1 | // Copyright 2018-2020 Developers of the Rand project. |
2 | // Copyright 2017 The Rust Project Developers. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
7 | // option. This file may not be copied, modified, or distributed |
8 | // except according to those terms. |
9 | |
10 | //! A distribution uniformly sampling numbers within a given range. |
11 | //! |
12 | //! [`Uniform`] is the standard distribution to sample uniformly from a range; |
13 | //! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a |
14 | //! standard die. [`Rng::gen_range`] supports any type supported by |
15 | //! [`Uniform`]. |
16 | //! |
17 | //! This distribution is provided with support for several primitive types |
18 | //! (all integer and floating-point types) as well as [`std::time::Duration`], |
19 | //! and supports extension to user-defined types via a type-specific *back-end* |
20 | //! implementation. |
21 | //! |
22 | //! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the |
23 | //! back-ends supporting sampling from primitive integer and floating-point |
24 | //! ranges as well as from [`std::time::Duration`]; these types do not normally |
25 | //! need to be used directly (unless implementing a derived back-end). |
26 | //! |
27 | //! # Example usage |
28 | //! |
29 | //! ``` |
30 | //! use rand::{Rng, thread_rng}; |
31 | //! use rand::distributions::Uniform; |
32 | //! |
33 | //! let mut rng = thread_rng(); |
34 | //! let side = Uniform::new(-10.0, 10.0); |
35 | //! |
36 | //! // sample between 1 and 10 points |
37 | //! for _ in 0..rng.gen_range(1..=10) { |
38 | //! // sample a point from the square with sides -10 - 10 in two dimensions |
39 | //! let (x, y) = (rng.sample(side), rng.sample(side)); |
40 | //! println!("Point: {}, {}" , x, y); |
41 | //! } |
42 | //! ``` |
43 | //! |
44 | //! # Extending `Uniform` to support a custom type |
45 | //! |
46 | //! To extend [`Uniform`] to support your own types, write a back-end which |
47 | //! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`] |
48 | //! helper trait to "register" your back-end. See the `MyF32` example below. |
49 | //! |
50 | //! At a minimum, the back-end needs to store any parameters needed for sampling |
51 | //! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`. |
52 | //! Those methods should include an assert to check the range is valid (i.e. |
53 | //! `low < high`). The example below merely wraps another back-end. |
54 | //! |
55 | //! The `new`, `new_inclusive` and `sample_single` functions use arguments of |
56 | //! type SampleBorrow<X> in order to support passing in values by reference or |
57 | //! by value. In the implementation of these functions, you can choose to |
58 | //! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose |
59 | //! to copy or clone the value, whatever is appropriate for your type. |
60 | //! |
61 | //! ``` |
62 | //! use rand::prelude::*; |
63 | //! use rand::distributions::uniform::{Uniform, SampleUniform, |
64 | //! UniformSampler, UniformFloat, SampleBorrow}; |
65 | //! |
66 | //! struct MyF32(f32); |
67 | //! |
68 | //! #[derive(Clone, Copy, Debug)] |
69 | //! struct UniformMyF32(UniformFloat<f32>); |
70 | //! |
71 | //! impl UniformSampler for UniformMyF32 { |
72 | //! type X = MyF32; |
73 | //! fn new<B1, B2>(low: B1, high: B2) -> Self |
74 | //! where B1: SampleBorrow<Self::X> + Sized, |
75 | //! B2: SampleBorrow<Self::X> + Sized |
76 | //! { |
77 | //! UniformMyF32(UniformFloat::<f32>::new(low.borrow().0, high.borrow().0)) |
78 | //! } |
79 | //! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self |
80 | //! where B1: SampleBorrow<Self::X> + Sized, |
81 | //! B2: SampleBorrow<Self::X> + Sized |
82 | //! { |
83 | //! UniformMyF32(UniformFloat::<f32>::new_inclusive( |
84 | //! low.borrow().0, |
85 | //! high.borrow().0, |
86 | //! )) |
87 | //! } |
88 | //! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
89 | //! MyF32(self.0.sample(rng)) |
90 | //! } |
91 | //! } |
92 | //! |
93 | //! impl SampleUniform for MyF32 { |
94 | //! type Sampler = UniformMyF32; |
95 | //! } |
96 | //! |
97 | //! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32)); |
98 | //! let uniform = Uniform::new(low, high); |
99 | //! let x = uniform.sample(&mut thread_rng()); |
100 | //! ``` |
101 | //! |
102 | //! [`SampleUniform`]: crate::distributions::uniform::SampleUniform |
103 | //! [`UniformSampler`]: crate::distributions::uniform::UniformSampler |
104 | //! [`UniformInt`]: crate::distributions::uniform::UniformInt |
105 | //! [`UniformFloat`]: crate::distributions::uniform::UniformFloat |
106 | //! [`UniformDuration`]: crate::distributions::uniform::UniformDuration |
107 | //! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow |
108 | |
109 | use core::time::Duration; |
110 | use core::ops::{Range, RangeInclusive}; |
111 | |
112 | use crate::distributions::float::IntoFloat; |
113 | use crate::distributions::utils::{BoolAsSIMD, FloatAsSIMD, FloatSIMDUtils, WideningMultiply}; |
114 | use crate::distributions::Distribution; |
115 | use crate::{Rng, RngCore}; |
116 | |
117 | #[cfg (not(feature = "std" ))] |
118 | #[allow (unused_imports)] // rustc doesn't detect that this is actually used |
119 | use crate::distributions::utils::Float; |
120 | |
121 | #[cfg (feature = "simd_support" )] use packed_simd::*; |
122 | |
123 | #[cfg (feature = "serde1" )] |
124 | use serde::{Serialize, Deserialize}; |
125 | |
126 | /// Sample values uniformly between two bounds. |
127 | /// |
128 | /// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform |
129 | /// distribution sampling from the given range; these functions may do extra |
130 | /// work up front to make sampling of multiple values faster. If only one sample |
131 | /// from the range is required, [`Rng::gen_range`] can be more efficient. |
132 | /// |
133 | /// When sampling from a constant range, many calculations can happen at |
134 | /// compile-time and all methods should be fast; for floating-point ranges and |
135 | /// the full range of integer types this should have comparable performance to |
136 | /// the `Standard` distribution. |
137 | /// |
138 | /// Steps are taken to avoid bias which might be present in naive |
139 | /// implementations; for example `rng.gen::<u8>() % 170` samples from the range |
140 | /// `[0, 169]` but is twice as likely to select numbers less than 85 than other |
141 | /// values. Further, the implementations here give more weight to the high-bits |
142 | /// generated by the RNG than the low bits, since with some RNGs the low-bits |
143 | /// are of lower quality than the high bits. |
144 | /// |
145 | /// Implementations must sample in `[low, high)` range for |
146 | /// `Uniform::new(low, high)`, i.e., excluding `high`. In particular, care must |
147 | /// be taken to ensure that rounding never results values `< low` or `>= high`. |
148 | /// |
149 | /// # Example |
150 | /// |
151 | /// ``` |
152 | /// use rand::distributions::{Distribution, Uniform}; |
153 | /// |
154 | /// let between = Uniform::from(10..10000); |
155 | /// let mut rng = rand::thread_rng(); |
156 | /// let mut sum = 0; |
157 | /// for _ in 0..1000 { |
158 | /// sum += between.sample(&mut rng); |
159 | /// } |
160 | /// println!("{}" , sum); |
161 | /// ``` |
162 | /// |
163 | /// For a single sample, [`Rng::gen_range`] may be preferred: |
164 | /// |
165 | /// ``` |
166 | /// use rand::Rng; |
167 | /// |
168 | /// let mut rng = rand::thread_rng(); |
169 | /// println!("{}" , rng.gen_range(0..10)); |
170 | /// ``` |
171 | /// |
172 | /// [`new`]: Uniform::new |
173 | /// [`new_inclusive`]: Uniform::new_inclusive |
174 | /// [`Rng::gen_range`]: Rng::gen_range |
175 | #[derive(Clone, Copy, Debug, PartialEq)] |
176 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
177 | #[cfg_attr (feature = "serde1" , serde(bound(serialize = "X::Sampler: Serialize" )))] |
178 | #[cfg_attr (feature = "serde1" , serde(bound(deserialize = "X::Sampler: Deserialize<'de>" )))] |
179 | pub struct Uniform<X: SampleUniform>(X::Sampler); |
180 | |
181 | impl<X: SampleUniform> Uniform<X> { |
182 | /// Create a new `Uniform` instance which samples uniformly from the half |
183 | /// open range `[low, high)` (excluding `high`). Panics if `low >= high`. |
184 | pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X> |
185 | where |
186 | B1: SampleBorrow<X> + Sized, |
187 | B2: SampleBorrow<X> + Sized, |
188 | { |
189 | Uniform(X::Sampler::new(low, high)) |
190 | } |
191 | |
192 | /// Create a new `Uniform` instance which samples uniformly from the closed |
193 | /// range `[low, high]` (inclusive). Panics if `low > high`. |
194 | pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X> |
195 | where |
196 | B1: SampleBorrow<X> + Sized, |
197 | B2: SampleBorrow<X> + Sized, |
198 | { |
199 | Uniform(X::Sampler::new_inclusive(low, high)) |
200 | } |
201 | } |
202 | |
203 | impl<X: SampleUniform> Distribution<X> for Uniform<X> { |
204 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X { |
205 | self.0.sample(rng) |
206 | } |
207 | } |
208 | |
209 | /// Helper trait for creating objects using the correct implementation of |
210 | /// [`UniformSampler`] for the sampling type. |
211 | /// |
212 | /// See the [module documentation] on how to implement [`Uniform`] range |
213 | /// sampling for a custom type. |
214 | /// |
215 | /// [module documentation]: crate::distributions::uniform |
216 | pub trait SampleUniform: Sized { |
217 | /// The `UniformSampler` implementation supporting type `X`. |
218 | type Sampler: UniformSampler<X = Self>; |
219 | } |
220 | |
221 | /// Helper trait handling actual uniform sampling. |
222 | /// |
223 | /// See the [module documentation] on how to implement [`Uniform`] range |
224 | /// sampling for a custom type. |
225 | /// |
226 | /// Implementation of [`sample_single`] is optional, and is only useful when |
227 | /// the implementation can be faster than `Self::new(low, high).sample(rng)`. |
228 | /// |
229 | /// [module documentation]: crate::distributions::uniform |
230 | /// [`sample_single`]: UniformSampler::sample_single |
231 | pub trait UniformSampler: Sized { |
232 | /// The type sampled by this implementation. |
233 | type X; |
234 | |
235 | /// Construct self, with inclusive lower bound and exclusive upper bound |
236 | /// `[low, high)`. |
237 | /// |
238 | /// Usually users should not call this directly but instead use |
239 | /// `Uniform::new`, which asserts that `low < high` before calling this. |
240 | fn new<B1, B2>(low: B1, high: B2) -> Self |
241 | where |
242 | B1: SampleBorrow<Self::X> + Sized, |
243 | B2: SampleBorrow<Self::X> + Sized; |
244 | |
245 | /// Construct self, with inclusive bounds `[low, high]`. |
246 | /// |
247 | /// Usually users should not call this directly but instead use |
248 | /// `Uniform::new_inclusive`, which asserts that `low <= high` before |
249 | /// calling this. |
250 | fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self |
251 | where |
252 | B1: SampleBorrow<Self::X> + Sized, |
253 | B2: SampleBorrow<Self::X> + Sized; |
254 | |
255 | /// Sample a value. |
256 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X; |
257 | |
258 | /// Sample a single value uniformly from a range with inclusive lower bound |
259 | /// and exclusive upper bound `[low, high)`. |
260 | /// |
261 | /// By default this is implemented using |
262 | /// `UniformSampler::new(low, high).sample(rng)`. However, for some types |
263 | /// more optimal implementations for single usage may be provided via this |
264 | /// method (which is the case for integers and floats). |
265 | /// Results may not be identical. |
266 | /// |
267 | /// Note that to use this method in a generic context, the type needs to be |
268 | /// retrieved via `SampleUniform::Sampler` as follows: |
269 | /// ``` |
270 | /// use rand::{thread_rng, distributions::uniform::{SampleUniform, UniformSampler}}; |
271 | /// # #[allow (unused)] |
272 | /// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T { |
273 | /// let mut rng = thread_rng(); |
274 | /// <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng) |
275 | /// } |
276 | /// ``` |
277 | fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X |
278 | where |
279 | B1: SampleBorrow<Self::X> + Sized, |
280 | B2: SampleBorrow<Self::X> + Sized, |
281 | { |
282 | let uniform: Self = UniformSampler::new(low, high); |
283 | uniform.sample(rng) |
284 | } |
285 | |
286 | /// Sample a single value uniformly from a range with inclusive lower bound |
287 | /// and inclusive upper bound `[low, high]`. |
288 | /// |
289 | /// By default this is implemented using |
290 | /// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for |
291 | /// some types more optimal implementations for single usage may be provided |
292 | /// via this method. |
293 | /// Results may not be identical. |
294 | fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) |
295 | -> Self::X |
296 | where B1: SampleBorrow<Self::X> + Sized, |
297 | B2: SampleBorrow<Self::X> + Sized |
298 | { |
299 | let uniform: Self = UniformSampler::new_inclusive(low, high); |
300 | uniform.sample(rng) |
301 | } |
302 | } |
303 | |
304 | impl<X: SampleUniform> From<Range<X>> for Uniform<X> { |
305 | fn from(r: ::core::ops::Range<X>) -> Uniform<X> { |
306 | Uniform::new(r.start, r.end) |
307 | } |
308 | } |
309 | |
310 | impl<X: SampleUniform> From<RangeInclusive<X>> for Uniform<X> { |
311 | fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> { |
312 | Uniform::new_inclusive(r.start(), r.end()) |
313 | } |
314 | } |
315 | |
316 | |
317 | /// Helper trait similar to [`Borrow`] but implemented |
318 | /// only for SampleUniform and references to SampleUniform in |
319 | /// order to resolve ambiguity issues. |
320 | /// |
321 | /// [`Borrow`]: std::borrow::Borrow |
322 | pub trait SampleBorrow<Borrowed> { |
323 | /// Immutably borrows from an owned value. See [`Borrow::borrow`] |
324 | /// |
325 | /// [`Borrow::borrow`]: std::borrow::Borrow::borrow |
326 | fn borrow(&self) -> &Borrowed; |
327 | } |
328 | impl<Borrowed> SampleBorrow<Borrowed> for Borrowed |
329 | where Borrowed: SampleUniform |
330 | { |
331 | #[inline (always)] |
332 | fn borrow(&self) -> &Borrowed { |
333 | self |
334 | } |
335 | } |
336 | impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed |
337 | where Borrowed: SampleUniform |
338 | { |
339 | #[inline (always)] |
340 | fn borrow(&self) -> &Borrowed { |
341 | *self |
342 | } |
343 | } |
344 | |
345 | /// Range that supports generating a single sample efficiently. |
346 | /// |
347 | /// Any type implementing this trait can be used to specify the sampled range |
348 | /// for `Rng::gen_range`. |
349 | pub trait SampleRange<T> { |
350 | /// Generate a sample from the given range. |
351 | fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T; |
352 | |
353 | /// Check whether the range is empty. |
354 | fn is_empty(&self) -> bool; |
355 | } |
356 | |
357 | impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> { |
358 | #[inline ] |
359 | fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T { |
360 | T::Sampler::sample_single(self.start, self.end, rng) |
361 | } |
362 | |
363 | #[inline ] |
364 | fn is_empty(&self) -> bool { |
365 | !(self.start < self.end) |
366 | } |
367 | } |
368 | |
369 | impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> { |
370 | #[inline ] |
371 | fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T { |
372 | T::Sampler::sample_single_inclusive(self.start(), self.end(), rng) |
373 | } |
374 | |
375 | #[inline ] |
376 | fn is_empty(&self) -> bool { |
377 | !(self.start() <= self.end()) |
378 | } |
379 | } |
380 | |
381 | |
382 | //////////////////////////////////////////////////////////////////////////////// |
383 | |
384 | // What follows are all back-ends. |
385 | |
386 | |
387 | /// The back-end implementing [`UniformSampler`] for integer types. |
388 | /// |
389 | /// Unless you are implementing [`UniformSampler`] for your own type, this type |
390 | /// should not be used directly, use [`Uniform`] instead. |
391 | /// |
392 | /// # Implementation notes |
393 | /// |
394 | /// For simplicity, we use the same generic struct `UniformInt<X>` for all |
395 | /// integer types `X`. This gives us only one field type, `X`; to store unsigned |
396 | /// values of this size, we take use the fact that these conversions are no-ops. |
397 | /// |
398 | /// For a closed range, the number of possible numbers we should generate is |
399 | /// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of |
400 | /// our sample space, `zone`, is a multiple of `range`; other values must be |
401 | /// rejected (by replacing with a new random sample). |
402 | /// |
403 | /// As a special case, we use `range = 0` to represent the full range of the |
404 | /// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`). |
405 | /// |
406 | /// The optimum `zone` is the largest product of `range` which fits in our |
407 | /// (unsigned) target type. We calculate this by calculating how many numbers we |
408 | /// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large) |
409 | /// product of `range` will suffice, thus in `sample_single` we multiply by a |
410 | /// power of 2 via bit-shifting (faster but may cause more rejections). |
411 | /// |
412 | /// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we |
413 | /// use `u32` for our `zone` and samples (because it's not slower and because |
414 | /// it reduces the chance of having to reject a sample). In this case we cannot |
415 | /// store `zone` in the target type since it is too large, however we know |
416 | /// `ints_to_reject < range <= $unsigned::MAX`. |
417 | /// |
418 | /// An alternative to using a modulus is widening multiply: After a widening |
419 | /// multiply by `range`, the result is in the high word. Then comparing the low |
420 | /// word against `zone` makes sure our distribution is uniform. |
421 | #[derive(Clone, Copy, Debug, PartialEq)] |
422 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
423 | pub struct UniformInt<X> { |
424 | low: X, |
425 | range: X, |
426 | z: X, // either ints_to_reject or zone depending on implementation |
427 | } |
428 | |
429 | macro_rules! uniform_int_impl { |
430 | ($ty:ty, $unsigned:ident, $u_large:ident) => { |
431 | impl SampleUniform for $ty { |
432 | type Sampler = UniformInt<$ty>; |
433 | } |
434 | |
435 | impl UniformSampler for UniformInt<$ty> { |
436 | // We play free and fast with unsigned vs signed here |
437 | // (when $ty is signed), but that's fine, since the |
438 | // contract of this macro is for $ty and $unsigned to be |
439 | // "bit-equal", so casting between them is a no-op. |
440 | |
441 | type X = $ty; |
442 | |
443 | #[inline] // if the range is constant, this helps LLVM to do the |
444 | // calculations at compile-time. |
445 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
446 | where |
447 | B1: SampleBorrow<Self::X> + Sized, |
448 | B2: SampleBorrow<Self::X> + Sized, |
449 | { |
450 | let low = *low_b.borrow(); |
451 | let high = *high_b.borrow(); |
452 | assert!(low < high, "Uniform::new called with `low >= high`" ); |
453 | UniformSampler::new_inclusive(low, high - 1) |
454 | } |
455 | |
456 | #[inline] // if the range is constant, this helps LLVM to do the |
457 | // calculations at compile-time. |
458 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
459 | where |
460 | B1: SampleBorrow<Self::X> + Sized, |
461 | B2: SampleBorrow<Self::X> + Sized, |
462 | { |
463 | let low = *low_b.borrow(); |
464 | let high = *high_b.borrow(); |
465 | assert!( |
466 | low <= high, |
467 | "Uniform::new_inclusive called with `low > high`" |
468 | ); |
469 | let unsigned_max = ::core::$u_large::MAX; |
470 | |
471 | let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned; |
472 | let ints_to_reject = if range > 0 { |
473 | let range = $u_large::from(range); |
474 | (unsigned_max - range + 1) % range |
475 | } else { |
476 | 0 |
477 | }; |
478 | |
479 | UniformInt { |
480 | low, |
481 | // These are really $unsigned values, but store as $ty: |
482 | range: range as $ty, |
483 | z: ints_to_reject as $unsigned as $ty, |
484 | } |
485 | } |
486 | |
487 | #[inline] |
488 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
489 | let range = self.range as $unsigned as $u_large; |
490 | if range > 0 { |
491 | let unsigned_max = ::core::$u_large::MAX; |
492 | let zone = unsigned_max - (self.z as $unsigned as $u_large); |
493 | loop { |
494 | let v: $u_large = rng.gen(); |
495 | let (hi, lo) = v.wmul(range); |
496 | if lo <= zone { |
497 | return self.low.wrapping_add(hi as $ty); |
498 | } |
499 | } |
500 | } else { |
501 | // Sample from the entire integer range. |
502 | rng.gen() |
503 | } |
504 | } |
505 | |
506 | #[inline] |
507 | fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X |
508 | where |
509 | B1: SampleBorrow<Self::X> + Sized, |
510 | B2: SampleBorrow<Self::X> + Sized, |
511 | { |
512 | let low = *low_b.borrow(); |
513 | let high = *high_b.borrow(); |
514 | assert!(low < high, "UniformSampler::sample_single: low >= high" ); |
515 | Self::sample_single_inclusive(low, high - 1, rng) |
516 | } |
517 | |
518 | #[inline] |
519 | fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X |
520 | where |
521 | B1: SampleBorrow<Self::X> + Sized, |
522 | B2: SampleBorrow<Self::X> + Sized, |
523 | { |
524 | let low = *low_b.borrow(); |
525 | let high = *high_b.borrow(); |
526 | assert!(low <= high, "UniformSampler::sample_single_inclusive: low > high" ); |
527 | let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned as $u_large; |
528 | // If the above resulted in wrap-around to 0, the range is $ty::MIN..=$ty::MAX, |
529 | // and any integer will do. |
530 | if range == 0 { |
531 | return rng.gen(); |
532 | } |
533 | |
534 | let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned { |
535 | // Using a modulus is faster than the approximation for |
536 | // i8 and i16. I suppose we trade the cost of one |
537 | // modulus for near-perfect branch prediction. |
538 | let unsigned_max: $u_large = ::core::$u_large::MAX; |
539 | let ints_to_reject = (unsigned_max - range + 1) % range; |
540 | unsigned_max - ints_to_reject |
541 | } else { |
542 | // conservative but fast approximation. `- 1` is necessary to allow the |
543 | // same comparison without bias. |
544 | (range << range.leading_zeros()).wrapping_sub(1) |
545 | }; |
546 | |
547 | loop { |
548 | let v: $u_large = rng.gen(); |
549 | let (hi, lo) = v.wmul(range); |
550 | if lo <= zone { |
551 | return low.wrapping_add(hi as $ty); |
552 | } |
553 | } |
554 | } |
555 | } |
556 | }; |
557 | } |
558 | |
559 | uniform_int_impl! { i8, u8, u32 } |
560 | uniform_int_impl! { i16, u16, u32 } |
561 | uniform_int_impl! { i32, u32, u32 } |
562 | uniform_int_impl! { i64, u64, u64 } |
563 | uniform_int_impl! { i128, u128, u128 } |
564 | uniform_int_impl! { isize, usize, usize } |
565 | uniform_int_impl! { u8, u8, u32 } |
566 | uniform_int_impl! { u16, u16, u32 } |
567 | uniform_int_impl! { u32, u32, u32 } |
568 | uniform_int_impl! { u64, u64, u64 } |
569 | uniform_int_impl! { usize, usize, usize } |
570 | uniform_int_impl! { u128, u128, u128 } |
571 | |
572 | #[cfg (feature = "simd_support" )] |
573 | macro_rules! uniform_simd_int_impl { |
574 | ($ty:ident, $unsigned:ident, $u_scalar:ident) => { |
575 | // The "pick the largest zone that can fit in an `u32`" optimization |
576 | // is less useful here. Multiple lanes complicate things, we don't |
577 | // know the PRNG's minimal output size, and casting to a larger vector |
578 | // is generally a bad idea for SIMD performance. The user can still |
579 | // implement it manually. |
580 | |
581 | // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality |
582 | // perhaps `impl SampleUniform for $u_scalar`? |
583 | impl SampleUniform for $ty { |
584 | type Sampler = UniformInt<$ty>; |
585 | } |
586 | |
587 | impl UniformSampler for UniformInt<$ty> { |
588 | type X = $ty; |
589 | |
590 | #[inline] // if the range is constant, this helps LLVM to do the |
591 | // calculations at compile-time. |
592 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
593 | where B1: SampleBorrow<Self::X> + Sized, |
594 | B2: SampleBorrow<Self::X> + Sized |
595 | { |
596 | let low = *low_b.borrow(); |
597 | let high = *high_b.borrow(); |
598 | assert!(low.lt(high).all(), "Uniform::new called with `low >= high`" ); |
599 | UniformSampler::new_inclusive(low, high - 1) |
600 | } |
601 | |
602 | #[inline] // if the range is constant, this helps LLVM to do the |
603 | // calculations at compile-time. |
604 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
605 | where B1: SampleBorrow<Self::X> + Sized, |
606 | B2: SampleBorrow<Self::X> + Sized |
607 | { |
608 | let low = *low_b.borrow(); |
609 | let high = *high_b.borrow(); |
610 | assert!(low.le(high).all(), |
611 | "Uniform::new_inclusive called with `low > high`" ); |
612 | let unsigned_max = ::core::$u_scalar::MAX; |
613 | |
614 | // NOTE: these may need to be replaced with explicitly |
615 | // wrapping operations if `packed_simd` changes |
616 | let range: $unsigned = ((high - low) + 1).cast(); |
617 | // `% 0` will panic at runtime. |
618 | let not_full_range = range.gt($unsigned::splat(0)); |
619 | // replacing 0 with `unsigned_max` allows a faster `select` |
620 | // with bitwise OR |
621 | let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max)); |
622 | // wrapping addition |
623 | let ints_to_reject = (unsigned_max - range + 1) % modulo; |
624 | // When `range` is 0, `lo` of `v.wmul(range)` will always be |
625 | // zero which means only one sample is needed. |
626 | let zone = unsigned_max - ints_to_reject; |
627 | |
628 | UniformInt { |
629 | low, |
630 | // These are really $unsigned values, but store as $ty: |
631 | range: range.cast(), |
632 | z: zone.cast(), |
633 | } |
634 | } |
635 | |
636 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
637 | let range: $unsigned = self.range.cast(); |
638 | let zone: $unsigned = self.z.cast(); |
639 | |
640 | // This might seem very slow, generating a whole new |
641 | // SIMD vector for every sample rejection. For most uses |
642 | // though, the chance of rejection is small and provides good |
643 | // general performance. With multiple lanes, that chance is |
644 | // multiplied. To mitigate this, we replace only the lanes of |
645 | // the vector which fail, iteratively reducing the chance of |
646 | // rejection. The replacement method does however add a little |
647 | // overhead. Benchmarking or calculating probabilities might |
648 | // reveal contexts where this replacement method is slower. |
649 | let mut v: $unsigned = rng.gen(); |
650 | loop { |
651 | let (hi, lo) = v.wmul(range); |
652 | let mask = lo.le(zone); |
653 | if mask.all() { |
654 | let hi: $ty = hi.cast(); |
655 | // wrapping addition |
656 | let result = self.low + hi; |
657 | // `select` here compiles to a blend operation |
658 | // When `range.eq(0).none()` the compare and blend |
659 | // operations are avoided. |
660 | let v: $ty = v.cast(); |
661 | return range.gt($unsigned::splat(0)).select(result, v); |
662 | } |
663 | // Replace only the failing lanes |
664 | v = mask.select(v, rng.gen()); |
665 | } |
666 | } |
667 | } |
668 | }; |
669 | |
670 | // bulk implementation |
671 | ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => { |
672 | $( |
673 | uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar); |
674 | uniform_simd_int_impl!($signed, $unsigned, $u_scalar); |
675 | )+ |
676 | }; |
677 | } |
678 | |
679 | #[cfg (feature = "simd_support" )] |
680 | uniform_simd_int_impl! { |
681 | (u64x2, i64x2), |
682 | (u64x4, i64x4), |
683 | (u64x8, i64x8), |
684 | u64 |
685 | } |
686 | |
687 | #[cfg (feature = "simd_support" )] |
688 | uniform_simd_int_impl! { |
689 | (u32x2, i32x2), |
690 | (u32x4, i32x4), |
691 | (u32x8, i32x8), |
692 | (u32x16, i32x16), |
693 | u32 |
694 | } |
695 | |
696 | #[cfg (feature = "simd_support" )] |
697 | uniform_simd_int_impl! { |
698 | (u16x2, i16x2), |
699 | (u16x4, i16x4), |
700 | (u16x8, i16x8), |
701 | (u16x16, i16x16), |
702 | (u16x32, i16x32), |
703 | u16 |
704 | } |
705 | |
706 | #[cfg (feature = "simd_support" )] |
707 | uniform_simd_int_impl! { |
708 | (u8x2, i8x2), |
709 | (u8x4, i8x4), |
710 | (u8x8, i8x8), |
711 | (u8x16, i8x16), |
712 | (u8x32, i8x32), |
713 | (u8x64, i8x64), |
714 | u8 |
715 | } |
716 | |
717 | impl SampleUniform for char { |
718 | type Sampler = UniformChar; |
719 | } |
720 | |
721 | /// The back-end implementing [`UniformSampler`] for `char`. |
722 | /// |
723 | /// Unless you are implementing [`UniformSampler`] for your own type, this type |
724 | /// should not be used directly, use [`Uniform`] instead. |
725 | /// |
726 | /// This differs from integer range sampling since the range `0xD800..=0xDFFF` |
727 | /// are used for surrogate pairs in UCS and UTF-16, and consequently are not |
728 | /// valid Unicode code points. We must therefore avoid sampling values in this |
729 | /// range. |
730 | #[derive(Clone, Copy, Debug)] |
731 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
732 | pub struct UniformChar { |
733 | sampler: UniformInt<u32>, |
734 | } |
735 | |
736 | /// UTF-16 surrogate range start |
737 | const CHAR_SURROGATE_START: u32 = 0xD800; |
738 | /// UTF-16 surrogate range size |
739 | const CHAR_SURROGATE_LEN: u32 = 0xE000 - CHAR_SURROGATE_START; |
740 | |
741 | /// Convert `char` to compressed `u32` |
742 | fn char_to_comp_u32(c: char) -> u32 { |
743 | match c as u32 { |
744 | c if c >= CHAR_SURROGATE_START => c - CHAR_SURROGATE_LEN, |
745 | c => c, |
746 | } |
747 | } |
748 | |
749 | impl UniformSampler for UniformChar { |
750 | type X = char; |
751 | |
752 | #[inline ] // if the range is constant, this helps LLVM to do the |
753 | // calculations at compile-time. |
754 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
755 | where |
756 | B1: SampleBorrow<Self::X> + Sized, |
757 | B2: SampleBorrow<Self::X> + Sized, |
758 | { |
759 | let low = char_to_comp_u32(*low_b.borrow()); |
760 | let high = char_to_comp_u32(*high_b.borrow()); |
761 | let sampler = UniformInt::<u32>::new(low, high); |
762 | UniformChar { sampler } |
763 | } |
764 | |
765 | #[inline ] // if the range is constant, this helps LLVM to do the |
766 | // calculations at compile-time. |
767 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
768 | where |
769 | B1: SampleBorrow<Self::X> + Sized, |
770 | B2: SampleBorrow<Self::X> + Sized, |
771 | { |
772 | let low = char_to_comp_u32(*low_b.borrow()); |
773 | let high = char_to_comp_u32(*high_b.borrow()); |
774 | let sampler = UniformInt::<u32>::new_inclusive(low, high); |
775 | UniformChar { sampler } |
776 | } |
777 | |
778 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
779 | let mut x = self.sampler.sample(rng); |
780 | if x >= CHAR_SURROGATE_START { |
781 | x += CHAR_SURROGATE_LEN; |
782 | } |
783 | // SAFETY: x must not be in surrogate range or greater than char::MAX. |
784 | // This relies on range constructors which accept char arguments. |
785 | // Validity of input char values is assumed. |
786 | unsafe { core::char::from_u32_unchecked(x) } |
787 | } |
788 | } |
789 | |
790 | /// The back-end implementing [`UniformSampler`] for floating-point types. |
791 | /// |
792 | /// Unless you are implementing [`UniformSampler`] for your own type, this type |
793 | /// should not be used directly, use [`Uniform`] instead. |
794 | /// |
795 | /// # Implementation notes |
796 | /// |
797 | /// Instead of generating a float in the `[0, 1)` range using [`Standard`], the |
798 | /// `UniformFloat` implementation converts the output of an PRNG itself. This |
799 | /// way one or two steps can be optimized out. |
800 | /// |
801 | /// The floats are first converted to a value in the `[1, 2)` interval using a |
802 | /// transmute-based method, and then mapped to the expected range with a |
803 | /// multiply and addition. Values produced this way have what equals 23 bits of |
804 | /// random digits for an `f32`, and 52 for an `f64`. |
805 | /// |
806 | /// [`new`]: UniformSampler::new |
807 | /// [`new_inclusive`]: UniformSampler::new_inclusive |
808 | /// [`Standard`]: crate::distributions::Standard |
809 | #[derive(Clone, Copy, Debug, PartialEq)] |
810 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
811 | pub struct UniformFloat<X> { |
812 | low: X, |
813 | scale: X, |
814 | } |
815 | |
816 | macro_rules! uniform_float_impl { |
817 | ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => { |
818 | impl SampleUniform for $ty { |
819 | type Sampler = UniformFloat<$ty>; |
820 | } |
821 | |
822 | impl UniformSampler for UniformFloat<$ty> { |
823 | type X = $ty; |
824 | |
825 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
826 | where |
827 | B1: SampleBorrow<Self::X> + Sized, |
828 | B2: SampleBorrow<Self::X> + Sized, |
829 | { |
830 | let low = *low_b.borrow(); |
831 | let high = *high_b.borrow(); |
832 | debug_assert!( |
833 | low.all_finite(), |
834 | "Uniform::new called with `low` non-finite." |
835 | ); |
836 | debug_assert!( |
837 | high.all_finite(), |
838 | "Uniform::new called with `high` non-finite." |
839 | ); |
840 | assert!(low.all_lt(high), "Uniform::new called with `low >= high`" ); |
841 | let max_rand = <$ty>::splat( |
842 | (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0, |
843 | ); |
844 | |
845 | let mut scale = high - low; |
846 | assert!(scale.all_finite(), "Uniform::new: range overflow" ); |
847 | |
848 | loop { |
849 | let mask = (scale * max_rand + low).ge_mask(high); |
850 | if mask.none() { |
851 | break; |
852 | } |
853 | scale = scale.decrease_masked(mask); |
854 | } |
855 | |
856 | debug_assert!(<$ty>::splat(0.0).all_le(scale)); |
857 | |
858 | UniformFloat { low, scale } |
859 | } |
860 | |
861 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
862 | where |
863 | B1: SampleBorrow<Self::X> + Sized, |
864 | B2: SampleBorrow<Self::X> + Sized, |
865 | { |
866 | let low = *low_b.borrow(); |
867 | let high = *high_b.borrow(); |
868 | debug_assert!( |
869 | low.all_finite(), |
870 | "Uniform::new_inclusive called with `low` non-finite." |
871 | ); |
872 | debug_assert!( |
873 | high.all_finite(), |
874 | "Uniform::new_inclusive called with `high` non-finite." |
875 | ); |
876 | assert!( |
877 | low.all_le(high), |
878 | "Uniform::new_inclusive called with `low > high`" |
879 | ); |
880 | let max_rand = <$ty>::splat( |
881 | (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0, |
882 | ); |
883 | |
884 | let mut scale = (high - low) / max_rand; |
885 | assert!(scale.all_finite(), "Uniform::new_inclusive: range overflow" ); |
886 | |
887 | loop { |
888 | let mask = (scale * max_rand + low).gt_mask(high); |
889 | if mask.none() { |
890 | break; |
891 | } |
892 | scale = scale.decrease_masked(mask); |
893 | } |
894 | |
895 | debug_assert!(<$ty>::splat(0.0).all_le(scale)); |
896 | |
897 | UniformFloat { low, scale } |
898 | } |
899 | |
900 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
901 | // Generate a value in the range [1, 2) |
902 | let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0); |
903 | |
904 | // Get a value in the range [0, 1) in order to avoid |
905 | // overflowing into infinity when multiplying with scale |
906 | let value0_1 = value1_2 - 1.0; |
907 | |
908 | // We don't use `f64::mul_add`, because it is not available with |
909 | // `no_std`. Furthermore, it is slower for some targets (but |
910 | // faster for others). However, the order of multiplication and |
911 | // addition is important, because on some platforms (e.g. ARM) |
912 | // it will be optimized to a single (non-FMA) instruction. |
913 | value0_1 * self.scale + self.low |
914 | } |
915 | |
916 | #[inline] |
917 | fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X |
918 | where |
919 | B1: SampleBorrow<Self::X> + Sized, |
920 | B2: SampleBorrow<Self::X> + Sized, |
921 | { |
922 | let low = *low_b.borrow(); |
923 | let high = *high_b.borrow(); |
924 | debug_assert!( |
925 | low.all_finite(), |
926 | "UniformSampler::sample_single called with `low` non-finite." |
927 | ); |
928 | debug_assert!( |
929 | high.all_finite(), |
930 | "UniformSampler::sample_single called with `high` non-finite." |
931 | ); |
932 | assert!( |
933 | low.all_lt(high), |
934 | "UniformSampler::sample_single: low >= high" |
935 | ); |
936 | let mut scale = high - low; |
937 | assert!(scale.all_finite(), "UniformSampler::sample_single: range overflow" ); |
938 | |
939 | loop { |
940 | // Generate a value in the range [1, 2) |
941 | let value1_2 = |
942 | (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0); |
943 | |
944 | // Get a value in the range [0, 1) in order to avoid |
945 | // overflowing into infinity when multiplying with scale |
946 | let value0_1 = value1_2 - 1.0; |
947 | |
948 | // Doing multiply before addition allows some architectures |
949 | // to use a single instruction. |
950 | let res = value0_1 * scale + low; |
951 | |
952 | debug_assert!(low.all_le(res) || !scale.all_finite()); |
953 | if res.all_lt(high) { |
954 | return res; |
955 | } |
956 | |
957 | // This handles a number of edge cases. |
958 | // * `low` or `high` is NaN. In this case `scale` and |
959 | // `res` are going to end up as NaN. |
960 | // * `low` is negative infinity and `high` is finite. |
961 | // `scale` is going to be infinite and `res` will be |
962 | // NaN. |
963 | // * `high` is positive infinity and `low` is finite. |
964 | // `scale` is going to be infinite and `res` will |
965 | // be infinite or NaN (if value0_1 is 0). |
966 | // * `low` is negative infinity and `high` is positive |
967 | // infinity. `scale` will be infinite and `res` will |
968 | // be NaN. |
969 | // * `low` and `high` are finite, but `high - low` |
970 | // overflows to infinite. `scale` will be infinite |
971 | // and `res` will be infinite or NaN (if value0_1 is 0). |
972 | // So if `high` or `low` are non-finite, we are guaranteed |
973 | // to fail the `res < high` check above and end up here. |
974 | // |
975 | // While we technically should check for non-finite `low` |
976 | // and `high` before entering the loop, by doing the checks |
977 | // here instead, we allow the common case to avoid these |
978 | // checks. But we are still guaranteed that if `low` or |
979 | // `high` are non-finite we'll end up here and can do the |
980 | // appropriate checks. |
981 | // |
982 | // Likewise `high - low` overflowing to infinity is also |
983 | // rare, so handle it here after the common case. |
984 | let mask = !scale.finite_mask(); |
985 | if mask.any() { |
986 | assert!( |
987 | low.all_finite() && high.all_finite(), |
988 | "Uniform::sample_single: low and high must be finite" |
989 | ); |
990 | scale = scale.decrease_masked(mask); |
991 | } |
992 | } |
993 | } |
994 | } |
995 | }; |
996 | } |
997 | |
998 | uniform_float_impl! { f32, u32, f32, u32, 32 - 23 } |
999 | uniform_float_impl! { f64, u64, f64, u64, 64 - 52 } |
1000 | |
1001 | #[cfg (feature = "simd_support" )] |
1002 | uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 } |
1003 | #[cfg (feature = "simd_support" )] |
1004 | uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 } |
1005 | #[cfg (feature = "simd_support" )] |
1006 | uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 } |
1007 | #[cfg (feature = "simd_support" )] |
1008 | uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 } |
1009 | |
1010 | #[cfg (feature = "simd_support" )] |
1011 | uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 } |
1012 | #[cfg (feature = "simd_support" )] |
1013 | uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 } |
1014 | #[cfg (feature = "simd_support" )] |
1015 | uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 } |
1016 | |
1017 | |
1018 | /// The back-end implementing [`UniformSampler`] for `Duration`. |
1019 | /// |
1020 | /// Unless you are implementing [`UniformSampler`] for your own types, this type |
1021 | /// should not be used directly, use [`Uniform`] instead. |
1022 | #[derive(Clone, Copy, Debug)] |
1023 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
1024 | pub struct UniformDuration { |
1025 | mode: UniformDurationMode, |
1026 | offset: u32, |
1027 | } |
1028 | |
1029 | #[derive(Debug, Copy, Clone)] |
1030 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
1031 | enum UniformDurationMode { |
1032 | Small { |
1033 | secs: u64, |
1034 | nanos: Uniform<u32>, |
1035 | }, |
1036 | Medium { |
1037 | nanos: Uniform<u64>, |
1038 | }, |
1039 | Large { |
1040 | max_secs: u64, |
1041 | max_nanos: u32, |
1042 | secs: Uniform<u64>, |
1043 | }, |
1044 | } |
1045 | |
1046 | impl SampleUniform for Duration { |
1047 | type Sampler = UniformDuration; |
1048 | } |
1049 | |
1050 | impl UniformSampler for UniformDuration { |
1051 | type X = Duration; |
1052 | |
1053 | #[inline ] |
1054 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
1055 | where |
1056 | B1: SampleBorrow<Self::X> + Sized, |
1057 | B2: SampleBorrow<Self::X> + Sized, |
1058 | { |
1059 | let low = *low_b.borrow(); |
1060 | let high = *high_b.borrow(); |
1061 | assert!(low < high, "Uniform::new called with `low >= high`" ); |
1062 | UniformDuration::new_inclusive(low, high - Duration::new(0, 1)) |
1063 | } |
1064 | |
1065 | #[inline ] |
1066 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
1067 | where |
1068 | B1: SampleBorrow<Self::X> + Sized, |
1069 | B2: SampleBorrow<Self::X> + Sized, |
1070 | { |
1071 | let low = *low_b.borrow(); |
1072 | let high = *high_b.borrow(); |
1073 | assert!( |
1074 | low <= high, |
1075 | "Uniform::new_inclusive called with `low > high`" |
1076 | ); |
1077 | |
1078 | let low_s = low.as_secs(); |
1079 | let low_n = low.subsec_nanos(); |
1080 | let mut high_s = high.as_secs(); |
1081 | let mut high_n = high.subsec_nanos(); |
1082 | |
1083 | if high_n < low_n { |
1084 | high_s -= 1; |
1085 | high_n += 1_000_000_000; |
1086 | } |
1087 | |
1088 | let mode = if low_s == high_s { |
1089 | UniformDurationMode::Small { |
1090 | secs: low_s, |
1091 | nanos: Uniform::new_inclusive(low_n, high_n), |
1092 | } |
1093 | } else { |
1094 | let max = high_s |
1095 | .checked_mul(1_000_000_000) |
1096 | .and_then(|n| n.checked_add(u64::from(high_n))); |
1097 | |
1098 | if let Some(higher_bound) = max { |
1099 | let lower_bound = low_s * 1_000_000_000 + u64::from(low_n); |
1100 | UniformDurationMode::Medium { |
1101 | nanos: Uniform::new_inclusive(lower_bound, higher_bound), |
1102 | } |
1103 | } else { |
1104 | // An offset is applied to simplify generation of nanoseconds |
1105 | let max_nanos = high_n - low_n; |
1106 | UniformDurationMode::Large { |
1107 | max_secs: high_s, |
1108 | max_nanos, |
1109 | secs: Uniform::new_inclusive(low_s, high_s), |
1110 | } |
1111 | } |
1112 | }; |
1113 | UniformDuration { |
1114 | mode, |
1115 | offset: low_n, |
1116 | } |
1117 | } |
1118 | |
1119 | #[inline ] |
1120 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration { |
1121 | match self.mode { |
1122 | UniformDurationMode::Small { secs, nanos } => { |
1123 | let n = nanos.sample(rng); |
1124 | Duration::new(secs, n) |
1125 | } |
1126 | UniformDurationMode::Medium { nanos } => { |
1127 | let nanos = nanos.sample(rng); |
1128 | Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32) |
1129 | } |
1130 | UniformDurationMode::Large { |
1131 | max_secs, |
1132 | max_nanos, |
1133 | secs, |
1134 | } => { |
1135 | // constant folding means this is at least as fast as `Rng::sample(Range)` |
1136 | let nano_range = Uniform::new(0, 1_000_000_000); |
1137 | loop { |
1138 | let s = secs.sample(rng); |
1139 | let n = nano_range.sample(rng); |
1140 | if !(s == max_secs && n > max_nanos) { |
1141 | let sum = n + self.offset; |
1142 | break Duration::new(s, sum); |
1143 | } |
1144 | } |
1145 | } |
1146 | } |
1147 | } |
1148 | } |
1149 | |
1150 | #[cfg (test)] |
1151 | mod tests { |
1152 | use super::*; |
1153 | use crate::rngs::mock::StepRng; |
1154 | |
1155 | #[test] |
1156 | #[cfg (feature = "serde1" )] |
1157 | fn test_serialization_uniform_duration() { |
1158 | let distr = UniformDuration::new(Duration::from_secs(10), Duration::from_secs(60)); |
1159 | let de_distr: UniformDuration = bincode::deserialize(&bincode::serialize(&distr).unwrap()).unwrap(); |
1160 | assert_eq!( |
1161 | distr.offset, de_distr.offset |
1162 | ); |
1163 | match (distr.mode, de_distr.mode) { |
1164 | (UniformDurationMode::Small {secs: a_secs, nanos: a_nanos}, UniformDurationMode::Small {secs, nanos}) => { |
1165 | assert_eq!(a_secs, secs); |
1166 | |
1167 | assert_eq!(a_nanos.0.low, nanos.0.low); |
1168 | assert_eq!(a_nanos.0.range, nanos.0.range); |
1169 | assert_eq!(a_nanos.0.z, nanos.0.z); |
1170 | } |
1171 | (UniformDurationMode::Medium {nanos: a_nanos} , UniformDurationMode::Medium {nanos}) => { |
1172 | assert_eq!(a_nanos.0.low, nanos.0.low); |
1173 | assert_eq!(a_nanos.0.range, nanos.0.range); |
1174 | assert_eq!(a_nanos.0.z, nanos.0.z); |
1175 | } |
1176 | (UniformDurationMode::Large {max_secs:a_max_secs, max_nanos:a_max_nanos, secs:a_secs}, UniformDurationMode::Large {max_secs, max_nanos, secs} ) => { |
1177 | assert_eq!(a_max_secs, max_secs); |
1178 | assert_eq!(a_max_nanos, max_nanos); |
1179 | |
1180 | assert_eq!(a_secs.0.low, secs.0.low); |
1181 | assert_eq!(a_secs.0.range, secs.0.range); |
1182 | assert_eq!(a_secs.0.z, secs.0.z); |
1183 | } |
1184 | _ => panic!("`UniformDurationMode` was not serialized/deserialized correctly" ) |
1185 | } |
1186 | } |
1187 | |
1188 | #[test] |
1189 | #[cfg (feature = "serde1" )] |
1190 | fn test_uniform_serialization() { |
1191 | let unit_box: Uniform<i32> = Uniform::new(-1, 1); |
1192 | let de_unit_box: Uniform<i32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap(); |
1193 | |
1194 | assert_eq!(unit_box.0.low, de_unit_box.0.low); |
1195 | assert_eq!(unit_box.0.range, de_unit_box.0.range); |
1196 | assert_eq!(unit_box.0.z, de_unit_box.0.z); |
1197 | |
1198 | let unit_box: Uniform<f32> = Uniform::new(-1., 1.); |
1199 | let de_unit_box: Uniform<f32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap(); |
1200 | |
1201 | assert_eq!(unit_box.0.low, de_unit_box.0.low); |
1202 | assert_eq!(unit_box.0.scale, de_unit_box.0.scale); |
1203 | } |
1204 | |
1205 | #[should_panic ] |
1206 | #[test] |
1207 | fn test_uniform_bad_limits_equal_int() { |
1208 | Uniform::new(10, 10); |
1209 | } |
1210 | |
1211 | #[test] |
1212 | fn test_uniform_good_limits_equal_int() { |
1213 | let mut rng = crate::test::rng(804); |
1214 | let dist = Uniform::new_inclusive(10, 10); |
1215 | for _ in 0..20 { |
1216 | assert_eq!(rng.sample(dist), 10); |
1217 | } |
1218 | } |
1219 | |
1220 | #[should_panic ] |
1221 | #[test] |
1222 | fn test_uniform_bad_limits_flipped_int() { |
1223 | Uniform::new(10, 5); |
1224 | } |
1225 | |
1226 | #[test] |
1227 | #[cfg_attr (miri, ignore)] // Miri is too slow |
1228 | fn test_integers() { |
1229 | use core::{i128, u128}; |
1230 | use core::{i16, i32, i64, i8, isize}; |
1231 | use core::{u16, u32, u64, u8, usize}; |
1232 | |
1233 | let mut rng = crate::test::rng(251); |
1234 | macro_rules! t { |
1235 | ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{ |
1236 | for &(low, high) in $v.iter() { |
1237 | let my_uniform = Uniform::new(low, high); |
1238 | for _ in 0..1000 { |
1239 | let v: $ty = rng.sample(my_uniform); |
1240 | assert!($le(low, v) && $lt(v, high)); |
1241 | } |
1242 | |
1243 | let my_uniform = Uniform::new_inclusive(low, high); |
1244 | for _ in 0..1000 { |
1245 | let v: $ty = rng.sample(my_uniform); |
1246 | assert!($le(low, v) && $le(v, high)); |
1247 | } |
1248 | |
1249 | let my_uniform = Uniform::new(&low, high); |
1250 | for _ in 0..1000 { |
1251 | let v: $ty = rng.sample(my_uniform); |
1252 | assert!($le(low, v) && $lt(v, high)); |
1253 | } |
1254 | |
1255 | let my_uniform = Uniform::new_inclusive(&low, &high); |
1256 | for _ in 0..1000 { |
1257 | let v: $ty = rng.sample(my_uniform); |
1258 | assert!($le(low, v) && $le(v, high)); |
1259 | } |
1260 | |
1261 | for _ in 0..1000 { |
1262 | let v = <$ty as SampleUniform>::Sampler::sample_single(low, high, &mut rng); |
1263 | assert!($le(low, v) && $lt(v, high)); |
1264 | } |
1265 | |
1266 | for _ in 0..1000 { |
1267 | let v = <$ty as SampleUniform>::Sampler::sample_single_inclusive(low, high, &mut rng); |
1268 | assert!($le(low, v) && $le(v, high)); |
1269 | } |
1270 | } |
1271 | }}; |
1272 | |
1273 | // scalar bulk |
1274 | ($($ty:ident),*) => {{ |
1275 | $(t!( |
1276 | $ty, |
1277 | [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)], |
1278 | |x, y| x <= y, |
1279 | |x, y| x < y |
1280 | );)* |
1281 | }}; |
1282 | |
1283 | // simd bulk |
1284 | ($($ty:ident),* => $scalar:ident) => {{ |
1285 | $(t!( |
1286 | $ty, |
1287 | [ |
1288 | ($ty::splat(0), $ty::splat(10)), |
1289 | ($ty::splat(10), $ty::splat(127)), |
1290 | ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)), |
1291 | ], |
1292 | |x: $ty, y| x.le(y).all(), |
1293 | |x: $ty, y| x.lt(y).all() |
1294 | );)* |
1295 | }}; |
1296 | } |
1297 | t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize, i128, u128); |
1298 | |
1299 | #[cfg (feature = "simd_support" )] |
1300 | { |
1301 | t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8); |
1302 | t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8); |
1303 | t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16); |
1304 | t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16); |
1305 | t!(u32x2, u32x4, u32x8, u32x16 => u32); |
1306 | t!(i32x2, i32x4, i32x8, i32x16 => i32); |
1307 | t!(u64x2, u64x4, u64x8 => u64); |
1308 | t!(i64x2, i64x4, i64x8 => i64); |
1309 | } |
1310 | } |
1311 | |
1312 | #[test] |
1313 | #[cfg_attr (miri, ignore)] // Miri is too slow |
1314 | fn test_char() { |
1315 | let mut rng = crate::test::rng(891); |
1316 | let mut max = core::char::from_u32(0).unwrap(); |
1317 | for _ in 0..100 { |
1318 | let c = rng.gen_range('A' ..='Z' ); |
1319 | assert!(('A' ..='Z' ).contains(&c)); |
1320 | max = max.max(c); |
1321 | } |
1322 | assert_eq!(max, 'Z' ); |
1323 | let d = Uniform::new( |
1324 | core::char::from_u32(0xD7F0).unwrap(), |
1325 | core::char::from_u32(0xE010).unwrap(), |
1326 | ); |
1327 | for _ in 0..100 { |
1328 | let c = d.sample(&mut rng); |
1329 | assert!((c as u32) < 0xD800 || (c as u32) > 0xDFFF); |
1330 | } |
1331 | } |
1332 | |
1333 | #[test] |
1334 | #[cfg_attr (miri, ignore)] // Miri is too slow |
1335 | fn test_floats() { |
1336 | let mut rng = crate::test::rng(252); |
1337 | let mut zero_rng = StepRng::new(0, 0); |
1338 | let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0); |
1339 | macro_rules! t { |
1340 | ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{ |
1341 | let v: &[($f_scalar, $f_scalar)] = &[ |
1342 | (0.0, 100.0), |
1343 | (-1e35, -1e25), |
1344 | (1e-35, 1e-25), |
1345 | (-1e35, 1e35), |
1346 | (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)), |
1347 | (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)), |
1348 | (-<$f_scalar>::from_bits(5), 0.0), |
1349 | (-<$f_scalar>::from_bits(7), -0.0), |
1350 | (0.1 * ::core::$f_scalar::MAX, ::core::$f_scalar::MAX), |
1351 | (-::core::$f_scalar::MAX * 0.2, ::core::$f_scalar::MAX * 0.7), |
1352 | ]; |
1353 | for &(low_scalar, high_scalar) in v.iter() { |
1354 | for lane in 0..<$ty>::lanes() { |
1355 | let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); |
1356 | let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); |
1357 | let my_uniform = Uniform::new(low, high); |
1358 | let my_incl_uniform = Uniform::new_inclusive(low, high); |
1359 | for _ in 0..100 { |
1360 | let v = rng.sample(my_uniform).extract(lane); |
1361 | assert!(low_scalar <= v && v < high_scalar); |
1362 | let v = rng.sample(my_incl_uniform).extract(lane); |
1363 | assert!(low_scalar <= v && v <= high_scalar); |
1364 | let v = <$ty as SampleUniform>::Sampler |
1365 | ::sample_single(low, high, &mut rng).extract(lane); |
1366 | assert!(low_scalar <= v && v < high_scalar); |
1367 | } |
1368 | |
1369 | assert_eq!( |
1370 | rng.sample(Uniform::new_inclusive(low, low)).extract(lane), |
1371 | low_scalar |
1372 | ); |
1373 | |
1374 | assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar); |
1375 | assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar); |
1376 | assert_eq!(<$ty as SampleUniform>::Sampler |
1377 | ::sample_single(low, high, &mut zero_rng) |
1378 | .extract(lane), low_scalar); |
1379 | assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar); |
1380 | assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar); |
1381 | |
1382 | // Don't run this test for really tiny differences between high and low |
1383 | // since for those rounding might result in selecting high for a very |
1384 | // long time. |
1385 | if (high_scalar - low_scalar) > 0.0001 { |
1386 | let mut lowering_max_rng = StepRng::new( |
1387 | 0xffff_ffff_ffff_ffff, |
1388 | (-1i64 << $bits_shifted) as u64, |
1389 | ); |
1390 | assert!( |
1391 | <$ty as SampleUniform>::Sampler |
1392 | ::sample_single(low, high, &mut lowering_max_rng) |
1393 | .extract(lane) < high_scalar |
1394 | ); |
1395 | } |
1396 | } |
1397 | } |
1398 | |
1399 | assert_eq!( |
1400 | rng.sample(Uniform::new_inclusive( |
1401 | ::core::$f_scalar::MAX, |
1402 | ::core::$f_scalar::MAX |
1403 | )), |
1404 | ::core::$f_scalar::MAX |
1405 | ); |
1406 | assert_eq!( |
1407 | rng.sample(Uniform::new_inclusive( |
1408 | -::core::$f_scalar::MAX, |
1409 | -::core::$f_scalar::MAX |
1410 | )), |
1411 | -::core::$f_scalar::MAX |
1412 | ); |
1413 | }}; |
1414 | } |
1415 | |
1416 | t!(f32, f32, 32 - 23); |
1417 | t!(f64, f64, 64 - 52); |
1418 | #[cfg (feature = "simd_support" )] |
1419 | { |
1420 | t!(f32x2, f32, 32 - 23); |
1421 | t!(f32x4, f32, 32 - 23); |
1422 | t!(f32x8, f32, 32 - 23); |
1423 | t!(f32x16, f32, 32 - 23); |
1424 | t!(f64x2, f64, 64 - 52); |
1425 | t!(f64x4, f64, 64 - 52); |
1426 | t!(f64x8, f64, 64 - 52); |
1427 | } |
1428 | } |
1429 | |
1430 | #[test] |
1431 | #[should_panic ] |
1432 | fn test_float_overflow() { |
1433 | let _ = Uniform::from(::core::f64::MIN..::core::f64::MAX); |
1434 | } |
1435 | |
1436 | #[test] |
1437 | #[should_panic ] |
1438 | fn test_float_overflow_single() { |
1439 | let mut rng = crate::test::rng(252); |
1440 | rng.gen_range(::core::f64::MIN..::core::f64::MAX); |
1441 | } |
1442 | |
1443 | #[test] |
1444 | #[cfg (all( |
1445 | feature = "std" , |
1446 | not(target_arch = "wasm32" ), |
1447 | not(target_arch = "asmjs" ) |
1448 | ))] |
1449 | fn test_float_assertions() { |
1450 | use super::SampleUniform; |
1451 | use std::panic::catch_unwind; |
1452 | fn range<T: SampleUniform>(low: T, high: T) { |
1453 | let mut rng = crate::test::rng(253); |
1454 | T::Sampler::sample_single(low, high, &mut rng); |
1455 | } |
1456 | |
1457 | macro_rules! t { |
1458 | ($ty:ident, $f_scalar:ident) => {{ |
1459 | let v: &[($f_scalar, $f_scalar)] = &[ |
1460 | (::std::$f_scalar::NAN, 0.0), |
1461 | (1.0, ::std::$f_scalar::NAN), |
1462 | (::std::$f_scalar::NAN, ::std::$f_scalar::NAN), |
1463 | (1.0, 0.5), |
1464 | (::std::$f_scalar::MAX, -::std::$f_scalar::MAX), |
1465 | (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY), |
1466 | ( |
1467 | ::std::$f_scalar::NEG_INFINITY, |
1468 | ::std::$f_scalar::NEG_INFINITY, |
1469 | ), |
1470 | (::std::$f_scalar::NEG_INFINITY, 5.0), |
1471 | (5.0, ::std::$f_scalar::INFINITY), |
1472 | (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY), |
1473 | (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN), |
1474 | (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY), |
1475 | ]; |
1476 | for &(low_scalar, high_scalar) in v.iter() { |
1477 | for lane in 0..<$ty>::lanes() { |
1478 | let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); |
1479 | let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); |
1480 | assert!(catch_unwind(|| range(low, high)).is_err()); |
1481 | assert!(catch_unwind(|| Uniform::new(low, high)).is_err()); |
1482 | assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err()); |
1483 | assert!(catch_unwind(|| range(low, low)).is_err()); |
1484 | assert!(catch_unwind(|| Uniform::new(low, low)).is_err()); |
1485 | } |
1486 | } |
1487 | }}; |
1488 | } |
1489 | |
1490 | t!(f32, f32); |
1491 | t!(f64, f64); |
1492 | #[cfg (feature = "simd_support" )] |
1493 | { |
1494 | t!(f32x2, f32); |
1495 | t!(f32x4, f32); |
1496 | t!(f32x8, f32); |
1497 | t!(f32x16, f32); |
1498 | t!(f64x2, f64); |
1499 | t!(f64x4, f64); |
1500 | t!(f64x8, f64); |
1501 | } |
1502 | } |
1503 | |
1504 | |
1505 | #[test] |
1506 | #[cfg_attr (miri, ignore)] // Miri is too slow |
1507 | fn test_durations() { |
1508 | let mut rng = crate::test::rng(253); |
1509 | |
1510 | let v = &[ |
1511 | (Duration::new(10, 50000), Duration::new(100, 1234)), |
1512 | (Duration::new(0, 100), Duration::new(1, 50)), |
1513 | ( |
1514 | Duration::new(0, 0), |
1515 | Duration::new(u64::max_value(), 999_999_999), |
1516 | ), |
1517 | ]; |
1518 | for &(low, high) in v.iter() { |
1519 | let my_uniform = Uniform::new(low, high); |
1520 | for _ in 0..1000 { |
1521 | let v = rng.sample(my_uniform); |
1522 | assert!(low <= v && v < high); |
1523 | } |
1524 | } |
1525 | } |
1526 | |
1527 | #[test] |
1528 | fn test_custom_uniform() { |
1529 | use crate::distributions::uniform::{ |
1530 | SampleBorrow, SampleUniform, UniformFloat, UniformSampler, |
1531 | }; |
1532 | #[derive(Clone, Copy, PartialEq, PartialOrd)] |
1533 | struct MyF32 { |
1534 | x: f32, |
1535 | } |
1536 | #[derive(Clone, Copy, Debug)] |
1537 | struct UniformMyF32(UniformFloat<f32>); |
1538 | impl UniformSampler for UniformMyF32 { |
1539 | type X = MyF32; |
1540 | |
1541 | fn new<B1, B2>(low: B1, high: B2) -> Self |
1542 | where |
1543 | B1: SampleBorrow<Self::X> + Sized, |
1544 | B2: SampleBorrow<Self::X> + Sized, |
1545 | { |
1546 | UniformMyF32(UniformFloat::<f32>::new(low.borrow().x, high.borrow().x)) |
1547 | } |
1548 | |
1549 | fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self |
1550 | where |
1551 | B1: SampleBorrow<Self::X> + Sized, |
1552 | B2: SampleBorrow<Self::X> + Sized, |
1553 | { |
1554 | UniformSampler::new(low, high) |
1555 | } |
1556 | |
1557 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
1558 | MyF32 { |
1559 | x: self.0.sample(rng), |
1560 | } |
1561 | } |
1562 | } |
1563 | impl SampleUniform for MyF32 { |
1564 | type Sampler = UniformMyF32; |
1565 | } |
1566 | |
1567 | let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 }); |
1568 | let uniform = Uniform::new(low, high); |
1569 | let mut rng = crate::test::rng(804); |
1570 | for _ in 0..100 { |
1571 | let x: MyF32 = rng.sample(uniform); |
1572 | assert!(low <= x && x < high); |
1573 | } |
1574 | } |
1575 | |
1576 | #[test] |
1577 | fn test_uniform_from_std_range() { |
1578 | let r = Uniform::from(2u32..7); |
1579 | assert_eq!(r.0.low, 2); |
1580 | assert_eq!(r.0.range, 5); |
1581 | let r = Uniform::from(2.0f64..7.0); |
1582 | assert_eq!(r.0.low, 2.0); |
1583 | assert_eq!(r.0.scale, 5.0); |
1584 | } |
1585 | |
1586 | #[test] |
1587 | fn test_uniform_from_std_range_inclusive() { |
1588 | let r = Uniform::from(2u32..=6); |
1589 | assert_eq!(r.0.low, 2); |
1590 | assert_eq!(r.0.range, 5); |
1591 | let r = Uniform::from(2.0f64..=7.0); |
1592 | assert_eq!(r.0.low, 2.0); |
1593 | assert!(r.0.scale > 5.0); |
1594 | assert!(r.0.scale < 5.0 + 1e-14); |
1595 | } |
1596 | |
1597 | #[test] |
1598 | fn value_stability() { |
1599 | fn test_samples<T: SampleUniform + Copy + core::fmt::Debug + PartialEq>( |
1600 | lb: T, ub: T, expected_single: &[T], expected_multiple: &[T], |
1601 | ) where Uniform<T>: Distribution<T> { |
1602 | let mut rng = crate::test::rng(897); |
1603 | let mut buf = [lb; 3]; |
1604 | |
1605 | for x in &mut buf { |
1606 | *x = T::Sampler::sample_single(lb, ub, &mut rng); |
1607 | } |
1608 | assert_eq!(&buf, expected_single); |
1609 | |
1610 | let distr = Uniform::new(lb, ub); |
1611 | for x in &mut buf { |
1612 | *x = rng.sample(&distr); |
1613 | } |
1614 | assert_eq!(&buf, expected_multiple); |
1615 | } |
1616 | |
1617 | // We test on a sub-set of types; possibly we should do more. |
1618 | // TODO: SIMD types |
1619 | |
1620 | test_samples(11u8, 219, &[17, 66, 214], &[181, 93, 165]); |
1621 | test_samples(11u32, 219, &[17, 66, 214], &[181, 93, 165]); |
1622 | |
1623 | test_samples(0f32, 1e-2f32, &[0.0003070104, 0.0026630748, 0.00979833], &[ |
1624 | 0.008194133, |
1625 | 0.00398172, |
1626 | 0.007428536, |
1627 | ]); |
1628 | test_samples( |
1629 | -1e10f64, |
1630 | 1e10f64, |
1631 | &[-4673848682.871551, 6388267422.932352, 4857075081.198343], |
1632 | &[1173375212.1808167, 1917642852.109581, 2365076174.3153973], |
1633 | ); |
1634 | |
1635 | test_samples( |
1636 | Duration::new(2, 0), |
1637 | Duration::new(4, 0), |
1638 | &[ |
1639 | Duration::new(2, 532615131), |
1640 | Duration::new(3, 638826742), |
1641 | Duration::new(3, 485707508), |
1642 | ], |
1643 | &[ |
1644 | Duration::new(3, 117337521), |
1645 | Duration::new(3, 191764285), |
1646 | Duration::new(3, 236507617), |
1647 | ], |
1648 | ); |
1649 | } |
1650 | |
1651 | #[test] |
1652 | fn uniform_distributions_can_be_compared() { |
1653 | assert_eq!(Uniform::new(1.0, 2.0), Uniform::new(1.0, 2.0)); |
1654 | |
1655 | // To cover UniformInt |
1656 | assert_eq!(Uniform::new(1 as u32, 2 as u32), Uniform::new(1 as u32, 2 as u32)); |
1657 | } |
1658 | } |
1659 | |