1 | /*! |
2 | Defines an abstract syntax for regular expressions. |
3 | */ |
4 | |
5 | use std::cmp::Ordering; |
6 | use std::error; |
7 | use std::fmt; |
8 | |
9 | pub use crate::ast::visitor::{visit, Visitor}; |
10 | |
11 | pub mod parse; |
12 | pub mod print; |
13 | mod visitor; |
14 | |
15 | /// An error that occurred while parsing a regular expression into an abstract |
16 | /// syntax tree. |
17 | /// |
18 | /// Note that not all ASTs represents a valid regular expression. For example, |
19 | /// an AST is constructed without error for `\p{Quux}`, but `Quux` is not a |
20 | /// valid Unicode property name. That particular error is reported when |
21 | /// translating an AST to the high-level intermediate representation (`HIR`). |
22 | #[derive(Clone, Debug, Eq, PartialEq)] |
23 | pub struct Error { |
24 | /// The kind of error. |
25 | kind: ErrorKind, |
26 | /// The original pattern that the parser generated the error from. Every |
27 | /// span in an error is a valid range into this string. |
28 | pattern: String, |
29 | /// The span of this error. |
30 | span: Span, |
31 | } |
32 | |
33 | impl Error { |
34 | /// Return the type of this error. |
35 | pub fn kind(&self) -> &ErrorKind { |
36 | &self.kind |
37 | } |
38 | |
39 | /// The original pattern string in which this error occurred. |
40 | /// |
41 | /// Every span reported by this error is reported in terms of this string. |
42 | pub fn pattern(&self) -> &str { |
43 | &self.pattern |
44 | } |
45 | |
46 | /// Return the span at which this error occurred. |
47 | pub fn span(&self) -> &Span { |
48 | &self.span |
49 | } |
50 | |
51 | /// Return an auxiliary span. This span exists only for some errors that |
52 | /// benefit from being able to point to two locations in the original |
53 | /// regular expression. For example, "duplicate" errors will have the |
54 | /// main error position set to the duplicate occurrence while its |
55 | /// auxiliary span will be set to the initial occurrence. |
56 | pub fn auxiliary_span(&self) -> Option<&Span> { |
57 | use self::ErrorKind::*; |
58 | match self.kind { |
59 | FlagDuplicate { ref original } => Some(original), |
60 | FlagRepeatedNegation { ref original, .. } => Some(original), |
61 | GroupNameDuplicate { ref original, .. } => Some(original), |
62 | _ => None, |
63 | } |
64 | } |
65 | } |
66 | |
67 | /// The type of an error that occurred while building an AST. |
68 | #[derive(Clone, Debug, Eq, PartialEq)] |
69 | pub enum ErrorKind { |
70 | /// The capturing group limit was exceeded. |
71 | /// |
72 | /// Note that this represents a limit on the total number of capturing |
73 | /// groups in a regex and not necessarily the number of nested capturing |
74 | /// groups. That is, the nest limit can be low and it is still possible for |
75 | /// this error to occur. |
76 | CaptureLimitExceeded, |
77 | /// An invalid escape sequence was found in a character class set. |
78 | ClassEscapeInvalid, |
79 | /// An invalid character class range was found. An invalid range is any |
80 | /// range where the start is greater than the end. |
81 | ClassRangeInvalid, |
82 | /// An invalid range boundary was found in a character class. Range |
83 | /// boundaries must be a single literal codepoint, but this error indicates |
84 | /// that something else was found, such as a nested class. |
85 | ClassRangeLiteral, |
86 | /// An opening `[` was found with no corresponding closing `]`. |
87 | ClassUnclosed, |
88 | /// Note that this error variant is no longer used. Namely, a decimal |
89 | /// number can only appear as a repetition quantifier. When the number |
90 | /// in a repetition quantifier is empty, then it gets its own specialized |
91 | /// error, `RepetitionCountDecimalEmpty`. |
92 | DecimalEmpty, |
93 | /// An invalid decimal number was given where one was expected. |
94 | DecimalInvalid, |
95 | /// A bracketed hex literal was empty. |
96 | EscapeHexEmpty, |
97 | /// A bracketed hex literal did not correspond to a Unicode scalar value. |
98 | EscapeHexInvalid, |
99 | /// An invalid hexadecimal digit was found. |
100 | EscapeHexInvalidDigit, |
101 | /// EOF was found before an escape sequence was completed. |
102 | EscapeUnexpectedEof, |
103 | /// An unrecognized escape sequence. |
104 | EscapeUnrecognized, |
105 | /// A dangling negation was used when setting flags, e.g., `i-`. |
106 | FlagDanglingNegation, |
107 | /// A flag was used twice, e.g., `i-i`. |
108 | FlagDuplicate { |
109 | /// The position of the original flag. The error position |
110 | /// points to the duplicate flag. |
111 | original: Span, |
112 | }, |
113 | /// The negation operator was used twice, e.g., `-i-s`. |
114 | FlagRepeatedNegation { |
115 | /// The position of the original negation operator. The error position |
116 | /// points to the duplicate negation operator. |
117 | original: Span, |
118 | }, |
119 | /// Expected a flag but got EOF, e.g., `(?`. |
120 | FlagUnexpectedEof, |
121 | /// Unrecognized flag, e.g., `a`. |
122 | FlagUnrecognized, |
123 | /// A duplicate capture name was found. |
124 | GroupNameDuplicate { |
125 | /// The position of the initial occurrence of the capture name. The |
126 | /// error position itself points to the duplicate occurrence. |
127 | original: Span, |
128 | }, |
129 | /// A capture group name is empty, e.g., `(?P<>abc)`. |
130 | GroupNameEmpty, |
131 | /// An invalid character was seen for a capture group name. This includes |
132 | /// errors where the first character is a digit (even though subsequent |
133 | /// characters are allowed to be digits). |
134 | GroupNameInvalid, |
135 | /// A closing `>` could not be found for a capture group name. |
136 | GroupNameUnexpectedEof, |
137 | /// An unclosed group, e.g., `(ab`. |
138 | /// |
139 | /// The span of this error corresponds to the unclosed parenthesis. |
140 | GroupUnclosed, |
141 | /// An unopened group, e.g., `ab)`. |
142 | GroupUnopened, |
143 | /// The nest limit was exceeded. The limit stored here is the limit |
144 | /// configured in the parser. |
145 | NestLimitExceeded(u32), |
146 | /// The range provided in a counted repetition operator is invalid. The |
147 | /// range is invalid if the start is greater than the end. |
148 | RepetitionCountInvalid, |
149 | /// An opening `{` was not followed by a valid decimal value. |
150 | /// For example, `x{}` or `x{]}` would fail. |
151 | RepetitionCountDecimalEmpty, |
152 | /// An opening `{` was found with no corresponding closing `}`. |
153 | RepetitionCountUnclosed, |
154 | /// A repetition operator was applied to a missing sub-expression. This |
155 | /// occurs, for example, in the regex consisting of just a `*` or even |
156 | /// `(?i)*`. It is, however, possible to create a repetition operating on |
157 | /// an empty sub-expression. For example, `()*` is still considered valid. |
158 | RepetitionMissing, |
159 | /// The Unicode class is not valid. This typically occurs when a `\p` is |
160 | /// followed by something other than a `{`. |
161 | UnicodeClassInvalid, |
162 | /// When octal support is disabled, this error is produced when an octal |
163 | /// escape is used. The octal escape is assumed to be an invocation of |
164 | /// a backreference, which is the common case. |
165 | UnsupportedBackreference, |
166 | /// When syntax similar to PCRE's look-around is used, this error is |
167 | /// returned. Some example syntaxes that are rejected include, but are |
168 | /// not necessarily limited to, `(?=re)`, `(?!re)`, `(?<=re)` and |
169 | /// `(?<!re)`. Note that all of these syntaxes are otherwise invalid; this |
170 | /// error is used to improve the user experience. |
171 | UnsupportedLookAround, |
172 | /// Hints that destructuring should not be exhaustive. |
173 | /// |
174 | /// This enum may grow additional variants, so this makes sure clients |
175 | /// don't count on exhaustive matching. (Otherwise, adding a new variant |
176 | /// could break existing code.) |
177 | #[doc (hidden)] |
178 | __Nonexhaustive, |
179 | } |
180 | |
181 | impl error::Error for Error { |
182 | // TODO: Remove this method entirely on the next breaking semver release. |
183 | #[allow (deprecated)] |
184 | fn description(&self) -> &str { |
185 | use self::ErrorKind::*; |
186 | match self.kind { |
187 | CaptureLimitExceeded => "capture group limit exceeded" , |
188 | ClassEscapeInvalid => "invalid escape sequence in character class" , |
189 | ClassRangeInvalid => "invalid character class range" , |
190 | ClassRangeLiteral => "invalid range boundary, must be a literal" , |
191 | ClassUnclosed => "unclosed character class" , |
192 | DecimalEmpty => "empty decimal literal" , |
193 | DecimalInvalid => "invalid decimal literal" , |
194 | EscapeHexEmpty => "empty hexadecimal literal" , |
195 | EscapeHexInvalid => "invalid hexadecimal literal" , |
196 | EscapeHexInvalidDigit => "invalid hexadecimal digit" , |
197 | EscapeUnexpectedEof => "unexpected eof (escape sequence)" , |
198 | EscapeUnrecognized => "unrecognized escape sequence" , |
199 | FlagDanglingNegation => "dangling flag negation operator" , |
200 | FlagDuplicate { .. } => "duplicate flag" , |
201 | FlagRepeatedNegation { .. } => "repeated negation" , |
202 | FlagUnexpectedEof => "unexpected eof (flag)" , |
203 | FlagUnrecognized => "unrecognized flag" , |
204 | GroupNameDuplicate { .. } => "duplicate capture group name" , |
205 | GroupNameEmpty => "empty capture group name" , |
206 | GroupNameInvalid => "invalid capture group name" , |
207 | GroupNameUnexpectedEof => "unclosed capture group name" , |
208 | GroupUnclosed => "unclosed group" , |
209 | GroupUnopened => "unopened group" , |
210 | NestLimitExceeded(_) => "nest limit exceeded" , |
211 | RepetitionCountInvalid => "invalid repetition count range" , |
212 | RepetitionCountUnclosed => "unclosed counted repetition" , |
213 | RepetitionMissing => "repetition operator missing expression" , |
214 | UnicodeClassInvalid => "invalid Unicode character class" , |
215 | UnsupportedBackreference => "backreferences are not supported" , |
216 | UnsupportedLookAround => "look-around is not supported" , |
217 | _ => unreachable!(), |
218 | } |
219 | } |
220 | } |
221 | |
222 | impl fmt::Display for Error { |
223 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
224 | crate::error::Formatter::from(self).fmt(f) |
225 | } |
226 | } |
227 | |
228 | impl fmt::Display for ErrorKind { |
229 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
230 | use self::ErrorKind::*; |
231 | match *self { |
232 | CaptureLimitExceeded => write!( |
233 | f, |
234 | "exceeded the maximum number of \ |
235 | capturing groups ({})" , |
236 | ::std::u32::MAX |
237 | ), |
238 | ClassEscapeInvalid => { |
239 | write!(f, "invalid escape sequence found in character class" ) |
240 | } |
241 | ClassRangeInvalid => write!( |
242 | f, |
243 | "invalid character class range, \ |
244 | the start must be <= the end" |
245 | ), |
246 | ClassRangeLiteral => { |
247 | write!(f, "invalid range boundary, must be a literal" ) |
248 | } |
249 | ClassUnclosed => write!(f, "unclosed character class" ), |
250 | DecimalEmpty => write!(f, "decimal literal empty" ), |
251 | DecimalInvalid => write!(f, "decimal literal invalid" ), |
252 | EscapeHexEmpty => write!(f, "hexadecimal literal empty" ), |
253 | EscapeHexInvalid => { |
254 | write!(f, "hexadecimal literal is not a Unicode scalar value" ) |
255 | } |
256 | EscapeHexInvalidDigit => write!(f, "invalid hexadecimal digit" ), |
257 | EscapeUnexpectedEof => write!( |
258 | f, |
259 | "incomplete escape sequence, \ |
260 | reached end of pattern prematurely" |
261 | ), |
262 | EscapeUnrecognized => write!(f, "unrecognized escape sequence" ), |
263 | FlagDanglingNegation => { |
264 | write!(f, "dangling flag negation operator" ) |
265 | } |
266 | FlagDuplicate { .. } => write!(f, "duplicate flag" ), |
267 | FlagRepeatedNegation { .. } => { |
268 | write!(f, "flag negation operator repeated" ) |
269 | } |
270 | FlagUnexpectedEof => { |
271 | write!(f, "expected flag but got end of regex" ) |
272 | } |
273 | FlagUnrecognized => write!(f, "unrecognized flag" ), |
274 | GroupNameDuplicate { .. } => { |
275 | write!(f, "duplicate capture group name" ) |
276 | } |
277 | GroupNameEmpty => write!(f, "empty capture group name" ), |
278 | GroupNameInvalid => write!(f, "invalid capture group character" ), |
279 | GroupNameUnexpectedEof => write!(f, "unclosed capture group name" ), |
280 | GroupUnclosed => write!(f, "unclosed group" ), |
281 | GroupUnopened => write!(f, "unopened group" ), |
282 | NestLimitExceeded(limit) => write!( |
283 | f, |
284 | "exceed the maximum number of \ |
285 | nested parentheses/brackets ({})" , |
286 | limit |
287 | ), |
288 | RepetitionCountInvalid => write!( |
289 | f, |
290 | "invalid repetition count range, \ |
291 | the start must be <= the end" |
292 | ), |
293 | RepetitionCountDecimalEmpty => { |
294 | write!(f, "repetition quantifier expects a valid decimal" ) |
295 | } |
296 | RepetitionCountUnclosed => { |
297 | write!(f, "unclosed counted repetition" ) |
298 | } |
299 | RepetitionMissing => { |
300 | write!(f, "repetition operator missing expression" ) |
301 | } |
302 | UnicodeClassInvalid => { |
303 | write!(f, "invalid Unicode character class" ) |
304 | } |
305 | UnsupportedBackreference => { |
306 | write!(f, "backreferences are not supported" ) |
307 | } |
308 | UnsupportedLookAround => write!( |
309 | f, |
310 | "look-around, including look-ahead and look-behind, \ |
311 | is not supported" |
312 | ), |
313 | _ => unreachable!(), |
314 | } |
315 | } |
316 | } |
317 | |
318 | /// Span represents the position information of a single AST item. |
319 | /// |
320 | /// All span positions are absolute byte offsets that can be used on the |
321 | /// original regular expression that was parsed. |
322 | #[derive(Clone, Copy, Eq, PartialEq)] |
323 | pub struct Span { |
324 | /// The start byte offset. |
325 | pub start: Position, |
326 | /// The end byte offset. |
327 | pub end: Position, |
328 | } |
329 | |
330 | impl fmt::Debug for Span { |
331 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
332 | write!(f, "Span({:?}, {:?})" , self.start, self.end) |
333 | } |
334 | } |
335 | |
336 | impl Ord for Span { |
337 | fn cmp(&self, other: &Span) -> Ordering { |
338 | (&self.start, &self.end).cmp(&(&other.start, &other.end)) |
339 | } |
340 | } |
341 | |
342 | impl PartialOrd for Span { |
343 | fn partial_cmp(&self, other: &Span) -> Option<Ordering> { |
344 | Some(self.cmp(other)) |
345 | } |
346 | } |
347 | |
348 | /// A single position in a regular expression. |
349 | /// |
350 | /// A position encodes one half of a span, and include the byte offset, line |
351 | /// number and column number. |
352 | #[derive(Clone, Copy, Eq, PartialEq)] |
353 | pub struct Position { |
354 | /// The absolute offset of this position, starting at `0` from the |
355 | /// beginning of the regular expression pattern string. |
356 | pub offset: usize, |
357 | /// The line number, starting at `1`. |
358 | pub line: usize, |
359 | /// The approximate column number, starting at `1`. |
360 | pub column: usize, |
361 | } |
362 | |
363 | impl fmt::Debug for Position { |
364 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
365 | write!( |
366 | f, |
367 | "Position(o: {:?}, l: {:?}, c: {:?})" , |
368 | self.offset, self.line, self.column |
369 | ) |
370 | } |
371 | } |
372 | |
373 | impl Ord for Position { |
374 | fn cmp(&self, other: &Position) -> Ordering { |
375 | self.offset.cmp(&other.offset) |
376 | } |
377 | } |
378 | |
379 | impl PartialOrd for Position { |
380 | fn partial_cmp(&self, other: &Position) -> Option<Ordering> { |
381 | Some(self.cmp(other)) |
382 | } |
383 | } |
384 | |
385 | impl Span { |
386 | /// Create a new span with the given positions. |
387 | pub fn new(start: Position, end: Position) -> Span { |
388 | Span { start, end } |
389 | } |
390 | |
391 | /// Create a new span using the given position as the start and end. |
392 | pub fn splat(pos: Position) -> Span { |
393 | Span::new(pos, pos) |
394 | } |
395 | |
396 | /// Create a new span by replacing the starting the position with the one |
397 | /// given. |
398 | pub fn with_start(self, pos: Position) -> Span { |
399 | Span { start: pos, ..self } |
400 | } |
401 | |
402 | /// Create a new span by replacing the ending the position with the one |
403 | /// given. |
404 | pub fn with_end(self, pos: Position) -> Span { |
405 | Span { end: pos, ..self } |
406 | } |
407 | |
408 | /// Returns true if and only if this span occurs on a single line. |
409 | pub fn is_one_line(&self) -> bool { |
410 | self.start.line == self.end.line |
411 | } |
412 | |
413 | /// Returns true if and only if this span is empty. That is, it points to |
414 | /// a single position in the concrete syntax of a regular expression. |
415 | pub fn is_empty(&self) -> bool { |
416 | self.start.offset == self.end.offset |
417 | } |
418 | } |
419 | |
420 | impl Position { |
421 | /// Create a new position with the given information. |
422 | /// |
423 | /// `offset` is the absolute offset of the position, starting at `0` from |
424 | /// the beginning of the regular expression pattern string. |
425 | /// |
426 | /// `line` is the line number, starting at `1`. |
427 | /// |
428 | /// `column` is the approximate column number, starting at `1`. |
429 | pub fn new(offset: usize, line: usize, column: usize) -> Position { |
430 | Position { offset, line, column } |
431 | } |
432 | } |
433 | |
434 | /// An abstract syntax tree for a singular expression along with comments |
435 | /// found. |
436 | /// |
437 | /// Comments are not stored in the tree itself to avoid complexity. Each |
438 | /// comment contains a span of precisely where it occurred in the original |
439 | /// regular expression. |
440 | #[derive(Clone, Debug, Eq, PartialEq)] |
441 | pub struct WithComments { |
442 | /// The actual ast. |
443 | pub ast: Ast, |
444 | /// All comments found in the original regular expression. |
445 | pub comments: Vec<Comment>, |
446 | } |
447 | |
448 | /// A comment from a regular expression with an associated span. |
449 | /// |
450 | /// A regular expression can only contain comments when the `x` flag is |
451 | /// enabled. |
452 | #[derive(Clone, Debug, Eq, PartialEq)] |
453 | pub struct Comment { |
454 | /// The span of this comment, including the beginning `#` and ending `\n`. |
455 | pub span: Span, |
456 | /// The comment text, starting with the first character following the `#` |
457 | /// and ending with the last character preceding the `\n`. |
458 | pub comment: String, |
459 | } |
460 | |
461 | /// An abstract syntax tree for a single regular expression. |
462 | /// |
463 | /// An `Ast`'s `fmt::Display` implementation uses constant stack space and heap |
464 | /// space proportional to the size of the `Ast`. |
465 | /// |
466 | /// This type defines its own destructor that uses constant stack space and |
467 | /// heap space proportional to the size of the `Ast`. |
468 | #[derive(Clone, Debug, Eq, PartialEq)] |
469 | pub enum Ast { |
470 | /// An empty regex that matches everything. |
471 | Empty(Span), |
472 | /// A set of flags, e.g., `(?is)`. |
473 | Flags(SetFlags), |
474 | /// A single character literal, which includes escape sequences. |
475 | Literal(Literal), |
476 | /// The "any character" class. |
477 | Dot(Span), |
478 | /// A single zero-width assertion. |
479 | Assertion(Assertion), |
480 | /// A single character class. This includes all forms of character classes |
481 | /// except for `.`. e.g., `\d`, `\pN`, `[a-z]` and `[[:alpha:]]`. |
482 | Class(Class), |
483 | /// A repetition operator applied to an arbitrary regular expression. |
484 | Repetition(Repetition), |
485 | /// A grouped regular expression. |
486 | Group(Group), |
487 | /// An alternation of regular expressions. |
488 | Alternation(Alternation), |
489 | /// A concatenation of regular expressions. |
490 | Concat(Concat), |
491 | } |
492 | |
493 | impl Ast { |
494 | /// Return the span of this abstract syntax tree. |
495 | pub fn span(&self) -> &Span { |
496 | match *self { |
497 | Ast::Empty(ref span) => span, |
498 | Ast::Flags(ref x) => &x.span, |
499 | Ast::Literal(ref x) => &x.span, |
500 | Ast::Dot(ref span) => span, |
501 | Ast::Assertion(ref x) => &x.span, |
502 | Ast::Class(ref x) => x.span(), |
503 | Ast::Repetition(ref x) => &x.span, |
504 | Ast::Group(ref x) => &x.span, |
505 | Ast::Alternation(ref x) => &x.span, |
506 | Ast::Concat(ref x) => &x.span, |
507 | } |
508 | } |
509 | |
510 | /// Return true if and only if this Ast is empty. |
511 | pub fn is_empty(&self) -> bool { |
512 | match *self { |
513 | Ast::Empty(_) => true, |
514 | _ => false, |
515 | } |
516 | } |
517 | |
518 | /// Returns true if and only if this AST has any (including possibly empty) |
519 | /// subexpressions. |
520 | fn has_subexprs(&self) -> bool { |
521 | match *self { |
522 | Ast::Empty(_) |
523 | | Ast::Flags(_) |
524 | | Ast::Literal(_) |
525 | | Ast::Dot(_) |
526 | | Ast::Assertion(_) => false, |
527 | Ast::Class(_) |
528 | | Ast::Repetition(_) |
529 | | Ast::Group(_) |
530 | | Ast::Alternation(_) |
531 | | Ast::Concat(_) => true, |
532 | } |
533 | } |
534 | } |
535 | |
536 | /// Print a display representation of this Ast. |
537 | /// |
538 | /// This does not preserve any of the original whitespace formatting that may |
539 | /// have originally been present in the concrete syntax from which this Ast |
540 | /// was generated. |
541 | /// |
542 | /// This implementation uses constant stack space and heap space proportional |
543 | /// to the size of the `Ast`. |
544 | impl fmt::Display for Ast { |
545 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
546 | use crate::ast::print::Printer; |
547 | Printer::new().print(self, f) |
548 | } |
549 | } |
550 | |
551 | /// An alternation of regular expressions. |
552 | #[derive(Clone, Debug, Eq, PartialEq)] |
553 | pub struct Alternation { |
554 | /// The span of this alternation. |
555 | pub span: Span, |
556 | /// The alternate regular expressions. |
557 | pub asts: Vec<Ast>, |
558 | } |
559 | |
560 | impl Alternation { |
561 | /// Return this alternation as an AST. |
562 | /// |
563 | /// If this alternation contains zero ASTs, then Ast::Empty is |
564 | /// returned. If this alternation contains exactly 1 AST, then the |
565 | /// corresponding AST is returned. Otherwise, Ast::Alternation is returned. |
566 | pub fn into_ast(mut self) -> Ast { |
567 | match self.asts.len() { |
568 | 0 => Ast::Empty(self.span), |
569 | 1 => self.asts.pop().unwrap(), |
570 | _ => Ast::Alternation(self), |
571 | } |
572 | } |
573 | } |
574 | |
575 | /// A concatenation of regular expressions. |
576 | #[derive(Clone, Debug, Eq, PartialEq)] |
577 | pub struct Concat { |
578 | /// The span of this concatenation. |
579 | pub span: Span, |
580 | /// The concatenation regular expressions. |
581 | pub asts: Vec<Ast>, |
582 | } |
583 | |
584 | impl Concat { |
585 | /// Return this concatenation as an AST. |
586 | /// |
587 | /// If this concatenation contains zero ASTs, then Ast::Empty is |
588 | /// returned. If this concatenation contains exactly 1 AST, then the |
589 | /// corresponding AST is returned. Otherwise, Ast::Concat is returned. |
590 | pub fn into_ast(mut self) -> Ast { |
591 | match self.asts.len() { |
592 | 0 => Ast::Empty(self.span), |
593 | 1 => self.asts.pop().unwrap(), |
594 | _ => Ast::Concat(self), |
595 | } |
596 | } |
597 | } |
598 | |
599 | /// A single literal expression. |
600 | /// |
601 | /// A literal corresponds to a single Unicode scalar value. Literals may be |
602 | /// represented in their literal form, e.g., `a` or in their escaped form, |
603 | /// e.g., `\x61`. |
604 | #[derive(Clone, Debug, Eq, PartialEq)] |
605 | pub struct Literal { |
606 | /// The span of this literal. |
607 | pub span: Span, |
608 | /// The kind of this literal. |
609 | pub kind: LiteralKind, |
610 | /// The Unicode scalar value corresponding to this literal. |
611 | pub c: char, |
612 | } |
613 | |
614 | impl Literal { |
615 | /// If this literal was written as a `\x` hex escape, then this returns |
616 | /// the corresponding byte value. Otherwise, this returns `None`. |
617 | pub fn byte(&self) -> Option<u8> { |
618 | let short_hex = LiteralKind::HexFixed(HexLiteralKind::X); |
619 | if self.c as u32 <= 255 && self.kind == short_hex { |
620 | Some(self.c as u8) |
621 | } else { |
622 | None |
623 | } |
624 | } |
625 | } |
626 | |
627 | /// The kind of a single literal expression. |
628 | #[derive(Clone, Debug, Eq, PartialEq)] |
629 | pub enum LiteralKind { |
630 | /// The literal is written verbatim, e.g., `a` or `☃`. |
631 | Verbatim, |
632 | /// The literal is written as an escape because it is punctuation, e.g., |
633 | /// `\*` or `\[`. |
634 | Punctuation, |
635 | /// The literal is written as an octal escape, e.g., `\141`. |
636 | Octal, |
637 | /// The literal is written as a hex code with a fixed number of digits |
638 | /// depending on the type of the escape, e.g., `\x61` or or `\u0061` or |
639 | /// `\U00000061`. |
640 | HexFixed(HexLiteralKind), |
641 | /// The literal is written as a hex code with a bracketed number of |
642 | /// digits. The only restriction is that the bracketed hex code must refer |
643 | /// to a valid Unicode scalar value. |
644 | HexBrace(HexLiteralKind), |
645 | /// The literal is written as a specially recognized escape, e.g., `\f` |
646 | /// or `\n`. |
647 | Special(SpecialLiteralKind), |
648 | } |
649 | |
650 | /// The type of a special literal. |
651 | /// |
652 | /// A special literal is a special escape sequence recognized by the regex |
653 | /// parser, e.g., `\f` or `\n`. |
654 | #[derive(Clone, Debug, Eq, PartialEq)] |
655 | pub enum SpecialLiteralKind { |
656 | /// Bell, spelled `\a` (`\x07`). |
657 | Bell, |
658 | /// Form feed, spelled `\f` (`\x0C`). |
659 | FormFeed, |
660 | /// Tab, spelled `\t` (`\x09`). |
661 | Tab, |
662 | /// Line feed, spelled `\n` (`\x0A`). |
663 | LineFeed, |
664 | /// Carriage return, spelled `\r` (`\x0D`). |
665 | CarriageReturn, |
666 | /// Vertical tab, spelled `\v` (`\x0B`). |
667 | VerticalTab, |
668 | /// Space, spelled `\ ` (`\x20`). Note that this can only appear when |
669 | /// parsing in verbose mode. |
670 | Space, |
671 | } |
672 | |
673 | /// The type of a Unicode hex literal. |
674 | /// |
675 | /// Note that all variants behave the same when used with brackets. They only |
676 | /// differ when used without brackets in the number of hex digits that must |
677 | /// follow. |
678 | #[derive(Clone, Debug, Eq, PartialEq)] |
679 | pub enum HexLiteralKind { |
680 | /// A `\x` prefix. When used without brackets, this form is limited to |
681 | /// two digits. |
682 | X, |
683 | /// A `\u` prefix. When used without brackets, this form is limited to |
684 | /// four digits. |
685 | UnicodeShort, |
686 | /// A `\U` prefix. When used without brackets, this form is limited to |
687 | /// eight digits. |
688 | UnicodeLong, |
689 | } |
690 | |
691 | impl HexLiteralKind { |
692 | /// The number of digits that must be used with this literal form when |
693 | /// used without brackets. When used with brackets, there is no |
694 | /// restriction on the number of digits. |
695 | pub fn digits(&self) -> u32 { |
696 | match *self { |
697 | HexLiteralKind::X => 2, |
698 | HexLiteralKind::UnicodeShort => 4, |
699 | HexLiteralKind::UnicodeLong => 8, |
700 | } |
701 | } |
702 | } |
703 | |
704 | /// A single character class expression. |
705 | #[derive(Clone, Debug, Eq, PartialEq)] |
706 | pub enum Class { |
707 | /// A Unicode character class, e.g., `\pL` or `\p{Greek}`. |
708 | Unicode(ClassUnicode), |
709 | /// A perl character class, e.g., `\d` or `\W`. |
710 | Perl(ClassPerl), |
711 | /// A bracketed character class set, which may contain zero or more |
712 | /// character ranges and/or zero or more nested classes. e.g., |
713 | /// `[a-zA-Z\pL]`. |
714 | Bracketed(ClassBracketed), |
715 | } |
716 | |
717 | impl Class { |
718 | /// Return the span of this character class. |
719 | pub fn span(&self) -> &Span { |
720 | match *self { |
721 | Class::Perl(ref x) => &x.span, |
722 | Class::Unicode(ref x) => &x.span, |
723 | Class::Bracketed(ref x) => &x.span, |
724 | } |
725 | } |
726 | } |
727 | |
728 | /// A Perl character class. |
729 | #[derive(Clone, Debug, Eq, PartialEq)] |
730 | pub struct ClassPerl { |
731 | /// The span of this class. |
732 | pub span: Span, |
733 | /// The kind of Perl class. |
734 | pub kind: ClassPerlKind, |
735 | /// Whether the class is negated or not. e.g., `\d` is not negated but |
736 | /// `\D` is. |
737 | pub negated: bool, |
738 | } |
739 | |
740 | /// The available Perl character classes. |
741 | #[derive(Clone, Debug, Eq, PartialEq)] |
742 | pub enum ClassPerlKind { |
743 | /// Decimal numbers. |
744 | Digit, |
745 | /// Whitespace. |
746 | Space, |
747 | /// Word characters. |
748 | Word, |
749 | } |
750 | |
751 | /// An ASCII character class. |
752 | #[derive(Clone, Debug, Eq, PartialEq)] |
753 | pub struct ClassAscii { |
754 | /// The span of this class. |
755 | pub span: Span, |
756 | /// The kind of ASCII class. |
757 | pub kind: ClassAsciiKind, |
758 | /// Whether the class is negated or not. e.g., `[[:alpha:]]` is not negated |
759 | /// but `[[:^alpha:]]` is. |
760 | pub negated: bool, |
761 | } |
762 | |
763 | /// The available ASCII character classes. |
764 | #[derive(Clone, Debug, Eq, PartialEq)] |
765 | pub enum ClassAsciiKind { |
766 | /// `[0-9A-Za-z]` |
767 | Alnum, |
768 | /// `[A-Za-z]` |
769 | Alpha, |
770 | /// `[\x00-\x7F]` |
771 | Ascii, |
772 | /// `[ \t]` |
773 | Blank, |
774 | /// `[\x00-\x1F\x7F]` |
775 | Cntrl, |
776 | /// `[0-9]` |
777 | Digit, |
778 | /// `[!-~]` |
779 | Graph, |
780 | /// `[a-z]` |
781 | Lower, |
782 | /// `[ -~]` |
783 | Print, |
784 | /// `[!-/:-@\[-`{-~]` |
785 | Punct, |
786 | /// `[\t\n\v\f\r ]` |
787 | Space, |
788 | /// `[A-Z]` |
789 | Upper, |
790 | /// `[0-9A-Za-z_]` |
791 | Word, |
792 | /// `[0-9A-Fa-f]` |
793 | Xdigit, |
794 | } |
795 | |
796 | impl ClassAsciiKind { |
797 | /// Return the corresponding ClassAsciiKind variant for the given name. |
798 | /// |
799 | /// The name given should correspond to the lowercase version of the |
800 | /// variant name. e.g., `cntrl` is the name for `ClassAsciiKind::Cntrl`. |
801 | /// |
802 | /// If no variant with the corresponding name exists, then `None` is |
803 | /// returned. |
804 | pub fn from_name(name: &str) -> Option<ClassAsciiKind> { |
805 | use self::ClassAsciiKind::*; |
806 | match name { |
807 | "alnum" => Some(Alnum), |
808 | "alpha" => Some(Alpha), |
809 | "ascii" => Some(Ascii), |
810 | "blank" => Some(Blank), |
811 | "cntrl" => Some(Cntrl), |
812 | "digit" => Some(Digit), |
813 | "graph" => Some(Graph), |
814 | "lower" => Some(Lower), |
815 | "print" => Some(Print), |
816 | "punct" => Some(Punct), |
817 | "space" => Some(Space), |
818 | "upper" => Some(Upper), |
819 | "word" => Some(Word), |
820 | "xdigit" => Some(Xdigit), |
821 | _ => None, |
822 | } |
823 | } |
824 | } |
825 | |
826 | /// A Unicode character class. |
827 | #[derive(Clone, Debug, Eq, PartialEq)] |
828 | pub struct ClassUnicode { |
829 | /// The span of this class. |
830 | pub span: Span, |
831 | /// Whether this class is negated or not. |
832 | /// |
833 | /// Note: be careful when using this attribute. This specifically refers |
834 | /// to whether the class is written as `\p` or `\P`, where the latter |
835 | /// is `negated = true`. However, it also possible to write something like |
836 | /// `\P{scx!=Katakana}` which is actually equivalent to |
837 | /// `\p{scx=Katakana}` and is therefore not actually negated even though |
838 | /// `negated = true` here. To test whether this class is truly negated |
839 | /// or not, use the `is_negated` method. |
840 | pub negated: bool, |
841 | /// The kind of Unicode class. |
842 | pub kind: ClassUnicodeKind, |
843 | } |
844 | |
845 | impl ClassUnicode { |
846 | /// Returns true if this class has been negated. |
847 | /// |
848 | /// Note that this takes the Unicode op into account, if it's present. |
849 | /// e.g., `is_negated` for `\P{scx!=Katakana}` will return `false`. |
850 | pub fn is_negated(&self) -> bool { |
851 | match self.kind { |
852 | ClassUnicodeKind::NamedValue { |
853 | op: ClassUnicodeOpKind::NotEqual, |
854 | .. |
855 | } => !self.negated, |
856 | _ => self.negated, |
857 | } |
858 | } |
859 | } |
860 | |
861 | /// The available forms of Unicode character classes. |
862 | #[derive(Clone, Debug, Eq, PartialEq)] |
863 | pub enum ClassUnicodeKind { |
864 | /// A one letter abbreviated class, e.g., `\pN`. |
865 | OneLetter(char), |
866 | /// A binary property, general category or script. The string may be |
867 | /// empty. |
868 | Named(String), |
869 | /// A property name and an associated value. |
870 | NamedValue { |
871 | /// The type of Unicode op used to associate `name` with `value`. |
872 | op: ClassUnicodeOpKind, |
873 | /// The property name (which may be empty). |
874 | name: String, |
875 | /// The property value (which may be empty). |
876 | value: String, |
877 | }, |
878 | } |
879 | |
880 | /// The type of op used in a Unicode character class. |
881 | #[derive(Clone, Debug, Eq, PartialEq)] |
882 | pub enum ClassUnicodeOpKind { |
883 | /// A property set to a specific value, e.g., `\p{scx=Katakana}`. |
884 | Equal, |
885 | /// A property set to a specific value using a colon, e.g., |
886 | /// `\p{scx:Katakana}`. |
887 | Colon, |
888 | /// A property that isn't a particular value, e.g., `\p{scx!=Katakana}`. |
889 | NotEqual, |
890 | } |
891 | |
892 | impl ClassUnicodeOpKind { |
893 | /// Whether the op is an equality op or not. |
894 | pub fn is_equal(&self) -> bool { |
895 | match *self { |
896 | ClassUnicodeOpKind::Equal | ClassUnicodeOpKind::Colon => true, |
897 | _ => false, |
898 | } |
899 | } |
900 | } |
901 | |
902 | /// A bracketed character class, e.g., `[a-z0-9]`. |
903 | #[derive(Clone, Debug, Eq, PartialEq)] |
904 | pub struct ClassBracketed { |
905 | /// The span of this class. |
906 | pub span: Span, |
907 | /// Whether this class is negated or not. e.g., `[a]` is not negated but |
908 | /// `[^a]` is. |
909 | pub negated: bool, |
910 | /// The type of this set. A set is either a normal union of things, e.g., |
911 | /// `[abc]` or a result of applying set operations, e.g., `[\pL--c]`. |
912 | pub kind: ClassSet, |
913 | } |
914 | |
915 | /// A character class set. |
916 | /// |
917 | /// This type corresponds to the internal structure of a bracketed character |
918 | /// class. That is, every bracketed character is one of two types: a union of |
919 | /// items (literals, ranges, other bracketed classes) or a tree of binary set |
920 | /// operations. |
921 | #[derive(Clone, Debug, Eq, PartialEq)] |
922 | pub enum ClassSet { |
923 | /// An item, which can be a single literal, range, nested character class |
924 | /// or a union of items. |
925 | Item(ClassSetItem), |
926 | /// A single binary operation (i.e., &&, -- or ~~). |
927 | BinaryOp(ClassSetBinaryOp), |
928 | } |
929 | |
930 | impl ClassSet { |
931 | /// Build a set from a union. |
932 | pub fn union(ast: ClassSetUnion) -> ClassSet { |
933 | ClassSet::Item(ClassSetItem::Union(ast)) |
934 | } |
935 | |
936 | /// Return the span of this character class set. |
937 | pub fn span(&self) -> &Span { |
938 | match *self { |
939 | ClassSet::Item(ref x) => x.span(), |
940 | ClassSet::BinaryOp(ref x) => &x.span, |
941 | } |
942 | } |
943 | |
944 | /// Return true if and only if this class set is empty. |
945 | fn is_empty(&self) -> bool { |
946 | match *self { |
947 | ClassSet::Item(ClassSetItem::Empty(_)) => true, |
948 | _ => false, |
949 | } |
950 | } |
951 | } |
952 | |
953 | /// A single component of a character class set. |
954 | #[derive(Clone, Debug, Eq, PartialEq)] |
955 | pub enum ClassSetItem { |
956 | /// An empty item. |
957 | /// |
958 | /// Note that a bracketed character class cannot contain a single empty |
959 | /// item. Empty items can appear when using one of the binary operators. |
960 | /// For example, `[&&]` is the intersection of two empty classes. |
961 | Empty(Span), |
962 | /// A single literal. |
963 | Literal(Literal), |
964 | /// A range between two literals. |
965 | Range(ClassSetRange), |
966 | /// An ASCII character class, e.g., `[:alnum:]` or `[:punct:]`. |
967 | Ascii(ClassAscii), |
968 | /// A Unicode character class, e.g., `\pL` or `\p{Greek}`. |
969 | Unicode(ClassUnicode), |
970 | /// A perl character class, e.g., `\d` or `\W`. |
971 | Perl(ClassPerl), |
972 | /// A bracketed character class set, which may contain zero or more |
973 | /// character ranges and/or zero or more nested classes. e.g., |
974 | /// `[a-zA-Z\pL]`. |
975 | Bracketed(Box<ClassBracketed>), |
976 | /// A union of items. |
977 | Union(ClassSetUnion), |
978 | } |
979 | |
980 | impl ClassSetItem { |
981 | /// Return the span of this character class set item. |
982 | pub fn span(&self) -> &Span { |
983 | match *self { |
984 | ClassSetItem::Empty(ref span) => span, |
985 | ClassSetItem::Literal(ref x) => &x.span, |
986 | ClassSetItem::Range(ref x) => &x.span, |
987 | ClassSetItem::Ascii(ref x) => &x.span, |
988 | ClassSetItem::Perl(ref x) => &x.span, |
989 | ClassSetItem::Unicode(ref x) => &x.span, |
990 | ClassSetItem::Bracketed(ref x) => &x.span, |
991 | ClassSetItem::Union(ref x) => &x.span, |
992 | } |
993 | } |
994 | } |
995 | |
996 | /// A single character class range in a set. |
997 | #[derive(Clone, Debug, Eq, PartialEq)] |
998 | pub struct ClassSetRange { |
999 | /// The span of this range. |
1000 | pub span: Span, |
1001 | /// The start of this range. |
1002 | pub start: Literal, |
1003 | /// The end of this range. |
1004 | pub end: Literal, |
1005 | } |
1006 | |
1007 | impl ClassSetRange { |
1008 | /// Returns true if and only if this character class range is valid. |
1009 | /// |
1010 | /// The only case where a range is invalid is if its start is greater than |
1011 | /// its end. |
1012 | pub fn is_valid(&self) -> bool { |
1013 | self.start.c <= self.end.c |
1014 | } |
1015 | } |
1016 | |
1017 | /// A union of items inside a character class set. |
1018 | #[derive(Clone, Debug, Eq, PartialEq)] |
1019 | pub struct ClassSetUnion { |
1020 | /// The span of the items in this operation. e.g., the `a-z0-9` in |
1021 | /// `[^a-z0-9]` |
1022 | pub span: Span, |
1023 | /// The sequence of items that make up this union. |
1024 | pub items: Vec<ClassSetItem>, |
1025 | } |
1026 | |
1027 | impl ClassSetUnion { |
1028 | /// Push a new item in this union. |
1029 | /// |
1030 | /// The ending position of this union's span is updated to the ending |
1031 | /// position of the span of the item given. If the union is empty, then |
1032 | /// the starting position of this union is set to the starting position |
1033 | /// of this item. |
1034 | /// |
1035 | /// In other words, if you only use this method to add items to a union |
1036 | /// and you set the spans on each item correctly, then you should never |
1037 | /// need to adjust the span of the union directly. |
1038 | pub fn push(&mut self, item: ClassSetItem) { |
1039 | if self.items.is_empty() { |
1040 | self.span.start = item.span().start; |
1041 | } |
1042 | self.span.end = item.span().end; |
1043 | self.items.push(item); |
1044 | } |
1045 | |
1046 | /// Return this union as a character class set item. |
1047 | /// |
1048 | /// If this union contains zero items, then an empty union is |
1049 | /// returned. If this concatenation contains exactly 1 item, then the |
1050 | /// corresponding item is returned. Otherwise, ClassSetItem::Union is |
1051 | /// returned. |
1052 | pub fn into_item(mut self) -> ClassSetItem { |
1053 | match self.items.len() { |
1054 | 0 => ClassSetItem::Empty(self.span), |
1055 | 1 => self.items.pop().unwrap(), |
1056 | _ => ClassSetItem::Union(self), |
1057 | } |
1058 | } |
1059 | } |
1060 | |
1061 | /// A Unicode character class set operation. |
1062 | #[derive(Clone, Debug, Eq, PartialEq)] |
1063 | pub struct ClassSetBinaryOp { |
1064 | /// The span of this operation. e.g., the `a-z--[h-p]` in `[a-z--h-p]`. |
1065 | pub span: Span, |
1066 | /// The type of this set operation. |
1067 | pub kind: ClassSetBinaryOpKind, |
1068 | /// The left hand side of the operation. |
1069 | pub lhs: Box<ClassSet>, |
1070 | /// The right hand side of the operation. |
1071 | pub rhs: Box<ClassSet>, |
1072 | } |
1073 | |
1074 | /// The type of a Unicode character class set operation. |
1075 | /// |
1076 | /// Note that this doesn't explicitly represent union since there is no |
1077 | /// explicit union operator. Concatenation inside a character class corresponds |
1078 | /// to the union operation. |
1079 | #[derive(Clone, Copy, Debug, Eq, PartialEq)] |
1080 | pub enum ClassSetBinaryOpKind { |
1081 | /// The intersection of two sets, e.g., `\pN&&[a-z]`. |
1082 | Intersection, |
1083 | /// The difference of two sets, e.g., `\pN--[0-9]`. |
1084 | Difference, |
1085 | /// The symmetric difference of two sets. The symmetric difference is the |
1086 | /// set of elements belonging to one but not both sets. |
1087 | /// e.g., `[\pL~~[:ascii:]]`. |
1088 | SymmetricDifference, |
1089 | } |
1090 | |
1091 | /// A single zero-width assertion. |
1092 | #[derive(Clone, Debug, Eq, PartialEq)] |
1093 | pub struct Assertion { |
1094 | /// The span of this assertion. |
1095 | pub span: Span, |
1096 | /// The assertion kind, e.g., `\b` or `^`. |
1097 | pub kind: AssertionKind, |
1098 | } |
1099 | |
1100 | /// An assertion kind. |
1101 | #[derive(Clone, Debug, Eq, PartialEq)] |
1102 | pub enum AssertionKind { |
1103 | /// `^` |
1104 | StartLine, |
1105 | /// `$` |
1106 | EndLine, |
1107 | /// `\A` |
1108 | StartText, |
1109 | /// `\z` |
1110 | EndText, |
1111 | /// `\b` |
1112 | WordBoundary, |
1113 | /// `\B` |
1114 | NotWordBoundary, |
1115 | } |
1116 | |
1117 | /// A repetition operation applied to a regular expression. |
1118 | #[derive(Clone, Debug, Eq, PartialEq)] |
1119 | pub struct Repetition { |
1120 | /// The span of this operation. |
1121 | pub span: Span, |
1122 | /// The actual operation. |
1123 | pub op: RepetitionOp, |
1124 | /// Whether this operation was applied greedily or not. |
1125 | pub greedy: bool, |
1126 | /// The regular expression under repetition. |
1127 | pub ast: Box<Ast>, |
1128 | } |
1129 | |
1130 | /// The repetition operator itself. |
1131 | #[derive(Clone, Debug, Eq, PartialEq)] |
1132 | pub struct RepetitionOp { |
1133 | /// The span of this operator. This includes things like `+`, `*?` and |
1134 | /// `{m,n}`. |
1135 | pub span: Span, |
1136 | /// The type of operation. |
1137 | pub kind: RepetitionKind, |
1138 | } |
1139 | |
1140 | /// The kind of a repetition operator. |
1141 | #[derive(Clone, Debug, Eq, PartialEq)] |
1142 | pub enum RepetitionKind { |
1143 | /// `?` |
1144 | ZeroOrOne, |
1145 | /// `*` |
1146 | ZeroOrMore, |
1147 | /// `+` |
1148 | OneOrMore, |
1149 | /// `{m,n}` |
1150 | Range(RepetitionRange), |
1151 | } |
1152 | |
1153 | /// A range repetition operator. |
1154 | #[derive(Clone, Debug, Eq, PartialEq)] |
1155 | pub enum RepetitionRange { |
1156 | /// `{m}` |
1157 | Exactly(u32), |
1158 | /// `{m,}` |
1159 | AtLeast(u32), |
1160 | /// `{m,n}` |
1161 | Bounded(u32, u32), |
1162 | } |
1163 | |
1164 | impl RepetitionRange { |
1165 | /// Returns true if and only if this repetition range is valid. |
1166 | /// |
1167 | /// The only case where a repetition range is invalid is if it is bounded |
1168 | /// and its start is greater than its end. |
1169 | pub fn is_valid(&self) -> bool { |
1170 | match *self { |
1171 | RepetitionRange::Bounded(s, e) if s > e => false, |
1172 | _ => true, |
1173 | } |
1174 | } |
1175 | } |
1176 | |
1177 | /// A grouped regular expression. |
1178 | /// |
1179 | /// This includes both capturing and non-capturing groups. This does **not** |
1180 | /// include flag-only groups like `(?is)`, but does contain any group that |
1181 | /// contains a sub-expression, e.g., `(a)`, `(?P<name>a)`, `(?:a)` and |
1182 | /// `(?is:a)`. |
1183 | #[derive(Clone, Debug, Eq, PartialEq)] |
1184 | pub struct Group { |
1185 | /// The span of this group. |
1186 | pub span: Span, |
1187 | /// The kind of this group. |
1188 | pub kind: GroupKind, |
1189 | /// The regular expression in this group. |
1190 | pub ast: Box<Ast>, |
1191 | } |
1192 | |
1193 | impl Group { |
1194 | /// If this group is non-capturing, then this returns the (possibly empty) |
1195 | /// set of flags. Otherwise, `None` is returned. |
1196 | pub fn flags(&self) -> Option<&Flags> { |
1197 | match self.kind { |
1198 | GroupKind::NonCapturing(ref flags) => Some(flags), |
1199 | _ => None, |
1200 | } |
1201 | } |
1202 | |
1203 | /// Returns true if and only if this group is capturing. |
1204 | pub fn is_capturing(&self) -> bool { |
1205 | match self.kind { |
1206 | GroupKind::CaptureIndex(_) | GroupKind::CaptureName(_) => true, |
1207 | GroupKind::NonCapturing(_) => false, |
1208 | } |
1209 | } |
1210 | |
1211 | /// Returns the capture index of this group, if this is a capturing group. |
1212 | /// |
1213 | /// This returns a capture index precisely when `is_capturing` is `true`. |
1214 | pub fn capture_index(&self) -> Option<u32> { |
1215 | match self.kind { |
1216 | GroupKind::CaptureIndex(i) => Some(i), |
1217 | GroupKind::CaptureName(ref x) => Some(x.index), |
1218 | GroupKind::NonCapturing(_) => None, |
1219 | } |
1220 | } |
1221 | } |
1222 | |
1223 | /// The kind of a group. |
1224 | #[derive(Clone, Debug, Eq, PartialEq)] |
1225 | pub enum GroupKind { |
1226 | /// `(a)` |
1227 | CaptureIndex(u32), |
1228 | /// `(?P<name>a)` |
1229 | CaptureName(CaptureName), |
1230 | /// `(?:a)` and `(?i:a)` |
1231 | NonCapturing(Flags), |
1232 | } |
1233 | |
1234 | /// A capture name. |
1235 | /// |
1236 | /// This corresponds to the name itself between the angle brackets in, e.g., |
1237 | /// `(?P<foo>expr)`. |
1238 | #[derive(Clone, Debug, Eq, PartialEq)] |
1239 | pub struct CaptureName { |
1240 | /// The span of this capture name. |
1241 | pub span: Span, |
1242 | /// The capture name. |
1243 | pub name: String, |
1244 | /// The capture index. |
1245 | pub index: u32, |
1246 | } |
1247 | |
1248 | /// A group of flags that is not applied to a particular regular expression. |
1249 | #[derive(Clone, Debug, Eq, PartialEq)] |
1250 | pub struct SetFlags { |
1251 | /// The span of these flags, including the grouping parentheses. |
1252 | pub span: Span, |
1253 | /// The actual sequence of flags. |
1254 | pub flags: Flags, |
1255 | } |
1256 | |
1257 | /// A group of flags. |
1258 | /// |
1259 | /// This corresponds only to the sequence of flags themselves, e.g., `is-u`. |
1260 | #[derive(Clone, Debug, Eq, PartialEq)] |
1261 | pub struct Flags { |
1262 | /// The span of this group of flags. |
1263 | pub span: Span, |
1264 | /// A sequence of flag items. Each item is either a flag or a negation |
1265 | /// operator. |
1266 | pub items: Vec<FlagsItem>, |
1267 | } |
1268 | |
1269 | impl Flags { |
1270 | /// Add the given item to this sequence of flags. |
1271 | /// |
1272 | /// If the item was added successfully, then `None` is returned. If the |
1273 | /// given item is a duplicate, then `Some(i)` is returned, where |
1274 | /// `items[i].kind == item.kind`. |
1275 | pub fn add_item(&mut self, item: FlagsItem) -> Option<usize> { |
1276 | for (i, x) in self.items.iter().enumerate() { |
1277 | if x.kind == item.kind { |
1278 | return Some(i); |
1279 | } |
1280 | } |
1281 | self.items.push(item); |
1282 | None |
1283 | } |
1284 | |
1285 | /// Returns the state of the given flag in this set. |
1286 | /// |
1287 | /// If the given flag is in the set but is negated, then `Some(false)` is |
1288 | /// returned. |
1289 | /// |
1290 | /// If the given flag is in the set and is not negated, then `Some(true)` |
1291 | /// is returned. |
1292 | /// |
1293 | /// Otherwise, `None` is returned. |
1294 | pub fn flag_state(&self, flag: Flag) -> Option<bool> { |
1295 | let mut negated = false; |
1296 | for x in &self.items { |
1297 | match x.kind { |
1298 | FlagsItemKind::Negation => { |
1299 | negated = true; |
1300 | } |
1301 | FlagsItemKind::Flag(ref xflag) if xflag == &flag => { |
1302 | return Some(!negated); |
1303 | } |
1304 | _ => {} |
1305 | } |
1306 | } |
1307 | None |
1308 | } |
1309 | } |
1310 | |
1311 | /// A single item in a group of flags. |
1312 | #[derive(Clone, Debug, Eq, PartialEq)] |
1313 | pub struct FlagsItem { |
1314 | /// The span of this item. |
1315 | pub span: Span, |
1316 | /// The kind of this item. |
1317 | pub kind: FlagsItemKind, |
1318 | } |
1319 | |
1320 | /// The kind of an item in a group of flags. |
1321 | #[derive(Clone, Debug, Eq, PartialEq)] |
1322 | pub enum FlagsItemKind { |
1323 | /// A negation operator applied to all subsequent flags in the enclosing |
1324 | /// group. |
1325 | Negation, |
1326 | /// A single flag in a group. |
1327 | Flag(Flag), |
1328 | } |
1329 | |
1330 | impl FlagsItemKind { |
1331 | /// Returns true if and only if this item is a negation operator. |
1332 | pub fn is_negation(&self) -> bool { |
1333 | match *self { |
1334 | FlagsItemKind::Negation => true, |
1335 | _ => false, |
1336 | } |
1337 | } |
1338 | } |
1339 | |
1340 | /// A single flag. |
1341 | #[derive(Clone, Copy, Debug, Eq, PartialEq)] |
1342 | pub enum Flag { |
1343 | /// `i` |
1344 | CaseInsensitive, |
1345 | /// `m` |
1346 | MultiLine, |
1347 | /// `s` |
1348 | DotMatchesNewLine, |
1349 | /// `U` |
1350 | SwapGreed, |
1351 | /// `u` |
1352 | Unicode, |
1353 | /// `x` |
1354 | IgnoreWhitespace, |
1355 | } |
1356 | |
1357 | /// A custom `Drop` impl is used for `Ast` such that it uses constant stack |
1358 | /// space but heap space proportional to the depth of the `Ast`. |
1359 | impl Drop for Ast { |
1360 | fn drop(&mut self) { |
1361 | use std::mem; |
1362 | |
1363 | match *self { |
1364 | Ast::Empty(_) |
1365 | | Ast::Flags(_) |
1366 | | Ast::Literal(_) |
1367 | | Ast::Dot(_) |
1368 | | Ast::Assertion(_) |
1369 | // Classes are recursive, so they get their own Drop impl. |
1370 | | Ast::Class(_) => return, |
1371 | Ast::Repetition(ref x) if !x.ast.has_subexprs() => return, |
1372 | Ast::Group(ref x) if !x.ast.has_subexprs() => return, |
1373 | Ast::Alternation(ref x) if x.asts.is_empty() => return, |
1374 | Ast::Concat(ref x) if x.asts.is_empty() => return, |
1375 | _ => {} |
1376 | } |
1377 | |
1378 | let empty_span = || Span::splat(Position::new(0, 0, 0)); |
1379 | let empty_ast = || Ast::Empty(empty_span()); |
1380 | let mut stack = vec![mem::replace(self, empty_ast())]; |
1381 | while let Some(mut ast) = stack.pop() { |
1382 | match ast { |
1383 | Ast::Empty(_) |
1384 | | Ast::Flags(_) |
1385 | | Ast::Literal(_) |
1386 | | Ast::Dot(_) |
1387 | | Ast::Assertion(_) |
1388 | // Classes are recursive, so they get their own Drop impl. |
1389 | | Ast::Class(_) => {} |
1390 | Ast::Repetition(ref mut x) => { |
1391 | stack.push(mem::replace(&mut x.ast, empty_ast())); |
1392 | } |
1393 | Ast::Group(ref mut x) => { |
1394 | stack.push(mem::replace(&mut x.ast, empty_ast())); |
1395 | } |
1396 | Ast::Alternation(ref mut x) => { |
1397 | stack.extend(x.asts.drain(..)); |
1398 | } |
1399 | Ast::Concat(ref mut x) => { |
1400 | stack.extend(x.asts.drain(..)); |
1401 | } |
1402 | } |
1403 | } |
1404 | } |
1405 | } |
1406 | |
1407 | /// A custom `Drop` impl is used for `ClassSet` such that it uses constant |
1408 | /// stack space but heap space proportional to the depth of the `ClassSet`. |
1409 | impl Drop for ClassSet { |
1410 | fn drop(&mut self) { |
1411 | use std::mem; |
1412 | |
1413 | match *self { |
1414 | ClassSet::Item(ref item) => match *item { |
1415 | ClassSetItem::Empty(_) |
1416 | | ClassSetItem::Literal(_) |
1417 | | ClassSetItem::Range(_) |
1418 | | ClassSetItem::Ascii(_) |
1419 | | ClassSetItem::Unicode(_) |
1420 | | ClassSetItem::Perl(_) => return, |
1421 | ClassSetItem::Bracketed(ref x) => { |
1422 | if x.kind.is_empty() { |
1423 | return; |
1424 | } |
1425 | } |
1426 | ClassSetItem::Union(ref x) => { |
1427 | if x.items.is_empty() { |
1428 | return; |
1429 | } |
1430 | } |
1431 | }, |
1432 | ClassSet::BinaryOp(ref op) => { |
1433 | if op.lhs.is_empty() && op.rhs.is_empty() { |
1434 | return; |
1435 | } |
1436 | } |
1437 | } |
1438 | |
1439 | let empty_span = || Span::splat(Position::new(0, 0, 0)); |
1440 | let empty_set = || ClassSet::Item(ClassSetItem::Empty(empty_span())); |
1441 | let mut stack = vec![mem::replace(self, empty_set())]; |
1442 | while let Some(mut set) = stack.pop() { |
1443 | match set { |
1444 | ClassSet::Item(ref mut item) => match *item { |
1445 | ClassSetItem::Empty(_) |
1446 | | ClassSetItem::Literal(_) |
1447 | | ClassSetItem::Range(_) |
1448 | | ClassSetItem::Ascii(_) |
1449 | | ClassSetItem::Unicode(_) |
1450 | | ClassSetItem::Perl(_) => {} |
1451 | ClassSetItem::Bracketed(ref mut x) => { |
1452 | stack.push(mem::replace(&mut x.kind, empty_set())); |
1453 | } |
1454 | ClassSetItem::Union(ref mut x) => { |
1455 | stack.extend(x.items.drain(..).map(ClassSet::Item)); |
1456 | } |
1457 | }, |
1458 | ClassSet::BinaryOp(ref mut op) => { |
1459 | stack.push(mem::replace(&mut op.lhs, empty_set())); |
1460 | stack.push(mem::replace(&mut op.rhs, empty_set())); |
1461 | } |
1462 | } |
1463 | } |
1464 | } |
1465 | } |
1466 | |
1467 | #[cfg (test)] |
1468 | mod tests { |
1469 | use super::*; |
1470 | |
1471 | // We use a thread with an explicit stack size to test that our destructor |
1472 | // for Ast can handle arbitrarily sized expressions in constant stack |
1473 | // space. In case we run on a platform without threads (WASM?), we limit |
1474 | // this test to Windows/Unix. |
1475 | #[test] |
1476 | #[cfg (any(unix, windows))] |
1477 | fn no_stack_overflow_on_drop() { |
1478 | use std::thread; |
1479 | |
1480 | let run = || { |
1481 | let span = || Span::splat(Position::new(0, 0, 0)); |
1482 | let mut ast = Ast::Empty(span()); |
1483 | for i in 0..200 { |
1484 | ast = Ast::Group(Group { |
1485 | span: span(), |
1486 | kind: GroupKind::CaptureIndex(i), |
1487 | ast: Box::new(ast), |
1488 | }); |
1489 | } |
1490 | assert!(!ast.is_empty()); |
1491 | }; |
1492 | |
1493 | // We run our test on a thread with a small stack size so we can |
1494 | // force the issue more easily. |
1495 | // |
1496 | // NOTE(2023-03-21): It turns out that some platforms (like FreeBSD) |
1497 | // will just barf with very small stack sizes. So we bump this up a bit |
1498 | // to give more room to breath. When I did this, I confirmed that if |
1499 | // I remove the custom `Drop` impl for `Ast`, then this test does |
1500 | // indeed still fail with a stack overflow. (At the time of writing, I |
1501 | // had to bump it all the way up to 32K before the test would pass even |
1502 | // without the custom `Drop` impl. So 16K seems like a safe number |
1503 | // here.) |
1504 | // |
1505 | // See: https://github.com/rust-lang/regex/issues/967 |
1506 | thread::Builder::new() |
1507 | .stack_size(16 << 10) |
1508 | .spawn(run) |
1509 | .unwrap() |
1510 | .join() |
1511 | .unwrap(); |
1512 | } |
1513 | } |
1514 | |