1 | // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution and at |
3 | // http://rust-lang.org/COPYRIGHT. |
4 | // |
5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
8 | // option. This file may not be copied, modified, or distributed |
9 | // except according to those terms. |
10 | |
11 | //! Numeric traits for generic mathematics |
12 | //! |
13 | //! ## Compatibility |
14 | //! |
15 | //! The `num-traits` crate is tested for rustc 1.31 and greater. |
16 | |
17 | #![doc (html_root_url = "https://docs.rs/num-traits/0.2" )] |
18 | #![deny (unconditional_recursion)] |
19 | #![no_std ] |
20 | |
21 | // Need to explicitly bring the crate in for inherent float methods |
22 | #[cfg (feature = "std" )] |
23 | extern crate std; |
24 | |
25 | use core::fmt; |
26 | use core::num::Wrapping; |
27 | use core::ops::{Add, Div, Mul, Rem, Sub}; |
28 | use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
29 | |
30 | pub use crate::bounds::Bounded; |
31 | #[cfg (any(feature = "std" , feature = "libm" ))] |
32 | pub use crate::float::Float; |
33 | pub use crate::float::FloatConst; |
34 | // pub use real::{FloatCore, Real}; // NOTE: Don't do this, it breaks `use num_traits::*;`. |
35 | pub use crate::cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive}; |
36 | pub use crate::identities::{one, zero, One, Zero}; |
37 | pub use crate::int::PrimInt; |
38 | pub use crate::ops::bytes::{FromBytes, ToBytes}; |
39 | pub use crate::ops::checked::{ |
40 | CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub, |
41 | }; |
42 | pub use crate::ops::euclid::{CheckedEuclid, Euclid}; |
43 | pub use crate::ops::inv::Inv; |
44 | pub use crate::ops::mul_add::{MulAdd, MulAddAssign}; |
45 | pub use crate::ops::saturating::{Saturating, SaturatingAdd, SaturatingMul, SaturatingSub}; |
46 | pub use crate::ops::wrapping::{ |
47 | WrappingAdd, WrappingMul, WrappingNeg, WrappingShl, WrappingShr, WrappingSub, |
48 | }; |
49 | pub use crate::pow::{checked_pow, pow, Pow}; |
50 | pub use crate::sign::{abs, abs_sub, signum, Signed, Unsigned}; |
51 | |
52 | #[macro_use ] |
53 | mod macros; |
54 | |
55 | pub mod bounds; |
56 | pub mod cast; |
57 | pub mod float; |
58 | pub mod identities; |
59 | pub mod int; |
60 | pub mod ops; |
61 | pub mod pow; |
62 | pub mod real; |
63 | pub mod sign; |
64 | |
65 | /// The base trait for numeric types, covering `0` and `1` values, |
66 | /// comparisons, basic numeric operations, and string conversion. |
67 | pub trait Num: PartialEq + Zero + One + NumOps { |
68 | type FromStrRadixErr; |
69 | |
70 | /// Convert from a string and radix (typically `2..=36`). |
71 | /// |
72 | /// # Examples |
73 | /// |
74 | /// ```rust |
75 | /// use num_traits::Num; |
76 | /// |
77 | /// let result = <i32 as Num>::from_str_radix("27" , 10); |
78 | /// assert_eq!(result, Ok(27)); |
79 | /// |
80 | /// let result = <i32 as Num>::from_str_radix("foo" , 10); |
81 | /// assert!(result.is_err()); |
82 | /// ``` |
83 | /// |
84 | /// # Supported radices |
85 | /// |
86 | /// The exact range of supported radices is at the discretion of each type implementation. For |
87 | /// primitive integers, this is implemented by the inherent `from_str_radix` methods in the |
88 | /// standard library, which **panic** if the radix is not in the range from 2 to 36. The |
89 | /// implementation in this crate for primitive floats is similar. |
90 | /// |
91 | /// For third-party types, it is suggested that implementations should follow suit and at least |
92 | /// accept `2..=36` without panicking, but an `Err` may be returned for any unsupported radix. |
93 | /// It's possible that a type might not even support the common radix 10, nor any, if string |
94 | /// parsing doesn't make sense for that type. |
95 | fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>; |
96 | } |
97 | |
98 | /// Generic trait for types implementing basic numeric operations |
99 | /// |
100 | /// This is automatically implemented for types which implement the operators. |
101 | pub trait NumOps<Rhs = Self, Output = Self>: |
102 | Add<Rhs, Output = Output> |
103 | + Sub<Rhs, Output = Output> |
104 | + Mul<Rhs, Output = Output> |
105 | + Div<Rhs, Output = Output> |
106 | + Rem<Rhs, Output = Output> |
107 | { |
108 | } |
109 | |
110 | impl<T, Rhs, Output> NumOps<Rhs, Output> for T where |
111 | T: Add<Rhs, Output = Output> |
112 | + Sub<Rhs, Output = Output> |
113 | + Mul<Rhs, Output = Output> |
114 | + Div<Rhs, Output = Output> |
115 | + Rem<Rhs, Output = Output> |
116 | { |
117 | } |
118 | |
119 | /// The trait for `Num` types which also implement numeric operations taking |
120 | /// the second operand by reference. |
121 | /// |
122 | /// This is automatically implemented for types which implement the operators. |
123 | pub trait NumRef: Num + for<'r> NumOps<&'r Self> {} |
124 | impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {} |
125 | |
126 | /// The trait for `Num` references which implement numeric operations, taking the |
127 | /// second operand either by value or by reference. |
128 | /// |
129 | /// This is automatically implemented for all types which implement the operators. It covers |
130 | /// every type implementing the operations though, regardless of it being a reference or |
131 | /// related to `Num`. |
132 | pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {} |
133 | impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {} |
134 | |
135 | /// Generic trait for types implementing numeric assignment operators (like `+=`). |
136 | /// |
137 | /// This is automatically implemented for types which implement the operators. |
138 | pub trait NumAssignOps<Rhs = Self>: |
139 | AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs> |
140 | { |
141 | } |
142 | |
143 | impl<T, Rhs> NumAssignOps<Rhs> for T where |
144 | T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs> |
145 | { |
146 | } |
147 | |
148 | /// The trait for `Num` types which also implement assignment operators. |
149 | /// |
150 | /// This is automatically implemented for types which implement the operators. |
151 | pub trait NumAssign: Num + NumAssignOps {} |
152 | impl<T> NumAssign for T where T: Num + NumAssignOps {} |
153 | |
154 | /// The trait for `NumAssign` types which also implement assignment operations |
155 | /// taking the second operand by reference. |
156 | /// |
157 | /// This is automatically implemented for types which implement the operators. |
158 | pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {} |
159 | impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {} |
160 | |
161 | macro_rules! int_trait_impl { |
162 | ($name:ident for $($t:ty)*) => ($( |
163 | impl $name for $t { |
164 | type FromStrRadixErr = ::core::num::ParseIntError; |
165 | #[inline] |
166 | fn from_str_radix(s: &str, radix: u32) |
167 | -> Result<Self, ::core::num::ParseIntError> |
168 | { |
169 | <$t>::from_str_radix(s, radix) |
170 | } |
171 | } |
172 | )*) |
173 | } |
174 | int_trait_impl!(Num for usize u8 u16 u32 u64 u128); |
175 | int_trait_impl!(Num for isize i8 i16 i32 i64 i128); |
176 | |
177 | impl<T: Num> Num for Wrapping<T> |
178 | where |
179 | Wrapping<T>: NumOps, |
180 | { |
181 | type FromStrRadixErr = T::FromStrRadixErr; |
182 | fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> { |
183 | T::from_str_radix(str, radix).map(Wrapping) |
184 | } |
185 | } |
186 | |
187 | #[derive(Debug)] |
188 | pub enum FloatErrorKind { |
189 | Empty, |
190 | Invalid, |
191 | } |
192 | // FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us, |
193 | // so there's not really any way for us to reuse it. |
194 | #[derive(Debug)] |
195 | pub struct ParseFloatError { |
196 | pub kind: FloatErrorKind, |
197 | } |
198 | |
199 | impl fmt::Display for ParseFloatError { |
200 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
201 | let description = match self.kind { |
202 | FloatErrorKind::Empty => "cannot parse float from empty string" , |
203 | FloatErrorKind::Invalid => "invalid float literal" , |
204 | }; |
205 | |
206 | description.fmt(f) |
207 | } |
208 | } |
209 | |
210 | fn str_to_ascii_lower_eq_str(a: &str, b: &str) -> bool { |
211 | a.len() == b.len() |
212 | && a.bytes().zip(b.bytes()).all(|(a, b)| { |
213 | let a_to_ascii_lower = a | (((b'A' <= a && a <= b'Z' ) as u8) << 5); |
214 | a_to_ascii_lower == b |
215 | }) |
216 | } |
217 | |
218 | // FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck |
219 | // with this implementation ourselves until we want to make a breaking change. |
220 | // (would have to drop it from `Num` though) |
221 | macro_rules! float_trait_impl { |
222 | ($name:ident for $($t:ident)*) => ($( |
223 | impl $name for $t { |
224 | type FromStrRadixErr = ParseFloatError; |
225 | |
226 | fn from_str_radix(src: &str, radix: u32) |
227 | -> Result<Self, Self::FromStrRadixErr> |
228 | { |
229 | use self::FloatErrorKind::*; |
230 | use self::ParseFloatError as PFE; |
231 | |
232 | // Special case radix 10 to use more accurate standard library implementation |
233 | if radix == 10 { |
234 | return src.parse().map_err(|_| PFE { |
235 | kind: if src.is_empty() { Empty } else { Invalid }, |
236 | }); |
237 | } |
238 | |
239 | // Special values |
240 | if str_to_ascii_lower_eq_str(src, "inf" ) |
241 | || str_to_ascii_lower_eq_str(src, "infinity" ) |
242 | { |
243 | return Ok(core::$t::INFINITY); |
244 | } else if str_to_ascii_lower_eq_str(src, "-inf" ) |
245 | || str_to_ascii_lower_eq_str(src, "-infinity" ) |
246 | { |
247 | return Ok(core::$t::NEG_INFINITY); |
248 | } else if str_to_ascii_lower_eq_str(src, "nan" ) { |
249 | return Ok(core::$t::NAN); |
250 | } else if str_to_ascii_lower_eq_str(src, "-nan" ) { |
251 | return Ok(-core::$t::NAN); |
252 | } |
253 | |
254 | fn slice_shift_char(src: &str) -> Option<(char, &str)> { |
255 | let mut chars = src.chars(); |
256 | Some((chars.next()?, chars.as_str())) |
257 | } |
258 | |
259 | let (is_positive, src) = match slice_shift_char(src) { |
260 | None => return Err(PFE { kind: Empty }), |
261 | Some(('-' , "" )) => return Err(PFE { kind: Empty }), |
262 | Some(('-' , src)) => (false, src), |
263 | Some((_, _)) => (true, src), |
264 | }; |
265 | |
266 | // The significand to accumulate |
267 | let mut sig = if is_positive { 0.0 } else { -0.0 }; |
268 | // Necessary to detect overflow |
269 | let mut prev_sig = sig; |
270 | let mut cs = src.chars().enumerate(); |
271 | // Exponent prefix and exponent index offset |
272 | let mut exp_info = None::<(char, usize)>; |
273 | |
274 | // Parse the integer part of the significand |
275 | for (i, c) in cs.by_ref() { |
276 | match c.to_digit(radix) { |
277 | Some(digit) => { |
278 | // shift significand one digit left |
279 | sig *= radix as $t; |
280 | |
281 | // add/subtract current digit depending on sign |
282 | if is_positive { |
283 | sig += (digit as isize) as $t; |
284 | } else { |
285 | sig -= (digit as isize) as $t; |
286 | } |
287 | |
288 | // Detect overflow by comparing to last value, except |
289 | // if we've not seen any non-zero digits. |
290 | if prev_sig != 0.0 { |
291 | if is_positive && sig <= prev_sig |
292 | { return Ok(core::$t::INFINITY); } |
293 | if !is_positive && sig >= prev_sig |
294 | { return Ok(core::$t::NEG_INFINITY); } |
295 | |
296 | // Detect overflow by reversing the shift-and-add process |
297 | if is_positive && (prev_sig != (sig - digit as $t) / radix as $t) |
298 | { return Ok(core::$t::INFINITY); } |
299 | if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t) |
300 | { return Ok(core::$t::NEG_INFINITY); } |
301 | } |
302 | prev_sig = sig; |
303 | }, |
304 | None => match c { |
305 | 'e' | 'E' | 'p' | 'P' => { |
306 | exp_info = Some((c, i + 1)); |
307 | break; // start of exponent |
308 | }, |
309 | '.' => { |
310 | break; // start of fractional part |
311 | }, |
312 | _ => { |
313 | return Err(PFE { kind: Invalid }); |
314 | }, |
315 | }, |
316 | } |
317 | } |
318 | |
319 | // If we are not yet at the exponent parse the fractional |
320 | // part of the significand |
321 | if exp_info.is_none() { |
322 | let mut power = 1.0; |
323 | for (i, c) in cs.by_ref() { |
324 | match c.to_digit(radix) { |
325 | Some(digit) => { |
326 | // Decrease power one order of magnitude |
327 | power /= radix as $t; |
328 | // add/subtract current digit depending on sign |
329 | sig = if is_positive { |
330 | sig + (digit as $t) * power |
331 | } else { |
332 | sig - (digit as $t) * power |
333 | }; |
334 | // Detect overflow by comparing to last value |
335 | if is_positive && sig < prev_sig |
336 | { return Ok(core::$t::INFINITY); } |
337 | if !is_positive && sig > prev_sig |
338 | { return Ok(core::$t::NEG_INFINITY); } |
339 | prev_sig = sig; |
340 | }, |
341 | None => match c { |
342 | 'e' | 'E' | 'p' | 'P' => { |
343 | exp_info = Some((c, i + 1)); |
344 | break; // start of exponent |
345 | }, |
346 | _ => { |
347 | return Err(PFE { kind: Invalid }); |
348 | }, |
349 | }, |
350 | } |
351 | } |
352 | } |
353 | |
354 | // Parse and calculate the exponent |
355 | let exp = match exp_info { |
356 | Some((c, offset)) => { |
357 | let base = match c { |
358 | 'E' | 'e' if radix == 10 => 10.0, |
359 | 'P' | 'p' if radix == 16 => 2.0, |
360 | _ => return Err(PFE { kind: Invalid }), |
361 | }; |
362 | |
363 | // Parse the exponent as decimal integer |
364 | let src = &src[offset..]; |
365 | let (is_positive, exp) = match slice_shift_char(src) { |
366 | Some(('-' , src)) => (false, src.parse::<usize>()), |
367 | Some(('+' , src)) => (true, src.parse::<usize>()), |
368 | Some((_, _)) => (true, src.parse::<usize>()), |
369 | None => return Err(PFE { kind: Invalid }), |
370 | }; |
371 | |
372 | #[cfg(feature = "std" )] |
373 | fn pow(base: $t, exp: usize) -> $t { |
374 | Float::powi(base, exp as i32) |
375 | } |
376 | // otherwise uses the generic `pow` from the root |
377 | |
378 | match (is_positive, exp) { |
379 | (true, Ok(exp)) => pow(base, exp), |
380 | (false, Ok(exp)) => 1.0 / pow(base, exp), |
381 | (_, Err(_)) => return Err(PFE { kind: Invalid }), |
382 | } |
383 | }, |
384 | None => 1.0, // no exponent |
385 | }; |
386 | |
387 | Ok(sig * exp) |
388 | } |
389 | } |
390 | )*) |
391 | } |
392 | float_trait_impl!(Num for f32 f64); |
393 | |
394 | /// A value bounded by a minimum and a maximum |
395 | /// |
396 | /// If input is less than min then this returns min. |
397 | /// If input is greater than max then this returns max. |
398 | /// Otherwise this returns input. |
399 | /// |
400 | /// **Panics** in debug mode if `!(min <= max)`. |
401 | #[inline ] |
402 | pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T { |
403 | debug_assert!(min <= max, "min must be less than or equal to max" ); |
404 | if input < min { |
405 | min |
406 | } else if input > max { |
407 | max |
408 | } else { |
409 | input |
410 | } |
411 | } |
412 | |
413 | /// A value bounded by a minimum value |
414 | /// |
415 | /// If input is less than min then this returns min. |
416 | /// Otherwise this returns input. |
417 | /// `clamp_min(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::min(std::f32::NAN, 1.0)`. |
418 | /// |
419 | /// **Panics** in debug mode if `!(min == min)`. (This occurs if `min` is `NAN`.) |
420 | #[inline ] |
421 | #[allow (clippy::eq_op)] |
422 | pub fn clamp_min<T: PartialOrd>(input: T, min: T) -> T { |
423 | debug_assert!(min == min, "min must not be NAN" ); |
424 | if input < min { |
425 | min |
426 | } else { |
427 | input |
428 | } |
429 | } |
430 | |
431 | /// A value bounded by a maximum value |
432 | /// |
433 | /// If input is greater than max then this returns max. |
434 | /// Otherwise this returns input. |
435 | /// `clamp_max(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::max(std::f32::NAN, 1.0)`. |
436 | /// |
437 | /// **Panics** in debug mode if `!(max == max)`. (This occurs if `max` is `NAN`.) |
438 | #[inline ] |
439 | #[allow (clippy::eq_op)] |
440 | pub fn clamp_max<T: PartialOrd>(input: T, max: T) -> T { |
441 | debug_assert!(max == max, "max must not be NAN" ); |
442 | if input > max { |
443 | max |
444 | } else { |
445 | input |
446 | } |
447 | } |
448 | |
449 | #[test] |
450 | fn clamp_test() { |
451 | // Int test |
452 | assert_eq!(1, clamp(1, -1, 2)); |
453 | assert_eq!(-1, clamp(-2, -1, 2)); |
454 | assert_eq!(2, clamp(3, -1, 2)); |
455 | assert_eq!(1, clamp_min(1, -1)); |
456 | assert_eq!(-1, clamp_min(-2, -1)); |
457 | assert_eq!(-1, clamp_max(1, -1)); |
458 | assert_eq!(-2, clamp_max(-2, -1)); |
459 | |
460 | // Float test |
461 | assert_eq!(1.0, clamp(1.0, -1.0, 2.0)); |
462 | assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0)); |
463 | assert_eq!(2.0, clamp(3.0, -1.0, 2.0)); |
464 | assert_eq!(1.0, clamp_min(1.0, -1.0)); |
465 | assert_eq!(-1.0, clamp_min(-2.0, -1.0)); |
466 | assert_eq!(-1.0, clamp_max(1.0, -1.0)); |
467 | assert_eq!(-2.0, clamp_max(-2.0, -1.0)); |
468 | assert!(clamp(::core::f32::NAN, -1.0, 1.0).is_nan()); |
469 | assert!(clamp_min(::core::f32::NAN, 1.0).is_nan()); |
470 | assert!(clamp_max(::core::f32::NAN, 1.0).is_nan()); |
471 | } |
472 | |
473 | #[test] |
474 | #[should_panic ] |
475 | #[cfg (debug_assertions)] |
476 | fn clamp_nan_min() { |
477 | clamp(0., ::core::f32::NAN, 1.); |
478 | } |
479 | |
480 | #[test] |
481 | #[should_panic ] |
482 | #[cfg (debug_assertions)] |
483 | fn clamp_nan_max() { |
484 | clamp(0., -1., ::core::f32::NAN); |
485 | } |
486 | |
487 | #[test] |
488 | #[should_panic ] |
489 | #[cfg (debug_assertions)] |
490 | fn clamp_nan_min_max() { |
491 | clamp(0., ::core::f32::NAN, ::core::f32::NAN); |
492 | } |
493 | |
494 | #[test] |
495 | #[should_panic ] |
496 | #[cfg (debug_assertions)] |
497 | fn clamp_min_nan_min() { |
498 | clamp_min(0., ::core::f32::NAN); |
499 | } |
500 | |
501 | #[test] |
502 | #[should_panic ] |
503 | #[cfg (debug_assertions)] |
504 | fn clamp_max_nan_max() { |
505 | clamp_max(0., ::core::f32::NAN); |
506 | } |
507 | |
508 | #[test] |
509 | fn from_str_radix_unwrap() { |
510 | // The Result error must impl Debug to allow unwrap() |
511 | |
512 | let i: i32 = Num::from_str_radix("0" , 10).unwrap(); |
513 | assert_eq!(i, 0); |
514 | |
515 | let f: f32 = Num::from_str_radix("0.0" , 10).unwrap(); |
516 | assert_eq!(f, 0.0); |
517 | } |
518 | |
519 | #[test] |
520 | fn from_str_radix_multi_byte_fail() { |
521 | // Ensure parsing doesn't panic, even on invalid sign characters |
522 | assert!(f32::from_str_radix("™0.2" , 10).is_err()); |
523 | |
524 | // Even when parsing the exponent sign |
525 | assert!(f32::from_str_radix("0.2E™1" , 10).is_err()); |
526 | } |
527 | |
528 | #[test] |
529 | fn from_str_radix_ignore_case() { |
530 | assert_eq!( |
531 | f32::from_str_radix("InF" , 16).unwrap(), |
532 | ::core::f32::INFINITY |
533 | ); |
534 | assert_eq!( |
535 | f32::from_str_radix("InfinitY" , 16).unwrap(), |
536 | ::core::f32::INFINITY |
537 | ); |
538 | assert_eq!( |
539 | f32::from_str_radix("-InF" , 8).unwrap(), |
540 | ::core::f32::NEG_INFINITY |
541 | ); |
542 | assert_eq!( |
543 | f32::from_str_radix("-InfinitY" , 8).unwrap(), |
544 | ::core::f32::NEG_INFINITY |
545 | ); |
546 | assert!(f32::from_str_radix("nAn" , 4).unwrap().is_nan()); |
547 | assert!(f32::from_str_radix("-nAn" , 4).unwrap().is_nan()); |
548 | } |
549 | |
550 | #[test] |
551 | fn wrapping_is_num() { |
552 | fn require_num<T: Num>(_: &T) {} |
553 | require_num(&Wrapping(42_u32)); |
554 | require_num(&Wrapping(-42)); |
555 | } |
556 | |
557 | #[test] |
558 | fn wrapping_from_str_radix() { |
559 | macro_rules! test_wrapping_from_str_radix { |
560 | ($($t:ty)+) => { |
561 | $( |
562 | for &(s, r) in &[("42" , 10), ("42" , 2), ("-13.0" , 10), ("foo" , 10)] { |
563 | let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0); |
564 | assert_eq!(w, <$t as Num>::from_str_radix(s, r)); |
565 | } |
566 | )+ |
567 | }; |
568 | } |
569 | |
570 | test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); |
571 | } |
572 | |
573 | #[test] |
574 | fn check_num_ops() { |
575 | fn compute<T: Num + Copy>(x: T, y: T) -> T { |
576 | x * y / y % y + y - y |
577 | } |
578 | assert_eq!(compute(1, 2), 1) |
579 | } |
580 | |
581 | #[test] |
582 | fn check_numref_ops() { |
583 | fn compute<T: NumRef>(x: T, y: &T) -> T { |
584 | x * y / y % y + y - y |
585 | } |
586 | assert_eq!(compute(1, &2), 1) |
587 | } |
588 | |
589 | #[test] |
590 | fn check_refnum_ops() { |
591 | fn compute<T: Copy>(x: &T, y: T) -> T |
592 | where |
593 | for<'a> &'a T: RefNum<T>, |
594 | { |
595 | &(&(&(&(x * y) / y) % y) + y) - y |
596 | } |
597 | assert_eq!(compute(&1, 2), 1) |
598 | } |
599 | |
600 | #[test] |
601 | fn check_refref_ops() { |
602 | fn compute<T>(x: &T, y: &T) -> T |
603 | where |
604 | for<'a> &'a T: RefNum<T>, |
605 | { |
606 | &(&(&(&(x * y) / y) % y) + y) - y |
607 | } |
608 | assert_eq!(compute(&1, &2), 1) |
609 | } |
610 | |
611 | #[test] |
612 | fn check_numassign_ops() { |
613 | fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T { |
614 | x *= y; |
615 | x /= y; |
616 | x %= y; |
617 | x += y; |
618 | x -= y; |
619 | x |
620 | } |
621 | assert_eq!(compute(1, 2), 1) |
622 | } |
623 | |
624 | #[test] |
625 | fn check_numassignref_ops() { |
626 | fn compute<T: NumAssignRef + Copy>(mut x: T, y: &T) -> T { |
627 | x *= y; |
628 | x /= y; |
629 | x %= y; |
630 | x += y; |
631 | x -= y; |
632 | x |
633 | } |
634 | assert_eq!(compute(1, &2), 1) |
635 | } |
636 | |