | libm::ceil as ceil(self) -> Self; |
| 2109 | libm::round as round(self) -> Self; |
| 2110 | libm::trunc as trunc(self) -> Self; |
| 2111 | libm::fabs as abs(self) -> Self; |
| 2112 | libm::fma as mul_add(self, a: Self, b: Self) -> Self; |
| 2113 | libm::pow as powf(self, n: Self) -> Self; |
| 2114 | libm::sqrt as sqrt(self) -> Self; |
| 2115 | libm::exp as exp(self) -> Self; |
| 2116 | libm::exp2 as exp2(self) -> Self; |
| 2117 | libm::log as ln(self) -> Self; |
| 2118 | libm::log2 as log2(self) -> Self; |
| 2119 | libm::log10 as log10(self) -> Self; |
| 2120 | libm::cbrt as cbrt(self) -> Self; |
| 2121 | libm::hypot as hypot(self, other: Self) -> Self; |
| 2122 | libm::sin as sin(self) -> Self; |
| 2123 | libm::cos as cos(self) -> Self; |
| 2124 | libm::tan as tan(self) -> Self; |
| 2125 | libm::asin as asin(self) -> Self; |
| 2126 | libm::acos as acos(self) -> Self; |
| 2127 | libm::atan as atan(self) -> Self; |
| 2128 | libm::atan2 as atan2(self, other: Self) -> Self; |
| 2129 | libm::sincos as sin_cos(self) -> (Self, Self); |
| 2130 | libm::expm1 as exp_m1(self) -> Self; |
| 2131 | libm::log1p as ln_1p(self) -> Self; |
| 2132 | libm::sinh as sinh(self) -> Self; |
| 2133 | libm::cosh as cosh(self) -> Self; |
| 2134 | libm::tanh as tanh(self) -> Self; |
| 2135 | libm::asinh as asinh(self) -> Self; |
| 2136 | libm::acosh as acosh(self) -> Self; |
| 2137 | libm::atanh as atanh(self) -> Self; |
| 2138 | libm::copysign as copysign(self, sign: Self) -> Self; |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | macro_rules! float_const_impl { |
| 2143 | ($(#[$doc:meta] $constant:ident,)+) => ( |
| 2144 | #[allow(non_snake_case)] |
| 2145 | pub trait FloatConst { |
| 2146 | $(#[$doc] fn $constant() -> Self;)+ |
| 2147 | #[doc = "Return the full circle constant `τ`." ] |
| 2148 | #[inline] |
| 2149 | fn TAU() -> Self where Self: Sized + Add<Self, Output = Self> { |
| 2150 | Self::PI() + Self::PI() |
| 2151 | } |
| 2152 | #[doc = "Return `log10(2.0)`." ] |
| 2153 | #[inline] |
| 2154 | fn LOG10_2() -> Self where Self: Sized + Div<Self, Output = Self> { |
| 2155 | Self::LN_2() / Self::LN_10() |
| 2156 | } |
| 2157 | #[doc = "Return `log2(10.0)`." ] |
| 2158 | #[inline] |
| 2159 | fn LOG2_10() -> Self where Self: Sized + Div<Self, Output = Self> { |
| 2160 | Self::LN_10() / Self::LN_2() |
| 2161 | } |
| 2162 | } |
| 2163 | float_const_impl! { @float f32, $($constant,)+ } |
| 2164 | float_const_impl! { @float f64, $($constant,)+ } |
| 2165 | ); |
| 2166 | (@float $T:ident, $($constant:ident,)+) => ( |
| 2167 | impl FloatConst for $T { |
| 2168 | constant! { |
| 2169 | $( $constant() -> $T::consts::$constant; )+ |
| 2170 | TAU() -> 6.28318530717958647692528676655900577; |
| 2171 | LOG10_2() -> 0.301029995663981195213738894724493027; |
| 2172 | LOG2_10() -> 3.32192809488736234787031942948939018; |
| 2173 | } |
| 2174 | } |
| 2175 | ); |
| 2176 | } |
| 2177 | |
| 2178 | float_const_impl! { |
| 2179 | #[doc = "Return Euler’s number." ] |
| 2180 | E, |
| 2181 | #[doc = "Return `1.0 / π`." ] |
| 2182 | FRAC_1_PI, |
| 2183 | #[doc = "Return `1.0 / sqrt(2.0)`." ] |
| 2184 | FRAC_1_SQRT_2, |
| 2185 | #[doc = "Return `2.0 / π`." ] |
| 2186 | FRAC_2_PI, |
| 2187 | #[doc = "Return `2.0 / sqrt(π)`." ] |
| 2188 | FRAC_2_SQRT_PI, |
| 2189 | #[doc = "Return `π / 2.0`." ] |
| 2190 | FRAC_PI_2, |
| 2191 | #[doc = "Return `π / 3.0`." ] |
| 2192 | FRAC_PI_3, |
| 2193 | #[doc = "Return `π / 4.0`." ] |
| 2194 | FRAC_PI_4, |
| 2195 | #[doc = "Return `π / 6.0`." ] |
| 2196 | FRAC_PI_6, |
| 2197 | #[doc = "Return `π / 8.0`." ] |
| 2198 | FRAC_PI_8, |
| 2199 | #[doc = "Return `ln(10.0)`." ] |
| 2200 | LN_10, |
| 2201 | #[doc = "Return `ln(2.0)`." ] |
| 2202 | LN_2, |
| 2203 | #[doc = "Return `log10(e)`." ] |
| 2204 | LOG10_E, |
| 2205 | #[doc = "Return `log2(e)`." ] |
| 2206 | LOG2_E, |
| 2207 | #[doc = "Return Archimedes’ constant `π`." ] |
| 2208 | PI, |
| 2209 | #[doc = "Return `sqrt(2.0)`." ] |
| 2210 | SQRT_2, |
| 2211 | } |
| 2212 | |
| 2213 | #[cfg (test)] |
| 2214 | mod tests { |
| 2215 | use core::f64::consts; |
| 2216 | |
| 2217 | const DEG_RAD_PAIRS: [(f64, f64); 7] = [ |
| 2218 | (0.0, 0.), |
| 2219 | (22.5, consts::FRAC_PI_8), |
| 2220 | (30.0, consts::FRAC_PI_6), |
| 2221 | (45.0, consts::FRAC_PI_4), |
| 2222 | (60.0, consts::FRAC_PI_3), |
| 2223 | (90.0, consts::FRAC_PI_2), |
| 2224 | (180.0, consts::PI), |
| 2225 | ]; |
| 2226 | |
| 2227 | #[test] |
| 2228 | fn convert_deg_rad() { |
| 2229 | use crate::float::FloatCore; |
| 2230 | |
| 2231 | for &(deg, rad) in &DEG_RAD_PAIRS { |
| 2232 | assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6); |
| 2233 | assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6); |
| 2234 | |
| 2235 | let (deg, rad) = (deg as f32, rad as f32); |
| 2236 | assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5); |
| 2237 | assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5); |
| 2238 | } |
| 2239 | } |
| 2240 | |
| 2241 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 2242 | #[test] |
| 2243 | fn convert_deg_rad_std() { |
| 2244 | for &(deg, rad) in &DEG_RAD_PAIRS { |
| 2245 | use crate::Float; |
| 2246 | |
| 2247 | assert!((Float::to_degrees(rad) - deg).abs() < 1e-6); |
| 2248 | assert!((Float::to_radians(deg) - rad).abs() < 1e-6); |
| 2249 | |
| 2250 | let (deg, rad) = (deg as f32, rad as f32); |
| 2251 | assert!((Float::to_degrees(rad) - deg).abs() < 1e-5); |
| 2252 | assert!((Float::to_radians(deg) - rad).abs() < 1e-5); |
| 2253 | } |
| 2254 | } |
| 2255 | |
| 2256 | #[test] |
| 2257 | fn to_degrees_rounding() { |
| 2258 | use crate::float::FloatCore; |
| 2259 | |
| 2260 | assert_eq!( |
| 2261 | FloatCore::to_degrees(1_f32), |
| 2262 | 57.2957795130823208767981548141051703 |
| 2263 | ); |
| 2264 | } |
| 2265 | |
| 2266 | #[test] |
| 2267 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 2268 | fn extra_logs() { |
| 2269 | use crate::float::{Float, FloatConst}; |
| 2270 | |
| 2271 | fn check<F: Float + FloatConst>(diff: F) { |
| 2272 | let _2 = F::from(2.0).unwrap(); |
| 2273 | assert!((F::LOG10_2() - F::log10(_2)).abs() < diff); |
| 2274 | assert!((F::LOG10_2() - F::LN_2() / F::LN_10()).abs() < diff); |
| 2275 | |
| 2276 | let _10 = F::from(10.0).unwrap(); |
| 2277 | assert!((F::LOG2_10() - F::log2(_10)).abs() < diff); |
| 2278 | assert!((F::LOG2_10() - F::LN_10() / F::LN_2()).abs() < diff); |
| 2279 | } |
| 2280 | |
| 2281 | check::<f32>(1e-6); |
| 2282 | check::<f64>(1e-12); |
| 2283 | } |
| 2284 | |
| 2285 | #[test] |
| 2286 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 2287 | fn copysign() { |
| 2288 | use crate::float::Float; |
| 2289 | test_copysign_generic(2.0_f32, -2.0_f32, f32::nan()); |
| 2290 | test_copysign_generic(2.0_f64, -2.0_f64, f64::nan()); |
| 2291 | test_copysignf(2.0_f32, -2.0_f32, f32::nan()); |
| 2292 | } |
| 2293 | |
| 2294 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 2295 | fn test_copysignf(p: f32, n: f32, nan: f32) { |
| 2296 | use crate::float::Float; |
| 2297 | use core::ops::Neg; |
| 2298 | |
| 2299 | assert!(p.is_sign_positive()); |
| 2300 | assert!(n.is_sign_negative()); |
| 2301 | assert!(nan.is_nan()); |
| 2302 | |
| 2303 | assert_eq!(p, Float::copysign(p, p)); |
| 2304 | assert_eq!(p.neg(), Float::copysign(p, n)); |
| 2305 | |
| 2306 | assert_eq!(n, Float::copysign(n, n)); |
| 2307 | assert_eq!(n.neg(), Float::copysign(n, p)); |
| 2308 | |
| 2309 | assert!(Float::copysign(nan, p).is_sign_positive()); |
| 2310 | assert!(Float::copysign(nan, n).is_sign_negative()); |
| 2311 | } |
| 2312 | |
| 2313 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 2314 | fn test_copysign_generic<F: crate::float::Float + ::core::fmt::Debug>(p: F, n: F, nan: F) { |
| 2315 | assert!(p.is_sign_positive()); |
| 2316 | assert!(n.is_sign_negative()); |
| 2317 | assert!(nan.is_nan()); |
| 2318 | assert!(!nan.is_subnormal()); |
| 2319 | |
| 2320 | assert_eq!(p, p.copysign(p)); |
| 2321 | assert_eq!(p.neg(), p.copysign(n)); |
| 2322 | |
| 2323 | assert_eq!(n, n.copysign(n)); |
| 2324 | assert_eq!(n.neg(), n.copysign(p)); |
| 2325 | |
| 2326 | assert!(nan.copysign(p).is_sign_positive()); |
| 2327 | assert!(nan.copysign(n).is_sign_negative()); |
| 2328 | } |
| 2329 | |
| 2330 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 2331 | fn test_subnormal<F: crate::float::Float + ::core::fmt::Debug>() { |
| 2332 | let min_positive = F::min_positive_value(); |
| 2333 | let lower_than_min = min_positive / F::from(2.0f32).unwrap(); |
| 2334 | assert!(!min_positive.is_subnormal()); |
| 2335 | assert!(lower_than_min.is_subnormal()); |
| 2336 | } |
| 2337 | |
| 2338 | #[test] |
| 2339 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 2340 | fn subnormal() { |
| 2341 | test_subnormal::<f64>(); |
| 2342 | test_subnormal::<f32>(); |
| 2343 | } |
| 2344 | } |
| 2345 | |