1 | // Copyright 2018 Developers of the Rand project. |
2 | // Copyright 2013-2017 The Rust Project Developers. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
7 | // option. This file may not be copied, modified, or distributed |
8 | // except according to those terms. |
9 | |
10 | //! [`Rng`] trait |
11 | |
12 | use rand_core::{Error, RngCore}; |
13 | use crate::distributions::uniform::{SampleRange, SampleUniform}; |
14 | use crate::distributions::{self, Distribution, Standard}; |
15 | use core::num::Wrapping; |
16 | use core::{mem, slice}; |
17 | |
18 | /// An automatically-implemented extension trait on [`RngCore`] providing high-level |
19 | /// generic methods for sampling values and other convenience methods. |
20 | /// |
21 | /// This is the primary trait to use when generating random values. |
22 | /// |
23 | /// # Generic usage |
24 | /// |
25 | /// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some |
26 | /// things are worth noting here: |
27 | /// |
28 | /// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no |
29 | /// difference whether we use `R: Rng` or `R: RngCore`. |
30 | /// - The `+ ?Sized` un-bounding allows functions to be called directly on |
31 | /// type-erased references; i.e. `foo(r)` where `r: &mut dyn RngCore`. Without |
32 | /// this it would be necessary to write `foo(&mut r)`. |
33 | /// |
34 | /// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some |
35 | /// trade-offs. It allows the argument to be consumed directly without a `&mut` |
36 | /// (which is how `from_rng(thread_rng())` works); also it still works directly |
37 | /// on references (including type-erased references). Unfortunately within the |
38 | /// function `foo` it is not known whether `rng` is a reference type or not, |
39 | /// hence many uses of `rng` require an extra reference, either explicitly |
40 | /// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the |
41 | /// optimiser can remove redundant references later. |
42 | /// |
43 | /// Example: |
44 | /// |
45 | /// ``` |
46 | /// # use rand::thread_rng; |
47 | /// use rand::Rng; |
48 | /// |
49 | /// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 { |
50 | /// rng.gen() |
51 | /// } |
52 | /// |
53 | /// # let v = foo(&mut thread_rng()); |
54 | /// ``` |
55 | pub trait Rng: RngCore { |
56 | /// Return a random value supporting the [`Standard`] distribution. |
57 | /// |
58 | /// # Example |
59 | /// |
60 | /// ``` |
61 | /// use rand::{thread_rng, Rng}; |
62 | /// |
63 | /// let mut rng = thread_rng(); |
64 | /// let x: u32 = rng.gen(); |
65 | /// println!("{}" , x); |
66 | /// println!("{:?}" , rng.gen::<(f64, bool)>()); |
67 | /// ``` |
68 | /// |
69 | /// # Arrays and tuples |
70 | /// |
71 | /// The `rng.gen()` method is able to generate arrays (up to 32 elements) |
72 | /// and tuples (up to 12 elements), so long as all element types can be |
73 | /// generated. |
74 | /// When using `rustc` ≥ 1.51, enable the `min_const_gen` feature to support |
75 | /// arrays larger than 32 elements. |
76 | /// |
77 | /// For arrays of integers, especially for those with small element types |
78 | /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`]. |
79 | /// |
80 | /// ``` |
81 | /// use rand::{thread_rng, Rng}; |
82 | /// |
83 | /// let mut rng = thread_rng(); |
84 | /// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support |
85 | /// |
86 | /// let arr1: [f32; 32] = rng.gen(); // array construction |
87 | /// let mut arr2 = [0u8; 128]; |
88 | /// rng.fill(&mut arr2); // array fill |
89 | /// ``` |
90 | /// |
91 | /// [`Standard`]: distributions::Standard |
92 | #[inline ] |
93 | fn gen<T>(&mut self) -> T |
94 | where Standard: Distribution<T> { |
95 | Standard.sample(self) |
96 | } |
97 | |
98 | /// Generate a random value in the given range. |
99 | /// |
100 | /// This function is optimised for the case that only a single sample is |
101 | /// made from the given range. See also the [`Uniform`] distribution |
102 | /// type which may be faster if sampling from the same range repeatedly. |
103 | /// |
104 | /// Only `gen_range(low..high)` and `gen_range(low..=high)` are supported. |
105 | /// |
106 | /// # Panics |
107 | /// |
108 | /// Panics if the range is empty. |
109 | /// |
110 | /// # Example |
111 | /// |
112 | /// ``` |
113 | /// use rand::{thread_rng, Rng}; |
114 | /// |
115 | /// let mut rng = thread_rng(); |
116 | /// |
117 | /// // Exclusive range |
118 | /// let n: u32 = rng.gen_range(0..10); |
119 | /// println!("{}" , n); |
120 | /// let m: f64 = rng.gen_range(-40.0..1.3e5); |
121 | /// println!("{}" , m); |
122 | /// |
123 | /// // Inclusive range |
124 | /// let n: u32 = rng.gen_range(0..=10); |
125 | /// println!("{}" , n); |
126 | /// ``` |
127 | /// |
128 | /// [`Uniform`]: distributions::uniform::Uniform |
129 | fn gen_range<T, R>(&mut self, range: R) -> T |
130 | where |
131 | T: SampleUniform, |
132 | R: SampleRange<T> |
133 | { |
134 | assert!(!range.is_empty(), "cannot sample empty range" ); |
135 | range.sample_single(self) |
136 | } |
137 | |
138 | /// Sample a new value, using the given distribution. |
139 | /// |
140 | /// ### Example |
141 | /// |
142 | /// ``` |
143 | /// use rand::{thread_rng, Rng}; |
144 | /// use rand::distributions::Uniform; |
145 | /// |
146 | /// let mut rng = thread_rng(); |
147 | /// let x = rng.sample(Uniform::new(10u32, 15)); |
148 | /// // Type annotation requires two types, the type and distribution; the |
149 | /// // distribution can be inferred. |
150 | /// let y = rng.sample::<u16, _>(Uniform::new(10, 15)); |
151 | /// ``` |
152 | fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { |
153 | distr.sample(self) |
154 | } |
155 | |
156 | /// Create an iterator that generates values using the given distribution. |
157 | /// |
158 | /// Note that this function takes its arguments by value. This works since |
159 | /// `(&mut R): Rng where R: Rng` and |
160 | /// `(&D): Distribution where D: Distribution`, |
161 | /// however borrowing is not automatic hence `rng.sample_iter(...)` may |
162 | /// need to be replaced with `(&mut rng).sample_iter(...)`. |
163 | /// |
164 | /// # Example |
165 | /// |
166 | /// ``` |
167 | /// use rand::{thread_rng, Rng}; |
168 | /// use rand::distributions::{Alphanumeric, Uniform, Standard}; |
169 | /// |
170 | /// let mut rng = thread_rng(); |
171 | /// |
172 | /// // Vec of 16 x f32: |
173 | /// let v: Vec<f32> = (&mut rng).sample_iter(Standard).take(16).collect(); |
174 | /// |
175 | /// // String: |
176 | /// let s: String = (&mut rng).sample_iter(Alphanumeric) |
177 | /// .take(7) |
178 | /// .map(char::from) |
179 | /// .collect(); |
180 | /// |
181 | /// // Combined values |
182 | /// println!("{:?}" , (&mut rng).sample_iter(Standard).take(5) |
183 | /// .collect::<Vec<(f64, bool)>>()); |
184 | /// |
185 | /// // Dice-rolling: |
186 | /// let die_range = Uniform::new_inclusive(1, 6); |
187 | /// let mut roll_die = (&mut rng).sample_iter(die_range); |
188 | /// while roll_die.next().unwrap() != 6 { |
189 | /// println!("Not a 6; rolling again!" ); |
190 | /// } |
191 | /// ``` |
192 | fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T> |
193 | where |
194 | D: Distribution<T>, |
195 | Self: Sized, |
196 | { |
197 | distr.sample_iter(self) |
198 | } |
199 | |
200 | /// Fill any type implementing [`Fill`] with random data |
201 | /// |
202 | /// The distribution is expected to be uniform with portable results, but |
203 | /// this cannot be guaranteed for third-party implementations. |
204 | /// |
205 | /// This is identical to [`try_fill`] except that it panics on error. |
206 | /// |
207 | /// # Example |
208 | /// |
209 | /// ``` |
210 | /// use rand::{thread_rng, Rng}; |
211 | /// |
212 | /// let mut arr = [0i8; 20]; |
213 | /// thread_rng().fill(&mut arr[..]); |
214 | /// ``` |
215 | /// |
216 | /// [`fill_bytes`]: RngCore::fill_bytes |
217 | /// [`try_fill`]: Rng::try_fill |
218 | fn fill<T: Fill + ?Sized>(&mut self, dest: &mut T) { |
219 | dest.try_fill(self).unwrap_or_else(|_| panic!("Rng::fill failed" )) |
220 | } |
221 | |
222 | /// Fill any type implementing [`Fill`] with random data |
223 | /// |
224 | /// The distribution is expected to be uniform with portable results, but |
225 | /// this cannot be guaranteed for third-party implementations. |
226 | /// |
227 | /// This is identical to [`fill`] except that it forwards errors. |
228 | /// |
229 | /// # Example |
230 | /// |
231 | /// ``` |
232 | /// # use rand::Error; |
233 | /// use rand::{thread_rng, Rng}; |
234 | /// |
235 | /// # fn try_inner() -> Result<(), Error> { |
236 | /// let mut arr = [0u64; 4]; |
237 | /// thread_rng().try_fill(&mut arr[..])?; |
238 | /// # Ok(()) |
239 | /// # } |
240 | /// |
241 | /// # try_inner().unwrap() |
242 | /// ``` |
243 | /// |
244 | /// [`try_fill_bytes`]: RngCore::try_fill_bytes |
245 | /// [`fill`]: Rng::fill |
246 | fn try_fill<T: Fill + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> { |
247 | dest.try_fill(self) |
248 | } |
249 | |
250 | /// Return a bool with a probability `p` of being true. |
251 | /// |
252 | /// See also the [`Bernoulli`] distribution, which may be faster if |
253 | /// sampling from the same probability repeatedly. |
254 | /// |
255 | /// # Example |
256 | /// |
257 | /// ``` |
258 | /// use rand::{thread_rng, Rng}; |
259 | /// |
260 | /// let mut rng = thread_rng(); |
261 | /// println!("{}" , rng.gen_bool(1.0 / 3.0)); |
262 | /// ``` |
263 | /// |
264 | /// # Panics |
265 | /// |
266 | /// If `p < 0` or `p > 1`. |
267 | /// |
268 | /// [`Bernoulli`]: distributions::Bernoulli |
269 | #[inline ] |
270 | fn gen_bool(&mut self, p: f64) -> bool { |
271 | let d = distributions::Bernoulli::new(p).unwrap(); |
272 | self.sample(d) |
273 | } |
274 | |
275 | /// Return a bool with a probability of `numerator/denominator` of being |
276 | /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of |
277 | /// returning true. If `numerator == denominator`, then the returned value |
278 | /// is guaranteed to be `true`. If `numerator == 0`, then the returned |
279 | /// value is guaranteed to be `false`. |
280 | /// |
281 | /// See also the [`Bernoulli`] distribution, which may be faster if |
282 | /// sampling from the same `numerator` and `denominator` repeatedly. |
283 | /// |
284 | /// # Panics |
285 | /// |
286 | /// If `denominator == 0` or `numerator > denominator`. |
287 | /// |
288 | /// # Example |
289 | /// |
290 | /// ``` |
291 | /// use rand::{thread_rng, Rng}; |
292 | /// |
293 | /// let mut rng = thread_rng(); |
294 | /// println!("{}" , rng.gen_ratio(2, 3)); |
295 | /// ``` |
296 | /// |
297 | /// [`Bernoulli`]: distributions::Bernoulli |
298 | #[inline ] |
299 | fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool { |
300 | let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap(); |
301 | self.sample(d) |
302 | } |
303 | } |
304 | |
305 | impl<R: RngCore + ?Sized> Rng for R {} |
306 | |
307 | /// Types which may be filled with random data |
308 | /// |
309 | /// This trait allows arrays to be efficiently filled with random data. |
310 | /// |
311 | /// Implementations are expected to be portable across machines unless |
312 | /// clearly documented otherwise (see the |
313 | /// [Chapter on Portability](https://rust-random.github.io/book/portability.html)). |
314 | pub trait Fill { |
315 | /// Fill self with random data |
316 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error>; |
317 | } |
318 | |
319 | macro_rules! impl_fill_each { |
320 | () => {}; |
321 | ($t:ty) => { |
322 | impl Fill for [$t] { |
323 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
324 | for elt in self.iter_mut() { |
325 | *elt = rng.gen(); |
326 | } |
327 | Ok(()) |
328 | } |
329 | } |
330 | }; |
331 | ($t:ty, $($tt:ty,)*) => { |
332 | impl_fill_each!($t); |
333 | impl_fill_each!($($tt,)*); |
334 | }; |
335 | } |
336 | |
337 | impl_fill_each!(bool, char, f32, f64,); |
338 | |
339 | impl Fill for [u8] { |
340 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
341 | rng.try_fill_bytes(self) |
342 | } |
343 | } |
344 | |
345 | macro_rules! impl_fill { |
346 | () => {}; |
347 | ($t:ty) => { |
348 | impl Fill for [$t] { |
349 | #[inline(never)] // in micro benchmarks, this improves performance |
350 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
351 | if self.len() > 0 { |
352 | rng.try_fill_bytes(unsafe { |
353 | slice::from_raw_parts_mut(self.as_mut_ptr() |
354 | as *mut u8, |
355 | self.len() * mem::size_of::<$t>() |
356 | ) |
357 | })?; |
358 | for x in self { |
359 | *x = x.to_le(); |
360 | } |
361 | } |
362 | Ok(()) |
363 | } |
364 | } |
365 | |
366 | impl Fill for [Wrapping<$t>] { |
367 | #[inline(never)] |
368 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
369 | if self.len() > 0 { |
370 | rng.try_fill_bytes(unsafe { |
371 | slice::from_raw_parts_mut(self.as_mut_ptr() |
372 | as *mut u8, |
373 | self.len() * mem::size_of::<$t>() |
374 | ) |
375 | })?; |
376 | for x in self { |
377 | *x = Wrapping(x.0.to_le()); |
378 | } |
379 | } |
380 | Ok(()) |
381 | } |
382 | } |
383 | }; |
384 | ($t:ty, $($tt:ty,)*) => { |
385 | impl_fill!($t); |
386 | // TODO: this could replace above impl once Rust #32463 is fixed |
387 | // impl_fill!(Wrapping<$t>); |
388 | impl_fill!($($tt,)*); |
389 | } |
390 | } |
391 | |
392 | impl_fill!(u16, u32, u64, usize, u128,); |
393 | impl_fill!(i8, i16, i32, i64, isize, i128,); |
394 | |
395 | #[cfg_attr (doc_cfg, doc(cfg(feature = "min_const_gen" )))] |
396 | #[cfg (feature = "min_const_gen" )] |
397 | impl<T, const N: usize> Fill for [T; N] |
398 | where [T]: Fill |
399 | { |
400 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
401 | self[..].try_fill(rng) |
402 | } |
403 | } |
404 | |
405 | #[cfg (not(feature = "min_const_gen" ))] |
406 | macro_rules! impl_fill_arrays { |
407 | ($n:expr,) => {}; |
408 | ($n:expr, $N:ident) => { |
409 | impl<T> Fill for [T; $n] where [T]: Fill { |
410 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
411 | self[..].try_fill(rng) |
412 | } |
413 | } |
414 | }; |
415 | ($n:expr, $N:ident, $($NN:ident,)*) => { |
416 | impl_fill_arrays!($n, $N); |
417 | impl_fill_arrays!($n - 1, $($NN,)*); |
418 | }; |
419 | (!div $n:expr,) => {}; |
420 | (!div $n:expr, $N:ident, $($NN:ident,)*) => { |
421 | impl_fill_arrays!($n, $N); |
422 | impl_fill_arrays!(!div $n / 2, $($NN,)*); |
423 | }; |
424 | } |
425 | #[cfg (not(feature = "min_const_gen" ))] |
426 | #[rustfmt::skip] |
427 | impl_fill_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,); |
428 | #[cfg (not(feature = "min_const_gen" ))] |
429 | impl_fill_arrays!(!div 4096, N,N,N,N,N,N,N,); |
430 | |
431 | #[cfg (test)] |
432 | mod test { |
433 | use super::*; |
434 | use crate::test::rng; |
435 | use crate::rngs::mock::StepRng; |
436 | #[cfg (feature = "alloc" )] use alloc::boxed::Box; |
437 | |
438 | #[test] |
439 | fn test_fill_bytes_default() { |
440 | let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0); |
441 | |
442 | // check every remainder mod 8, both in small and big vectors. |
443 | let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87]; |
444 | for &n in lengths.iter() { |
445 | let mut buffer = [0u8; 87]; |
446 | let v = &mut buffer[0..n]; |
447 | r.fill_bytes(v); |
448 | |
449 | // use this to get nicer error messages. |
450 | for (i, &byte) in v.iter().enumerate() { |
451 | if byte == 0 { |
452 | panic!("byte {} of {} is zero" , i, n) |
453 | } |
454 | } |
455 | } |
456 | } |
457 | |
458 | #[test] |
459 | fn test_fill() { |
460 | let x = 9041086907909331047; // a random u64 |
461 | let mut rng = StepRng::new(x, 0); |
462 | |
463 | // Convert to byte sequence and back to u64; byte-swap twice if BE. |
464 | let mut array = [0u64; 2]; |
465 | rng.fill(&mut array[..]); |
466 | assert_eq!(array, [x, x]); |
467 | assert_eq!(rng.next_u64(), x); |
468 | |
469 | // Convert to bytes then u32 in LE order |
470 | let mut array = [0u32; 2]; |
471 | rng.fill(&mut array[..]); |
472 | assert_eq!(array, [x as u32, (x >> 32) as u32]); |
473 | assert_eq!(rng.next_u32(), x as u32); |
474 | |
475 | // Check equivalence using wrapped arrays |
476 | let mut warray = [Wrapping(0u32); 2]; |
477 | rng.fill(&mut warray[..]); |
478 | assert_eq!(array[0], warray[0].0); |
479 | assert_eq!(array[1], warray[1].0); |
480 | |
481 | // Check equivalence for generated floats |
482 | let mut array = [0f32; 2]; |
483 | rng.fill(&mut array); |
484 | let gen: [f32; 2] = rng.gen(); |
485 | assert_eq!(array, gen); |
486 | } |
487 | |
488 | #[test] |
489 | fn test_fill_empty() { |
490 | let mut array = [0u32; 0]; |
491 | let mut rng = StepRng::new(0, 1); |
492 | rng.fill(&mut array); |
493 | rng.fill(&mut array[..]); |
494 | } |
495 | |
496 | #[test] |
497 | fn test_gen_range_int() { |
498 | let mut r = rng(101); |
499 | for _ in 0..1000 { |
500 | let a = r.gen_range(-4711..17); |
501 | assert!((-4711..17).contains(&a)); |
502 | let a: i8 = r.gen_range(-3..42); |
503 | assert!((-3..42).contains(&a)); |
504 | let a: u16 = r.gen_range(10..99); |
505 | assert!((10..99).contains(&a)); |
506 | let a: i32 = r.gen_range(-100..2000); |
507 | assert!((-100..2000).contains(&a)); |
508 | let a: u32 = r.gen_range(12..=24); |
509 | assert!((12..=24).contains(&a)); |
510 | |
511 | assert_eq!(r.gen_range(0u32..1), 0u32); |
512 | assert_eq!(r.gen_range(-12i64..-11), -12i64); |
513 | assert_eq!(r.gen_range(3_000_000..3_000_001), 3_000_000); |
514 | } |
515 | } |
516 | |
517 | #[test] |
518 | fn test_gen_range_float() { |
519 | let mut r = rng(101); |
520 | for _ in 0..1000 { |
521 | let a = r.gen_range(-4.5..1.7); |
522 | assert!((-4.5..1.7).contains(&a)); |
523 | let a = r.gen_range(-1.1..=-0.3); |
524 | assert!((-1.1..=-0.3).contains(&a)); |
525 | |
526 | assert_eq!(r.gen_range(0.0f32..=0.0), 0.); |
527 | assert_eq!(r.gen_range(-11.0..=-11.0), -11.); |
528 | assert_eq!(r.gen_range(3_000_000.0..=3_000_000.0), 3_000_000.); |
529 | } |
530 | } |
531 | |
532 | #[test] |
533 | #[should_panic ] |
534 | fn test_gen_range_panic_int() { |
535 | #![allow (clippy::reversed_empty_ranges)] |
536 | let mut r = rng(102); |
537 | r.gen_range(5..-2); |
538 | } |
539 | |
540 | #[test] |
541 | #[should_panic ] |
542 | fn test_gen_range_panic_usize() { |
543 | #![allow (clippy::reversed_empty_ranges)] |
544 | let mut r = rng(103); |
545 | r.gen_range(5..2); |
546 | } |
547 | |
548 | #[test] |
549 | fn test_gen_bool() { |
550 | #![allow (clippy::bool_assert_comparison)] |
551 | |
552 | let mut r = rng(105); |
553 | for _ in 0..5 { |
554 | assert_eq!(r.gen_bool(0.0), false); |
555 | assert_eq!(r.gen_bool(1.0), true); |
556 | } |
557 | } |
558 | |
559 | #[test] |
560 | fn test_rng_trait_object() { |
561 | use crate::distributions::{Distribution, Standard}; |
562 | let mut rng = rng(109); |
563 | let mut r = &mut rng as &mut dyn RngCore; |
564 | r.next_u32(); |
565 | r.gen::<i32>(); |
566 | assert_eq!(r.gen_range(0..1), 0); |
567 | let _c: u8 = Standard.sample(&mut r); |
568 | } |
569 | |
570 | #[test] |
571 | #[cfg (feature = "alloc" )] |
572 | fn test_rng_boxed_trait() { |
573 | use crate::distributions::{Distribution, Standard}; |
574 | let rng = rng(110); |
575 | let mut r = Box::new(rng) as Box<dyn RngCore>; |
576 | r.next_u32(); |
577 | r.gen::<i32>(); |
578 | assert_eq!(r.gen_range(0..1), 0); |
579 | let _c: u8 = Standard.sample(&mut r); |
580 | } |
581 | |
582 | #[test] |
583 | #[cfg_attr (miri, ignore)] // Miri is too slow |
584 | fn test_gen_ratio_average() { |
585 | const NUM: u32 = 3; |
586 | const DENOM: u32 = 10; |
587 | const N: u32 = 100_000; |
588 | |
589 | let mut sum: u32 = 0; |
590 | let mut rng = rng(111); |
591 | for _ in 0..N { |
592 | if rng.gen_ratio(NUM, DENOM) { |
593 | sum += 1; |
594 | } |
595 | } |
596 | // Have Binomial(N, NUM/DENOM) distribution |
597 | let expected = (NUM * N) / DENOM; // exact integer |
598 | assert!(((sum - expected) as i32).abs() < 500); |
599 | } |
600 | } |
601 | |