| 1 | use crate::coord::ranged1d::types::RangedCoordusize; |
| 2 | use crate::coord::ranged1d::{ |
| 3 | AsRangedCoord, DiscreteRanged, KeyPointHint, NoDefaultFormatting, Ranged, ValueFormatter, |
| 4 | }; |
| 5 | use std::cmp::{Ordering, PartialOrd}; |
| 6 | use std::marker::PhantomData; |
| 7 | use std::ops::{Add, Range, Sub}; |
| 8 | |
| 9 | /// The type marker used to denote the rounding method. |
| 10 | /// Since we are mapping any range to a discrete range thus not all values are |
| 11 | /// perfect mapped to the grid points. In this case, this type marker gives hints |
| 12 | /// for the linspace coord for how to treat the non-grid-point values. |
| 13 | pub trait LinspaceRoundingMethod<V> { |
| 14 | /// Search for the value within the given values array and rounding method |
| 15 | /// |
| 16 | /// - `values`: The values we want to search |
| 17 | /// - `target`: The target value |
| 18 | /// - `returns`: The index if we found the matching item, otherwise none |
| 19 | fn search(values: &[V], target: &V) -> Option<usize>; |
| 20 | } |
| 21 | |
| 22 | /// This type marker means linspace do the exact match for searching |
| 23 | /// which means if there's no value strictly equals to the target, the coord spec |
| 24 | /// reports not found result. |
| 25 | #[derive(Clone)] |
| 26 | pub struct Exact<V>(PhantomData<V>); |
| 27 | |
| 28 | impl<V: PartialOrd> LinspaceRoundingMethod<V> for Exact<V> { |
| 29 | fn search(values: &[V], target: &V) -> Option<usize> { |
| 30 | values.iter().position(|x| target == x) |
| 31 | } |
| 32 | } |
| 33 | |
| 34 | /// This type marker means we round up the value. Which means we try to find a |
| 35 | /// minimal value in the values array that is greater or equal to the target. |
| 36 | #[derive(Clone)] |
| 37 | pub struct Ceil<V>(PhantomData<V>); |
| 38 | |
| 39 | impl<V: PartialOrd> LinspaceRoundingMethod<V> for Ceil<V> { |
| 40 | fn search(values: &[V], target: &V) -> Option<usize> { |
| 41 | let ascending = if values.len() < 2 { |
| 42 | true |
| 43 | } else { |
| 44 | values[0].partial_cmp(&values[1]) == Some(Ordering::Less) |
| 45 | }; |
| 46 | |
| 47 | match values.binary_search_by(|probe| { |
| 48 | if ascending { |
| 49 | probe.partial_cmp(target).unwrap() |
| 50 | } else { |
| 51 | target.partial_cmp(probe).unwrap() |
| 52 | } |
| 53 | }) { |
| 54 | Ok(idx) => Some(idx), |
| 55 | Err(idx) => { |
| 56 | let offset = if ascending { 0 } else { 1 }; |
| 57 | |
| 58 | if idx < offset || idx >= values.len() + offset { |
| 59 | return None; |
| 60 | } |
| 61 | Some(idx - offset) |
| 62 | } |
| 63 | } |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | /// This means we use the round down. Which means we try to find a |
| 68 | /// maximum value in the values array that is less or equal to the target. |
| 69 | #[derive(Clone)] |
| 70 | pub struct Floor<V>(PhantomData<V>); |
| 71 | |
| 72 | impl<V: PartialOrd> LinspaceRoundingMethod<V> for Floor<V> { |
| 73 | fn search(values: &[V], target: &V) -> Option<usize> { |
| 74 | let ascending = if values.len() < 2 { |
| 75 | true |
| 76 | } else { |
| 77 | values[0].partial_cmp(&values[1]) == Some(Ordering::Less) |
| 78 | }; |
| 79 | |
| 80 | match values.binary_search_by(|probe| { |
| 81 | if ascending { |
| 82 | probe.partial_cmp(target).unwrap() |
| 83 | } else { |
| 84 | target.partial_cmp(probe).unwrap() |
| 85 | } |
| 86 | }) { |
| 87 | Ok(idx) => Some(idx), |
| 88 | Err(idx) => { |
| 89 | let offset = if ascending { 1 } else { 0 }; |
| 90 | |
| 91 | if idx < offset || idx >= values.len() + offset { |
| 92 | return None; |
| 93 | } |
| 94 | Some(idx - offset) |
| 95 | } |
| 96 | } |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | /// This means we use the rounding. Which means we try to find the closet |
| 101 | /// value in the array that matches the target |
| 102 | #[derive(Clone)] |
| 103 | pub struct Round<V, S>(PhantomData<(V, S)>); |
| 104 | |
| 105 | impl<V, S> LinspaceRoundingMethod<V> for Round<V, S> |
| 106 | where |
| 107 | V: Add<S, Output = V> + PartialOrd + Sub<V, Output = S> + Clone, |
| 108 | S: PartialOrd + Clone, |
| 109 | { |
| 110 | fn search(values: &[V], target: &V) -> Option<usize> { |
| 111 | let ascending = if values.len() < 2 { |
| 112 | true |
| 113 | } else { |
| 114 | values[0].partial_cmp(&values[1]) == Some(Ordering::Less) |
| 115 | }; |
| 116 | |
| 117 | match values.binary_search_by(|probe| { |
| 118 | if ascending { |
| 119 | probe.partial_cmp(target).unwrap() |
| 120 | } else { |
| 121 | target.partial_cmp(probe).unwrap() |
| 122 | } |
| 123 | }) { |
| 124 | Ok(idx) => Some(idx), |
| 125 | Err(idx) => { |
| 126 | if idx == 0 { |
| 127 | return Some(0); |
| 128 | } |
| 129 | |
| 130 | if idx == values.len() { |
| 131 | return Some(idx - 1); |
| 132 | } |
| 133 | |
| 134 | let left_delta = if ascending { |
| 135 | target.clone() - values[idx - 1].clone() |
| 136 | } else { |
| 137 | values[idx - 1].clone() - target.clone() |
| 138 | }; |
| 139 | let right_delta = if ascending { |
| 140 | values[idx].clone() - target.clone() |
| 141 | } else { |
| 142 | target.clone() - values[idx].clone() |
| 143 | }; |
| 144 | |
| 145 | if left_delta.partial_cmp(&right_delta) == Some(Ordering::Less) { |
| 146 | Some(idx - 1) |
| 147 | } else { |
| 148 | Some(idx) |
| 149 | } |
| 150 | } |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | /// The coordinate combinator that transform a continous coordinate to a discrete coordinate |
| 156 | /// to a discrete coordinate by a giving step. |
| 157 | /// |
| 158 | /// For example, range `0f32..100f32` is a continuous coordinate, thus this prevent us having a |
| 159 | /// histogram on it since Plotters doesn't know how to segment the range into buckets. |
| 160 | /// In this case, to get a histogram, we need to split the original range to a |
| 161 | /// set of discrete buckets (for example, 0.5 per bucket). |
| 162 | /// |
| 163 | /// The linspace decorate abstracting this method. For example, we can have a discrete coordinate: |
| 164 | /// `(0f32..100f32).step(0.5)`. |
| 165 | /// |
| 166 | /// Linspace also supports different types of bucket matching method - This configuration alters the behavior of |
| 167 | /// [DiscreteCoord::index_of](../trait.DiscreteCoord.html#tymethod.index_of) for Linspace coord spec |
| 168 | /// - **Flooring**, the value falls into the nearst bucket smaller than it. See [Linspace::use_floor](struct.Linspace.html#method.use_floor) |
| 169 | /// - **Round**, the value falls into the nearst bucket. See [Linearspace::use_round](struct.Linspace.html#method.use_round) |
| 170 | /// - **Ceiling**, the value falls into the nearst bucket larger than itself. See [Linspace::use_ceil](struct.Linspace.html#method.use_ceil) |
| 171 | /// - **Exact Matchting**, the value must be exactly same as the butcket value. See [Linspace::use_exact](struct.Linspace.html#method.use_exact) |
| 172 | #[derive(Clone)] |
| 173 | pub struct Linspace<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> |
| 174 | where |
| 175 | T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone, |
| 176 | { |
| 177 | step: S, |
| 178 | inner: T, |
| 179 | grid_value: Vec<T::ValueType>, |
| 180 | _phatom: PhantomData<R>, |
| 181 | } |
| 182 | |
| 183 | impl<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> Linspace<T, S, R> |
| 184 | where |
| 185 | T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone, |
| 186 | { |
| 187 | fn compute_grid_values(&mut self) { |
| 188 | let range = self.inner.range(); |
| 189 | |
| 190 | match ( |
| 191 | range.start.partial_cmp(&range.end), |
| 192 | (range.start.clone() + self.step.clone()).partial_cmp(&range.end), |
| 193 | ) { |
| 194 | (Some(a), Some(b)) if a != b || a == Ordering::Equal || b == Ordering::Equal => (), |
| 195 | (Some(a), Some(_)) => { |
| 196 | let mut current = range.start; |
| 197 | while current.partial_cmp(&range.end) == Some(a) { |
| 198 | self.grid_value.push(current.clone()); |
| 199 | current = current + self.step.clone(); |
| 200 | } |
| 201 | } |
| 202 | _ => (), |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | /// Set the linspace use the round up method for value matching |
| 207 | /// |
| 208 | /// - **returns**: The newly created linspace that uses new matching method |
| 209 | pub fn use_ceil(self) -> Linspace<T, S, Ceil<T::ValueType>> { |
| 210 | Linspace { |
| 211 | step: self.step, |
| 212 | inner: self.inner, |
| 213 | grid_value: self.grid_value, |
| 214 | _phatom: PhantomData, |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | /// Set the linspace use the round down method for value matching |
| 219 | /// |
| 220 | /// - **returns**: The newly created linspace that uses new matching method |
| 221 | pub fn use_floor(self) -> Linspace<T, S, Floor<T::ValueType>> { |
| 222 | Linspace { |
| 223 | step: self.step, |
| 224 | inner: self.inner, |
| 225 | grid_value: self.grid_value, |
| 226 | _phatom: PhantomData, |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | /// Set the linspace use the best match method for value matching |
| 231 | /// |
| 232 | /// - **returns**: The newly created linspace that uses new matching method |
| 233 | pub fn use_round(self) -> Linspace<T, S, Round<T::ValueType, S>> |
| 234 | where |
| 235 | T::ValueType: Sub<T::ValueType, Output = S>, |
| 236 | S: PartialOrd, |
| 237 | { |
| 238 | Linspace { |
| 239 | step: self.step, |
| 240 | inner: self.inner, |
| 241 | grid_value: self.grid_value, |
| 242 | _phatom: PhantomData, |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | /// Set the linspace use the exact match method for value matching |
| 247 | /// |
| 248 | /// - **returns**: The newly created linspace that uses new matching method |
| 249 | pub fn use_exact(self) -> Linspace<T, S, Exact<T::ValueType>> |
| 250 | where |
| 251 | T::ValueType: Sub<T::ValueType, Output = S>, |
| 252 | S: PartialOrd, |
| 253 | { |
| 254 | Linspace { |
| 255 | step: self.step, |
| 256 | inner: self.inner, |
| 257 | grid_value: self.grid_value, |
| 258 | _phatom: PhantomData, |
| 259 | } |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | impl<T, R, S, RM> ValueFormatter<T> for Linspace<R, S, RM> |
| 264 | where |
| 265 | R: Ranged<ValueType = T> + ValueFormatter<T>, |
| 266 | RM: LinspaceRoundingMethod<T>, |
| 267 | T: Add<S, Output = T> + PartialOrd + Clone, |
| 268 | S: Clone, |
| 269 | { |
| 270 | fn format(value: &T) -> String { |
| 271 | R::format(value) |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | impl<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> Ranged for Linspace<T, S, R> |
| 276 | where |
| 277 | T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone, |
| 278 | { |
| 279 | type FormatOption = NoDefaultFormatting; |
| 280 | type ValueType = T::ValueType; |
| 281 | |
| 282 | fn range(&self) -> Range<T::ValueType> { |
| 283 | self.inner.range() |
| 284 | } |
| 285 | |
| 286 | fn map(&self, value: &T::ValueType, limit: (i32, i32)) -> i32 { |
| 287 | self.inner.map(value, limit) |
| 288 | } |
| 289 | |
| 290 | fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<T::ValueType> { |
| 291 | if self.grid_value.is_empty() { |
| 292 | return vec![]; |
| 293 | } |
| 294 | let idx_range: RangedCoordusize = (0..(self.grid_value.len() - 1)).into(); |
| 295 | |
| 296 | idx_range |
| 297 | .key_points(hint) |
| 298 | .into_iter() |
| 299 | .map(|x| self.grid_value[x].clone()) |
| 300 | .collect() |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | impl<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> DiscreteRanged |
| 305 | for Linspace<T, S, R> |
| 306 | where |
| 307 | T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone, |
| 308 | { |
| 309 | fn size(&self) -> usize { |
| 310 | self.grid_value.len() |
| 311 | } |
| 312 | |
| 313 | fn index_of(&self, value: &T::ValueType) -> Option<usize> { |
| 314 | R::search(self.grid_value.as_ref(), value) |
| 315 | } |
| 316 | |
| 317 | fn from_index(&self, idx: usize) -> Option<T::ValueType> { |
| 318 | self.grid_value.get(idx).map(Clone::clone) |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /// Makes a linspace coordinate from the ranged coordinates. |
| 323 | pub trait IntoLinspace: AsRangedCoord { |
| 324 | /// Set the step value, make a linspace coordinate from the given range. |
| 325 | /// By default the matching method use the exact match |
| 326 | /// |
| 327 | /// - `val`: The step value |
| 328 | /// - **returns*: The newly created linspace |
| 329 | fn step<S: Clone>(self, val: S) -> Linspace<Self::CoordDescType, S, Exact<Self::Value>> |
| 330 | where |
| 331 | Self::Value: Add<S, Output = Self::Value> + PartialOrd + Clone, |
| 332 | { |
| 333 | let mut ret = Linspace { |
| 334 | step: val, |
| 335 | inner: self.into(), |
| 336 | grid_value: vec![], |
| 337 | _phatom: PhantomData, |
| 338 | }; |
| 339 | |
| 340 | ret.compute_grid_values(); |
| 341 | |
| 342 | ret |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | impl<T: AsRangedCoord> IntoLinspace for T {} |
| 347 | |
| 348 | #[cfg (test)] |
| 349 | mod test { |
| 350 | use super::*; |
| 351 | |
| 352 | #[test] |
| 353 | fn test_float_linspace() { |
| 354 | let coord = (0.0f64..100.0f64).step(0.1); |
| 355 | |
| 356 | assert_eq!(coord.map(&23.12, (0, 10000)), 2312); |
| 357 | assert_eq!(coord.range(), 0.0..100.0); |
| 358 | assert_eq!(coord.key_points(100000).len(), 1001); |
| 359 | assert_eq!(coord.size(), 1001); |
| 360 | assert_eq!(coord.index_of(&coord.from_index(230).unwrap()), Some(230)); |
| 361 | assert!((coord.from_index(230).unwrap() - 23.0).abs() < 1e-5); |
| 362 | } |
| 363 | |
| 364 | #[test] |
| 365 | fn test_rounding_methods() { |
| 366 | let coord = (0.0f64..100.0f64).step(1.0); |
| 367 | |
| 368 | assert_eq!(coord.index_of(&1.0), Some(1)); |
| 369 | assert_eq!(coord.index_of(&1.2), None); |
| 370 | |
| 371 | let coord = coord.use_floor(); |
| 372 | assert_eq!(coord.index_of(&1.0), Some(1)); |
| 373 | assert_eq!(coord.index_of(&1.2), Some(1)); |
| 374 | assert_eq!(coord.index_of(&23.9), Some(23)); |
| 375 | assert_eq!(coord.index_of(&10000.0), Some(99)); |
| 376 | assert_eq!(coord.index_of(&-1.0), None); |
| 377 | |
| 378 | let coord = coord.use_ceil(); |
| 379 | assert_eq!(coord.index_of(&1.0), Some(1)); |
| 380 | assert_eq!(coord.index_of(&1.2), Some(2)); |
| 381 | assert_eq!(coord.index_of(&23.9), Some(24)); |
| 382 | assert_eq!(coord.index_of(&10000.0), None); |
| 383 | assert_eq!(coord.index_of(&-1.0), Some(0)); |
| 384 | |
| 385 | let coord = coord.use_round(); |
| 386 | assert_eq!(coord.index_of(&1.0), Some(1)); |
| 387 | assert_eq!(coord.index_of(&1.2), Some(1)); |
| 388 | assert_eq!(coord.index_of(&1.7), Some(2)); |
| 389 | assert_eq!(coord.index_of(&23.9), Some(24)); |
| 390 | assert_eq!(coord.index_of(&10000.0), Some(99)); |
| 391 | assert_eq!(coord.index_of(&-1.0), Some(0)); |
| 392 | |
| 393 | let coord = (0.0f64..-100.0f64).step(-1.0); |
| 394 | |
| 395 | assert_eq!(coord.index_of(&-1.0), Some(1)); |
| 396 | assert_eq!(coord.index_of(&-1.2), None); |
| 397 | |
| 398 | let coord = coord.use_floor(); |
| 399 | assert_eq!(coord.index_of(&-1.0), Some(1)); |
| 400 | assert_eq!(coord.index_of(&-1.2), Some(2)); |
| 401 | assert_eq!(coord.index_of(&-23.9), Some(24)); |
| 402 | assert_eq!(coord.index_of(&-10000.0), None); |
| 403 | assert_eq!(coord.index_of(&1.0), Some(0)); |
| 404 | |
| 405 | let coord = coord.use_ceil(); |
| 406 | assert_eq!(coord.index_of(&-1.0), Some(1)); |
| 407 | assert_eq!(coord.index_of(&-1.2), Some(1)); |
| 408 | assert_eq!(coord.index_of(&-23.9), Some(23)); |
| 409 | assert_eq!(coord.index_of(&-10000.0), Some(99)); |
| 410 | assert_eq!(coord.index_of(&1.0), None); |
| 411 | |
| 412 | let coord = coord.use_round(); |
| 413 | assert_eq!(coord.index_of(&-1.0), Some(1)); |
| 414 | assert_eq!(coord.index_of(&-1.2), Some(1)); |
| 415 | assert_eq!(coord.index_of(&-1.7), Some(2)); |
| 416 | assert_eq!(coord.index_of(&-23.9), Some(24)); |
| 417 | assert_eq!(coord.index_of(&-10000.0), Some(99)); |
| 418 | assert_eq!(coord.index_of(&1.0), Some(0)); |
| 419 | } |
| 420 | |
| 421 | #[cfg (feature = "chrono" )] |
| 422 | #[test] |
| 423 | fn test_duration_linspace() { |
| 424 | use chrono::Duration; |
| 425 | let coord = (Duration::seconds(0)..Duration::seconds(100)).step(Duration::milliseconds(1)); |
| 426 | |
| 427 | assert_eq!(coord.size(), 100_000); |
| 428 | assert_eq!(coord.index_of(&coord.from_index(230).unwrap()), Some(230)); |
| 429 | assert_eq!(coord.key_points(10000000).len(), 100_000); |
| 430 | assert_eq!(coord.range(), Duration::seconds(0)..Duration::seconds(100)); |
| 431 | assert_eq!(coord.map(&Duration::seconds(25), (0, 100_000)), 25000); |
| 432 | } |
| 433 | } |
| 434 | |