1 | // Copyright 2018 Developers of the Rand project. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
6 | // option. This file may not be copied, modified, or distributed |
7 | // except according to those terms. |
8 | |
9 | //! The Bernoulli distribution. |
10 | |
11 | use crate::distributions::Distribution; |
12 | use crate::Rng; |
13 | use core::{fmt, u64}; |
14 | |
15 | #[cfg (feature = "serde1" )] |
16 | use serde::{Serialize, Deserialize}; |
17 | /// The Bernoulli distribution. |
18 | /// |
19 | /// This is a special case of the Binomial distribution where `n = 1`. |
20 | /// |
21 | /// # Example |
22 | /// |
23 | /// ```rust |
24 | /// use rand::distributions::{Bernoulli, Distribution}; |
25 | /// |
26 | /// let d = Bernoulli::new(0.3).unwrap(); |
27 | /// let v = d.sample(&mut rand::thread_rng()); |
28 | /// println!("{} is from a Bernoulli distribution" , v); |
29 | /// ``` |
30 | /// |
31 | /// # Precision |
32 | /// |
33 | /// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`), |
34 | /// so only probabilities that are multiples of 2<sup>-64</sup> can be |
35 | /// represented. |
36 | #[derive(Clone, Copy, Debug, PartialEq)] |
37 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
38 | pub struct Bernoulli { |
39 | /// Probability of success, relative to the maximal integer. |
40 | p_int: u64, |
41 | } |
42 | |
43 | // To sample from the Bernoulli distribution we use a method that compares a |
44 | // random `u64` value `v < (p * 2^64)`. |
45 | // |
46 | // If `p == 1.0`, the integer `v` to compare against can not represented as a |
47 | // `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64). |
48 | // Note that value of `p < 1.0` can never result in `u64::MAX`, because an |
49 | // `f64` only has 53 bits of precision, and the next largest value of `p` will |
50 | // result in `2^64 - 2048`. |
51 | // |
52 | // Also there is a 100% theoretical concern: if someone consistently wants to |
53 | // generate `true` using the Bernoulli distribution (i.e. by using a probability |
54 | // of `1.0`), just using `u64::MAX` is not enough. On average it would return |
55 | // false once every 2^64 iterations. Some people apparently care about this |
56 | // case. |
57 | // |
58 | // That is why we special-case `u64::MAX` to always return `true`, without using |
59 | // the RNG, and pay the performance price for all uses that *are* reasonable. |
60 | // Luckily, if `new()` and `sample` are close, the compiler can optimize out the |
61 | // extra check. |
62 | const ALWAYS_TRUE: u64 = u64::MAX; |
63 | |
64 | // This is just `2.0.powi(64)`, but written this way because it is not available |
65 | // in `no_std` mode. |
66 | const SCALE: f64 = 2.0 * (1u64 << 63) as f64; |
67 | |
68 | /// Error type returned from `Bernoulli::new`. |
69 | #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
70 | pub enum BernoulliError { |
71 | /// `p < 0` or `p > 1`. |
72 | InvalidProbability, |
73 | } |
74 | |
75 | impl fmt::Display for BernoulliError { |
76 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
77 | f.write_str(match self { |
78 | BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution" , |
79 | }) |
80 | } |
81 | } |
82 | |
83 | #[cfg (feature = "std" )] |
84 | impl ::std::error::Error for BernoulliError {} |
85 | |
86 | impl Bernoulli { |
87 | /// Construct a new `Bernoulli` with the given probability of success `p`. |
88 | /// |
89 | /// # Precision |
90 | /// |
91 | /// For `p = 1.0`, the resulting distribution will always generate true. |
92 | /// For `p = 0.0`, the resulting distribution will always generate false. |
93 | /// |
94 | /// This method is accurate for any input `p` in the range `[0, 1]` which is |
95 | /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of |
96 | /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.) |
97 | #[inline ] |
98 | pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> { |
99 | if !(0.0..1.0).contains(&p) { |
100 | if p == 1.0 { |
101 | return Ok(Bernoulli { p_int: ALWAYS_TRUE }); |
102 | } |
103 | return Err(BernoulliError::InvalidProbability); |
104 | } |
105 | Ok(Bernoulli { |
106 | p_int: (p * SCALE) as u64, |
107 | }) |
108 | } |
109 | |
110 | /// Construct a new `Bernoulli` with the probability of success of |
111 | /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return |
112 | /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`. |
113 | /// |
114 | /// return `true`. If `numerator == 0` it will always return `false`. |
115 | /// For `numerator > denominator` and `denominator == 0`, this returns an |
116 | /// error. Otherwise, for `numerator == denominator`, samples are always |
117 | /// true; for `numerator == 0` samples are always false. |
118 | #[inline ] |
119 | pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> { |
120 | if numerator > denominator || denominator == 0 { |
121 | return Err(BernoulliError::InvalidProbability); |
122 | } |
123 | if numerator == denominator { |
124 | return Ok(Bernoulli { p_int: ALWAYS_TRUE }); |
125 | } |
126 | let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64; |
127 | Ok(Bernoulli { p_int }) |
128 | } |
129 | } |
130 | |
131 | impl Distribution<bool> for Bernoulli { |
132 | #[inline ] |
133 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool { |
134 | // Make sure to always return true for p = 1.0. |
135 | if self.p_int == ALWAYS_TRUE { |
136 | return true; |
137 | } |
138 | let v: u64 = rng.gen(); |
139 | v < self.p_int |
140 | } |
141 | } |
142 | |
143 | #[cfg (test)] |
144 | mod test { |
145 | use super::Bernoulli; |
146 | use crate::distributions::Distribution; |
147 | use crate::Rng; |
148 | |
149 | #[test] |
150 | #[cfg (feature="serde1" )] |
151 | fn test_serializing_deserializing_bernoulli() { |
152 | let coin_flip = Bernoulli::new(0.5).unwrap(); |
153 | let de_coin_flip : Bernoulli = bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap(); |
154 | |
155 | assert_eq!(coin_flip.p_int, de_coin_flip.p_int); |
156 | } |
157 | |
158 | #[test] |
159 | fn test_trivial() { |
160 | // We prefer to be explicit here. |
161 | #![allow (clippy::bool_assert_comparison)] |
162 | |
163 | let mut r = crate::test::rng(1); |
164 | let always_false = Bernoulli::new(0.0).unwrap(); |
165 | let always_true = Bernoulli::new(1.0).unwrap(); |
166 | for _ in 0..5 { |
167 | assert_eq!(r.sample::<bool, _>(&always_false), false); |
168 | assert_eq!(r.sample::<bool, _>(&always_true), true); |
169 | assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false); |
170 | assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true); |
171 | } |
172 | } |
173 | |
174 | #[test] |
175 | #[cfg_attr (miri, ignore)] // Miri is too slow |
176 | fn test_average() { |
177 | const P: f64 = 0.3; |
178 | const NUM: u32 = 3; |
179 | const DENOM: u32 = 10; |
180 | let d1 = Bernoulli::new(P).unwrap(); |
181 | let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap(); |
182 | const N: u32 = 100_000; |
183 | |
184 | let mut sum1: u32 = 0; |
185 | let mut sum2: u32 = 0; |
186 | let mut rng = crate::test::rng(2); |
187 | for _ in 0..N { |
188 | if d1.sample(&mut rng) { |
189 | sum1 += 1; |
190 | } |
191 | if d2.sample(&mut rng) { |
192 | sum2 += 1; |
193 | } |
194 | } |
195 | let avg1 = (sum1 as f64) / (N as f64); |
196 | assert!((avg1 - P).abs() < 5e-3); |
197 | |
198 | let avg2 = (sum2 as f64) / (N as f64); |
199 | assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3); |
200 | } |
201 | |
202 | #[test] |
203 | fn value_stability() { |
204 | let mut rng = crate::test::rng(3); |
205 | let distr = Bernoulli::new(0.4532).unwrap(); |
206 | let mut buf = [false; 10]; |
207 | for x in &mut buf { |
208 | *x = rng.sample(&distr); |
209 | } |
210 | assert_eq!(buf, [ |
211 | true, false, false, true, false, false, true, true, true, true |
212 | ]); |
213 | } |
214 | |
215 | #[test] |
216 | fn bernoulli_distributions_can_be_compared() { |
217 | assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0)); |
218 | } |
219 | } |
220 | |