| 1 | // Adapted from https://github.com/Alexhuszagh/rust-lexical. |
| 2 | |
| 3 | //! Algorithms to efficiently convert strings to floats. |
| 4 | |
| 5 | use super::bhcomp::*; |
| 6 | use super::cached::*; |
| 7 | use super::errors::*; |
| 8 | use super::float::ExtendedFloat; |
| 9 | use super::num::*; |
| 10 | use super::small_powers::*; |
| 11 | |
| 12 | // FAST |
| 13 | // ---- |
| 14 | |
| 15 | /// Convert mantissa to exact value for a non-base2 power. |
| 16 | /// |
| 17 | /// Returns the resulting float and if the value can be represented exactly. |
| 18 | pub(crate) fn fast_path<F>(mantissa: u64, exponent: i32) -> Option<F> |
| 19 | where |
| 20 | F: Float, |
| 21 | { |
| 22 | // `mantissa >> (F::MANTISSA_SIZE+1) != 0` effectively checks if the |
| 23 | // value has a no bits above the hidden bit, which is what we want. |
| 24 | let (min_exp, max_exp) = F::exponent_limit(); |
| 25 | let shift_exp = F::mantissa_limit(); |
| 26 | let mantissa_size = F::MANTISSA_SIZE + 1; |
| 27 | if mantissa == 0 { |
| 28 | Some(F::ZERO) |
| 29 | } else if mantissa >> mantissa_size != 0 { |
| 30 | // Would require truncation of the mantissa. |
| 31 | None |
| 32 | } else if exponent == 0 { |
| 33 | // 0 exponent, same as value, exact representation. |
| 34 | let float = F::as_cast(mantissa); |
| 35 | Some(float) |
| 36 | } else if exponent >= min_exp && exponent <= max_exp { |
| 37 | // Value can be exactly represented, return the value. |
| 38 | // Do not use powi, since powi can incrementally introduce |
| 39 | // error. |
| 40 | let float = F::as_cast(mantissa); |
| 41 | Some(float.pow10(exponent)) |
| 42 | } else if exponent >= 0 && exponent <= max_exp + shift_exp { |
| 43 | // Check to see if we have a disguised fast-path, where the |
| 44 | // number of digits in the mantissa is very small, but and |
| 45 | // so digits can be shifted from the exponent to the mantissa. |
| 46 | // https://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ |
| 47 | let small_powers = POW10_64; |
| 48 | let shift = exponent - max_exp; |
| 49 | let power = small_powers[shift as usize]; |
| 50 | |
| 51 | // Compute the product of the power, if it overflows, |
| 52 | // prematurely return early, otherwise, if we didn't overshoot, |
| 53 | // we can get an exact value. |
| 54 | let value = match mantissa.checked_mul(power) { |
| 55 | None => return None, |
| 56 | Some(value) => value, |
| 57 | }; |
| 58 | if value >> mantissa_size != 0 { |
| 59 | None |
| 60 | } else { |
| 61 | // Use powi, since it's correct, and faster on |
| 62 | // the fast-path. |
| 63 | let float = F::as_cast(value); |
| 64 | Some(float.pow10(max_exp)) |
| 65 | } |
| 66 | } else { |
| 67 | // Cannot be exactly represented, exponent too small or too big, |
| 68 | // would require truncation. |
| 69 | None |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | // MODERATE |
| 74 | // -------- |
| 75 | |
| 76 | /// Multiply the floating-point by the exponent. |
| 77 | /// |
| 78 | /// Multiply by pre-calculated powers of the base, modify the extended- |
| 79 | /// float, and return if new value and if the value can be represented |
| 80 | /// accurately. |
| 81 | fn multiply_exponent_extended<F>(fp: &mut ExtendedFloat, exponent: i32, truncated: bool) -> bool |
| 82 | where |
| 83 | F: Float, |
| 84 | { |
| 85 | let powers = ExtendedFloat::get_powers(); |
| 86 | let exponent = exponent.saturating_add(powers.bias); |
| 87 | let small_index = exponent % powers.step; |
| 88 | let large_index = exponent / powers.step; |
| 89 | if exponent < 0 { |
| 90 | // Guaranteed underflow (assign 0). |
| 91 | fp.mant = 0; |
| 92 | true |
| 93 | } else if large_index as usize >= powers.large.len() { |
| 94 | // Overflow (assign infinity) |
| 95 | fp.mant = 1 << 63; |
| 96 | fp.exp = 0x7FF; |
| 97 | true |
| 98 | } else { |
| 99 | // Within the valid exponent range, multiply by the large and small |
| 100 | // exponents and return the resulting value. |
| 101 | |
| 102 | // Track errors to as a factor of unit in last-precision. |
| 103 | let mut errors: u32 = 0; |
| 104 | if truncated { |
| 105 | errors += u64::error_halfscale(); |
| 106 | } |
| 107 | |
| 108 | // Multiply by the small power. |
| 109 | // Check if we can directly multiply by an integer, if not, |
| 110 | // use extended-precision multiplication. |
| 111 | match fp |
| 112 | .mant |
| 113 | .overflowing_mul(powers.get_small_int(small_index as usize)) |
| 114 | { |
| 115 | // Overflow, multiplication unsuccessful, go slow path. |
| 116 | (_, true) => { |
| 117 | fp.normalize(); |
| 118 | fp.imul(&powers.get_small(small_index as usize)); |
| 119 | errors += u64::error_halfscale(); |
| 120 | } |
| 121 | // No overflow, multiplication successful. |
| 122 | (mant, false) => { |
| 123 | fp.mant = mant; |
| 124 | fp.normalize(); |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | // Multiply by the large power |
| 129 | fp.imul(&powers.get_large(large_index as usize)); |
| 130 | if errors > 0 { |
| 131 | errors += 1; |
| 132 | } |
| 133 | errors += u64::error_halfscale(); |
| 134 | |
| 135 | // Normalize the floating point (and the errors). |
| 136 | let shift = fp.normalize(); |
| 137 | errors <<= shift; |
| 138 | |
| 139 | u64::error_is_accurate::<F>(errors, fp) |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | /// Create a precise native float using an intermediate extended-precision float. |
| 144 | /// |
| 145 | /// Return the float approximation and if the value can be accurately |
| 146 | /// represented with mantissa bits of precision. |
| 147 | #[inline ] |
| 148 | pub(crate) fn moderate_path<F>( |
| 149 | mantissa: u64, |
| 150 | exponent: i32, |
| 151 | truncated: bool, |
| 152 | ) -> (ExtendedFloat, bool) |
| 153 | where |
| 154 | F: Float, |
| 155 | { |
| 156 | let mut fp = ExtendedFloat { |
| 157 | mant: mantissa, |
| 158 | exp: 0, |
| 159 | }; |
| 160 | let valid = multiply_exponent_extended::<F>(&mut fp, exponent, truncated); |
| 161 | (fp, valid) |
| 162 | } |
| 163 | |
| 164 | // FALLBACK |
| 165 | // -------- |
| 166 | |
| 167 | /// Fallback path when the fast path does not work. |
| 168 | /// |
| 169 | /// Uses the moderate path, if applicable, otherwise, uses the slow path |
| 170 | /// as required. |
| 171 | pub(crate) fn fallback_path<F>( |
| 172 | integer: &[u8], |
| 173 | fraction: &[u8], |
| 174 | mantissa: u64, |
| 175 | exponent: i32, |
| 176 | mantissa_exponent: i32, |
| 177 | truncated: bool, |
| 178 | ) -> F |
| 179 | where |
| 180 | F: Float, |
| 181 | { |
| 182 | // Moderate path (use an extended 80-bit representation). |
| 183 | let (fp, valid) = moderate_path::<F>(mantissa, mantissa_exponent, truncated); |
| 184 | if valid { |
| 185 | return fp.into_float::<F>(); |
| 186 | } |
| 187 | |
| 188 | // Slow path, fast path didn't work. |
| 189 | let b = fp.into_downward_float::<F>(); |
| 190 | if b.is_special() { |
| 191 | // We have a non-finite number, we get to leave early. |
| 192 | b |
| 193 | } else { |
| 194 | bhcomp(b, integer, fraction, exponent) |
| 195 | } |
| 196 | } |
| 197 | |