| 1 | /*! |
| 2 | Types and routines specific to sparse DFAs. |
| 3 | |
| 4 | This module is the home of [`sparse::DFA`](DFA). |
| 5 | |
| 6 | Unlike the [`dense`] module, this module does not contain a builder or |
| 7 | configuration specific for sparse DFAs. Instead, the intended way to build a |
| 8 | sparse DFA is either by using a default configuration with its constructor |
| 9 | [`sparse::DFA::new`](DFA::new), or by first configuring the construction of a |
| 10 | dense DFA with [`dense::Builder`] and then calling [`dense::DFA::to_sparse`]. |
| 11 | For example, this configures a sparse DFA to do an overlapping search: |
| 12 | |
| 13 | ``` |
| 14 | use regex_automata::{ |
| 15 | dfa::{Automaton, OverlappingState, dense}, |
| 16 | HalfMatch, Input, MatchKind, |
| 17 | }; |
| 18 | |
| 19 | let dense_re = dense::Builder::new() |
| 20 | .configure(dense::Config::new().match_kind(MatchKind::All)) |
| 21 | .build(r"Samwise|Sam" )?; |
| 22 | let sparse_re = dense_re.to_sparse()?; |
| 23 | |
| 24 | // Setup our haystack and initial start state. |
| 25 | let input = Input::new("Samwise" ); |
| 26 | let mut state = OverlappingState::start(); |
| 27 | |
| 28 | // First, 'Sam' will match. |
| 29 | sparse_re.try_search_overlapping_fwd(&input, &mut state)?; |
| 30 | assert_eq!(Some(HalfMatch::must(0, 3)), state.get_match()); |
| 31 | |
| 32 | // And now 'Samwise' will match. |
| 33 | sparse_re.try_search_overlapping_fwd(&input, &mut state)?; |
| 34 | assert_eq!(Some(HalfMatch::must(0, 7)), state.get_match()); |
| 35 | # Ok::<(), Box<dyn std::error::Error>>(()) |
| 36 | ``` |
| 37 | */ |
| 38 | |
| 39 | #[cfg (feature = "dfa-build" )] |
| 40 | use core::iter; |
| 41 | use core::{ |
| 42 | convert::{TryFrom, TryInto}, |
| 43 | fmt, |
| 44 | mem::size_of, |
| 45 | }; |
| 46 | |
| 47 | #[cfg (feature = "dfa-build" )] |
| 48 | use alloc::{vec, vec::Vec}; |
| 49 | |
| 50 | #[cfg (feature = "dfa-build" )] |
| 51 | use crate::dfa::dense::{self, BuildError}; |
| 52 | use crate::{ |
| 53 | dfa::{ |
| 54 | automaton::{fmt_state_indicator, Automaton, StartError}, |
| 55 | dense::Flags, |
| 56 | special::Special, |
| 57 | StartKind, DEAD, |
| 58 | }, |
| 59 | util::{ |
| 60 | alphabet::{ByteClasses, ByteSet}, |
| 61 | escape::DebugByte, |
| 62 | int::{Pointer, Usize, U16, U32}, |
| 63 | prefilter::Prefilter, |
| 64 | primitives::{PatternID, StateID}, |
| 65 | search::Anchored, |
| 66 | start::{self, Start, StartByteMap}, |
| 67 | wire::{self, DeserializeError, Endian, SerializeError}, |
| 68 | }, |
| 69 | }; |
| 70 | |
| 71 | const LABEL: &str = "rust-regex-automata-dfa-sparse" ; |
| 72 | const VERSION: u32 = 2; |
| 73 | |
| 74 | /// A sparse deterministic finite automaton (DFA) with variable sized states. |
| 75 | /// |
| 76 | /// In contrast to a [dense::DFA], a sparse DFA uses a more space efficient |
| 77 | /// representation for its transitions. Consequently, sparse DFAs may use much |
| 78 | /// less memory than dense DFAs, but this comes at a price. In particular, |
| 79 | /// reading the more space efficient transitions takes more work, and |
| 80 | /// consequently, searching using a sparse DFA is typically slower than a dense |
| 81 | /// DFA. |
| 82 | /// |
| 83 | /// A sparse DFA can be built using the default configuration via the |
| 84 | /// [`DFA::new`] constructor. Otherwise, one can configure various aspects of a |
| 85 | /// dense DFA via [`dense::Builder`], and then convert a dense DFA to a sparse |
| 86 | /// DFA using [`dense::DFA::to_sparse`]. |
| 87 | /// |
| 88 | /// In general, a sparse DFA supports all the same search operations as a dense |
| 89 | /// DFA. |
| 90 | /// |
| 91 | /// Making the choice between a dense and sparse DFA depends on your specific |
| 92 | /// work load. If you can sacrifice a bit of search time performance, then a |
| 93 | /// sparse DFA might be the best choice. In particular, while sparse DFAs are |
| 94 | /// probably always slower than dense DFAs, you may find that they are easily |
| 95 | /// fast enough for your purposes! |
| 96 | /// |
| 97 | /// # Type parameters |
| 98 | /// |
| 99 | /// A `DFA` has one type parameter, `T`, which is used to represent the parts |
| 100 | /// of a sparse DFA. `T` is typically a `Vec<u8>` or a `&[u8]`. |
| 101 | /// |
| 102 | /// # The `Automaton` trait |
| 103 | /// |
| 104 | /// This type implements the [`Automaton`] trait, which means it can be used |
| 105 | /// for searching. For example: |
| 106 | /// |
| 107 | /// ``` |
| 108 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 109 | /// |
| 110 | /// let dfa = DFA::new("foo[0-9]+" )?; |
| 111 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 112 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 113 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 114 | /// ``` |
| 115 | #[derive(Clone)] |
| 116 | pub struct DFA<T> { |
| 117 | // When compared to a dense DFA, a sparse DFA *looks* a lot simpler |
| 118 | // representation-wise. In reality, it is perhaps more complicated. Namely, |
| 119 | // in a dense DFA, all information needs to be very cheaply accessible |
| 120 | // using only state IDs. In a sparse DFA however, each state uses a |
| 121 | // variable amount of space because each state encodes more information |
| 122 | // than just its transitions. Each state also includes an accelerator if |
| 123 | // one exists, along with the matching pattern IDs if the state is a match |
| 124 | // state. |
| 125 | // |
| 126 | // That is, a lot of the complexity is pushed down into how each state |
| 127 | // itself is represented. |
| 128 | tt: Transitions<T>, |
| 129 | st: StartTable<T>, |
| 130 | special: Special, |
| 131 | pre: Option<Prefilter>, |
| 132 | quitset: ByteSet, |
| 133 | flags: Flags, |
| 134 | } |
| 135 | |
| 136 | #[cfg (feature = "dfa-build" )] |
| 137 | impl DFA<Vec<u8>> { |
| 138 | /// Parse the given regular expression using a default configuration and |
| 139 | /// return the corresponding sparse DFA. |
| 140 | /// |
| 141 | /// If you want a non-default configuration, then use the |
| 142 | /// [`dense::Builder`] to set your own configuration, and then call |
| 143 | /// [`dense::DFA::to_sparse`] to create a sparse DFA. |
| 144 | /// |
| 145 | /// # Example |
| 146 | /// |
| 147 | /// ``` |
| 148 | /// use regex_automata::{dfa::{Automaton, sparse}, HalfMatch, Input}; |
| 149 | /// |
| 150 | /// let dfa = sparse::DFA::new("foo[0-9]+bar" )?; |
| 151 | /// |
| 152 | /// let expected = Some(HalfMatch::must(0, 11)); |
| 153 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar" ))?); |
| 154 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 155 | /// ``` |
| 156 | #[cfg (feature = "syntax" )] |
| 157 | pub fn new(pattern: &str) -> Result<DFA<Vec<u8>>, BuildError> { |
| 158 | dense::Builder::new() |
| 159 | .build(pattern) |
| 160 | .and_then(|dense| dense.to_sparse()) |
| 161 | } |
| 162 | |
| 163 | /// Parse the given regular expressions using a default configuration and |
| 164 | /// return the corresponding multi-DFA. |
| 165 | /// |
| 166 | /// If you want a non-default configuration, then use the |
| 167 | /// [`dense::Builder`] to set your own configuration, and then call |
| 168 | /// [`dense::DFA::to_sparse`] to create a sparse DFA. |
| 169 | /// |
| 170 | /// # Example |
| 171 | /// |
| 172 | /// ``` |
| 173 | /// use regex_automata::{dfa::{Automaton, sparse}, HalfMatch, Input}; |
| 174 | /// |
| 175 | /// let dfa = sparse::DFA::new_many(&["[0-9]+" , "[a-z]+" ])?; |
| 176 | /// let expected = Some(HalfMatch::must(1, 3)); |
| 177 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar" ))?); |
| 178 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 179 | /// ``` |
| 180 | #[cfg (feature = "syntax" )] |
| 181 | pub fn new_many<P: AsRef<str>>( |
| 182 | patterns: &[P], |
| 183 | ) -> Result<DFA<Vec<u8>>, BuildError> { |
| 184 | dense::Builder::new() |
| 185 | .build_many(patterns) |
| 186 | .and_then(|dense| dense.to_sparse()) |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | #[cfg (feature = "dfa-build" )] |
| 191 | impl DFA<Vec<u8>> { |
| 192 | /// Create a new DFA that matches every input. |
| 193 | /// |
| 194 | /// # Example |
| 195 | /// |
| 196 | /// ``` |
| 197 | /// use regex_automata::{ |
| 198 | /// dfa::{Automaton, sparse}, |
| 199 | /// HalfMatch, Input, |
| 200 | /// }; |
| 201 | /// |
| 202 | /// let dfa = sparse::DFA::always_match()?; |
| 203 | /// |
| 204 | /// let expected = Some(HalfMatch::must(0, 0)); |
| 205 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("" ))?); |
| 206 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo" ))?); |
| 207 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 208 | /// ``` |
| 209 | pub fn always_match() -> Result<DFA<Vec<u8>>, BuildError> { |
| 210 | dense::DFA::always_match()?.to_sparse() |
| 211 | } |
| 212 | |
| 213 | /// Create a new sparse DFA that never matches any input. |
| 214 | /// |
| 215 | /// # Example |
| 216 | /// |
| 217 | /// ``` |
| 218 | /// use regex_automata::{dfa::{Automaton, sparse}, Input}; |
| 219 | /// |
| 220 | /// let dfa = sparse::DFA::never_match()?; |
| 221 | /// assert_eq!(None, dfa.try_search_fwd(&Input::new("" ))?); |
| 222 | /// assert_eq!(None, dfa.try_search_fwd(&Input::new("foo" ))?); |
| 223 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 224 | /// ``` |
| 225 | pub fn never_match() -> Result<DFA<Vec<u8>>, BuildError> { |
| 226 | dense::DFA::never_match()?.to_sparse() |
| 227 | } |
| 228 | |
| 229 | /// The implementation for constructing a sparse DFA from a dense DFA. |
| 230 | pub(crate) fn from_dense<T: AsRef<[u32]>>( |
| 231 | dfa: &dense::DFA<T>, |
| 232 | ) -> Result<DFA<Vec<u8>>, BuildError> { |
| 233 | // In order to build the transition table, we need to be able to write |
| 234 | // state identifiers for each of the "next" transitions in each state. |
| 235 | // Our state identifiers correspond to the byte offset in the |
| 236 | // transition table at which the state is encoded. Therefore, we do not |
| 237 | // actually know what the state identifiers are until we've allocated |
| 238 | // exactly as much space as we need for each state. Thus, construction |
| 239 | // of the transition table happens in two passes. |
| 240 | // |
| 241 | // In the first pass, we fill out the shell of each state, which |
| 242 | // includes the transition length, the input byte ranges and |
| 243 | // zero-filled space for the transitions and accelerators, if present. |
| 244 | // In this first pass, we also build up a map from the state identifier |
| 245 | // index of the dense DFA to the state identifier in this sparse DFA. |
| 246 | // |
| 247 | // In the second pass, we fill in the transitions based on the map |
| 248 | // built in the first pass. |
| 249 | |
| 250 | // The capacity given here reflects a minimum. (Well, the true minimum |
| 251 | // is likely even bigger, but hopefully this saves a few reallocs.) |
| 252 | let mut sparse = Vec::with_capacity(StateID::SIZE * dfa.state_len()); |
| 253 | // This maps state indices from the dense DFA to StateIDs in the sparse |
| 254 | // DFA. We build out this map on the first pass, and then use it in the |
| 255 | // second pass to back-fill our transitions. |
| 256 | let mut remap: Vec<StateID> = vec![DEAD; dfa.state_len()]; |
| 257 | for state in dfa.states() { |
| 258 | let pos = sparse.len(); |
| 259 | |
| 260 | remap[dfa.to_index(state.id())] = StateID::new(pos) |
| 261 | .map_err(|_| BuildError::too_many_states())?; |
| 262 | // zero-filled space for the transition length |
| 263 | sparse.push(0); |
| 264 | sparse.push(0); |
| 265 | |
| 266 | let mut transition_len = 0; |
| 267 | for (unit1, unit2, _) in state.sparse_transitions() { |
| 268 | match (unit1.as_u8(), unit2.as_u8()) { |
| 269 | (Some(b1), Some(b2)) => { |
| 270 | transition_len += 1; |
| 271 | sparse.push(b1); |
| 272 | sparse.push(b2); |
| 273 | } |
| 274 | (None, None) => {} |
| 275 | (Some(_), None) | (None, Some(_)) => { |
| 276 | // can never occur because sparse_transitions never |
| 277 | // groups EOI with any other transition. |
| 278 | unreachable!() |
| 279 | } |
| 280 | } |
| 281 | } |
| 282 | // Add dummy EOI transition. This is never actually read while |
| 283 | // searching, but having space equivalent to the total number |
| 284 | // of transitions is convenient. Otherwise, we'd need to track |
| 285 | // a different number of transitions for the byte ranges as for |
| 286 | // the 'next' states. |
| 287 | // |
| 288 | // N.B. The loop above is not guaranteed to yield the EOI |
| 289 | // transition, since it may point to a DEAD state. By putting |
| 290 | // it here, we always write the EOI transition, and thus |
| 291 | // guarantee that our transition length is >0. Why do we always |
| 292 | // need the EOI transition? Because in order to implement |
| 293 | // Automaton::next_eoi_state, this lets us just ask for the last |
| 294 | // transition. There are probably other/better ways to do this. |
| 295 | transition_len += 1; |
| 296 | sparse.push(0); |
| 297 | sparse.push(0); |
| 298 | |
| 299 | // Check some assumptions about transition length. |
| 300 | assert_ne!( |
| 301 | transition_len, 0, |
| 302 | "transition length should be non-zero" , |
| 303 | ); |
| 304 | assert!( |
| 305 | transition_len <= 257, |
| 306 | "expected transition length {} to be <= 257" , |
| 307 | transition_len, |
| 308 | ); |
| 309 | |
| 310 | // Fill in the transition length. |
| 311 | // Since transition length is always <= 257, we use the most |
| 312 | // significant bit to indicate whether this is a match state or |
| 313 | // not. |
| 314 | let ntrans = if dfa.is_match_state(state.id()) { |
| 315 | transition_len | (1 << 15) |
| 316 | } else { |
| 317 | transition_len |
| 318 | }; |
| 319 | wire::NE::write_u16(ntrans, &mut sparse[pos..]); |
| 320 | |
| 321 | // zero-fill the actual transitions. |
| 322 | // Unwraps are OK since transition_length <= 257 and our minimum |
| 323 | // support usize size is 16-bits. |
| 324 | let zeros = usize::try_from(transition_len) |
| 325 | .unwrap() |
| 326 | .checked_mul(StateID::SIZE) |
| 327 | .unwrap(); |
| 328 | sparse.extend(iter::repeat(0).take(zeros)); |
| 329 | |
| 330 | // If this is a match state, write the pattern IDs matched by this |
| 331 | // state. |
| 332 | if dfa.is_match_state(state.id()) { |
| 333 | let plen = dfa.match_pattern_len(state.id()); |
| 334 | // Write the actual pattern IDs with a u32 length prefix. |
| 335 | // First, zero-fill space. |
| 336 | let mut pos = sparse.len(); |
| 337 | // Unwraps are OK since it's guaranteed that plen <= |
| 338 | // PatternID::LIMIT, which is in turn guaranteed to fit into a |
| 339 | // u32. |
| 340 | let zeros = size_of::<u32>() |
| 341 | .checked_mul(plen) |
| 342 | .unwrap() |
| 343 | .checked_add(size_of::<u32>()) |
| 344 | .unwrap(); |
| 345 | sparse.extend(iter::repeat(0).take(zeros)); |
| 346 | |
| 347 | // Now write the length prefix. |
| 348 | wire::NE::write_u32( |
| 349 | // Will never fail since u32::MAX is invalid pattern ID. |
| 350 | // Thus, the number of pattern IDs is representable by a |
| 351 | // u32. |
| 352 | plen.try_into().expect("pattern ID length fits in u32" ), |
| 353 | &mut sparse[pos..], |
| 354 | ); |
| 355 | pos += size_of::<u32>(); |
| 356 | |
| 357 | // Now write the pattern IDs. |
| 358 | for &pid in dfa.pattern_id_slice(state.id()) { |
| 359 | pos += wire::write_pattern_id::<wire::NE>( |
| 360 | pid, |
| 361 | &mut sparse[pos..], |
| 362 | ); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | // And now add the accelerator, if one exists. An accelerator is |
| 367 | // at most 4 bytes and at least 1 byte. The first byte is the |
| 368 | // length, N. N bytes follow the length. The set of bytes that |
| 369 | // follow correspond (exhaustively) to the bytes that must be seen |
| 370 | // to leave this state. |
| 371 | let accel = dfa.accelerator(state.id()); |
| 372 | sparse.push(accel.len().try_into().unwrap()); |
| 373 | sparse.extend_from_slice(accel); |
| 374 | } |
| 375 | |
| 376 | let mut new = DFA { |
| 377 | tt: Transitions { |
| 378 | sparse, |
| 379 | classes: dfa.byte_classes().clone(), |
| 380 | state_len: dfa.state_len(), |
| 381 | pattern_len: dfa.pattern_len(), |
| 382 | }, |
| 383 | st: StartTable::from_dense_dfa(dfa, &remap)?, |
| 384 | special: dfa.special().remap(|id| remap[dfa.to_index(id)]), |
| 385 | pre: dfa.get_prefilter().map(|p| p.clone()), |
| 386 | quitset: dfa.quitset().clone(), |
| 387 | flags: dfa.flags().clone(), |
| 388 | }; |
| 389 | // And here's our second pass. Iterate over all of the dense states |
| 390 | // again, and update the transitions in each of the states in the |
| 391 | // sparse DFA. |
| 392 | for old_state in dfa.states() { |
| 393 | let new_id = remap[dfa.to_index(old_state.id())]; |
| 394 | let mut new_state = new.tt.state_mut(new_id); |
| 395 | let sparse = old_state.sparse_transitions(); |
| 396 | for (i, (_, _, next)) in sparse.enumerate() { |
| 397 | let next = remap[dfa.to_index(next)]; |
| 398 | new_state.set_next_at(i, next); |
| 399 | } |
| 400 | } |
| 401 | debug!( |
| 402 | "created sparse DFA, memory usage: {} (dense memory usage: {})" , |
| 403 | new.memory_usage(), |
| 404 | dfa.memory_usage(), |
| 405 | ); |
| 406 | Ok(new) |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | impl<T: AsRef<[u8]>> DFA<T> { |
| 411 | /// Cheaply return a borrowed version of this sparse DFA. Specifically, the |
| 412 | /// DFA returned always uses `&[u8]` for its transitions. |
| 413 | pub fn as_ref<'a>(&'a self) -> DFA<&'a [u8]> { |
| 414 | DFA { |
| 415 | tt: self.tt.as_ref(), |
| 416 | st: self.st.as_ref(), |
| 417 | special: self.special, |
| 418 | pre: self.pre.clone(), |
| 419 | quitset: self.quitset, |
| 420 | flags: self.flags, |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | /// Return an owned version of this sparse DFA. Specifically, the DFA |
| 425 | /// returned always uses `Vec<u8>` for its transitions. |
| 426 | /// |
| 427 | /// Effectively, this returns a sparse DFA whose transitions live on the |
| 428 | /// heap. |
| 429 | #[cfg (feature = "alloc" )] |
| 430 | pub fn to_owned(&self) -> DFA<alloc::vec::Vec<u8>> { |
| 431 | DFA { |
| 432 | tt: self.tt.to_owned(), |
| 433 | st: self.st.to_owned(), |
| 434 | special: self.special, |
| 435 | pre: self.pre.clone(), |
| 436 | quitset: self.quitset, |
| 437 | flags: self.flags, |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | /// Returns the starting state configuration for this DFA. |
| 442 | /// |
| 443 | /// The default is [`StartKind::Both`], which means the DFA supports both |
| 444 | /// unanchored and anchored searches. However, this can generally lead to |
| 445 | /// bigger DFAs. Therefore, a DFA might be compiled with support for just |
| 446 | /// unanchored or anchored searches. In that case, running a search with |
| 447 | /// an unsupported configuration will panic. |
| 448 | pub fn start_kind(&self) -> StartKind { |
| 449 | self.st.kind |
| 450 | } |
| 451 | |
| 452 | /// Returns true only if this DFA has starting states for each pattern. |
| 453 | /// |
| 454 | /// When a DFA has starting states for each pattern, then a search with the |
| 455 | /// DFA can be configured to only look for anchored matches of a specific |
| 456 | /// pattern. Specifically, APIs like [`Automaton::try_search_fwd`] can |
| 457 | /// accept a [`Anchored::Pattern`] if and only if this method returns true. |
| 458 | /// Otherwise, an error will be returned. |
| 459 | /// |
| 460 | /// Note that if the DFA is empty, this always returns false. |
| 461 | pub fn starts_for_each_pattern(&self) -> bool { |
| 462 | self.st.pattern_len.is_some() |
| 463 | } |
| 464 | |
| 465 | /// Returns the equivalence classes that make up the alphabet for this DFA. |
| 466 | /// |
| 467 | /// Unless [`dense::Config::byte_classes`] was disabled, it is possible |
| 468 | /// that multiple distinct bytes are grouped into the same equivalence |
| 469 | /// class if it is impossible for them to discriminate between a match and |
| 470 | /// a non-match. This has the effect of reducing the overall alphabet size |
| 471 | /// and in turn potentially substantially reducing the size of the DFA's |
| 472 | /// transition table. |
| 473 | /// |
| 474 | /// The downside of using equivalence classes like this is that every state |
| 475 | /// transition will automatically use this map to convert an arbitrary |
| 476 | /// byte to its corresponding equivalence class. In practice this has a |
| 477 | /// negligible impact on performance. |
| 478 | pub fn byte_classes(&self) -> &ByteClasses { |
| 479 | &self.tt.classes |
| 480 | } |
| 481 | |
| 482 | /// Returns the memory usage, in bytes, of this DFA. |
| 483 | /// |
| 484 | /// The memory usage is computed based on the number of bytes used to |
| 485 | /// represent this DFA. |
| 486 | /// |
| 487 | /// This does **not** include the stack size used up by this DFA. To |
| 488 | /// compute that, use `std::mem::size_of::<sparse::DFA>()`. |
| 489 | pub fn memory_usage(&self) -> usize { |
| 490 | self.tt.memory_usage() + self.st.memory_usage() |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | /// Routines for converting a sparse DFA to other representations, such as raw |
| 495 | /// bytes suitable for persistent storage. |
| 496 | impl<T: AsRef<[u8]>> DFA<T> { |
| 497 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian |
| 498 | /// format. |
| 499 | /// |
| 500 | /// The written bytes are guaranteed to be deserialized correctly and |
| 501 | /// without errors in a semver compatible release of this crate by a |
| 502 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 503 | /// deserialization APIs has been satisfied): |
| 504 | /// |
| 505 | /// * [`DFA::from_bytes`] |
| 506 | /// * [`DFA::from_bytes_unchecked`] |
| 507 | /// |
| 508 | /// Note that unlike a [`dense::DFA`]'s serialization methods, this does |
| 509 | /// not add any initial padding to the returned bytes. Padding isn't |
| 510 | /// required for sparse DFAs since they have no alignment requirements. |
| 511 | /// |
| 512 | /// # Example |
| 513 | /// |
| 514 | /// This example shows how to serialize and deserialize a DFA: |
| 515 | /// |
| 516 | /// ``` |
| 517 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 518 | /// |
| 519 | /// // Compile our original DFA. |
| 520 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 521 | /// |
| 522 | /// // N.B. We use native endianness here to make the example work, but |
| 523 | /// // using to_bytes_little_endian would work on a little endian target. |
| 524 | /// let buf = original_dfa.to_bytes_native_endian(); |
| 525 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 526 | /// // ignore it. |
| 527 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf)?.0; |
| 528 | /// |
| 529 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 530 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 531 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 532 | /// ``` |
| 533 | #[cfg (feature = "dfa-build" )] |
| 534 | pub fn to_bytes_little_endian(&self) -> Vec<u8> { |
| 535 | self.to_bytes::<wire::LE>() |
| 536 | } |
| 537 | |
| 538 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian |
| 539 | /// format. |
| 540 | /// |
| 541 | /// The written bytes are guaranteed to be deserialized correctly and |
| 542 | /// without errors in a semver compatible release of this crate by a |
| 543 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 544 | /// deserialization APIs has been satisfied): |
| 545 | /// |
| 546 | /// * [`DFA::from_bytes`] |
| 547 | /// * [`DFA::from_bytes_unchecked`] |
| 548 | /// |
| 549 | /// Note that unlike a [`dense::DFA`]'s serialization methods, this does |
| 550 | /// not add any initial padding to the returned bytes. Padding isn't |
| 551 | /// required for sparse DFAs since they have no alignment requirements. |
| 552 | /// |
| 553 | /// # Example |
| 554 | /// |
| 555 | /// This example shows how to serialize and deserialize a DFA: |
| 556 | /// |
| 557 | /// ``` |
| 558 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 559 | /// |
| 560 | /// // Compile our original DFA. |
| 561 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 562 | /// |
| 563 | /// // N.B. We use native endianness here to make the example work, but |
| 564 | /// // using to_bytes_big_endian would work on a big endian target. |
| 565 | /// let buf = original_dfa.to_bytes_native_endian(); |
| 566 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 567 | /// // ignore it. |
| 568 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf)?.0; |
| 569 | /// |
| 570 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 571 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 572 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 573 | /// ``` |
| 574 | #[cfg (feature = "dfa-build" )] |
| 575 | pub fn to_bytes_big_endian(&self) -> Vec<u8> { |
| 576 | self.to_bytes::<wire::BE>() |
| 577 | } |
| 578 | |
| 579 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian |
| 580 | /// format. |
| 581 | /// |
| 582 | /// The written bytes are guaranteed to be deserialized correctly and |
| 583 | /// without errors in a semver compatible release of this crate by a |
| 584 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 585 | /// deserialization APIs has been satisfied): |
| 586 | /// |
| 587 | /// * [`DFA::from_bytes`] |
| 588 | /// * [`DFA::from_bytes_unchecked`] |
| 589 | /// |
| 590 | /// Note that unlike a [`dense::DFA`]'s serialization methods, this does |
| 591 | /// not add any initial padding to the returned bytes. Padding isn't |
| 592 | /// required for sparse DFAs since they have no alignment requirements. |
| 593 | /// |
| 594 | /// Generally speaking, native endian format should only be used when |
| 595 | /// you know that the target you're compiling the DFA for matches the |
| 596 | /// endianness of the target on which you're compiling DFA. For example, |
| 597 | /// if serialization and deserialization happen in the same process or on |
| 598 | /// the same machine. Otherwise, when serializing a DFA for use in a |
| 599 | /// portable environment, you'll almost certainly want to serialize _both_ |
| 600 | /// a little endian and a big endian version and then load the correct one |
| 601 | /// based on the target's configuration. |
| 602 | /// |
| 603 | /// # Example |
| 604 | /// |
| 605 | /// This example shows how to serialize and deserialize a DFA: |
| 606 | /// |
| 607 | /// ``` |
| 608 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 609 | /// |
| 610 | /// // Compile our original DFA. |
| 611 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 612 | /// |
| 613 | /// let buf = original_dfa.to_bytes_native_endian(); |
| 614 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 615 | /// // ignore it. |
| 616 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf)?.0; |
| 617 | /// |
| 618 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 619 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 620 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 621 | /// ``` |
| 622 | #[cfg (feature = "dfa-build" )] |
| 623 | pub fn to_bytes_native_endian(&self) -> Vec<u8> { |
| 624 | self.to_bytes::<wire::NE>() |
| 625 | } |
| 626 | |
| 627 | /// The implementation of the public `to_bytes` serialization methods, |
| 628 | /// which is generic over endianness. |
| 629 | #[cfg (feature = "dfa-build" )] |
| 630 | fn to_bytes<E: Endian>(&self) -> Vec<u8> { |
| 631 | let mut buf = vec![0; self.write_to_len()]; |
| 632 | // This should always succeed since the only possible serialization |
| 633 | // error is providing a buffer that's too small, but we've ensured that |
| 634 | // `buf` is big enough here. |
| 635 | self.write_to::<E>(&mut buf).unwrap(); |
| 636 | buf |
| 637 | } |
| 638 | |
| 639 | /// Serialize this DFA as raw bytes to the given slice, in little endian |
| 640 | /// format. Upon success, the total number of bytes written to `dst` is |
| 641 | /// returned. |
| 642 | /// |
| 643 | /// The written bytes are guaranteed to be deserialized correctly and |
| 644 | /// without errors in a semver compatible release of this crate by a |
| 645 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 646 | /// deserialization APIs has been satisfied): |
| 647 | /// |
| 648 | /// * [`DFA::from_bytes`] |
| 649 | /// * [`DFA::from_bytes_unchecked`] |
| 650 | /// |
| 651 | /// # Errors |
| 652 | /// |
| 653 | /// This returns an error if the given destination slice is not big enough |
| 654 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 655 | /// is written to `dst`. |
| 656 | /// |
| 657 | /// # Example |
| 658 | /// |
| 659 | /// This example shows how to serialize and deserialize a DFA without |
| 660 | /// dynamic memory allocation. |
| 661 | /// |
| 662 | /// ``` |
| 663 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 664 | /// |
| 665 | /// // Compile our original DFA. |
| 666 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 667 | /// |
| 668 | /// // Create a 4KB buffer on the stack to store our serialized DFA. |
| 669 | /// let mut buf = [0u8; 4 * (1<<10)]; |
| 670 | /// // N.B. We use native endianness here to make the example work, but |
| 671 | /// // using write_to_little_endian would work on a little endian target. |
| 672 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 673 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0; |
| 674 | /// |
| 675 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 676 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 677 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 678 | /// ``` |
| 679 | pub fn write_to_little_endian( |
| 680 | &self, |
| 681 | dst: &mut [u8], |
| 682 | ) -> Result<usize, SerializeError> { |
| 683 | self.write_to::<wire::LE>(dst) |
| 684 | } |
| 685 | |
| 686 | /// Serialize this DFA as raw bytes to the given slice, in big endian |
| 687 | /// format. Upon success, the total number of bytes written to `dst` is |
| 688 | /// returned. |
| 689 | /// |
| 690 | /// The written bytes are guaranteed to be deserialized correctly and |
| 691 | /// without errors in a semver compatible release of this crate by a |
| 692 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 693 | /// deserialization APIs has been satisfied): |
| 694 | /// |
| 695 | /// * [`DFA::from_bytes`] |
| 696 | /// * [`DFA::from_bytes_unchecked`] |
| 697 | /// |
| 698 | /// # Errors |
| 699 | /// |
| 700 | /// This returns an error if the given destination slice is not big enough |
| 701 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 702 | /// is written to `dst`. |
| 703 | /// |
| 704 | /// # Example |
| 705 | /// |
| 706 | /// This example shows how to serialize and deserialize a DFA without |
| 707 | /// dynamic memory allocation. |
| 708 | /// |
| 709 | /// ``` |
| 710 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 711 | /// |
| 712 | /// // Compile our original DFA. |
| 713 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 714 | /// |
| 715 | /// // Create a 4KB buffer on the stack to store our serialized DFA. |
| 716 | /// let mut buf = [0u8; 4 * (1<<10)]; |
| 717 | /// // N.B. We use native endianness here to make the example work, but |
| 718 | /// // using write_to_big_endian would work on a big endian target. |
| 719 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 720 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0; |
| 721 | /// |
| 722 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 723 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 724 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 725 | /// ``` |
| 726 | pub fn write_to_big_endian( |
| 727 | &self, |
| 728 | dst: &mut [u8], |
| 729 | ) -> Result<usize, SerializeError> { |
| 730 | self.write_to::<wire::BE>(dst) |
| 731 | } |
| 732 | |
| 733 | /// Serialize this DFA as raw bytes to the given slice, in native endian |
| 734 | /// format. Upon success, the total number of bytes written to `dst` is |
| 735 | /// returned. |
| 736 | /// |
| 737 | /// The written bytes are guaranteed to be deserialized correctly and |
| 738 | /// without errors in a semver compatible release of this crate by a |
| 739 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 740 | /// deserialization APIs has been satisfied): |
| 741 | /// |
| 742 | /// * [`DFA::from_bytes`] |
| 743 | /// * [`DFA::from_bytes_unchecked`] |
| 744 | /// |
| 745 | /// Generally speaking, native endian format should only be used when |
| 746 | /// you know that the target you're compiling the DFA for matches the |
| 747 | /// endianness of the target on which you're compiling DFA. For example, |
| 748 | /// if serialization and deserialization happen in the same process or on |
| 749 | /// the same machine. Otherwise, when serializing a DFA for use in a |
| 750 | /// portable environment, you'll almost certainly want to serialize _both_ |
| 751 | /// a little endian and a big endian version and then load the correct one |
| 752 | /// based on the target's configuration. |
| 753 | /// |
| 754 | /// # Errors |
| 755 | /// |
| 756 | /// This returns an error if the given destination slice is not big enough |
| 757 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 758 | /// is written to `dst`. |
| 759 | /// |
| 760 | /// # Example |
| 761 | /// |
| 762 | /// This example shows how to serialize and deserialize a DFA without |
| 763 | /// dynamic memory allocation. |
| 764 | /// |
| 765 | /// ``` |
| 766 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 767 | /// |
| 768 | /// // Compile our original DFA. |
| 769 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 770 | /// |
| 771 | /// // Create a 4KB buffer on the stack to store our serialized DFA. |
| 772 | /// let mut buf = [0u8; 4 * (1<<10)]; |
| 773 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 774 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0; |
| 775 | /// |
| 776 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 777 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 778 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 779 | /// ``` |
| 780 | pub fn write_to_native_endian( |
| 781 | &self, |
| 782 | dst: &mut [u8], |
| 783 | ) -> Result<usize, SerializeError> { |
| 784 | self.write_to::<wire::NE>(dst) |
| 785 | } |
| 786 | |
| 787 | /// The implementation of the public `write_to` serialization methods, |
| 788 | /// which is generic over endianness. |
| 789 | fn write_to<E: Endian>( |
| 790 | &self, |
| 791 | dst: &mut [u8], |
| 792 | ) -> Result<usize, SerializeError> { |
| 793 | let mut nw = 0; |
| 794 | nw += wire::write_label(LABEL, &mut dst[nw..])?; |
| 795 | nw += wire::write_endianness_check::<E>(&mut dst[nw..])?; |
| 796 | nw += wire::write_version::<E>(VERSION, &mut dst[nw..])?; |
| 797 | nw += { |
| 798 | // Currently unused, intended for future flexibility |
| 799 | E::write_u32(0, &mut dst[nw..]); |
| 800 | size_of::<u32>() |
| 801 | }; |
| 802 | nw += self.flags.write_to::<E>(&mut dst[nw..])?; |
| 803 | nw += self.tt.write_to::<E>(&mut dst[nw..])?; |
| 804 | nw += self.st.write_to::<E>(&mut dst[nw..])?; |
| 805 | nw += self.special.write_to::<E>(&mut dst[nw..])?; |
| 806 | nw += self.quitset.write_to::<E>(&mut dst[nw..])?; |
| 807 | Ok(nw) |
| 808 | } |
| 809 | |
| 810 | /// Return the total number of bytes required to serialize this DFA. |
| 811 | /// |
| 812 | /// This is useful for determining the size of the buffer required to pass |
| 813 | /// to one of the serialization routines: |
| 814 | /// |
| 815 | /// * [`DFA::write_to_little_endian`] |
| 816 | /// * [`DFA::write_to_big_endian`] |
| 817 | /// * [`DFA::write_to_native_endian`] |
| 818 | /// |
| 819 | /// Passing a buffer smaller than the size returned by this method will |
| 820 | /// result in a serialization error. |
| 821 | /// |
| 822 | /// # Example |
| 823 | /// |
| 824 | /// This example shows how to dynamically allocate enough room to serialize |
| 825 | /// a sparse DFA. |
| 826 | /// |
| 827 | /// ``` |
| 828 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 829 | /// |
| 830 | /// // Compile our original DFA. |
| 831 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 832 | /// |
| 833 | /// let mut buf = vec![0; original_dfa.write_to_len()]; |
| 834 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 835 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0; |
| 836 | /// |
| 837 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 838 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 839 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 840 | /// ``` |
| 841 | pub fn write_to_len(&self) -> usize { |
| 842 | wire::write_label_len(LABEL) |
| 843 | + wire::write_endianness_check_len() |
| 844 | + wire::write_version_len() |
| 845 | + size_of::<u32>() // unused, intended for future flexibility |
| 846 | + self.flags.write_to_len() |
| 847 | + self.tt.write_to_len() |
| 848 | + self.st.write_to_len() |
| 849 | + self.special.write_to_len() |
| 850 | + self.quitset.write_to_len() |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | impl<'a> DFA<&'a [u8]> { |
| 855 | /// Safely deserialize a sparse DFA with a specific state identifier |
| 856 | /// representation. Upon success, this returns both the deserialized DFA |
| 857 | /// and the number of bytes read from the given slice. Namely, the contents |
| 858 | /// of the slice beyond the DFA are not read. |
| 859 | /// |
| 860 | /// Deserializing a DFA using this routine will never allocate heap memory. |
| 861 | /// For safety purposes, the DFA's transitions will be verified such that |
| 862 | /// every transition points to a valid state. If this verification is too |
| 863 | /// costly, then a [`DFA::from_bytes_unchecked`] API is provided, which |
| 864 | /// will always execute in constant time. |
| 865 | /// |
| 866 | /// The bytes given must be generated by one of the serialization APIs |
| 867 | /// of a `DFA` using a semver compatible release of this crate. Those |
| 868 | /// include: |
| 869 | /// |
| 870 | /// * [`DFA::to_bytes_little_endian`] |
| 871 | /// * [`DFA::to_bytes_big_endian`] |
| 872 | /// * [`DFA::to_bytes_native_endian`] |
| 873 | /// * [`DFA::write_to_little_endian`] |
| 874 | /// * [`DFA::write_to_big_endian`] |
| 875 | /// * [`DFA::write_to_native_endian`] |
| 876 | /// |
| 877 | /// The `to_bytes` methods allocate and return a `Vec<u8>` for you. The |
| 878 | /// `write_to` methods do not allocate and write to an existing slice |
| 879 | /// (which may be on the stack). Since deserialization always uses the |
| 880 | /// native endianness of the target platform, the serialization API you use |
| 881 | /// should match the endianness of the target platform. (It's often a good |
| 882 | /// idea to generate serialized DFAs for both forms of endianness and then |
| 883 | /// load the correct one based on endianness.) |
| 884 | /// |
| 885 | /// # Errors |
| 886 | /// |
| 887 | /// Generally speaking, it's easier to state the conditions in which an |
| 888 | /// error is _not_ returned. All of the following must be true: |
| 889 | /// |
| 890 | /// * The bytes given must be produced by one of the serialization APIs |
| 891 | /// on this DFA, as mentioned above. |
| 892 | /// * The endianness of the target platform matches the endianness used to |
| 893 | /// serialized the provided DFA. |
| 894 | /// |
| 895 | /// If any of the above are not true, then an error will be returned. |
| 896 | /// |
| 897 | /// Note that unlike deserializing a [`dense::DFA`], deserializing a sparse |
| 898 | /// DFA has no alignment requirements. That is, an alignment of `1` is |
| 899 | /// valid. |
| 900 | /// |
| 901 | /// # Panics |
| 902 | /// |
| 903 | /// This routine will never panic for any input. |
| 904 | /// |
| 905 | /// # Example |
| 906 | /// |
| 907 | /// This example shows how to serialize a DFA to raw bytes, deserialize it |
| 908 | /// and then use it for searching. |
| 909 | /// |
| 910 | /// ``` |
| 911 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 912 | /// |
| 913 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 914 | /// let bytes = initial.to_bytes_native_endian(); |
| 915 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&bytes)?.0; |
| 916 | /// |
| 917 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 918 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 919 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 920 | /// ``` |
| 921 | /// |
| 922 | /// # Example: loading a DFA from static memory |
| 923 | /// |
| 924 | /// One use case this library supports is the ability to serialize a |
| 925 | /// DFA to disk and then use `include_bytes!` to store it in a compiled |
| 926 | /// Rust program. Those bytes can then be cheaply deserialized into a |
| 927 | /// `DFA` structure at runtime and used for searching without having to |
| 928 | /// re-compile the DFA (which can be quite costly). |
| 929 | /// |
| 930 | /// We can show this in two parts. The first part is serializing the DFA to |
| 931 | /// a file: |
| 932 | /// |
| 933 | /// ```no_run |
| 934 | /// use regex_automata::dfa::sparse::DFA; |
| 935 | /// |
| 936 | /// let dfa = DFA::new("foo[0-9]+" )?; |
| 937 | /// |
| 938 | /// // Write a big endian serialized version of this DFA to a file. |
| 939 | /// let bytes = dfa.to_bytes_big_endian(); |
| 940 | /// std::fs::write("foo.bigendian.dfa" , &bytes)?; |
| 941 | /// |
| 942 | /// // Do it again, but this time for little endian. |
| 943 | /// let bytes = dfa.to_bytes_little_endian(); |
| 944 | /// std::fs::write("foo.littleendian.dfa" , &bytes)?; |
| 945 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 946 | /// ``` |
| 947 | /// |
| 948 | /// And now the second part is embedding the DFA into the compiled program |
| 949 | /// and deserializing it at runtime on first use. We use conditional |
| 950 | /// compilation to choose the correct endianness. We do not need to employ |
| 951 | /// any special tricks to ensure a proper alignment, since a sparse DFA has |
| 952 | /// no alignment requirements. |
| 953 | /// |
| 954 | /// ```no_run |
| 955 | /// use regex_automata::{ |
| 956 | /// dfa::{Automaton, sparse::DFA}, |
| 957 | /// util::lazy::Lazy, |
| 958 | /// HalfMatch, Input, |
| 959 | /// }; |
| 960 | /// |
| 961 | /// // This crate provides its own "lazy" type, kind of like |
| 962 | /// // lazy_static! or once_cell::sync::Lazy. But it works in no-alloc |
| 963 | /// // no-std environments and let's us write this using completely |
| 964 | /// // safe code. |
| 965 | /// static RE: Lazy<DFA<&'static [u8]>> = Lazy::new(|| { |
| 966 | /// # const _: &str = stringify! { |
| 967 | /// #[cfg(target_endian = "big" )] |
| 968 | /// static BYTES: &[u8] = include_bytes!("foo.bigendian.dfa" ); |
| 969 | /// #[cfg(target_endian = "little" )] |
| 970 | /// static BYTES: &[u8] = include_bytes!("foo.littleendian.dfa" ); |
| 971 | /// # }; |
| 972 | /// # static BYTES: &[u8] = b"" ; |
| 973 | /// |
| 974 | /// let (dfa, _) = DFA::from_bytes(BYTES) |
| 975 | /// .expect("serialized DFA should be valid" ); |
| 976 | /// dfa |
| 977 | /// }); |
| 978 | /// |
| 979 | /// let expected = Ok(Some(HalfMatch::must(0, 8))); |
| 980 | /// assert_eq!(expected, RE.try_search_fwd(&Input::new("foo12345" ))); |
| 981 | /// ``` |
| 982 | /// |
| 983 | /// Alternatively, consider using |
| 984 | /// [`lazy_static`](https://crates.io/crates/lazy_static) |
| 985 | /// or |
| 986 | /// [`once_cell`](https://crates.io/crates/once_cell), |
| 987 | /// which will guarantee safety for you. |
| 988 | pub fn from_bytes( |
| 989 | slice: &'a [u8], |
| 990 | ) -> Result<(DFA<&'a [u8]>, usize), DeserializeError> { |
| 991 | // SAFETY: This is safe because we validate both the sparse transitions |
| 992 | // (by trying to decode every state) and start state ID list below. If |
| 993 | // either validation fails, then we return an error. |
| 994 | let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? }; |
| 995 | let seen = dfa.tt.validate(&dfa.special)?; |
| 996 | dfa.st.validate(&dfa.special, &seen)?; |
| 997 | // N.B. dfa.special doesn't have a way to do unchecked deserialization, |
| 998 | // so it has already been validated. |
| 999 | Ok((dfa, nread)) |
| 1000 | } |
| 1001 | |
| 1002 | /// Deserialize a DFA with a specific state identifier representation in |
| 1003 | /// constant time by omitting the verification of the validity of the |
| 1004 | /// sparse transitions. |
| 1005 | /// |
| 1006 | /// This is just like [`DFA::from_bytes`], except it can potentially return |
| 1007 | /// a DFA that exhibits undefined behavior if its transitions contains |
| 1008 | /// invalid state identifiers. |
| 1009 | /// |
| 1010 | /// This routine is useful if you need to deserialize a DFA cheaply and |
| 1011 | /// cannot afford the transition validation performed by `from_bytes`. |
| 1012 | /// |
| 1013 | /// # Safety |
| 1014 | /// |
| 1015 | /// This routine is not safe because it permits callers to provide |
| 1016 | /// arbitrary transitions with possibly incorrect state identifiers. While |
| 1017 | /// the various serialization routines will never return an incorrect |
| 1018 | /// DFA, there is no guarantee that the bytes provided here are correct. |
| 1019 | /// While `from_bytes_unchecked` will still do several forms of basic |
| 1020 | /// validation, this routine does not check that the transitions themselves |
| 1021 | /// are correct. Given an incorrect transition table, it is possible for |
| 1022 | /// the search routines to access out-of-bounds memory because of explicit |
| 1023 | /// bounds check elision. |
| 1024 | /// |
| 1025 | /// # Example |
| 1026 | /// |
| 1027 | /// ``` |
| 1028 | /// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input}; |
| 1029 | /// |
| 1030 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 1031 | /// let bytes = initial.to_bytes_native_endian(); |
| 1032 | /// // SAFETY: This is guaranteed to be safe since the bytes given come |
| 1033 | /// // directly from a compatible serialization routine. |
| 1034 | /// let dfa: DFA<&[u8]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 }; |
| 1035 | /// |
| 1036 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 1037 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 1038 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1039 | /// ``` |
| 1040 | pub unsafe fn from_bytes_unchecked( |
| 1041 | slice: &'a [u8], |
| 1042 | ) -> Result<(DFA<&'a [u8]>, usize), DeserializeError> { |
| 1043 | let mut nr = 0; |
| 1044 | |
| 1045 | nr += wire::read_label(&slice[nr..], LABEL)?; |
| 1046 | nr += wire::read_endianness_check(&slice[nr..])?; |
| 1047 | nr += wire::read_version(&slice[nr..], VERSION)?; |
| 1048 | |
| 1049 | let _unused = wire::try_read_u32(&slice[nr..], "unused space" )?; |
| 1050 | nr += size_of::<u32>(); |
| 1051 | |
| 1052 | let (flags, nread) = Flags::from_bytes(&slice[nr..])?; |
| 1053 | nr += nread; |
| 1054 | |
| 1055 | let (tt, nread) = Transitions::from_bytes_unchecked(&slice[nr..])?; |
| 1056 | nr += nread; |
| 1057 | |
| 1058 | let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?; |
| 1059 | nr += nread; |
| 1060 | |
| 1061 | let (special, nread) = Special::from_bytes(&slice[nr..])?; |
| 1062 | nr += nread; |
| 1063 | if special.max.as_usize() >= tt.sparse().len() { |
| 1064 | return Err(DeserializeError::generic( |
| 1065 | "max should not be greater than or equal to sparse bytes" , |
| 1066 | )); |
| 1067 | } |
| 1068 | |
| 1069 | let (quitset, nread) = ByteSet::from_bytes(&slice[nr..])?; |
| 1070 | nr += nread; |
| 1071 | |
| 1072 | // Prefilters don't support serialization, so they're always absent. |
| 1073 | let pre = None; |
| 1074 | Ok((DFA { tt, st, special, pre, quitset, flags }, nr)) |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | impl<T: AsRef<[u8]>> fmt::Debug for DFA<T> { |
| 1079 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1080 | writeln!(f, "sparse::DFA(" )?; |
| 1081 | for state in self.tt.states() { |
| 1082 | fmt_state_indicator(f, self, state.id())?; |
| 1083 | writeln!(f, "{:06?}: {:?}" , state.id().as_usize(), state)?; |
| 1084 | } |
| 1085 | writeln!(f, "" )?; |
| 1086 | for (i, (start_id, anchored, sty)) in self.st.iter().enumerate() { |
| 1087 | if i % self.st.stride == 0 { |
| 1088 | match anchored { |
| 1089 | Anchored::No => writeln!(f, "START-GROUP(unanchored)" )?, |
| 1090 | Anchored::Yes => writeln!(f, "START-GROUP(anchored)" )?, |
| 1091 | Anchored::Pattern(pid) => writeln!( |
| 1092 | f, |
| 1093 | "START_GROUP(pattern: {:?})" , |
| 1094 | pid.as_usize() |
| 1095 | )?, |
| 1096 | } |
| 1097 | } |
| 1098 | writeln!(f, " {:?} => {:06?}" , sty, start_id.as_usize())?; |
| 1099 | } |
| 1100 | writeln!(f, "state length: {:?}" , self.tt.state_len)?; |
| 1101 | writeln!(f, "pattern length: {:?}" , self.pattern_len())?; |
| 1102 | writeln!(f, "flags: {:?}" , self.flags)?; |
| 1103 | writeln!(f, ")" )?; |
| 1104 | Ok(()) |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | // SAFETY: We assert that our implementation of each method is correct. |
| 1109 | unsafe impl<T: AsRef<[u8]>> Automaton for DFA<T> { |
| 1110 | #[inline ] |
| 1111 | fn is_special_state(&self, id: StateID) -> bool { |
| 1112 | self.special.is_special_state(id) |
| 1113 | } |
| 1114 | |
| 1115 | #[inline ] |
| 1116 | fn is_dead_state(&self, id: StateID) -> bool { |
| 1117 | self.special.is_dead_state(id) |
| 1118 | } |
| 1119 | |
| 1120 | #[inline ] |
| 1121 | fn is_quit_state(&self, id: StateID) -> bool { |
| 1122 | self.special.is_quit_state(id) |
| 1123 | } |
| 1124 | |
| 1125 | #[inline ] |
| 1126 | fn is_match_state(&self, id: StateID) -> bool { |
| 1127 | self.special.is_match_state(id) |
| 1128 | } |
| 1129 | |
| 1130 | #[inline ] |
| 1131 | fn is_start_state(&self, id: StateID) -> bool { |
| 1132 | self.special.is_start_state(id) |
| 1133 | } |
| 1134 | |
| 1135 | #[inline ] |
| 1136 | fn is_accel_state(&self, id: StateID) -> bool { |
| 1137 | self.special.is_accel_state(id) |
| 1138 | } |
| 1139 | |
| 1140 | // This is marked as inline to help dramatically boost sparse searching, |
| 1141 | // which decodes each state it enters to follow the next transition. |
| 1142 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 1143 | fn next_state(&self, current: StateID, input: u8) -> StateID { |
| 1144 | let input = self.tt.classes.get(input); |
| 1145 | self.tt.state(current).next(input) |
| 1146 | } |
| 1147 | |
| 1148 | #[inline ] |
| 1149 | unsafe fn next_state_unchecked( |
| 1150 | &self, |
| 1151 | current: StateID, |
| 1152 | input: u8, |
| 1153 | ) -> StateID { |
| 1154 | self.next_state(current, input) |
| 1155 | } |
| 1156 | |
| 1157 | #[inline ] |
| 1158 | fn next_eoi_state(&self, current: StateID) -> StateID { |
| 1159 | self.tt.state(current).next_eoi() |
| 1160 | } |
| 1161 | |
| 1162 | #[inline ] |
| 1163 | fn pattern_len(&self) -> usize { |
| 1164 | self.tt.pattern_len |
| 1165 | } |
| 1166 | |
| 1167 | #[inline ] |
| 1168 | fn match_len(&self, id: StateID) -> usize { |
| 1169 | self.tt.state(id).pattern_len() |
| 1170 | } |
| 1171 | |
| 1172 | #[inline ] |
| 1173 | fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID { |
| 1174 | // This is an optimization for the very common case of a DFA with a |
| 1175 | // single pattern. This conditional avoids a somewhat more costly path |
| 1176 | // that finds the pattern ID from the state machine, which requires |
| 1177 | // a bit of slicing/pointer-chasing. This optimization tends to only |
| 1178 | // matter when matches are frequent. |
| 1179 | if self.tt.pattern_len == 1 { |
| 1180 | return PatternID::ZERO; |
| 1181 | } |
| 1182 | self.tt.state(id).pattern_id(match_index) |
| 1183 | } |
| 1184 | |
| 1185 | #[inline ] |
| 1186 | fn has_empty(&self) -> bool { |
| 1187 | self.flags.has_empty |
| 1188 | } |
| 1189 | |
| 1190 | #[inline ] |
| 1191 | fn is_utf8(&self) -> bool { |
| 1192 | self.flags.is_utf8 |
| 1193 | } |
| 1194 | |
| 1195 | #[inline ] |
| 1196 | fn is_always_start_anchored(&self) -> bool { |
| 1197 | self.flags.is_always_start_anchored |
| 1198 | } |
| 1199 | |
| 1200 | #[inline ] |
| 1201 | fn start_state( |
| 1202 | &self, |
| 1203 | config: &start::Config, |
| 1204 | ) -> Result<StateID, StartError> { |
| 1205 | let anchored = config.get_anchored(); |
| 1206 | let start = match config.get_look_behind() { |
| 1207 | None => Start::Text, |
| 1208 | Some(byte) => { |
| 1209 | if !self.quitset.is_empty() && self.quitset.contains(byte) { |
| 1210 | return Err(StartError::quit(byte)); |
| 1211 | } |
| 1212 | self.st.start_map.get(byte) |
| 1213 | } |
| 1214 | }; |
| 1215 | self.st.start(anchored, start) |
| 1216 | } |
| 1217 | |
| 1218 | #[inline ] |
| 1219 | fn universal_start_state(&self, mode: Anchored) -> Option<StateID> { |
| 1220 | match mode { |
| 1221 | Anchored::No => self.st.universal_start_unanchored, |
| 1222 | Anchored::Yes => self.st.universal_start_anchored, |
| 1223 | Anchored::Pattern(_) => None, |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | #[inline ] |
| 1228 | fn accelerator(&self, id: StateID) -> &[u8] { |
| 1229 | self.tt.state(id).accelerator() |
| 1230 | } |
| 1231 | |
| 1232 | #[inline ] |
| 1233 | fn get_prefilter(&self) -> Option<&Prefilter> { |
| 1234 | self.pre.as_ref() |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | /// The transition table portion of a sparse DFA. |
| 1239 | /// |
| 1240 | /// The transition table is the core part of the DFA in that it describes how |
| 1241 | /// to move from one state to another based on the input sequence observed. |
| 1242 | /// |
| 1243 | /// Unlike a typical dense table based DFA, states in a sparse transition |
| 1244 | /// table have variable size. That is, states with more transitions use more |
| 1245 | /// space than states with fewer transitions. This means that finding the next |
| 1246 | /// transition takes more work than with a dense DFA, but also typically uses |
| 1247 | /// much less space. |
| 1248 | #[derive(Clone)] |
| 1249 | struct Transitions<T> { |
| 1250 | /// The raw encoding of each state in this DFA. |
| 1251 | /// |
| 1252 | /// Each state has the following information: |
| 1253 | /// |
| 1254 | /// * A set of transitions to subsequent states. Transitions to the dead |
| 1255 | /// state are omitted. |
| 1256 | /// * If the state can be accelerated, then any additional accelerator |
| 1257 | /// information. |
| 1258 | /// * If the state is a match state, then the state contains all pattern |
| 1259 | /// IDs that match when in that state. |
| 1260 | /// |
| 1261 | /// To decode a state, use Transitions::state. |
| 1262 | /// |
| 1263 | /// In practice, T is either Vec<u8> or &[u8]. |
| 1264 | sparse: T, |
| 1265 | /// A set of equivalence classes, where a single equivalence class |
| 1266 | /// represents a set of bytes that never discriminate between a match |
| 1267 | /// and a non-match in the DFA. Each equivalence class corresponds to a |
| 1268 | /// single character in this DFA's alphabet, where the maximum number of |
| 1269 | /// characters is 257 (each possible value of a byte plus the special |
| 1270 | /// EOI transition). Consequently, the number of equivalence classes |
| 1271 | /// corresponds to the number of transitions for each DFA state. Note |
| 1272 | /// though that the *space* used by each DFA state in the transition table |
| 1273 | /// may be larger. The total space used by each DFA state is known as the |
| 1274 | /// stride and is documented above. |
| 1275 | /// |
| 1276 | /// The only time the number of equivalence classes is fewer than 257 is |
| 1277 | /// if the DFA's kind uses byte classes which is the default. Equivalence |
| 1278 | /// classes should generally only be disabled when debugging, so that |
| 1279 | /// the transitions themselves aren't obscured. Disabling them has no |
| 1280 | /// other benefit, since the equivalence class map is always used while |
| 1281 | /// searching. In the vast majority of cases, the number of equivalence |
| 1282 | /// classes is substantially smaller than 257, particularly when large |
| 1283 | /// Unicode classes aren't used. |
| 1284 | /// |
| 1285 | /// N.B. Equivalence classes aren't particularly useful in a sparse DFA |
| 1286 | /// in the current implementation, since equivalence classes generally tend |
| 1287 | /// to correspond to continuous ranges of bytes that map to the same |
| 1288 | /// transition. So in a sparse DFA, equivalence classes don't really lead |
| 1289 | /// to a space savings. In the future, it would be good to try and remove |
| 1290 | /// them from sparse DFAs entirely, but requires a bit of work since sparse |
| 1291 | /// DFAs are built from dense DFAs, which are in turn built on top of |
| 1292 | /// equivalence classes. |
| 1293 | classes: ByteClasses, |
| 1294 | /// The total number of states in this DFA. Note that a DFA always has at |
| 1295 | /// least one state---the dead state---even the empty DFA. In particular, |
| 1296 | /// the dead state always has ID 0 and is correspondingly always the first |
| 1297 | /// state. The dead state is never a match state. |
| 1298 | state_len: usize, |
| 1299 | /// The total number of unique patterns represented by these match states. |
| 1300 | pattern_len: usize, |
| 1301 | } |
| 1302 | |
| 1303 | impl<'a> Transitions<&'a [u8]> { |
| 1304 | unsafe fn from_bytes_unchecked( |
| 1305 | mut slice: &'a [u8], |
| 1306 | ) -> Result<(Transitions<&'a [u8]>, usize), DeserializeError> { |
| 1307 | let slice_start = slice.as_ptr().as_usize(); |
| 1308 | |
| 1309 | let (state_len, nr) = |
| 1310 | wire::try_read_u32_as_usize(&slice, "state length" )?; |
| 1311 | slice = &slice[nr..]; |
| 1312 | |
| 1313 | let (pattern_len, nr) = |
| 1314 | wire::try_read_u32_as_usize(&slice, "pattern length" )?; |
| 1315 | slice = &slice[nr..]; |
| 1316 | |
| 1317 | let (classes, nr) = ByteClasses::from_bytes(&slice)?; |
| 1318 | slice = &slice[nr..]; |
| 1319 | |
| 1320 | let (len, nr) = |
| 1321 | wire::try_read_u32_as_usize(&slice, "sparse transitions length" )?; |
| 1322 | slice = &slice[nr..]; |
| 1323 | |
| 1324 | wire::check_slice_len(slice, len, "sparse states byte length" )?; |
| 1325 | let sparse = &slice[..len]; |
| 1326 | slice = &slice[len..]; |
| 1327 | |
| 1328 | let trans = Transitions { sparse, classes, state_len, pattern_len }; |
| 1329 | Ok((trans, slice.as_ptr().as_usize() - slice_start)) |
| 1330 | } |
| 1331 | } |
| 1332 | |
| 1333 | impl<T: AsRef<[u8]>> Transitions<T> { |
| 1334 | /// Writes a serialized form of this transition table to the buffer given. |
| 1335 | /// If the buffer is too small, then an error is returned. To determine |
| 1336 | /// how big the buffer must be, use `write_to_len`. |
| 1337 | fn write_to<E: Endian>( |
| 1338 | &self, |
| 1339 | mut dst: &mut [u8], |
| 1340 | ) -> Result<usize, SerializeError> { |
| 1341 | let nwrite = self.write_to_len(); |
| 1342 | if dst.len() < nwrite { |
| 1343 | return Err(SerializeError::buffer_too_small( |
| 1344 | "sparse transition table" , |
| 1345 | )); |
| 1346 | } |
| 1347 | dst = &mut dst[..nwrite]; |
| 1348 | |
| 1349 | // write state length |
| 1350 | E::write_u32(u32::try_from(self.state_len).unwrap(), dst); |
| 1351 | dst = &mut dst[size_of::<u32>()..]; |
| 1352 | |
| 1353 | // write pattern length |
| 1354 | E::write_u32(u32::try_from(self.pattern_len).unwrap(), dst); |
| 1355 | dst = &mut dst[size_of::<u32>()..]; |
| 1356 | |
| 1357 | // write byte class map |
| 1358 | let n = self.classes.write_to(dst)?; |
| 1359 | dst = &mut dst[n..]; |
| 1360 | |
| 1361 | // write number of bytes in sparse transitions |
| 1362 | E::write_u32(u32::try_from(self.sparse().len()).unwrap(), dst); |
| 1363 | dst = &mut dst[size_of::<u32>()..]; |
| 1364 | |
| 1365 | // write actual transitions |
| 1366 | let mut id = DEAD; |
| 1367 | while id.as_usize() < self.sparse().len() { |
| 1368 | let state = self.state(id); |
| 1369 | let n = state.write_to::<E>(&mut dst)?; |
| 1370 | dst = &mut dst[n..]; |
| 1371 | // The next ID is the offset immediately following `state`. |
| 1372 | id = StateID::new(id.as_usize() + state.write_to_len()).unwrap(); |
| 1373 | } |
| 1374 | Ok(nwrite) |
| 1375 | } |
| 1376 | |
| 1377 | /// Returns the number of bytes the serialized form of this transition |
| 1378 | /// table will use. |
| 1379 | fn write_to_len(&self) -> usize { |
| 1380 | size_of::<u32>() // state length |
| 1381 | + size_of::<u32>() // pattern length |
| 1382 | + self.classes.write_to_len() |
| 1383 | + size_of::<u32>() // sparse transitions length |
| 1384 | + self.sparse().len() |
| 1385 | } |
| 1386 | |
| 1387 | /// Validates that every state ID in this transition table is valid. |
| 1388 | /// |
| 1389 | /// That is, every state ID can be used to correctly index a state in this |
| 1390 | /// table. |
| 1391 | fn validate(&self, sp: &Special) -> Result<Seen, DeserializeError> { |
| 1392 | let mut verified = Seen::new(); |
| 1393 | // We need to make sure that we decode the correct number of states. |
| 1394 | // Otherwise, an empty set of transitions would validate even if the |
| 1395 | // recorded state length is non-empty. |
| 1396 | let mut len = 0; |
| 1397 | // We can't use the self.states() iterator because it assumes the state |
| 1398 | // encodings are valid. It could panic if they aren't. |
| 1399 | let mut id = DEAD; |
| 1400 | while id.as_usize() < self.sparse().len() { |
| 1401 | // Before we even decode the state, we check that the ID itself |
| 1402 | // is well formed. That is, if it's a special state then it must |
| 1403 | // actually be a quit, dead, accel, match or start state. |
| 1404 | if sp.is_special_state(id) { |
| 1405 | let is_actually_special = sp.is_dead_state(id) |
| 1406 | || sp.is_quit_state(id) |
| 1407 | || sp.is_match_state(id) |
| 1408 | || sp.is_start_state(id) |
| 1409 | || sp.is_accel_state(id); |
| 1410 | if !is_actually_special { |
| 1411 | // This is kind of a cryptic error message... |
| 1412 | return Err(DeserializeError::generic( |
| 1413 | "found sparse state tagged as special but \ |
| 1414 | wasn't actually special" , |
| 1415 | )); |
| 1416 | } |
| 1417 | } |
| 1418 | let state = self.try_state(sp, id)?; |
| 1419 | verified.insert(id); |
| 1420 | // The next ID should be the offset immediately following `state`. |
| 1421 | id = StateID::new(wire::add( |
| 1422 | id.as_usize(), |
| 1423 | state.write_to_len(), |
| 1424 | "next state ID offset" , |
| 1425 | )?) |
| 1426 | .map_err(|err| { |
| 1427 | DeserializeError::state_id_error(err, "next state ID offset" ) |
| 1428 | })?; |
| 1429 | len += 1; |
| 1430 | } |
| 1431 | // Now that we've checked that all top-level states are correct and |
| 1432 | // importantly, collected a set of valid state IDs, we have all the |
| 1433 | // information we need to check that all transitions are correct too. |
| 1434 | // |
| 1435 | // Note that we can't use `valid_ids` to iterate because it will |
| 1436 | // be empty in no-std no-alloc contexts. (And yes, that means our |
| 1437 | // verification isn't quite as good.) We can use `self.states()` |
| 1438 | // though at least, since we know that all states can at least be |
| 1439 | // decoded and traversed correctly. |
| 1440 | for state in self.states() { |
| 1441 | // Check that all transitions in this state are correct. |
| 1442 | for i in 0..state.ntrans { |
| 1443 | let to = state.next_at(i); |
| 1444 | // For no-alloc, we just check that the state can decode. It is |
| 1445 | // technically possible that the state ID could still point to |
| 1446 | // a non-existent state even if it decodes (fuzzing proved this |
| 1447 | // to be true), but it shouldn't result in any memory unsafety |
| 1448 | // or panics in non-debug mode. |
| 1449 | #[cfg (not(feature = "alloc" ))] |
| 1450 | { |
| 1451 | let _ = self.try_state(sp, to)?; |
| 1452 | } |
| 1453 | #[cfg (feature = "alloc" )] |
| 1454 | { |
| 1455 | if !verified.contains(&to) { |
| 1456 | return Err(DeserializeError::generic( |
| 1457 | "found transition that points to a \ |
| 1458 | non-existent state" , |
| 1459 | )); |
| 1460 | } |
| 1461 | } |
| 1462 | } |
| 1463 | } |
| 1464 | if len != self.state_len { |
| 1465 | return Err(DeserializeError::generic( |
| 1466 | "mismatching sparse state length" , |
| 1467 | )); |
| 1468 | } |
| 1469 | Ok(verified) |
| 1470 | } |
| 1471 | |
| 1472 | /// Converts these transitions to a borrowed value. |
| 1473 | fn as_ref(&self) -> Transitions<&'_ [u8]> { |
| 1474 | Transitions { |
| 1475 | sparse: self.sparse(), |
| 1476 | classes: self.classes.clone(), |
| 1477 | state_len: self.state_len, |
| 1478 | pattern_len: self.pattern_len, |
| 1479 | } |
| 1480 | } |
| 1481 | |
| 1482 | /// Converts these transitions to an owned value. |
| 1483 | #[cfg (feature = "alloc" )] |
| 1484 | fn to_owned(&self) -> Transitions<alloc::vec::Vec<u8>> { |
| 1485 | Transitions { |
| 1486 | sparse: self.sparse().to_vec(), |
| 1487 | classes: self.classes.clone(), |
| 1488 | state_len: self.state_len, |
| 1489 | pattern_len: self.pattern_len, |
| 1490 | } |
| 1491 | } |
| 1492 | |
| 1493 | /// Return a convenient representation of the given state. |
| 1494 | /// |
| 1495 | /// This panics if the state is invalid. |
| 1496 | /// |
| 1497 | /// This is marked as inline to help dramatically boost sparse searching, |
| 1498 | /// which decodes each state it enters to follow the next transition. Other |
| 1499 | /// functions involved are also inlined, which should hopefully eliminate |
| 1500 | /// a lot of the extraneous decoding that is never needed just to follow |
| 1501 | /// the next transition. |
| 1502 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 1503 | fn state(&self, id: StateID) -> State<'_> { |
| 1504 | let mut state = &self.sparse()[id.as_usize()..]; |
| 1505 | let mut ntrans = wire::read_u16(&state).as_usize(); |
| 1506 | let is_match = (1 << 15) & ntrans != 0; |
| 1507 | ntrans &= !(1 << 15); |
| 1508 | state = &state[2..]; |
| 1509 | |
| 1510 | let (input_ranges, state) = state.split_at(ntrans * 2); |
| 1511 | let (next, state) = state.split_at(ntrans * StateID::SIZE); |
| 1512 | let (pattern_ids, state) = if is_match { |
| 1513 | let npats = wire::read_u32(&state).as_usize(); |
| 1514 | state[4..].split_at(npats * 4) |
| 1515 | } else { |
| 1516 | (&[][..], state) |
| 1517 | }; |
| 1518 | |
| 1519 | let accel_len = usize::from(state[0]); |
| 1520 | let accel = &state[1..accel_len + 1]; |
| 1521 | State { id, is_match, ntrans, input_ranges, next, pattern_ids, accel } |
| 1522 | } |
| 1523 | |
| 1524 | /// Like `state`, but will return an error if the state encoding is |
| 1525 | /// invalid. This is useful for verifying states after deserialization, |
| 1526 | /// which is required for a safe deserialization API. |
| 1527 | /// |
| 1528 | /// Note that this only verifies that this state is decodable and that |
| 1529 | /// all of its data is consistent. It does not verify that its state ID |
| 1530 | /// transitions point to valid states themselves, nor does it verify that |
| 1531 | /// every pattern ID is valid. |
| 1532 | fn try_state( |
| 1533 | &self, |
| 1534 | sp: &Special, |
| 1535 | id: StateID, |
| 1536 | ) -> Result<State<'_>, DeserializeError> { |
| 1537 | if id.as_usize() > self.sparse().len() { |
| 1538 | return Err(DeserializeError::generic( |
| 1539 | "invalid caller provided sparse state ID" , |
| 1540 | )); |
| 1541 | } |
| 1542 | let mut state = &self.sparse()[id.as_usize()..]; |
| 1543 | // Encoding format starts with a u16 that stores the total number of |
| 1544 | // transitions in this state. |
| 1545 | let (mut ntrans, _) = |
| 1546 | wire::try_read_u16_as_usize(state, "state transition length" )?; |
| 1547 | let is_match = ((1 << 15) & ntrans) != 0; |
| 1548 | ntrans &= !(1 << 15); |
| 1549 | state = &state[2..]; |
| 1550 | if ntrans > 257 || ntrans == 0 { |
| 1551 | return Err(DeserializeError::generic( |
| 1552 | "invalid transition length" , |
| 1553 | )); |
| 1554 | } |
| 1555 | if is_match && !sp.is_match_state(id) { |
| 1556 | return Err(DeserializeError::generic( |
| 1557 | "state marked as match but not in match ID range" , |
| 1558 | )); |
| 1559 | } else if !is_match && sp.is_match_state(id) { |
| 1560 | return Err(DeserializeError::generic( |
| 1561 | "state in match ID range but not marked as match state" , |
| 1562 | )); |
| 1563 | } |
| 1564 | |
| 1565 | // Each transition has two pieces: an inclusive range of bytes on which |
| 1566 | // it is defined, and the state ID that those bytes transition to. The |
| 1567 | // pairs come first, followed by a corresponding sequence of state IDs. |
| 1568 | let input_ranges_len = ntrans.checked_mul(2).unwrap(); |
| 1569 | wire::check_slice_len(state, input_ranges_len, "sparse byte pairs" )?; |
| 1570 | let (input_ranges, state) = state.split_at(input_ranges_len); |
| 1571 | // Every range should be of the form A-B, where A<=B. |
| 1572 | for pair in input_ranges.chunks(2) { |
| 1573 | let (start, end) = (pair[0], pair[1]); |
| 1574 | if start > end { |
| 1575 | return Err(DeserializeError::generic("invalid input range" )); |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | // And now extract the corresponding sequence of state IDs. We leave |
| 1580 | // this sequence as a &[u8] instead of a &[S] because sparse DFAs do |
| 1581 | // not have any alignment requirements. |
| 1582 | let next_len = ntrans |
| 1583 | .checked_mul(self.id_len()) |
| 1584 | .expect("state size * #trans should always fit in a usize" ); |
| 1585 | wire::check_slice_len(state, next_len, "sparse trans state IDs" )?; |
| 1586 | let (next, state) = state.split_at(next_len); |
| 1587 | // We can at least verify that every state ID is in bounds. |
| 1588 | for idbytes in next.chunks(self.id_len()) { |
| 1589 | let (id, _) = |
| 1590 | wire::read_state_id(idbytes, "sparse state ID in try_state" )?; |
| 1591 | wire::check_slice_len( |
| 1592 | self.sparse(), |
| 1593 | id.as_usize(), |
| 1594 | "invalid sparse state ID" , |
| 1595 | )?; |
| 1596 | } |
| 1597 | |
| 1598 | // If this is a match state, then read the pattern IDs for this state. |
| 1599 | // Pattern IDs is a u32-length prefixed sequence of native endian |
| 1600 | // encoded 32-bit integers. |
| 1601 | let (pattern_ids, state) = if is_match { |
| 1602 | let (npats, nr) = |
| 1603 | wire::try_read_u32_as_usize(state, "pattern ID length" )?; |
| 1604 | let state = &state[nr..]; |
| 1605 | if npats == 0 { |
| 1606 | return Err(DeserializeError::generic( |
| 1607 | "state marked as a match, but pattern length is zero" , |
| 1608 | )); |
| 1609 | } |
| 1610 | |
| 1611 | let pattern_ids_len = |
| 1612 | wire::mul(npats, 4, "sparse pattern ID byte length" )?; |
| 1613 | wire::check_slice_len( |
| 1614 | state, |
| 1615 | pattern_ids_len, |
| 1616 | "sparse pattern IDs" , |
| 1617 | )?; |
| 1618 | let (pattern_ids, state) = state.split_at(pattern_ids_len); |
| 1619 | for patbytes in pattern_ids.chunks(PatternID::SIZE) { |
| 1620 | wire::read_pattern_id( |
| 1621 | patbytes, |
| 1622 | "sparse pattern ID in try_state" , |
| 1623 | )?; |
| 1624 | } |
| 1625 | (pattern_ids, state) |
| 1626 | } else { |
| 1627 | (&[][..], state) |
| 1628 | }; |
| 1629 | if is_match && pattern_ids.is_empty() { |
| 1630 | return Err(DeserializeError::generic( |
| 1631 | "state marked as a match, but has no pattern IDs" , |
| 1632 | )); |
| 1633 | } |
| 1634 | if sp.is_match_state(id) && pattern_ids.is_empty() { |
| 1635 | return Err(DeserializeError::generic( |
| 1636 | "state marked special as a match, but has no pattern IDs" , |
| 1637 | )); |
| 1638 | } |
| 1639 | if sp.is_match_state(id) != is_match { |
| 1640 | return Err(DeserializeError::generic( |
| 1641 | "whether state is a match or not is inconsistent" , |
| 1642 | )); |
| 1643 | } |
| 1644 | |
| 1645 | // Now read this state's accelerator info. The first byte is the length |
| 1646 | // of the accelerator, which is typically 0 (for no acceleration) but |
| 1647 | // is no bigger than 3. The length indicates the number of bytes that |
| 1648 | // follow, where each byte corresponds to a transition out of this |
| 1649 | // state. |
| 1650 | if state.is_empty() { |
| 1651 | return Err(DeserializeError::generic("no accelerator length" )); |
| 1652 | } |
| 1653 | let (accel_len, state) = (usize::from(state[0]), &state[1..]); |
| 1654 | |
| 1655 | if accel_len > 3 { |
| 1656 | return Err(DeserializeError::generic( |
| 1657 | "sparse invalid accelerator length" , |
| 1658 | )); |
| 1659 | } else if accel_len == 0 && sp.is_accel_state(id) { |
| 1660 | return Err(DeserializeError::generic( |
| 1661 | "got no accelerators in state, but in accelerator ID range" , |
| 1662 | )); |
| 1663 | } else if accel_len > 0 && !sp.is_accel_state(id) { |
| 1664 | return Err(DeserializeError::generic( |
| 1665 | "state in accelerator ID range, but has no accelerators" , |
| 1666 | )); |
| 1667 | } |
| 1668 | |
| 1669 | wire::check_slice_len( |
| 1670 | state, |
| 1671 | accel_len, |
| 1672 | "sparse corrupt accelerator length" , |
| 1673 | )?; |
| 1674 | let (accel, _) = (&state[..accel_len], &state[accel_len..]); |
| 1675 | |
| 1676 | let state = State { |
| 1677 | id, |
| 1678 | is_match, |
| 1679 | ntrans, |
| 1680 | input_ranges, |
| 1681 | next, |
| 1682 | pattern_ids, |
| 1683 | accel, |
| 1684 | }; |
| 1685 | if sp.is_quit_state(state.next_at(state.ntrans - 1)) { |
| 1686 | return Err(DeserializeError::generic( |
| 1687 | "state with EOI transition to quit state is illegal" , |
| 1688 | )); |
| 1689 | } |
| 1690 | Ok(state) |
| 1691 | } |
| 1692 | |
| 1693 | /// Return an iterator over all of the states in this DFA. |
| 1694 | /// |
| 1695 | /// The iterator returned yields tuples, where the first element is the |
| 1696 | /// state ID and the second element is the state itself. |
| 1697 | fn states(&self) -> StateIter<'_, T> { |
| 1698 | StateIter { trans: self, id: DEAD.as_usize() } |
| 1699 | } |
| 1700 | |
| 1701 | /// Returns the sparse transitions as raw bytes. |
| 1702 | fn sparse(&self) -> &[u8] { |
| 1703 | self.sparse.as_ref() |
| 1704 | } |
| 1705 | |
| 1706 | /// Returns the number of bytes represented by a single state ID. |
| 1707 | fn id_len(&self) -> usize { |
| 1708 | StateID::SIZE |
| 1709 | } |
| 1710 | |
| 1711 | /// Return the memory usage, in bytes, of these transitions. |
| 1712 | /// |
| 1713 | /// This does not include the size of a `Transitions` value itself. |
| 1714 | fn memory_usage(&self) -> usize { |
| 1715 | self.sparse().len() |
| 1716 | } |
| 1717 | } |
| 1718 | |
| 1719 | #[cfg (feature = "dfa-build" )] |
| 1720 | impl<T: AsMut<[u8]>> Transitions<T> { |
| 1721 | /// Return a convenient mutable representation of the given state. |
| 1722 | /// This panics if the state is invalid. |
| 1723 | fn state_mut(&mut self, id: StateID) -> StateMut<'_> { |
| 1724 | let mut state = &mut self.sparse_mut()[id.as_usize()..]; |
| 1725 | let mut ntrans = wire::read_u16(&state).as_usize(); |
| 1726 | let is_match = (1 << 15) & ntrans != 0; |
| 1727 | ntrans &= !(1 << 15); |
| 1728 | state = &mut state[2..]; |
| 1729 | |
| 1730 | let (input_ranges, state) = state.split_at_mut(ntrans * 2); |
| 1731 | let (next, state) = state.split_at_mut(ntrans * StateID::SIZE); |
| 1732 | let (pattern_ids, state) = if is_match { |
| 1733 | let npats = wire::read_u32(&state).as_usize(); |
| 1734 | state[4..].split_at_mut(npats * 4) |
| 1735 | } else { |
| 1736 | (&mut [][..], state) |
| 1737 | }; |
| 1738 | |
| 1739 | let accel_len = usize::from(state[0]); |
| 1740 | let accel = &mut state[1..accel_len + 1]; |
| 1741 | StateMut { |
| 1742 | id, |
| 1743 | is_match, |
| 1744 | ntrans, |
| 1745 | input_ranges, |
| 1746 | next, |
| 1747 | pattern_ids, |
| 1748 | accel, |
| 1749 | } |
| 1750 | } |
| 1751 | |
| 1752 | /// Returns the sparse transitions as raw mutable bytes. |
| 1753 | fn sparse_mut(&mut self) -> &mut [u8] { |
| 1754 | self.sparse.as_mut() |
| 1755 | } |
| 1756 | } |
| 1757 | |
| 1758 | /// The set of all possible starting states in a DFA. |
| 1759 | /// |
| 1760 | /// See the eponymous type in the `dense` module for more details. This type |
| 1761 | /// is very similar to `dense::StartTable`, except that its underlying |
| 1762 | /// representation is `&[u8]` instead of `&[S]`. (The latter would require |
| 1763 | /// sparse DFAs to be aligned, which is explicitly something we do not require |
| 1764 | /// because we don't really need it.) |
| 1765 | #[derive(Clone)] |
| 1766 | struct StartTable<T> { |
| 1767 | /// The initial start state IDs as a contiguous table of native endian |
| 1768 | /// encoded integers, represented by `S`. |
| 1769 | /// |
| 1770 | /// In practice, T is either Vec<u8> or &[u8] and has no alignment |
| 1771 | /// requirements. |
| 1772 | /// |
| 1773 | /// The first `2 * stride` (currently always 8) entries always correspond |
| 1774 | /// to the starts states for the entire DFA, with the first 4 entries being |
| 1775 | /// for unanchored searches and the second 4 entries being for anchored |
| 1776 | /// searches. To keep things simple, we always use 8 entries even if the |
| 1777 | /// `StartKind` is not both. |
| 1778 | /// |
| 1779 | /// After that, there are `stride * patterns` state IDs, where `patterns` |
| 1780 | /// may be zero in the case of a DFA with no patterns or in the case where |
| 1781 | /// the DFA was built without enabling starting states for each pattern. |
| 1782 | table: T, |
| 1783 | /// The starting state configuration supported. When 'both', both |
| 1784 | /// unanchored and anchored searches work. When 'unanchored', anchored |
| 1785 | /// searches panic. When 'anchored', unanchored searches panic. |
| 1786 | kind: StartKind, |
| 1787 | /// The start state configuration for every possible byte. |
| 1788 | start_map: StartByteMap, |
| 1789 | /// The number of starting state IDs per pattern. |
| 1790 | stride: usize, |
| 1791 | /// The total number of patterns for which starting states are encoded. |
| 1792 | /// This is `None` for DFAs that were built without start states for each |
| 1793 | /// pattern. Thus, one cannot use this field to say how many patterns |
| 1794 | /// are in the DFA in all cases. It is specific to how many patterns are |
| 1795 | /// represented in this start table. |
| 1796 | pattern_len: Option<usize>, |
| 1797 | /// The universal starting state for unanchored searches. This is only |
| 1798 | /// present when the DFA supports unanchored searches and when all starting |
| 1799 | /// state IDs for an unanchored search are equivalent. |
| 1800 | universal_start_unanchored: Option<StateID>, |
| 1801 | /// The universal starting state for anchored searches. This is only |
| 1802 | /// present when the DFA supports anchored searches and when all starting |
| 1803 | /// state IDs for an anchored search are equivalent. |
| 1804 | universal_start_anchored: Option<StateID>, |
| 1805 | } |
| 1806 | |
| 1807 | #[cfg (feature = "dfa-build" )] |
| 1808 | impl StartTable<Vec<u8>> { |
| 1809 | fn new<T: AsRef<[u32]>>( |
| 1810 | dfa: &dense::DFA<T>, |
| 1811 | pattern_len: Option<usize>, |
| 1812 | ) -> StartTable<Vec<u8>> { |
| 1813 | let stride = Start::len(); |
| 1814 | // This is OK since the only way we're here is if a dense DFA could be |
| 1815 | // constructed successfully, which uses the same space. |
| 1816 | let len = stride |
| 1817 | .checked_mul(pattern_len.unwrap_or(0)) |
| 1818 | .unwrap() |
| 1819 | .checked_add(stride.checked_mul(2).unwrap()) |
| 1820 | .unwrap() |
| 1821 | .checked_mul(StateID::SIZE) |
| 1822 | .unwrap(); |
| 1823 | StartTable { |
| 1824 | table: vec![0; len], |
| 1825 | kind: dfa.start_kind(), |
| 1826 | start_map: dfa.start_map().clone(), |
| 1827 | stride, |
| 1828 | pattern_len, |
| 1829 | universal_start_unanchored: dfa |
| 1830 | .universal_start_state(Anchored::No), |
| 1831 | universal_start_anchored: dfa.universal_start_state(Anchored::Yes), |
| 1832 | } |
| 1833 | } |
| 1834 | |
| 1835 | fn from_dense_dfa<T: AsRef<[u32]>>( |
| 1836 | dfa: &dense::DFA<T>, |
| 1837 | remap: &[StateID], |
| 1838 | ) -> Result<StartTable<Vec<u8>>, BuildError> { |
| 1839 | // Unless the DFA has start states compiled for each pattern, then |
| 1840 | // as far as the starting state table is concerned, there are zero |
| 1841 | // patterns to account for. It will instead only store starting states |
| 1842 | // for the entire DFA. |
| 1843 | let start_pattern_len = if dfa.starts_for_each_pattern() { |
| 1844 | Some(dfa.pattern_len()) |
| 1845 | } else { |
| 1846 | None |
| 1847 | }; |
| 1848 | let mut sl = StartTable::new(dfa, start_pattern_len); |
| 1849 | for (old_start_id, anchored, sty) in dfa.starts() { |
| 1850 | let new_start_id = remap[dfa.to_index(old_start_id)]; |
| 1851 | sl.set_start(anchored, sty, new_start_id); |
| 1852 | } |
| 1853 | Ok(sl) |
| 1854 | } |
| 1855 | } |
| 1856 | |
| 1857 | impl<'a> StartTable<&'a [u8]> { |
| 1858 | unsafe fn from_bytes_unchecked( |
| 1859 | mut slice: &'a [u8], |
| 1860 | ) -> Result<(StartTable<&'a [u8]>, usize), DeserializeError> { |
| 1861 | let slice_start = slice.as_ptr().as_usize(); |
| 1862 | |
| 1863 | let (kind, nr) = StartKind::from_bytes(slice)?; |
| 1864 | slice = &slice[nr..]; |
| 1865 | |
| 1866 | let (start_map, nr) = StartByteMap::from_bytes(slice)?; |
| 1867 | slice = &slice[nr..]; |
| 1868 | |
| 1869 | let (stride, nr) = |
| 1870 | wire::try_read_u32_as_usize(slice, "sparse start table stride" )?; |
| 1871 | slice = &slice[nr..]; |
| 1872 | if stride != Start::len() { |
| 1873 | return Err(DeserializeError::generic( |
| 1874 | "invalid sparse starting table stride" , |
| 1875 | )); |
| 1876 | } |
| 1877 | |
| 1878 | let (maybe_pattern_len, nr) = |
| 1879 | wire::try_read_u32_as_usize(slice, "sparse start table patterns" )?; |
| 1880 | slice = &slice[nr..]; |
| 1881 | let pattern_len = if maybe_pattern_len.as_u32() == u32::MAX { |
| 1882 | None |
| 1883 | } else { |
| 1884 | Some(maybe_pattern_len) |
| 1885 | }; |
| 1886 | if pattern_len.map_or(false, |len| len > PatternID::LIMIT) { |
| 1887 | return Err(DeserializeError::generic( |
| 1888 | "sparse invalid number of patterns" , |
| 1889 | )); |
| 1890 | } |
| 1891 | |
| 1892 | let (universal_unanchored, nr) = |
| 1893 | wire::try_read_u32(slice, "universal unanchored start" )?; |
| 1894 | slice = &slice[nr..]; |
| 1895 | let universal_start_unanchored = if universal_unanchored == u32::MAX { |
| 1896 | None |
| 1897 | } else { |
| 1898 | Some(StateID::try_from(universal_unanchored).map_err(|e| { |
| 1899 | DeserializeError::state_id_error( |
| 1900 | e, |
| 1901 | "universal unanchored start" , |
| 1902 | ) |
| 1903 | })?) |
| 1904 | }; |
| 1905 | |
| 1906 | let (universal_anchored, nr) = |
| 1907 | wire::try_read_u32(slice, "universal anchored start" )?; |
| 1908 | slice = &slice[nr..]; |
| 1909 | let universal_start_anchored = if universal_anchored == u32::MAX { |
| 1910 | None |
| 1911 | } else { |
| 1912 | Some(StateID::try_from(universal_anchored).map_err(|e| { |
| 1913 | DeserializeError::state_id_error(e, "universal anchored start" ) |
| 1914 | })?) |
| 1915 | }; |
| 1916 | |
| 1917 | let pattern_table_size = wire::mul( |
| 1918 | stride, |
| 1919 | pattern_len.unwrap_or(0), |
| 1920 | "sparse invalid pattern length" , |
| 1921 | )?; |
| 1922 | // Our start states always start with a single stride of start states |
| 1923 | // for the entire automaton which permit it to match any pattern. What |
| 1924 | // follows it are an optional set of start states for each pattern. |
| 1925 | let start_state_len = wire::add( |
| 1926 | wire::mul(2, stride, "start state stride too big" )?, |
| 1927 | pattern_table_size, |
| 1928 | "sparse invalid 'any' pattern starts size" , |
| 1929 | )?; |
| 1930 | let table_bytes_len = wire::mul( |
| 1931 | start_state_len, |
| 1932 | StateID::SIZE, |
| 1933 | "sparse pattern table bytes length" , |
| 1934 | )?; |
| 1935 | wire::check_slice_len( |
| 1936 | slice, |
| 1937 | table_bytes_len, |
| 1938 | "sparse start ID table" , |
| 1939 | )?; |
| 1940 | let table = &slice[..table_bytes_len]; |
| 1941 | slice = &slice[table_bytes_len..]; |
| 1942 | |
| 1943 | let sl = StartTable { |
| 1944 | table, |
| 1945 | kind, |
| 1946 | start_map, |
| 1947 | stride, |
| 1948 | pattern_len, |
| 1949 | universal_start_unanchored, |
| 1950 | universal_start_anchored, |
| 1951 | }; |
| 1952 | Ok((sl, slice.as_ptr().as_usize() - slice_start)) |
| 1953 | } |
| 1954 | } |
| 1955 | |
| 1956 | impl<T: AsRef<[u8]>> StartTable<T> { |
| 1957 | fn write_to<E: Endian>( |
| 1958 | &self, |
| 1959 | mut dst: &mut [u8], |
| 1960 | ) -> Result<usize, SerializeError> { |
| 1961 | let nwrite = self.write_to_len(); |
| 1962 | if dst.len() < nwrite { |
| 1963 | return Err(SerializeError::buffer_too_small( |
| 1964 | "sparse starting table ids" , |
| 1965 | )); |
| 1966 | } |
| 1967 | dst = &mut dst[..nwrite]; |
| 1968 | |
| 1969 | // write start kind |
| 1970 | let nw = self.kind.write_to::<E>(dst)?; |
| 1971 | dst = &mut dst[nw..]; |
| 1972 | // write start byte map |
| 1973 | let nw = self.start_map.write_to(dst)?; |
| 1974 | dst = &mut dst[nw..]; |
| 1975 | // write stride |
| 1976 | E::write_u32(u32::try_from(self.stride).unwrap(), dst); |
| 1977 | dst = &mut dst[size_of::<u32>()..]; |
| 1978 | // write pattern length |
| 1979 | E::write_u32( |
| 1980 | u32::try_from(self.pattern_len.unwrap_or(0xFFFF_FFFF)).unwrap(), |
| 1981 | dst, |
| 1982 | ); |
| 1983 | dst = &mut dst[size_of::<u32>()..]; |
| 1984 | // write universal start unanchored state id, u32::MAX if absent |
| 1985 | E::write_u32( |
| 1986 | self.universal_start_unanchored |
| 1987 | .map_or(u32::MAX, |sid| sid.as_u32()), |
| 1988 | dst, |
| 1989 | ); |
| 1990 | dst = &mut dst[size_of::<u32>()..]; |
| 1991 | // write universal start anchored state id, u32::MAX if absent |
| 1992 | E::write_u32( |
| 1993 | self.universal_start_anchored.map_or(u32::MAX, |sid| sid.as_u32()), |
| 1994 | dst, |
| 1995 | ); |
| 1996 | dst = &mut dst[size_of::<u32>()..]; |
| 1997 | // write start IDs |
| 1998 | for (sid, _, _) in self.iter() { |
| 1999 | E::write_u32(sid.as_u32(), dst); |
| 2000 | dst = &mut dst[StateID::SIZE..]; |
| 2001 | } |
| 2002 | Ok(nwrite) |
| 2003 | } |
| 2004 | |
| 2005 | /// Returns the number of bytes the serialized form of this transition |
| 2006 | /// table will use. |
| 2007 | fn write_to_len(&self) -> usize { |
| 2008 | self.kind.write_to_len() |
| 2009 | + self.start_map.write_to_len() |
| 2010 | + size_of::<u32>() // stride |
| 2011 | + size_of::<u32>() // # patterns |
| 2012 | + size_of::<u32>() // universal unanchored start |
| 2013 | + size_of::<u32>() // universal anchored start |
| 2014 | + self.table().len() |
| 2015 | } |
| 2016 | |
| 2017 | /// Validates that every starting state ID in this table is valid. |
| 2018 | /// |
| 2019 | /// That is, every starting state ID can be used to correctly decode a |
| 2020 | /// state in the DFA's sparse transitions. |
| 2021 | fn validate( |
| 2022 | &self, |
| 2023 | sp: &Special, |
| 2024 | seen: &Seen, |
| 2025 | ) -> Result<(), DeserializeError> { |
| 2026 | for (id, _, _) in self.iter() { |
| 2027 | if !seen.contains(&id) { |
| 2028 | return Err(DeserializeError::generic( |
| 2029 | "found invalid start state ID" , |
| 2030 | )); |
| 2031 | } |
| 2032 | if sp.is_match_state(id) { |
| 2033 | return Err(DeserializeError::generic( |
| 2034 | "start states cannot be match states" , |
| 2035 | )); |
| 2036 | } |
| 2037 | } |
| 2038 | Ok(()) |
| 2039 | } |
| 2040 | |
| 2041 | /// Converts this start list to a borrowed value. |
| 2042 | fn as_ref(&self) -> StartTable<&'_ [u8]> { |
| 2043 | StartTable { |
| 2044 | table: self.table(), |
| 2045 | kind: self.kind, |
| 2046 | start_map: self.start_map.clone(), |
| 2047 | stride: self.stride, |
| 2048 | pattern_len: self.pattern_len, |
| 2049 | universal_start_unanchored: self.universal_start_unanchored, |
| 2050 | universal_start_anchored: self.universal_start_anchored, |
| 2051 | } |
| 2052 | } |
| 2053 | |
| 2054 | /// Converts this start list to an owned value. |
| 2055 | #[cfg (feature = "alloc" )] |
| 2056 | fn to_owned(&self) -> StartTable<alloc::vec::Vec<u8>> { |
| 2057 | StartTable { |
| 2058 | table: self.table().to_vec(), |
| 2059 | kind: self.kind, |
| 2060 | start_map: self.start_map.clone(), |
| 2061 | stride: self.stride, |
| 2062 | pattern_len: self.pattern_len, |
| 2063 | universal_start_unanchored: self.universal_start_unanchored, |
| 2064 | universal_start_anchored: self.universal_start_anchored, |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | /// Return the start state for the given index and pattern ID. If the |
| 2069 | /// pattern ID is None, then the corresponding start state for the entire |
| 2070 | /// DFA is returned. If the pattern ID is not None, then the corresponding |
| 2071 | /// starting state for the given pattern is returned. If this start table |
| 2072 | /// does not have individual starting states for each pattern, then this |
| 2073 | /// panics. |
| 2074 | fn start( |
| 2075 | &self, |
| 2076 | anchored: Anchored, |
| 2077 | start: Start, |
| 2078 | ) -> Result<StateID, StartError> { |
| 2079 | let start_index = start.as_usize(); |
| 2080 | let index = match anchored { |
| 2081 | Anchored::No => { |
| 2082 | if !self.kind.has_unanchored() { |
| 2083 | return Err(StartError::unsupported_anchored(anchored)); |
| 2084 | } |
| 2085 | start_index |
| 2086 | } |
| 2087 | Anchored::Yes => { |
| 2088 | if !self.kind.has_anchored() { |
| 2089 | return Err(StartError::unsupported_anchored(anchored)); |
| 2090 | } |
| 2091 | self.stride + start_index |
| 2092 | } |
| 2093 | Anchored::Pattern(pid) => { |
| 2094 | let len = match self.pattern_len { |
| 2095 | None => { |
| 2096 | return Err(StartError::unsupported_anchored(anchored)) |
| 2097 | } |
| 2098 | Some(len) => len, |
| 2099 | }; |
| 2100 | if pid.as_usize() >= len { |
| 2101 | return Ok(DEAD); |
| 2102 | } |
| 2103 | (2 * self.stride) |
| 2104 | + (self.stride * pid.as_usize()) |
| 2105 | + start_index |
| 2106 | } |
| 2107 | }; |
| 2108 | let start = index * StateID::SIZE; |
| 2109 | // This OK since we're allowed to assume that the start table contains |
| 2110 | // valid StateIDs. |
| 2111 | Ok(wire::read_state_id_unchecked(&self.table()[start..]).0) |
| 2112 | } |
| 2113 | |
| 2114 | /// Return an iterator over all start IDs in this table. |
| 2115 | fn iter(&self) -> StartStateIter<'_, T> { |
| 2116 | StartStateIter { st: self, i: 0 } |
| 2117 | } |
| 2118 | |
| 2119 | /// Returns the total number of start state IDs in this table. |
| 2120 | fn len(&self) -> usize { |
| 2121 | self.table().len() / StateID::SIZE |
| 2122 | } |
| 2123 | |
| 2124 | /// Returns the table as a raw slice of bytes. |
| 2125 | fn table(&self) -> &[u8] { |
| 2126 | self.table.as_ref() |
| 2127 | } |
| 2128 | |
| 2129 | /// Return the memory usage, in bytes, of this start list. |
| 2130 | /// |
| 2131 | /// This does not include the size of a `StartTable` value itself. |
| 2132 | fn memory_usage(&self) -> usize { |
| 2133 | self.table().len() |
| 2134 | } |
| 2135 | } |
| 2136 | |
| 2137 | #[cfg (feature = "dfa-build" )] |
| 2138 | impl<T: AsMut<[u8]>> StartTable<T> { |
| 2139 | /// Set the start state for the given index and pattern. |
| 2140 | /// |
| 2141 | /// If the pattern ID or state ID are not valid, then this will panic. |
| 2142 | fn set_start(&mut self, anchored: Anchored, start: Start, id: StateID) { |
| 2143 | let start_index = start.as_usize(); |
| 2144 | let index = match anchored { |
| 2145 | Anchored::No => start_index, |
| 2146 | Anchored::Yes => self.stride + start_index, |
| 2147 | Anchored::Pattern(pid) => { |
| 2148 | let pid = pid.as_usize(); |
| 2149 | let len = self |
| 2150 | .pattern_len |
| 2151 | .expect("start states for each pattern enabled" ); |
| 2152 | assert!(pid < len, "invalid pattern ID {:?}" , pid); |
| 2153 | self.stride |
| 2154 | .checked_mul(pid) |
| 2155 | .unwrap() |
| 2156 | .checked_add(self.stride.checked_mul(2).unwrap()) |
| 2157 | .unwrap() |
| 2158 | .checked_add(start_index) |
| 2159 | .unwrap() |
| 2160 | } |
| 2161 | }; |
| 2162 | let start = index * StateID::SIZE; |
| 2163 | let end = start + StateID::SIZE; |
| 2164 | wire::write_state_id::<wire::NE>( |
| 2165 | id, |
| 2166 | &mut self.table.as_mut()[start..end], |
| 2167 | ); |
| 2168 | } |
| 2169 | } |
| 2170 | |
| 2171 | /// An iterator over all state state IDs in a sparse DFA. |
| 2172 | struct StartStateIter<'a, T> { |
| 2173 | st: &'a StartTable<T>, |
| 2174 | i: usize, |
| 2175 | } |
| 2176 | |
| 2177 | impl<'a, T: AsRef<[u8]>> Iterator for StartStateIter<'a, T> { |
| 2178 | type Item = (StateID, Anchored, Start); |
| 2179 | |
| 2180 | fn next(&mut self) -> Option<(StateID, Anchored, Start)> { |
| 2181 | let i = self.i; |
| 2182 | if i >= self.st.len() { |
| 2183 | return None; |
| 2184 | } |
| 2185 | self.i += 1; |
| 2186 | |
| 2187 | // This unwrap is okay since the stride of any DFA must always match |
| 2188 | // the number of start state types. |
| 2189 | let start_type = Start::from_usize(i % self.st.stride).unwrap(); |
| 2190 | let anchored = if i < self.st.stride { |
| 2191 | Anchored::No |
| 2192 | } else if i < (2 * self.st.stride) { |
| 2193 | Anchored::Yes |
| 2194 | } else { |
| 2195 | let pid = (i - (2 * self.st.stride)) / self.st.stride; |
| 2196 | Anchored::Pattern(PatternID::new(pid).unwrap()) |
| 2197 | }; |
| 2198 | let start = i * StateID::SIZE; |
| 2199 | let end = start + StateID::SIZE; |
| 2200 | let bytes = self.st.table()[start..end].try_into().unwrap(); |
| 2201 | // This is OK since we're allowed to assume that any IDs in this start |
| 2202 | // table are correct and valid for this DFA. |
| 2203 | let id = StateID::from_ne_bytes_unchecked(bytes); |
| 2204 | Some((id, anchored, start_type)) |
| 2205 | } |
| 2206 | } |
| 2207 | |
| 2208 | impl<'a, T> fmt::Debug for StartStateIter<'a, T> { |
| 2209 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 2210 | f.debug_struct("StartStateIter" ).field("i" , &self.i).finish() |
| 2211 | } |
| 2212 | } |
| 2213 | |
| 2214 | /// An iterator over all states in a sparse DFA. |
| 2215 | /// |
| 2216 | /// This iterator yields tuples, where the first element is the state ID and |
| 2217 | /// the second element is the state itself. |
| 2218 | struct StateIter<'a, T> { |
| 2219 | trans: &'a Transitions<T>, |
| 2220 | id: usize, |
| 2221 | } |
| 2222 | |
| 2223 | impl<'a, T: AsRef<[u8]>> Iterator for StateIter<'a, T> { |
| 2224 | type Item = State<'a>; |
| 2225 | |
| 2226 | fn next(&mut self) -> Option<State<'a>> { |
| 2227 | if self.id >= self.trans.sparse().len() { |
| 2228 | return None; |
| 2229 | } |
| 2230 | let state = self.trans.state(StateID::new_unchecked(self.id)); |
| 2231 | self.id = self.id + state.write_to_len(); |
| 2232 | Some(state) |
| 2233 | } |
| 2234 | } |
| 2235 | |
| 2236 | impl<'a, T> fmt::Debug for StateIter<'a, T> { |
| 2237 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 2238 | f.debug_struct("StateIter" ).field("id" , &self.id).finish() |
| 2239 | } |
| 2240 | } |
| 2241 | |
| 2242 | /// A representation of a sparse DFA state that can be cheaply materialized |
| 2243 | /// from a state identifier. |
| 2244 | #[derive(Clone)] |
| 2245 | struct State<'a> { |
| 2246 | /// The identifier of this state. |
| 2247 | id: StateID, |
| 2248 | /// Whether this is a match state or not. |
| 2249 | is_match: bool, |
| 2250 | /// The number of transitions in this state. |
| 2251 | ntrans: usize, |
| 2252 | /// Pairs of input ranges, where there is one pair for each transition. |
| 2253 | /// Each pair specifies an inclusive start and end byte range for the |
| 2254 | /// corresponding transition. |
| 2255 | input_ranges: &'a [u8], |
| 2256 | /// Transitions to the next state. This slice contains native endian |
| 2257 | /// encoded state identifiers, with `S` as the representation. Thus, there |
| 2258 | /// are `ntrans * size_of::<S>()` bytes in this slice. |
| 2259 | next: &'a [u8], |
| 2260 | /// If this is a match state, then this contains the pattern IDs that match |
| 2261 | /// when the DFA is in this state. |
| 2262 | /// |
| 2263 | /// This is a contiguous sequence of 32-bit native endian encoded integers. |
| 2264 | pattern_ids: &'a [u8], |
| 2265 | /// An accelerator for this state, if present. If this state has no |
| 2266 | /// accelerator, then this is an empty slice. When non-empty, this slice |
| 2267 | /// has length at most 3 and corresponds to the exhaustive set of bytes |
| 2268 | /// that must be seen in order to transition out of this state. |
| 2269 | accel: &'a [u8], |
| 2270 | } |
| 2271 | |
| 2272 | impl<'a> State<'a> { |
| 2273 | /// Searches for the next transition given an input byte. If no such |
| 2274 | /// transition could be found, then a dead state is returned. |
| 2275 | /// |
| 2276 | /// This is marked as inline to help dramatically boost sparse searching, |
| 2277 | /// which decodes each state it enters to follow the next transition. |
| 2278 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 2279 | fn next(&self, input: u8) -> StateID { |
| 2280 | // This straight linear search was observed to be much better than |
| 2281 | // binary search on ASCII haystacks, likely because a binary search |
| 2282 | // visits the ASCII case last but a linear search sees it first. A |
| 2283 | // binary search does do a little better on non-ASCII haystacks, but |
| 2284 | // not by much. There might be a better trade off lurking here. |
| 2285 | for i in 0..(self.ntrans - 1) { |
| 2286 | let (start, end) = self.range(i); |
| 2287 | if start <= input && input <= end { |
| 2288 | return self.next_at(i); |
| 2289 | } |
| 2290 | // We could bail early with an extra branch: if input < b1, then |
| 2291 | // we know we'll never find a matching transition. Interestingly, |
| 2292 | // this extra branch seems to not help performance, or will even |
| 2293 | // hurt it. It's likely very dependent on the DFA itself and what |
| 2294 | // is being searched. |
| 2295 | } |
| 2296 | DEAD |
| 2297 | } |
| 2298 | |
| 2299 | /// Returns the next state ID for the special EOI transition. |
| 2300 | fn next_eoi(&self) -> StateID { |
| 2301 | self.next_at(self.ntrans - 1) |
| 2302 | } |
| 2303 | |
| 2304 | /// Returns the identifier for this state. |
| 2305 | fn id(&self) -> StateID { |
| 2306 | self.id |
| 2307 | } |
| 2308 | |
| 2309 | /// Returns the inclusive input byte range for the ith transition in this |
| 2310 | /// state. |
| 2311 | fn range(&self, i: usize) -> (u8, u8) { |
| 2312 | (self.input_ranges[i * 2], self.input_ranges[i * 2 + 1]) |
| 2313 | } |
| 2314 | |
| 2315 | /// Returns the next state for the ith transition in this state. |
| 2316 | fn next_at(&self, i: usize) -> StateID { |
| 2317 | let start = i * StateID::SIZE; |
| 2318 | let end = start + StateID::SIZE; |
| 2319 | let bytes = self.next[start..end].try_into().unwrap(); |
| 2320 | StateID::from_ne_bytes_unchecked(bytes) |
| 2321 | } |
| 2322 | |
| 2323 | /// Returns the pattern ID for the given match index. If the match index |
| 2324 | /// is invalid, then this panics. |
| 2325 | fn pattern_id(&self, match_index: usize) -> PatternID { |
| 2326 | let start = match_index * PatternID::SIZE; |
| 2327 | wire::read_pattern_id_unchecked(&self.pattern_ids[start..]).0 |
| 2328 | } |
| 2329 | |
| 2330 | /// Returns the total number of pattern IDs for this state. This is always |
| 2331 | /// zero when `is_match` is false. |
| 2332 | fn pattern_len(&self) -> usize { |
| 2333 | assert_eq!(0, self.pattern_ids.len() % 4); |
| 2334 | self.pattern_ids.len() / 4 |
| 2335 | } |
| 2336 | |
| 2337 | /// Return an accelerator for this state. |
| 2338 | fn accelerator(&self) -> &'a [u8] { |
| 2339 | self.accel |
| 2340 | } |
| 2341 | |
| 2342 | /// Write the raw representation of this state to the given buffer using |
| 2343 | /// the given endianness. |
| 2344 | fn write_to<E: Endian>( |
| 2345 | &self, |
| 2346 | mut dst: &mut [u8], |
| 2347 | ) -> Result<usize, SerializeError> { |
| 2348 | let nwrite = self.write_to_len(); |
| 2349 | if dst.len() < nwrite { |
| 2350 | return Err(SerializeError::buffer_too_small( |
| 2351 | "sparse state transitions" , |
| 2352 | )); |
| 2353 | } |
| 2354 | |
| 2355 | let ntrans = |
| 2356 | if self.is_match { self.ntrans | (1 << 15) } else { self.ntrans }; |
| 2357 | E::write_u16(u16::try_from(ntrans).unwrap(), dst); |
| 2358 | dst = &mut dst[size_of::<u16>()..]; |
| 2359 | |
| 2360 | dst[..self.input_ranges.len()].copy_from_slice(self.input_ranges); |
| 2361 | dst = &mut dst[self.input_ranges.len()..]; |
| 2362 | |
| 2363 | for i in 0..self.ntrans { |
| 2364 | E::write_u32(self.next_at(i).as_u32(), dst); |
| 2365 | dst = &mut dst[StateID::SIZE..]; |
| 2366 | } |
| 2367 | |
| 2368 | if self.is_match { |
| 2369 | E::write_u32(u32::try_from(self.pattern_len()).unwrap(), dst); |
| 2370 | dst = &mut dst[size_of::<u32>()..]; |
| 2371 | for i in 0..self.pattern_len() { |
| 2372 | let pid = self.pattern_id(i); |
| 2373 | E::write_u32(pid.as_u32(), dst); |
| 2374 | dst = &mut dst[PatternID::SIZE..]; |
| 2375 | } |
| 2376 | } |
| 2377 | |
| 2378 | dst[0] = u8::try_from(self.accel.len()).unwrap(); |
| 2379 | dst[1..][..self.accel.len()].copy_from_slice(self.accel); |
| 2380 | |
| 2381 | Ok(nwrite) |
| 2382 | } |
| 2383 | |
| 2384 | /// Return the total number of bytes that this state consumes in its |
| 2385 | /// encoded form. |
| 2386 | fn write_to_len(&self) -> usize { |
| 2387 | let mut len = 2 |
| 2388 | + (self.ntrans * 2) |
| 2389 | + (self.ntrans * StateID::SIZE) |
| 2390 | + (1 + self.accel.len()); |
| 2391 | if self.is_match { |
| 2392 | len += size_of::<u32>() + self.pattern_ids.len(); |
| 2393 | } |
| 2394 | len |
| 2395 | } |
| 2396 | } |
| 2397 | |
| 2398 | impl<'a> fmt::Debug for State<'a> { |
| 2399 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2400 | let mut printed = false; |
| 2401 | for i in 0..(self.ntrans - 1) { |
| 2402 | let next = self.next_at(i); |
| 2403 | if next == DEAD { |
| 2404 | continue; |
| 2405 | } |
| 2406 | |
| 2407 | if printed { |
| 2408 | write!(f, ", " )?; |
| 2409 | } |
| 2410 | let (start, end) = self.range(i); |
| 2411 | if start == end { |
| 2412 | write!(f, "{:?} => {:?}" , DebugByte(start), next.as_usize())?; |
| 2413 | } else { |
| 2414 | write!( |
| 2415 | f, |
| 2416 | "{:?}-{:?} => {:?}" , |
| 2417 | DebugByte(start), |
| 2418 | DebugByte(end), |
| 2419 | next.as_usize(), |
| 2420 | )?; |
| 2421 | } |
| 2422 | printed = true; |
| 2423 | } |
| 2424 | let eoi = self.next_at(self.ntrans - 1); |
| 2425 | if eoi != DEAD { |
| 2426 | if printed { |
| 2427 | write!(f, ", " )?; |
| 2428 | } |
| 2429 | write!(f, "EOI => {:?}" , eoi.as_usize())?; |
| 2430 | } |
| 2431 | Ok(()) |
| 2432 | } |
| 2433 | } |
| 2434 | |
| 2435 | /// A representation of a mutable sparse DFA state that can be cheaply |
| 2436 | /// materialized from a state identifier. |
| 2437 | #[cfg (feature = "dfa-build" )] |
| 2438 | struct StateMut<'a> { |
| 2439 | /// The identifier of this state. |
| 2440 | id: StateID, |
| 2441 | /// Whether this is a match state or not. |
| 2442 | is_match: bool, |
| 2443 | /// The number of transitions in this state. |
| 2444 | ntrans: usize, |
| 2445 | /// Pairs of input ranges, where there is one pair for each transition. |
| 2446 | /// Each pair specifies an inclusive start and end byte range for the |
| 2447 | /// corresponding transition. |
| 2448 | input_ranges: &'a mut [u8], |
| 2449 | /// Transitions to the next state. This slice contains native endian |
| 2450 | /// encoded state identifiers, with `S` as the representation. Thus, there |
| 2451 | /// are `ntrans * size_of::<S>()` bytes in this slice. |
| 2452 | next: &'a mut [u8], |
| 2453 | /// If this is a match state, then this contains the pattern IDs that match |
| 2454 | /// when the DFA is in this state. |
| 2455 | /// |
| 2456 | /// This is a contiguous sequence of 32-bit native endian encoded integers. |
| 2457 | pattern_ids: &'a [u8], |
| 2458 | /// An accelerator for this state, if present. If this state has no |
| 2459 | /// accelerator, then this is an empty slice. When non-empty, this slice |
| 2460 | /// has length at most 3 and corresponds to the exhaustive set of bytes |
| 2461 | /// that must be seen in order to transition out of this state. |
| 2462 | accel: &'a mut [u8], |
| 2463 | } |
| 2464 | |
| 2465 | #[cfg (feature = "dfa-build" )] |
| 2466 | impl<'a> StateMut<'a> { |
| 2467 | /// Sets the ith transition to the given state. |
| 2468 | fn set_next_at(&mut self, i: usize, next: StateID) { |
| 2469 | let start = i * StateID::SIZE; |
| 2470 | let end = start + StateID::SIZE; |
| 2471 | wire::write_state_id::<wire::NE>(next, &mut self.next[start..end]); |
| 2472 | } |
| 2473 | } |
| 2474 | |
| 2475 | #[cfg (feature = "dfa-build" )] |
| 2476 | impl<'a> fmt::Debug for StateMut<'a> { |
| 2477 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2478 | let state = State { |
| 2479 | id: self.id, |
| 2480 | is_match: self.is_match, |
| 2481 | ntrans: self.ntrans, |
| 2482 | input_ranges: self.input_ranges, |
| 2483 | next: self.next, |
| 2484 | pattern_ids: self.pattern_ids, |
| 2485 | accel: self.accel, |
| 2486 | }; |
| 2487 | fmt::Debug::fmt(&state, f) |
| 2488 | } |
| 2489 | } |
| 2490 | |
| 2491 | // In order to validate everything, we not only need to make sure we |
| 2492 | // can decode every state, but that every transition in every state |
| 2493 | // points to a valid state. There are many duplicative transitions, so |
| 2494 | // we record state IDs that we've verified so that we don't redo the |
| 2495 | // decoding work. |
| 2496 | // |
| 2497 | // Except, when in no_std mode, we don't have dynamic memory allocation |
| 2498 | // available to us, so we skip this optimization. It's not clear |
| 2499 | // whether doing something more clever is worth it just yet. If you're |
| 2500 | // profiling this code and need it to run faster, please file an issue. |
| 2501 | // |
| 2502 | // OK, so we also use this to record the set of valid state IDs. Since |
| 2503 | // it is possible for a transition to point to an invalid state ID that |
| 2504 | // still (somehow) deserializes to a valid state. So we need to make |
| 2505 | // sure our transitions are limited to actually correct state IDs. |
| 2506 | // The problem is, I'm not sure how to do this verification step in |
| 2507 | // no-std no-alloc mode. I think we'd *have* to store the set of valid |
| 2508 | // state IDs in the DFA itself. For now, we don't do this verification |
| 2509 | // in no-std no-alloc mode. The worst thing that can happen is an |
| 2510 | // incorrect result. But no panics or memory safety problems should |
| 2511 | // result. Because we still do validate that the state itself is |
| 2512 | // "valid" in the sense that everything it points to actually exists. |
| 2513 | // |
| 2514 | // ---AG |
| 2515 | #[derive(Debug)] |
| 2516 | struct Seen { |
| 2517 | #[cfg (feature = "alloc" )] |
| 2518 | set: alloc::collections::BTreeSet<StateID>, |
| 2519 | #[cfg (not(feature = "alloc" ))] |
| 2520 | set: core::marker::PhantomData<StateID>, |
| 2521 | } |
| 2522 | |
| 2523 | #[cfg (feature = "alloc" )] |
| 2524 | impl Seen { |
| 2525 | fn new() -> Seen { |
| 2526 | Seen { set: alloc::collections::BTreeSet::new() } |
| 2527 | } |
| 2528 | fn insert(&mut self, id: StateID) { |
| 2529 | self.set.insert(id); |
| 2530 | } |
| 2531 | fn contains(&self, id: &StateID) -> bool { |
| 2532 | self.set.contains(id) |
| 2533 | } |
| 2534 | } |
| 2535 | |
| 2536 | #[cfg (not(feature = "alloc" ))] |
| 2537 | impl Seen { |
| 2538 | fn new() -> Seen { |
| 2539 | Seen { set: core::marker::PhantomData } |
| 2540 | } |
| 2541 | fn insert(&mut self, _id: StateID) {} |
| 2542 | fn contains(&self, _id: &StateID) -> bool { |
| 2543 | true |
| 2544 | } |
| 2545 | } |
| 2546 | |
| 2547 | /* |
| 2548 | /// A binary search routine specialized specifically to a sparse DFA state's |
| 2549 | /// transitions. Specifically, the transitions are defined as a set of pairs |
| 2550 | /// of input bytes that delineate an inclusive range of bytes. If the input |
| 2551 | /// byte is in the range, then the corresponding transition is a match. |
| 2552 | /// |
| 2553 | /// This binary search accepts a slice of these pairs and returns the position |
| 2554 | /// of the matching pair (the ith transition), or None if no matching pair |
| 2555 | /// could be found. |
| 2556 | /// |
| 2557 | /// Note that this routine is not currently used since it was observed to |
| 2558 | /// either decrease performance when searching ASCII, or did not provide enough |
| 2559 | /// of a boost on non-ASCII haystacks to be worth it. However, we leave it here |
| 2560 | /// for posterity in case we can find a way to use it. |
| 2561 | /// |
| 2562 | /// In theory, we could use the standard library's search routine if we could |
| 2563 | /// cast a `&[u8]` to a `&[(u8, u8)]`, but I don't believe this is currently |
| 2564 | /// guaranteed to be safe and is thus UB (since I don't think the in-memory |
| 2565 | /// representation of `(u8, u8)` has been nailed down). One could define a |
| 2566 | /// repr(C) type, but the casting doesn't seem justified. |
| 2567 | #[cfg_attr(feature = "perf-inline", inline(always))] |
| 2568 | fn binary_search_ranges(ranges: &[u8], needle: u8) -> Option<usize> { |
| 2569 | debug_assert!(ranges.len() % 2 == 0, "ranges must have even length"); |
| 2570 | debug_assert!(ranges.len() <= 512, "ranges should be short"); |
| 2571 | |
| 2572 | let (mut left, mut right) = (0, ranges.len() / 2); |
| 2573 | while left < right { |
| 2574 | let mid = (left + right) / 2; |
| 2575 | let (b1, b2) = (ranges[mid * 2], ranges[mid * 2 + 1]); |
| 2576 | if needle < b1 { |
| 2577 | right = mid; |
| 2578 | } else if needle > b2 { |
| 2579 | left = mid + 1; |
| 2580 | } else { |
| 2581 | return Some(mid); |
| 2582 | } |
| 2583 | } |
| 2584 | None |
| 2585 | } |
| 2586 | */ |
| 2587 | |
| 2588 | #[cfg (all(test, feature = "syntax" , feature = "dfa-build" ))] |
| 2589 | mod tests { |
| 2590 | use crate::{ |
| 2591 | dfa::{dense::DFA, Automaton}, |
| 2592 | nfa::thompson, |
| 2593 | Input, MatchError, |
| 2594 | }; |
| 2595 | |
| 2596 | // See the analogous test in src/hybrid/dfa.rs and src/dfa/dense.rs. |
| 2597 | #[test] |
| 2598 | fn heuristic_unicode_forward() { |
| 2599 | let dfa = DFA::builder() |
| 2600 | .configure(DFA::config().unicode_word_boundary(true)) |
| 2601 | .thompson(thompson::Config::new().reverse(true)) |
| 2602 | .build(r"\b[0-9]+\b" ) |
| 2603 | .unwrap() |
| 2604 | .to_sparse() |
| 2605 | .unwrap(); |
| 2606 | |
| 2607 | let input = Input::new("β123" ).range(2..); |
| 2608 | let expected = MatchError::quit(0xB2, 1); |
| 2609 | let got = dfa.try_search_fwd(&input); |
| 2610 | assert_eq!(Err(expected), got); |
| 2611 | |
| 2612 | let input = Input::new("123β" ).range(..3); |
| 2613 | let expected = MatchError::quit(0xCE, 3); |
| 2614 | let got = dfa.try_search_fwd(&input); |
| 2615 | assert_eq!(Err(expected), got); |
| 2616 | } |
| 2617 | |
| 2618 | // See the analogous test in src/hybrid/dfa.rs and src/dfa/dense.rs. |
| 2619 | #[test] |
| 2620 | fn heuristic_unicode_reverse() { |
| 2621 | let dfa = DFA::builder() |
| 2622 | .configure(DFA::config().unicode_word_boundary(true)) |
| 2623 | .thompson(thompson::Config::new().reverse(true)) |
| 2624 | .build(r"\b[0-9]+\b" ) |
| 2625 | .unwrap() |
| 2626 | .to_sparse() |
| 2627 | .unwrap(); |
| 2628 | |
| 2629 | let input = Input::new("β123" ).range(2..); |
| 2630 | let expected = MatchError::quit(0xB2, 1); |
| 2631 | let got = dfa.try_search_rev(&input); |
| 2632 | assert_eq!(Err(expected), got); |
| 2633 | |
| 2634 | let input = Input::new("123β" ).range(..3); |
| 2635 | let expected = MatchError::quit(0xCE, 3); |
| 2636 | let got = dfa.try_search_rev(&input); |
| 2637 | assert_eq!(Err(expected), got); |
| 2638 | } |
| 2639 | } |
| 2640 | |