| 1 | #![cfg (test)] |
| 2 | |
| 3 | use crate::prelude::*; |
| 4 | use rand::distributions::Uniform; |
| 5 | use rand::seq::SliceRandom; |
| 6 | use rand::{thread_rng, Rng}; |
| 7 | use std::cmp::Ordering::{Equal, Greater, Less}; |
| 8 | |
| 9 | macro_rules! sort { |
| 10 | ($f:ident, $name:ident) => { |
| 11 | #[test] |
| 12 | fn $name() { |
| 13 | let rng = &mut thread_rng(); |
| 14 | |
| 15 | for len in (0..25).chain(500..501) { |
| 16 | for &modulus in &[5, 10, 100] { |
| 17 | let dist = Uniform::new(0, modulus); |
| 18 | for _ in 0..100 { |
| 19 | let v: Vec<i32> = rng.sample_iter(&dist).take(len).collect(); |
| 20 | |
| 21 | // Test sort using `<` operator. |
| 22 | let mut tmp = v.clone(); |
| 23 | tmp.$f(|a, b| a.cmp(b)); |
| 24 | assert!(tmp.windows(2).all(|w| w[0] <= w[1])); |
| 25 | |
| 26 | // Test sort using `>` operator. |
| 27 | let mut tmp = v.clone(); |
| 28 | tmp.$f(|a, b| b.cmp(a)); |
| 29 | assert!(tmp.windows(2).all(|w| w[0] >= w[1])); |
| 30 | } |
| 31 | } |
| 32 | } |
| 33 | |
| 34 | // Test sort with many duplicates. |
| 35 | for &len in &[1_000, 10_000, 100_000] { |
| 36 | for &modulus in &[5, 10, 100, 10_000] { |
| 37 | let dist = Uniform::new(0, modulus); |
| 38 | let mut v: Vec<i32> = rng.sample_iter(&dist).take(len).collect(); |
| 39 | |
| 40 | v.$f(|a, b| a.cmp(b)); |
| 41 | assert!(v.windows(2).all(|w| w[0] <= w[1])); |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | // Test sort with many pre-sorted runs. |
| 46 | for &len in &[1_000, 10_000, 100_000] { |
| 47 | let len_dist = Uniform::new(0, len); |
| 48 | for &modulus in &[5, 10, 1000, 50_000] { |
| 49 | let dist = Uniform::new(0, modulus); |
| 50 | let mut v: Vec<i32> = rng.sample_iter(&dist).take(len).collect(); |
| 51 | |
| 52 | v.sort(); |
| 53 | v.reverse(); |
| 54 | |
| 55 | for _ in 0..5 { |
| 56 | let a = rng.sample(&len_dist); |
| 57 | let b = rng.sample(&len_dist); |
| 58 | if a < b { |
| 59 | v[a..b].reverse(); |
| 60 | } else { |
| 61 | v.swap(a, b); |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | v.$f(|a, b| a.cmp(b)); |
| 66 | assert!(v.windows(2).all(|w| w[0] <= w[1])); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | // Sort using a completely random comparison function. |
| 71 | // This will reorder the elements *somehow*, but won't panic. |
| 72 | let mut v: Vec<_> = (0..100).collect(); |
| 73 | v.$f(|_, _| *[Less, Equal, Greater].choose(&mut thread_rng()).unwrap()); |
| 74 | v.$f(|a, b| a.cmp(b)); |
| 75 | for i in 0..v.len() { |
| 76 | assert_eq!(v[i], i); |
| 77 | } |
| 78 | |
| 79 | // Should not panic. |
| 80 | [0i32; 0].$f(|a, b| a.cmp(b)); |
| 81 | [(); 10].$f(|a, b| a.cmp(b)); |
| 82 | [(); 100].$f(|a, b| a.cmp(b)); |
| 83 | |
| 84 | let mut v = [0xDEAD_BEEFu64]; |
| 85 | v.$f(|a, b| a.cmp(b)); |
| 86 | assert!(v == [0xDEAD_BEEF]); |
| 87 | } |
| 88 | }; |
| 89 | } |
| 90 | |
| 91 | sort!(par_sort_by, test_par_sort); |
| 92 | sort!(par_sort_unstable_by, test_par_sort_unstable); |
| 93 | |
| 94 | #[test] |
| 95 | fn test_par_sort_stability() { |
| 96 | for len in (2..25).chain(500..510).chain(50_000..50_010) { |
| 97 | for _ in 0..10 { |
| 98 | let mut counts = [0; 10]; |
| 99 | |
| 100 | // Create a vector like [(6, 1), (5, 1), (6, 2), ...], |
| 101 | // where the first item of each tuple is random, but |
| 102 | // the second item represents which occurrence of that |
| 103 | // number this element is, i.e. the second elements |
| 104 | // will occur in sorted order. |
| 105 | let mut rng = thread_rng(); |
| 106 | let mut v: Vec<_> = (0..len) |
| 107 | .map(|_| { |
| 108 | let n: usize = rng.gen_range(0..10); |
| 109 | counts[n] += 1; |
| 110 | (n, counts[n]) |
| 111 | }) |
| 112 | .collect(); |
| 113 | |
| 114 | // Only sort on the first element, so an unstable sort |
| 115 | // may mix up the counts. |
| 116 | v.par_sort_by(|&(a, _), &(b, _)| a.cmp(&b)); |
| 117 | |
| 118 | // This comparison includes the count (the second item |
| 119 | // of the tuple), so elements with equal first items |
| 120 | // will need to be ordered with increasing |
| 121 | // counts... i.e. exactly asserting that this sort is |
| 122 | // stable. |
| 123 | assert!(v.windows(2).all(|w| w[0] <= w[1])); |
| 124 | } |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | #[test] |
| 129 | fn test_par_chunks_exact_remainder() { |
| 130 | let v: &[i32] = &[0, 1, 2, 3, 4]; |
| 131 | let c = v.par_chunks_exact(2); |
| 132 | assert_eq!(c.remainder(), &[4]); |
| 133 | assert_eq!(c.len(), 2); |
| 134 | } |
| 135 | |
| 136 | #[test] |
| 137 | fn test_par_chunks_exact_mut_remainder() { |
| 138 | let v: &mut [i32] = &mut [0, 1, 2, 3, 4]; |
| 139 | let mut c = v.par_chunks_exact_mut(2); |
| 140 | assert_eq!(c.remainder(), &[4]); |
| 141 | assert_eq!(c.len(), 2); |
| 142 | assert_eq!(c.into_remainder(), &[4]); |
| 143 | |
| 144 | let mut c = v.par_chunks_exact_mut(2); |
| 145 | assert_eq!(c.take_remainder(), &[4]); |
| 146 | assert_eq!(c.take_remainder(), &[]); |
| 147 | assert_eq!(c.len(), 2); |
| 148 | } |
| 149 | |
| 150 | #[test] |
| 151 | fn test_par_rchunks_exact_remainder() { |
| 152 | let v: &[i32] = &[0, 1, 2, 3, 4]; |
| 153 | let c = v.par_rchunks_exact(2); |
| 154 | assert_eq!(c.remainder(), &[0]); |
| 155 | assert_eq!(c.len(), 2); |
| 156 | } |
| 157 | |
| 158 | #[test] |
| 159 | fn test_par_rchunks_exact_mut_remainder() { |
| 160 | let v: &mut [i32] = &mut [0, 1, 2, 3, 4]; |
| 161 | let mut c = v.par_rchunks_exact_mut(2); |
| 162 | assert_eq!(c.remainder(), &[0]); |
| 163 | assert_eq!(c.len(), 2); |
| 164 | assert_eq!(c.into_remainder(), &[0]); |
| 165 | |
| 166 | let mut c = v.par_rchunks_exact_mut(2); |
| 167 | assert_eq!(c.take_remainder(), &[0]); |
| 168 | assert_eq!(c.take_remainder(), &[]); |
| 169 | assert_eq!(c.len(), 2); |
| 170 | } |
| 171 | |