1 | // Adapted from https://github.com/Alexhuszagh/rust-lexical. |
2 | |
3 | //! Algorithms to efficiently convert strings to floats. |
4 | |
5 | use super::bhcomp::*; |
6 | use super::cached::*; |
7 | use super::errors::*; |
8 | use super::float::ExtendedFloat; |
9 | use super::num::*; |
10 | use super::small_powers::*; |
11 | |
12 | // FAST |
13 | // ---- |
14 | |
15 | /// Convert mantissa to exact value for a non-base2 power. |
16 | /// |
17 | /// Returns the resulting float and if the value can be represented exactly. |
18 | pub(crate) fn fast_path<F>(mantissa: u64, exponent: i32) -> Option<F> |
19 | where |
20 | F: Float, |
21 | { |
22 | // `mantissa >> (F::MANTISSA_SIZE+1) != 0` effectively checks if the |
23 | // value has a no bits above the hidden bit, which is what we want. |
24 | let (min_exp, max_exp) = F::exponent_limit(); |
25 | let shift_exp = F::mantissa_limit(); |
26 | let mantissa_size = F::MANTISSA_SIZE + 1; |
27 | if mantissa == 0 { |
28 | Some(F::ZERO) |
29 | } else if mantissa >> mantissa_size != 0 { |
30 | // Would require truncation of the mantissa. |
31 | None |
32 | } else if exponent == 0 { |
33 | // 0 exponent, same as value, exact representation. |
34 | let float = F::as_cast(mantissa); |
35 | Some(float) |
36 | } else if exponent >= min_exp && exponent <= max_exp { |
37 | // Value can be exactly represented, return the value. |
38 | // Do not use powi, since powi can incrementally introduce |
39 | // error. |
40 | let float = F::as_cast(mantissa); |
41 | Some(float.pow10(exponent)) |
42 | } else if exponent >= 0 && exponent <= max_exp + shift_exp { |
43 | // Check to see if we have a disguised fast-path, where the |
44 | // number of digits in the mantissa is very small, but and |
45 | // so digits can be shifted from the exponent to the mantissa. |
46 | // https://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ |
47 | let small_powers = POW10_64; |
48 | let shift = exponent - max_exp; |
49 | let power = small_powers[shift as usize]; |
50 | |
51 | // Compute the product of the power, if it overflows, |
52 | // prematurely return early, otherwise, if we didn't overshoot, |
53 | // we can get an exact value. |
54 | let value = match mantissa.checked_mul(power) { |
55 | None => return None, |
56 | Some(value) => value, |
57 | }; |
58 | if value >> mantissa_size != 0 { |
59 | None |
60 | } else { |
61 | // Use powi, since it's correct, and faster on |
62 | // the fast-path. |
63 | let float = F::as_cast(value); |
64 | Some(float.pow10(max_exp)) |
65 | } |
66 | } else { |
67 | // Cannot be exactly represented, exponent too small or too big, |
68 | // would require truncation. |
69 | None |
70 | } |
71 | } |
72 | |
73 | // MODERATE |
74 | // -------- |
75 | |
76 | /// Multiply the floating-point by the exponent. |
77 | /// |
78 | /// Multiply by pre-calculated powers of the base, modify the extended- |
79 | /// float, and return if new value and if the value can be represented |
80 | /// accurately. |
81 | fn multiply_exponent_extended<F>(fp: &mut ExtendedFloat, exponent: i32, truncated: bool) -> bool |
82 | where |
83 | F: Float, |
84 | { |
85 | let powers = ExtendedFloat::get_powers(); |
86 | let exponent = exponent.saturating_add(powers.bias); |
87 | let small_index = exponent % powers.step; |
88 | let large_index = exponent / powers.step; |
89 | if exponent < 0 { |
90 | // Guaranteed underflow (assign 0). |
91 | fp.mant = 0; |
92 | true |
93 | } else if large_index as usize >= powers.large.len() { |
94 | // Overflow (assign infinity) |
95 | fp.mant = 1 << 63; |
96 | fp.exp = 0x7FF; |
97 | true |
98 | } else { |
99 | // Within the valid exponent range, multiply by the large and small |
100 | // exponents and return the resulting value. |
101 | |
102 | // Track errors to as a factor of unit in last-precision. |
103 | let mut errors: u32 = 0; |
104 | if truncated { |
105 | errors += u64::error_halfscale(); |
106 | } |
107 | |
108 | // Multiply by the small power. |
109 | // Check if we can directly multiply by an integer, if not, |
110 | // use extended-precision multiplication. |
111 | match fp |
112 | .mant |
113 | .overflowing_mul(powers.get_small_int(small_index as usize)) |
114 | { |
115 | // Overflow, multiplication unsuccessful, go slow path. |
116 | (_, true) => { |
117 | fp.normalize(); |
118 | fp.imul(&powers.get_small(small_index as usize)); |
119 | errors += u64::error_halfscale(); |
120 | } |
121 | // No overflow, multiplication successful. |
122 | (mant, false) => { |
123 | fp.mant = mant; |
124 | fp.normalize(); |
125 | } |
126 | } |
127 | |
128 | // Multiply by the large power |
129 | fp.imul(&powers.get_large(large_index as usize)); |
130 | if errors > 0 { |
131 | errors += 1; |
132 | } |
133 | errors += u64::error_halfscale(); |
134 | |
135 | // Normalize the floating point (and the errors). |
136 | let shift = fp.normalize(); |
137 | errors <<= shift; |
138 | |
139 | u64::error_is_accurate::<F>(errors, fp) |
140 | } |
141 | } |
142 | |
143 | /// Create a precise native float using an intermediate extended-precision float. |
144 | /// |
145 | /// Return the float approximation and if the value can be accurately |
146 | /// represented with mantissa bits of precision. |
147 | #[inline ] |
148 | pub(crate) fn moderate_path<F>( |
149 | mantissa: u64, |
150 | exponent: i32, |
151 | truncated: bool, |
152 | ) -> (ExtendedFloat, bool) |
153 | where |
154 | F: Float, |
155 | { |
156 | let mut fp = ExtendedFloat { |
157 | mant: mantissa, |
158 | exp: 0, |
159 | }; |
160 | let valid = multiply_exponent_extended::<F>(&mut fp, exponent, truncated); |
161 | (fp, valid) |
162 | } |
163 | |
164 | // FALLBACK |
165 | // -------- |
166 | |
167 | /// Fallback path when the fast path does not work. |
168 | /// |
169 | /// Uses the moderate path, if applicable, otherwise, uses the slow path |
170 | /// as required. |
171 | pub(crate) fn fallback_path<F>( |
172 | integer: &[u8], |
173 | fraction: &[u8], |
174 | mantissa: u64, |
175 | exponent: i32, |
176 | mantissa_exponent: i32, |
177 | truncated: bool, |
178 | ) -> F |
179 | where |
180 | F: Float, |
181 | { |
182 | // Moderate path (use an extended 80-bit representation). |
183 | let (fp, valid) = moderate_path::<F>(mantissa, mantissa_exponent, truncated); |
184 | if valid { |
185 | return fp.into_float::<F>(); |
186 | } |
187 | |
188 | // Slow path, fast path didn't work. |
189 | let b = fp.into_downward_float::<F>(); |
190 | if b.is_special() { |
191 | // We have a non-finite number, we get to leave early. |
192 | b |
193 | } else { |
194 | bhcomp(b, integer, fraction, exponent) |
195 | } |
196 | } |
197 | |