1 | use std::cmp; |
2 | use std::error; |
3 | use std::fmt; |
4 | use std::result; |
5 | |
6 | use crate::ast; |
7 | use crate::hir; |
8 | |
9 | /// A type alias for dealing with errors returned by this crate. |
10 | pub type Result<T> = result::Result<T, Error>; |
11 | |
12 | /// This error type encompasses any error that can be returned by this crate. |
13 | #[derive(Clone, Debug, Eq, PartialEq)] |
14 | pub enum Error { |
15 | /// An error that occurred while translating concrete syntax into abstract |
16 | /// syntax (AST). |
17 | Parse(ast::Error), |
18 | /// An error that occurred while translating abstract syntax into a high |
19 | /// level intermediate representation (HIR). |
20 | Translate(hir::Error), |
21 | /// Hints that destructuring should not be exhaustive. |
22 | /// |
23 | /// This enum may grow additional variants, so this makes sure clients |
24 | /// don't count on exhaustive matching. (Otherwise, adding a new variant |
25 | /// could break existing code.) |
26 | #[doc (hidden)] |
27 | __Nonexhaustive, |
28 | } |
29 | |
30 | impl From<ast::Error> for Error { |
31 | fn from(err: ast::Error) -> Error { |
32 | Error::Parse(err) |
33 | } |
34 | } |
35 | |
36 | impl From<hir::Error> for Error { |
37 | fn from(err: hir::Error) -> Error { |
38 | Error::Translate(err) |
39 | } |
40 | } |
41 | |
42 | impl error::Error for Error { |
43 | // TODO: Remove this method entirely on the next breaking semver release. |
44 | #[allow (deprecated)] |
45 | fn description(&self) -> &str { |
46 | match *self { |
47 | Error::Parse(ref x) => x.description(), |
48 | Error::Translate(ref x) => x.description(), |
49 | _ => unreachable!(), |
50 | } |
51 | } |
52 | } |
53 | |
54 | impl fmt::Display for Error { |
55 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
56 | match *self { |
57 | Error::Parse(ref x) => x.fmt(f), |
58 | Error::Translate(ref x) => x.fmt(f), |
59 | _ => unreachable!(), |
60 | } |
61 | } |
62 | } |
63 | |
64 | /// A helper type for formatting nice error messages. |
65 | /// |
66 | /// This type is responsible for reporting regex parse errors in a nice human |
67 | /// readable format. Most of its complexity is from interspersing notational |
68 | /// markers pointing out the position where an error occurred. |
69 | #[derive(Debug)] |
70 | pub struct Formatter<'e, E> { |
71 | /// The original regex pattern in which the error occurred. |
72 | pattern: &'e str, |
73 | /// The error kind. It must impl fmt::Display. |
74 | err: &'e E, |
75 | /// The primary span of the error. |
76 | span: &'e ast::Span, |
77 | /// An auxiliary and optional span, in case the error needs to point to |
78 | /// two locations (e.g., when reporting a duplicate capture group name). |
79 | aux_span: Option<&'e ast::Span>, |
80 | } |
81 | |
82 | impl<'e> From<&'e ast::Error> for Formatter<'e, ast::ErrorKind> { |
83 | fn from(err: &'e ast::Error) -> Self { |
84 | Formatter { |
85 | pattern: err.pattern(), |
86 | err: err.kind(), |
87 | span: err.span(), |
88 | aux_span: err.auxiliary_span(), |
89 | } |
90 | } |
91 | } |
92 | |
93 | impl<'e> From<&'e hir::Error> for Formatter<'e, hir::ErrorKind> { |
94 | fn from(err: &'e hir::Error) -> Self { |
95 | Formatter { |
96 | pattern: err.pattern(), |
97 | err: err.kind(), |
98 | span: err.span(), |
99 | aux_span: None, |
100 | } |
101 | } |
102 | } |
103 | |
104 | impl<'e, E: fmt::Display> fmt::Display for Formatter<'e, E> { |
105 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
106 | let spans = Spans::from_formatter(self); |
107 | if self.pattern.contains(' \n' ) { |
108 | let divider = repeat_char('~' , 79); |
109 | |
110 | writeln!(f, "regex parse error:" )?; |
111 | writeln!(f, "{}" , divider)?; |
112 | let notated = spans.notate(); |
113 | write!(f, "{}" , notated)?; |
114 | writeln!(f, "{}" , divider)?; |
115 | // If we have error spans that cover multiple lines, then we just |
116 | // note the line numbers. |
117 | if !spans.multi_line.is_empty() { |
118 | let mut notes = vec![]; |
119 | for span in &spans.multi_line { |
120 | notes.push(format!( |
121 | "on line {} (column {}) through line {} (column {})" , |
122 | span.start.line, |
123 | span.start.column, |
124 | span.end.line, |
125 | span.end.column - 1 |
126 | )); |
127 | } |
128 | writeln!(f, "{}" , notes.join(" \n" ))?; |
129 | } |
130 | write!(f, "error: {}" , self.err)?; |
131 | } else { |
132 | writeln!(f, "regex parse error:" )?; |
133 | let notated = Spans::from_formatter(self).notate(); |
134 | write!(f, "{}" , notated)?; |
135 | write!(f, "error: {}" , self.err)?; |
136 | } |
137 | Ok(()) |
138 | } |
139 | } |
140 | |
141 | /// This type represents an arbitrary number of error spans in a way that makes |
142 | /// it convenient to notate the regex pattern. ("Notate" means "point out |
143 | /// exactly where the error occurred in the regex pattern.") |
144 | /// |
145 | /// Technically, we can only ever have two spans given our current error |
146 | /// structure. However, after toiling with a specific algorithm for handling |
147 | /// two spans, it became obvious that an algorithm to handle an arbitrary |
148 | /// number of spans was actually much simpler. |
149 | struct Spans<'p> { |
150 | /// The original regex pattern string. |
151 | pattern: &'p str, |
152 | /// The total width that should be used for line numbers. The width is |
153 | /// used for left padding the line numbers for alignment. |
154 | /// |
155 | /// A value of `0` means line numbers should not be displayed. That is, |
156 | /// the pattern is itself only one line. |
157 | line_number_width: usize, |
158 | /// All error spans that occur on a single line. This sequence always has |
159 | /// length equivalent to the number of lines in `pattern`, where the index |
160 | /// of the sequence represents a line number, starting at `0`. The spans |
161 | /// in each line are sorted in ascending order. |
162 | by_line: Vec<Vec<ast::Span>>, |
163 | /// All error spans that occur over one or more lines. That is, the start |
164 | /// and end position of the span have different line numbers. The spans are |
165 | /// sorted in ascending order. |
166 | multi_line: Vec<ast::Span>, |
167 | } |
168 | |
169 | impl<'p> Spans<'p> { |
170 | /// Build a sequence of spans from a formatter. |
171 | fn from_formatter<'e, E: fmt::Display>( |
172 | fmter: &'p Formatter<'e, E>, |
173 | ) -> Spans<'p> { |
174 | let mut line_count = fmter.pattern.lines().count(); |
175 | // If the pattern ends with a `\n` literal, then our line count is |
176 | // off by one, since a span can occur immediately after the last `\n`, |
177 | // which is consider to be an additional line. |
178 | if fmter.pattern.ends_with(' \n' ) { |
179 | line_count += 1; |
180 | } |
181 | let line_number_width = |
182 | if line_count <= 1 { 0 } else { line_count.to_string().len() }; |
183 | let mut spans = Spans { |
184 | pattern: &fmter.pattern, |
185 | line_number_width, |
186 | by_line: vec![vec![]; line_count], |
187 | multi_line: vec![], |
188 | }; |
189 | spans.add(fmter.span.clone()); |
190 | if let Some(span) = fmter.aux_span { |
191 | spans.add(span.clone()); |
192 | } |
193 | spans |
194 | } |
195 | |
196 | /// Add the given span to this sequence, putting it in the right place. |
197 | fn add(&mut self, span: ast::Span) { |
198 | // This is grossly inefficient since we sort after each add, but right |
199 | // now, we only ever add two spans at most. |
200 | if span.is_one_line() { |
201 | let i = span.start.line - 1; // because lines are 1-indexed |
202 | self.by_line[i].push(span); |
203 | self.by_line[i].sort(); |
204 | } else { |
205 | self.multi_line.push(span); |
206 | self.multi_line.sort(); |
207 | } |
208 | } |
209 | |
210 | /// Notate the pattern string with carents (`^`) pointing at each span |
211 | /// location. This only applies to spans that occur within a single line. |
212 | fn notate(&self) -> String { |
213 | let mut notated = String::new(); |
214 | for (i, line) in self.pattern.lines().enumerate() { |
215 | if self.line_number_width > 0 { |
216 | notated.push_str(&self.left_pad_line_number(i + 1)); |
217 | notated.push_str(": " ); |
218 | } else { |
219 | notated.push_str(" " ); |
220 | } |
221 | notated.push_str(line); |
222 | notated.push(' \n' ); |
223 | if let Some(notes) = self.notate_line(i) { |
224 | notated.push_str(¬es); |
225 | notated.push(' \n' ); |
226 | } |
227 | } |
228 | notated |
229 | } |
230 | |
231 | /// Return notes for the line indexed at `i` (zero-based). If there are no |
232 | /// spans for the given line, then `None` is returned. Otherwise, an |
233 | /// appropriately space padded string with correctly positioned `^` is |
234 | /// returned, accounting for line numbers. |
235 | fn notate_line(&self, i: usize) -> Option<String> { |
236 | let spans = &self.by_line[i]; |
237 | if spans.is_empty() { |
238 | return None; |
239 | } |
240 | let mut notes = String::new(); |
241 | for _ in 0..self.line_number_padding() { |
242 | notes.push(' ' ); |
243 | } |
244 | let mut pos = 0; |
245 | for span in spans { |
246 | for _ in pos..(span.start.column - 1) { |
247 | notes.push(' ' ); |
248 | pos += 1; |
249 | } |
250 | let note_len = span.end.column.saturating_sub(span.start.column); |
251 | for _ in 0..cmp::max(1, note_len) { |
252 | notes.push('^' ); |
253 | pos += 1; |
254 | } |
255 | } |
256 | Some(notes) |
257 | } |
258 | |
259 | /// Left pad the given line number with spaces such that it is aligned with |
260 | /// other line numbers. |
261 | fn left_pad_line_number(&self, n: usize) -> String { |
262 | let n = n.to_string(); |
263 | let pad = self.line_number_width.checked_sub(n.len()).unwrap(); |
264 | let mut result = repeat_char(' ' , pad); |
265 | result.push_str(&n); |
266 | result |
267 | } |
268 | |
269 | /// Return the line number padding beginning at the start of each line of |
270 | /// the pattern. |
271 | /// |
272 | /// If the pattern is only one line, then this returns a fixed padding |
273 | /// for visual indentation. |
274 | fn line_number_padding(&self) -> usize { |
275 | if self.line_number_width == 0 { |
276 | 4 |
277 | } else { |
278 | 2 + self.line_number_width |
279 | } |
280 | } |
281 | } |
282 | |
283 | fn repeat_char(c: char, count: usize) -> String { |
284 | ::std::iter::repeat(c).take(count).collect() |
285 | } |
286 | |
287 | #[cfg (test)] |
288 | mod tests { |
289 | use crate::ast::parse::Parser; |
290 | |
291 | fn assert_panic_message(pattern: &str, expected_msg: &str) { |
292 | let result = Parser::new().parse(pattern); |
293 | match result { |
294 | Ok(_) => { |
295 | panic!("regex should not have parsed" ); |
296 | } |
297 | Err(err) => { |
298 | assert_eq!(err.to_string(), expected_msg.trim()); |
299 | } |
300 | } |
301 | } |
302 | |
303 | // See: https://github.com/rust-lang/regex/issues/464 |
304 | #[test] |
305 | fn regression_464() { |
306 | let err = Parser::new().parse("a{ \n" ).unwrap_err(); |
307 | // This test checks that the error formatter doesn't panic. |
308 | assert!(!err.to_string().is_empty()); |
309 | } |
310 | |
311 | // See: https://github.com/rust-lang/regex/issues/545 |
312 | #[test] |
313 | fn repetition_quantifier_expects_a_valid_decimal() { |
314 | assert_panic_message( |
315 | r"\\u{[^}]*}" , |
316 | r#" |
317 | regex parse error: |
318 | \\u{[^}]*} |
319 | ^ |
320 | error: repetition quantifier expects a valid decimal |
321 | "# , |
322 | ); |
323 | } |
324 | } |
325 | |