1 | #![cfg (test)] |
2 | |
3 | use crate::prelude::*; |
4 | use rand::distributions::Uniform; |
5 | use rand::seq::SliceRandom; |
6 | use rand::{thread_rng, Rng}; |
7 | use std::cmp::Ordering::{Equal, Greater, Less}; |
8 | |
9 | macro_rules! sort { |
10 | ($f:ident, $name:ident) => { |
11 | #[test] |
12 | fn $name() { |
13 | let rng = &mut thread_rng(); |
14 | |
15 | for len in (0..25).chain(500..501) { |
16 | for &modulus in &[5, 10, 100] { |
17 | let dist = Uniform::new(0, modulus); |
18 | for _ in 0..100 { |
19 | let v: Vec<i32> = rng.sample_iter(&dist).take(len).collect(); |
20 | |
21 | // Test sort using `<` operator. |
22 | let mut tmp = v.clone(); |
23 | tmp.$f(|a, b| a.cmp(b)); |
24 | assert!(tmp.windows(2).all(|w| w[0] <= w[1])); |
25 | |
26 | // Test sort using `>` operator. |
27 | let mut tmp = v.clone(); |
28 | tmp.$f(|a, b| b.cmp(a)); |
29 | assert!(tmp.windows(2).all(|w| w[0] >= w[1])); |
30 | } |
31 | } |
32 | } |
33 | |
34 | // Test sort with many duplicates. |
35 | for &len in &[1_000, 10_000, 100_000] { |
36 | for &modulus in &[5, 10, 100, 10_000] { |
37 | let dist = Uniform::new(0, modulus); |
38 | let mut v: Vec<i32> = rng.sample_iter(&dist).take(len).collect(); |
39 | |
40 | v.$f(|a, b| a.cmp(b)); |
41 | assert!(v.windows(2).all(|w| w[0] <= w[1])); |
42 | } |
43 | } |
44 | |
45 | // Test sort with many pre-sorted runs. |
46 | for &len in &[1_000, 10_000, 100_000] { |
47 | let len_dist = Uniform::new(0, len); |
48 | for &modulus in &[5, 10, 1000, 50_000] { |
49 | let dist = Uniform::new(0, modulus); |
50 | let mut v: Vec<i32> = rng.sample_iter(&dist).take(len).collect(); |
51 | |
52 | v.sort(); |
53 | v.reverse(); |
54 | |
55 | for _ in 0..5 { |
56 | let a = rng.sample(&len_dist); |
57 | let b = rng.sample(&len_dist); |
58 | if a < b { |
59 | v[a..b].reverse(); |
60 | } else { |
61 | v.swap(a, b); |
62 | } |
63 | } |
64 | |
65 | v.$f(|a, b| a.cmp(b)); |
66 | assert!(v.windows(2).all(|w| w[0] <= w[1])); |
67 | } |
68 | } |
69 | |
70 | // Sort using a completely random comparison function. |
71 | // This will reorder the elements *somehow*, but won't panic. |
72 | let mut v: Vec<_> = (0..100).collect(); |
73 | v.$f(|_, _| *[Less, Equal, Greater].choose(&mut thread_rng()).unwrap()); |
74 | v.$f(|a, b| a.cmp(b)); |
75 | for i in 0..v.len() { |
76 | assert_eq!(v[i], i); |
77 | } |
78 | |
79 | // Should not panic. |
80 | [0i32; 0].$f(|a, b| a.cmp(b)); |
81 | [(); 10].$f(|a, b| a.cmp(b)); |
82 | [(); 100].$f(|a, b| a.cmp(b)); |
83 | |
84 | let mut v = [0xDEAD_BEEFu64]; |
85 | v.$f(|a, b| a.cmp(b)); |
86 | assert!(v == [0xDEAD_BEEF]); |
87 | } |
88 | }; |
89 | } |
90 | |
91 | sort!(par_sort_by, test_par_sort); |
92 | sort!(par_sort_unstable_by, test_par_sort_unstable); |
93 | |
94 | #[test] |
95 | fn test_par_sort_stability() { |
96 | for len in (2..25).chain(500..510).chain(50_000..50_010) { |
97 | for _ in 0..10 { |
98 | let mut counts = [0; 10]; |
99 | |
100 | // Create a vector like [(6, 1), (5, 1), (6, 2), ...], |
101 | // where the first item of each tuple is random, but |
102 | // the second item represents which occurrence of that |
103 | // number this element is, i.e. the second elements |
104 | // will occur in sorted order. |
105 | let mut rng = thread_rng(); |
106 | let mut v: Vec<_> = (0..len) |
107 | .map(|_| { |
108 | let n: usize = rng.gen_range(0..10); |
109 | counts[n] += 1; |
110 | (n, counts[n]) |
111 | }) |
112 | .collect(); |
113 | |
114 | // Only sort on the first element, so an unstable sort |
115 | // may mix up the counts. |
116 | v.par_sort_by(|&(a, _), &(b, _)| a.cmp(&b)); |
117 | |
118 | // This comparison includes the count (the second item |
119 | // of the tuple), so elements with equal first items |
120 | // will need to be ordered with increasing |
121 | // counts... i.e. exactly asserting that this sort is |
122 | // stable. |
123 | assert!(v.windows(2).all(|w| w[0] <= w[1])); |
124 | } |
125 | } |
126 | } |
127 | |
128 | #[test] |
129 | fn test_par_chunks_exact_remainder() { |
130 | let v: &[i32] = &[0, 1, 2, 3, 4]; |
131 | let c = v.par_chunks_exact(2); |
132 | assert_eq!(c.remainder(), &[4]); |
133 | assert_eq!(c.len(), 2); |
134 | } |
135 | |
136 | #[test] |
137 | fn test_par_chunks_exact_mut_remainder() { |
138 | let v: &mut [i32] = &mut [0, 1, 2, 3, 4]; |
139 | let mut c = v.par_chunks_exact_mut(2); |
140 | assert_eq!(c.remainder(), &[4]); |
141 | assert_eq!(c.len(), 2); |
142 | assert_eq!(c.into_remainder(), &[4]); |
143 | |
144 | let mut c = v.par_chunks_exact_mut(2); |
145 | assert_eq!(c.take_remainder(), &[4]); |
146 | assert_eq!(c.take_remainder(), &[]); |
147 | assert_eq!(c.len(), 2); |
148 | } |
149 | |
150 | #[test] |
151 | fn test_par_rchunks_exact_remainder() { |
152 | let v: &[i32] = &[0, 1, 2, 3, 4]; |
153 | let c = v.par_rchunks_exact(2); |
154 | assert_eq!(c.remainder(), &[0]); |
155 | assert_eq!(c.len(), 2); |
156 | } |
157 | |
158 | #[test] |
159 | fn test_par_rchunks_exact_mut_remainder() { |
160 | let v: &mut [i32] = &mut [0, 1, 2, 3, 4]; |
161 | let mut c = v.par_rchunks_exact_mut(2); |
162 | assert_eq!(c.remainder(), &[0]); |
163 | assert_eq!(c.len(), 2); |
164 | assert_eq!(c.into_remainder(), &[0]); |
165 | |
166 | let mut c = v.par_rchunks_exact_mut(2); |
167 | assert_eq!(c.take_remainder(), &[0]); |
168 | assert_eq!(c.take_remainder(), &[]); |
169 | assert_eq!(c.len(), 2); |
170 | } |
171 | |