1//! A lock-free concurrent slab.
2//!
3//! Slabs provide pre-allocated storage for many instances of a single data
4//! type. When a large number of values of a single type are required,
5//! this can be more efficient than allocating each item individually. Since the
6//! allocated items are the same size, memory fragmentation is reduced, and
7//! creating and removing new items can be very cheap.
8//!
9//! This crate implements a lock-free concurrent slab, indexed by `usize`s.
10//!
11//! ## Usage
12//!
13//! First, add this to your `Cargo.toml`:
14//!
15//! ```toml
16//! sharded-slab = "0.1.1"
17//! ```
18//!
19//! This crate provides two types, [`Slab`] and [`Pool`], which provide
20//! slightly different APIs for using a sharded slab.
21//!
22//! [`Slab`] implements a slab for _storing_ small types, sharing them between
23//! threads, and accessing them by index. New entries are allocated by
24//! [inserting] data, moving it in by value. Similarly, entries may be
25//! deallocated by [taking] from the slab, moving the value out. This API is
26//! similar to a `Vec<Option<T>>`, but allowing lock-free concurrent insertion
27//! and removal.
28//!
29//! In contrast, the [`Pool`] type provides an [object pool] style API for
30//! _reusing storage_. Rather than constructing values and moving them into the
31//! pool, as with [`Slab`], [allocating an entry][create] from the pool takes a
32//! closure that's provided with a mutable reference to initialize the entry in
33//! place. When entries are deallocated, they are [cleared] in place. Types
34//! which own a heap allocation can be cleared by dropping any _data_ they
35//! store, but retaining any previously-allocated capacity. This means that a
36//! [`Pool`] may be used to reuse a set of existing heap allocations, reducing
37//! allocator load.
38//!
39//! [inserting]: Slab::insert
40//! [taking]: Slab::take
41//! [create]: Pool::create
42//! [cleared]: Clear
43//! [object pool]: https://en.wikipedia.org/wiki/Object_pool_pattern
44//!
45//! # Examples
46//!
47//! Inserting an item into the slab, returning an index:
48//! ```rust
49//! # use sharded_slab::Slab;
50//! let slab = Slab::new();
51//!
52//! let key = slab.insert("hello world").unwrap();
53//! assert_eq!(slab.get(key).unwrap(), "hello world");
54//! ```
55//!
56//! To share a slab across threads, it may be wrapped in an `Arc`:
57//! ```rust
58//! # use sharded_slab::Slab;
59//! use std::sync::Arc;
60//! let slab = Arc::new(Slab::new());
61//!
62//! let slab2 = slab.clone();
63//! let thread2 = std::thread::spawn(move || {
64//! let key = slab2.insert("hello from thread two").unwrap();
65//! assert_eq!(slab2.get(key).unwrap(), "hello from thread two");
66//! key
67//! });
68//!
69//! let key1 = slab.insert("hello from thread one").unwrap();
70//! assert_eq!(slab.get(key1).unwrap(), "hello from thread one");
71//!
72//! // Wait for thread 2 to complete.
73//! let key2 = thread2.join().unwrap();
74//!
75//! // The item inserted by thread 2 remains in the slab.
76//! assert_eq!(slab.get(key2).unwrap(), "hello from thread two");
77//!```
78//!
79//! If items in the slab must be mutated, a `Mutex` or `RwLock` may be used for
80//! each item, providing granular locking of items rather than of the slab:
81//!
82//! ```rust
83//! # use sharded_slab::Slab;
84//! use std::sync::{Arc, Mutex};
85//! let slab = Arc::new(Slab::new());
86//!
87//! let key = slab.insert(Mutex::new(String::from("hello world"))).unwrap();
88//!
89//! let slab2 = slab.clone();
90//! let thread2 = std::thread::spawn(move || {
91//! let hello = slab2.get(key).expect("item missing");
92//! let mut hello = hello.lock().expect("mutex poisoned");
93//! *hello = String::from("hello everyone!");
94//! });
95//!
96//! thread2.join().unwrap();
97//!
98//! let hello = slab.get(key).expect("item missing");
99//! let mut hello = hello.lock().expect("mutex poisoned");
100//! assert_eq!(hello.as_str(), "hello everyone!");
101//! ```
102//!
103//! # Configuration
104//!
105//! For performance reasons, several values used by the slab are calculated as
106//! constants. In order to allow users to tune the slab's parameters, we provide
107//! a [`Config`] trait which defines these parameters as associated `consts`.
108//! The `Slab` type is generic over a `C: Config` parameter.
109//!
110//! [`Config`]: trait.Config.html
111//!
112//! # Comparison with Similar Crates
113//!
114//! - [`slab`]: Carl Lerche's `slab` crate provides a slab implementation with a
115//! similar API, implemented by storing all data in a single vector.
116//!
117//! Unlike `sharded_slab`, inserting and removing elements from the slab
118//! requires mutable access. This means that if the slab is accessed
119//! concurrently by multiple threads, it is necessary for it to be protected
120//! by a `Mutex` or `RwLock`. Items may not be inserted or removed (or
121//! accessed, if a `Mutex` is used) concurrently, even when they are
122//! unrelated. In many cases, the lock can become a significant bottleneck. On
123//! the other hand, this crate allows separate indices in the slab to be
124//! accessed, inserted, and removed concurrently without requiring a global
125//! lock. Therefore, when the slab is shared across multiple threads, this
126//! crate offers significantly better performance than `slab`.
127//!
128//! However, the lock free slab introduces some additional constant-factor
129//! overhead. This means that in use-cases where a slab is _not_ shared by
130//! multiple threads and locking is not required, this crate will likely offer
131//! slightly worse performance.
132//!
133//! In summary: `sharded-slab` offers significantly improved performance in
134//! concurrent use-cases, while `slab` should be preferred in single-threaded
135//! use-cases.
136//!
137//! [`slab`]: https://crates.io/crates/loom
138//!
139//! # Safety and Correctness
140//!
141//! Most implementations of lock-free data structures in Rust require some
142//! amount of unsafe code, and this crate is not an exception. In order to catch
143//! potential bugs in this unsafe code, we make use of [`loom`], a
144//! permutation-testing tool for concurrent Rust programs. All `unsafe` blocks
145//! this crate occur in accesses to `loom` `UnsafeCell`s. This means that when
146//! those accesses occur in this crate's tests, `loom` will assert that they are
147//! valid under the C11 memory model across multiple permutations of concurrent
148//! executions of those tests.
149//!
150//! In order to guard against the [ABA problem][aba], this crate makes use of
151//! _generational indices_. Each slot in the slab tracks a generation counter
152//! which is incremented every time a value is inserted into that slot, and the
153//! indices returned by [`Slab::insert`] include the generation of the slot when
154//! the value was inserted, packed into the high-order bits of the index. This
155//! ensures that if a value is inserted, removed, and a new value is inserted
156//! into the same slot in the slab, the key returned by the first call to
157//! `insert` will not map to the new value.
158//!
159//! Since a fixed number of bits are set aside to use for storing the generation
160//! counter, the counter will wrap around after being incremented a number of
161//! times. To avoid situations where a returned index lives long enough to see the
162//! generation counter wrap around to the same value, it is good to be fairly
163//! generous when configuring the allocation of index bits.
164//!
165//! [`loom`]: https://crates.io/crates/loom
166//! [aba]: https://en.wikipedia.org/wiki/ABA_problem
167//! [`Slab::insert`]: struct.Slab.html#method.insert
168//!
169//! # Performance
170//!
171//! These graphs were produced by [benchmarks] of the sharded slab implementation,
172//! using the [`criterion`] crate.
173//!
174//! The first shows the results of a benchmark where an increasing number of
175//! items are inserted and then removed into a slab concurrently by five
176//! threads. It compares the performance of the sharded slab implementation
177//! with a `RwLock<slab::Slab>`:
178//!
179//! <img width="1124" alt="Screen Shot 2019-10-01 at 5 09 49 PM" src="https://user-images.githubusercontent.com/2796466/66078398-cd6c9f80-e516-11e9-9923-0ed6292e8498.png">
180//!
181//! The second graph shows the results of a benchmark where an increasing
182//! number of items are inserted and then removed by a _single_ thread. It
183//! compares the performance of the sharded slab implementation with an
184//! `RwLock<slab::Slab>` and a `mut slab::Slab`.
185//!
186//! <img width="925" alt="Screen Shot 2019-10-01 at 5 13 45 PM" src="https://user-images.githubusercontent.com/2796466/66078469-f0974f00-e516-11e9-95b5-f65f0aa7e494.png">
187//!
188//! These benchmarks demonstrate that, while the sharded approach introduces
189//! a small constant-factor overhead, it offers significantly better
190//! performance across concurrent accesses.
191//!
192//! [benchmarks]: https://github.com/hawkw/sharded-slab/blob/master/benches/bench.rs
193//! [`criterion`]: https://crates.io/crates/criterion
194//!
195//! # Implementation Notes
196//!
197//! See [this page](crate::implementation) for details on this crate's design
198//! and implementation.
199//!
200#![doc(html_root_url = "https://docs.rs/sharded-slab/0.1.4")]
201#![warn(missing_debug_implementations, missing_docs)]
202#![cfg_attr(docsrs, warn(rustdoc::broken_intra_doc_links))]
203#[macro_use]
204mod macros;
205
206pub mod implementation;
207pub mod pool;
208
209pub(crate) mod cfg;
210pub(crate) mod sync;
211
212mod clear;
213mod iter;
214mod page;
215mod shard;
216mod tid;
217
218pub use self::{
219 cfg::{Config, DefaultConfig},
220 clear::Clear,
221 iter::UniqueIter,
222};
223#[doc(inline)]
224pub use pool::Pool;
225
226pub(crate) use tid::Tid;
227
228use cfg::CfgPrivate;
229use shard::Shard;
230use std::{fmt, marker::PhantomData, ptr, sync::Arc};
231
232/// A sharded slab.
233///
234/// See the [crate-level documentation](crate) for details on using this type.
235pub struct Slab<T, C: cfg::Config = DefaultConfig> {
236 shards: shard::Array<Option<T>, C>,
237 _cfg: PhantomData<C>,
238}
239
240/// A handle that allows access to an occupied entry in a [`Slab`].
241///
242/// While the guard exists, it indicates to the slab that the item the guard
243/// references is currently being accessed. If the item is removed from the slab
244/// while a guard exists, the removal will be deferred until all guards are
245/// dropped.
246pub struct Entry<'a, T, C: cfg::Config = DefaultConfig> {
247 inner: page::slot::Guard<Option<T>, C>,
248 value: ptr::NonNull<T>,
249 shard: &'a Shard<Option<T>, C>,
250 key: usize,
251}
252
253/// A handle to a vacant entry in a [`Slab`].
254///
255/// `VacantEntry` allows constructing values with the key that they will be
256/// assigned to.
257///
258/// # Examples
259///
260/// ```
261/// # use sharded_slab::Slab;
262/// let mut slab = Slab::new();
263///
264/// let hello = {
265/// let entry = slab.vacant_entry().unwrap();
266/// let key = entry.key();
267///
268/// entry.insert((key, "hello"));
269/// key
270/// };
271///
272/// assert_eq!(hello, slab.get(hello).unwrap().0);
273/// assert_eq!("hello", slab.get(hello).unwrap().1);
274/// ```
275#[derive(Debug)]
276pub struct VacantEntry<'a, T, C: cfg::Config = DefaultConfig> {
277 inner: page::slot::InitGuard<Option<T>, C>,
278 key: usize,
279 _lt: PhantomData<&'a ()>,
280}
281
282/// An owned reference to an occupied entry in a [`Slab`].
283///
284/// While the guard exists, it indicates to the slab that the item the guard
285/// references is currently being accessed. If the item is removed from the slab
286/// while the guard exists, the removal will be deferred until all guards are
287/// dropped.
288///
289/// Unlike [`Entry`], which borrows the slab, an `OwnedEntry` clones the [`Arc`]
290/// around the slab. Therefore, it keeps the slab from being dropped until all
291/// such guards have been dropped. This means that an `OwnedEntry` may be held for
292/// an arbitrary lifetime.
293///
294/// # Examples
295///
296/// ```
297/// # use sharded_slab::Slab;
298/// use std::sync::Arc;
299///
300/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
301/// let key = slab.insert("hello world").unwrap();
302///
303/// // Look up the created key, returning an `OwnedEntry`.
304/// let value = slab.clone().get_owned(key).unwrap();
305///
306/// // Now, the original `Arc` clone of the slab may be dropped, but the
307/// // returned `OwnedEntry` can still access the value.
308/// assert_eq!(value, "hello world");
309/// ```
310///
311/// Unlike [`Entry`], an `OwnedEntry` may be stored in a struct which must live
312/// for the `'static` lifetime:
313///
314/// ```
315/// # use sharded_slab::Slab;
316/// use sharded_slab::OwnedEntry;
317/// use std::sync::Arc;
318///
319/// pub struct MyStruct {
320/// entry: OwnedEntry<&'static str>,
321/// // ... other fields ...
322/// }
323///
324/// // Suppose this is some arbitrary function which requires a value that
325/// // lives for the 'static lifetime...
326/// fn function_requiring_static<T: 'static>(t: &T) {
327/// // ... do something extremely important and interesting ...
328/// }
329///
330/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
331/// let key = slab.insert("hello world").unwrap();
332///
333/// // Look up the created key, returning an `OwnedEntry`.
334/// let entry = slab.clone().get_owned(key).unwrap();
335/// let my_struct = MyStruct {
336/// entry,
337/// // ...
338/// };
339///
340/// // We can use `my_struct` anywhere where it is required to have the
341/// // `'static` lifetime:
342/// function_requiring_static(&my_struct);
343/// ```
344///
345/// `OwnedEntry`s may be sent between threads:
346///
347/// ```
348/// # use sharded_slab::Slab;
349/// use std::{thread, sync::Arc};
350///
351/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
352/// let key = slab.insert("hello world").unwrap();
353///
354/// // Look up the created key, returning an `OwnedEntry`.
355/// let value = slab.clone().get_owned(key).unwrap();
356///
357/// thread::spawn(move || {
358/// assert_eq!(value, "hello world");
359/// // ...
360/// }).join().unwrap();
361/// ```
362///
363/// [`get`]: Slab::get
364/// [`Arc`]: std::sync::Arc
365pub struct OwnedEntry<T, C = DefaultConfig>
366where
367 C: cfg::Config,
368{
369 inner: page::slot::Guard<Option<T>, C>,
370 value: ptr::NonNull<T>,
371 slab: Arc<Slab<T, C>>,
372 key: usize,
373}
374
375impl<T> Slab<T> {
376 /// Returns a new slab with the default configuration parameters.
377 pub fn new() -> Self {
378 Self::new_with_config()
379 }
380
381 /// Returns a new slab with the provided configuration parameters.
382 pub fn new_with_config<C: cfg::Config>() -> Slab<T, C> {
383 C::validate();
384 Slab {
385 shards: shard::Array::new(),
386 _cfg: PhantomData,
387 }
388 }
389}
390
391impl<T, C: cfg::Config> Slab<T, C> {
392 /// The number of bits in each index which are used by the slab.
393 ///
394 /// If other data is packed into the `usize` indices returned by
395 /// [`Slab::insert`], user code is free to use any bits higher than the
396 /// `USED_BITS`-th bit freely.
397 ///
398 /// This is determined by the [`Config`] type that configures the slab's
399 /// parameters. By default, all bits are used; this can be changed by
400 /// overriding the [`Config::RESERVED_BITS`][res] constant.
401 ///
402 /// [res]: crate::Config#RESERVED_BITS
403 pub const USED_BITS: usize = C::USED_BITS;
404
405 /// Inserts a value into the slab, returning the integer index at which that
406 /// value was inserted. This index can then be used to access the entry.
407 ///
408 /// If this function returns `None`, then the shard for the current thread
409 /// is full and no items can be added until some are removed, or the maximum
410 /// number of shards has been reached.
411 ///
412 /// # Examples
413 /// ```rust
414 /// # use sharded_slab::Slab;
415 /// let slab = Slab::new();
416 ///
417 /// let key = slab.insert("hello world").unwrap();
418 /// assert_eq!(slab.get(key).unwrap(), "hello world");
419 /// ```
420 pub fn insert(&self, value: T) -> Option<usize> {
421 let (tid, shard) = self.shards.current();
422 test_println!("insert {:?}", tid);
423 let mut value = Some(value);
424 shard
425 .init_with(|idx, slot| {
426 let gen = slot.insert(&mut value)?;
427 Some(gen.pack(idx))
428 })
429 .map(|idx| tid.pack(idx))
430 }
431
432 /// Return a handle to a vacant entry allowing for further manipulation.
433 ///
434 /// This function is useful when creating values that must contain their
435 /// slab index. The returned [`VacantEntry`] reserves a slot in the slab and
436 /// is able to return the index of the entry.
437 ///
438 /// # Examples
439 ///
440 /// ```
441 /// # use sharded_slab::Slab;
442 /// let mut slab = Slab::new();
443 ///
444 /// let hello = {
445 /// let entry = slab.vacant_entry().unwrap();
446 /// let key = entry.key();
447 ///
448 /// entry.insert((key, "hello"));
449 /// key
450 /// };
451 ///
452 /// assert_eq!(hello, slab.get(hello).unwrap().0);
453 /// assert_eq!("hello", slab.get(hello).unwrap().1);
454 /// ```
455 pub fn vacant_entry(&self) -> Option<VacantEntry<'_, T, C>> {
456 let (tid, shard) = self.shards.current();
457 test_println!("vacant_entry {:?}", tid);
458 shard.init_with(|idx, slot| {
459 let inner = slot.init()?;
460 let key = inner.generation().pack(tid.pack(idx));
461 Some(VacantEntry {
462 inner,
463 key,
464 _lt: PhantomData,
465 })
466 })
467 }
468
469 /// Remove the value at the given index in the slab, returning `true` if a
470 /// value was removed.
471 ///
472 /// Unlike [`take`], this method does _not_ block the current thread until
473 /// the value can be removed. Instead, if another thread is currently
474 /// accessing that value, this marks it to be removed by that thread when it
475 /// finishes accessing the value.
476 ///
477 /// # Examples
478 ///
479 /// ```rust
480 /// let slab = sharded_slab::Slab::new();
481 /// let key = slab.insert("hello world").unwrap();
482 ///
483 /// // Remove the item from the slab.
484 /// assert!(slab.remove(key));
485 ///
486 /// // Now, the slot is empty.
487 /// assert!(!slab.contains(key));
488 /// ```
489 ///
490 /// ```rust
491 /// use std::sync::Arc;
492 ///
493 /// let slab = Arc::new(sharded_slab::Slab::new());
494 /// let key = slab.insert("hello world").unwrap();
495 ///
496 /// let slab2 = slab.clone();
497 /// let thread2 = std::thread::spawn(move || {
498 /// // Depending on when this thread begins executing, the item may
499 /// // or may not have already been removed...
500 /// if let Some(item) = slab2.get(key) {
501 /// assert_eq!(item, "hello world");
502 /// }
503 /// });
504 ///
505 /// // The item will be removed by thread2 when it finishes accessing it.
506 /// assert!(slab.remove(key));
507 ///
508 /// thread2.join().unwrap();
509 /// assert!(!slab.contains(key));
510 /// ```
511 /// [`take`]: Slab::take
512 pub fn remove(&self, idx: usize) -> bool {
513 // The `Drop` impl for `Entry` calls `remove_local` or `remove_remote` based
514 // on where the guard was dropped from. If the dropped guard was the last one, this will
515 // call `Slot::remove_value` which actually clears storage.
516 let tid = C::unpack_tid(idx);
517
518 test_println!("rm_deferred {:?}", tid);
519 let shard = self.shards.get(tid.as_usize());
520 if tid.is_current() {
521 shard.map(|shard| shard.remove_local(idx)).unwrap_or(false)
522 } else {
523 shard.map(|shard| shard.remove_remote(idx)).unwrap_or(false)
524 }
525 }
526
527 /// Removes the value associated with the given key from the slab, returning
528 /// it.
529 ///
530 /// If the slab does not contain a value for that key, `None` is returned
531 /// instead.
532 ///
533 /// If the value associated with the given key is currently being
534 /// accessed by another thread, this method will block the current thread
535 /// until the item is no longer accessed. If this is not desired, use
536 /// [`remove`] instead.
537 ///
538 /// **Note**: This method blocks the calling thread by spinning until the
539 /// currently outstanding references are released. Spinning for long periods
540 /// of time can result in high CPU time and power consumption. Therefore,
541 /// `take` should only be called when other references to the slot are
542 /// expected to be dropped soon (e.g., when all accesses are relatively
543 /// short).
544 ///
545 /// # Examples
546 ///
547 /// ```rust
548 /// let slab = sharded_slab::Slab::new();
549 /// let key = slab.insert("hello world").unwrap();
550 ///
551 /// // Remove the item from the slab, returning it.
552 /// assert_eq!(slab.take(key), Some("hello world"));
553 ///
554 /// // Now, the slot is empty.
555 /// assert!(!slab.contains(key));
556 /// ```
557 ///
558 /// ```rust
559 /// use std::sync::Arc;
560 ///
561 /// let slab = Arc::new(sharded_slab::Slab::new());
562 /// let key = slab.insert("hello world").unwrap();
563 ///
564 /// let slab2 = slab.clone();
565 /// let thread2 = std::thread::spawn(move || {
566 /// // Depending on when this thread begins executing, the item may
567 /// // or may not have already been removed...
568 /// if let Some(item) = slab2.get(key) {
569 /// assert_eq!(item, "hello world");
570 /// }
571 /// });
572 ///
573 /// // The item will only be removed when the other thread finishes
574 /// // accessing it.
575 /// assert_eq!(slab.take(key), Some("hello world"));
576 ///
577 /// thread2.join().unwrap();
578 /// assert!(!slab.contains(key));
579 /// ```
580 /// [`remove`]: Slab::remove
581 pub fn take(&self, idx: usize) -> Option<T> {
582 let tid = C::unpack_tid(idx);
583
584 test_println!("rm {:?}", tid);
585 let shard = self.shards.get(tid.as_usize())?;
586 if tid.is_current() {
587 shard.take_local(idx)
588 } else {
589 shard.take_remote(idx)
590 }
591 }
592
593 /// Return a reference to the value associated with the given key.
594 ///
595 /// If the slab does not contain a value for the given key, or if the
596 /// maximum number of concurrent references to the slot has been reached,
597 /// `None` is returned instead.
598 ///
599 /// # Examples
600 ///
601 /// ```rust
602 /// let slab = sharded_slab::Slab::new();
603 /// let key = slab.insert("hello world").unwrap();
604 ///
605 /// assert_eq!(slab.get(key).unwrap(), "hello world");
606 /// assert!(slab.get(12345).is_none());
607 /// ```
608 pub fn get(&self, key: usize) -> Option<Entry<'_, T, C>> {
609 let tid = C::unpack_tid(key);
610
611 test_println!("get {:?}; current={:?}", tid, Tid::<C>::current());
612 let shard = self.shards.get(tid.as_usize())?;
613 shard.with_slot(key, |slot| {
614 let inner = slot.get(C::unpack_gen(key))?;
615 let value = ptr::NonNull::from(slot.value().as_ref().unwrap());
616 Some(Entry {
617 inner,
618 value,
619 shard,
620 key,
621 })
622 })
623 }
624
625 /// Return an owned reference to the value at the given index.
626 ///
627 /// If the slab does not contain a value for the given key, `None` is
628 /// returned instead.
629 ///
630 /// Unlike [`get`], which borrows the slab, this method _clones_ the [`Arc`]
631 /// around the slab. This means that the returned [`OwnedEntry`] can be held
632 /// for an arbitrary lifetime. However, this method requires that the slab
633 /// itself be wrapped in an `Arc`.
634 ///
635 /// # Examples
636 ///
637 /// ```
638 /// # use sharded_slab::Slab;
639 /// use std::sync::Arc;
640 ///
641 /// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
642 /// let key = slab.insert("hello world").unwrap();
643 ///
644 /// // Look up the created key, returning an `OwnedEntry`.
645 /// let value = slab.clone().get_owned(key).unwrap();
646 ///
647 /// // Now, the original `Arc` clone of the slab may be dropped, but the
648 /// // returned `OwnedEntry` can still access the value.
649 /// assert_eq!(value, "hello world");
650 /// ```
651 ///
652 /// Unlike [`Entry`], an `OwnedEntry` may be stored in a struct which must live
653 /// for the `'static` lifetime:
654 ///
655 /// ```
656 /// # use sharded_slab::Slab;
657 /// use sharded_slab::OwnedEntry;
658 /// use std::sync::Arc;
659 ///
660 /// pub struct MyStruct {
661 /// entry: OwnedEntry<&'static str>,
662 /// // ... other fields ...
663 /// }
664 ///
665 /// // Suppose this is some arbitrary function which requires a value that
666 /// // lives for the 'static lifetime...
667 /// fn function_requiring_static<T: 'static>(t: &T) {
668 /// // ... do something extremely important and interesting ...
669 /// }
670 ///
671 /// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
672 /// let key = slab.insert("hello world").unwrap();
673 ///
674 /// // Look up the created key, returning an `OwnedEntry`.
675 /// let entry = slab.clone().get_owned(key).unwrap();
676 /// let my_struct = MyStruct {
677 /// entry,
678 /// // ...
679 /// };
680 ///
681 /// // We can use `my_struct` anywhere where it is required to have the
682 /// // `'static` lifetime:
683 /// function_requiring_static(&my_struct);
684 /// ```
685 ///
686 /// [`OwnedEntry`]s may be sent between threads:
687 ///
688 /// ```
689 /// # use sharded_slab::Slab;
690 /// use std::{thread, sync::Arc};
691 ///
692 /// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
693 /// let key = slab.insert("hello world").unwrap();
694 ///
695 /// // Look up the created key, returning an `OwnedEntry`.
696 /// let value = slab.clone().get_owned(key).unwrap();
697 ///
698 /// thread::spawn(move || {
699 /// assert_eq!(value, "hello world");
700 /// // ...
701 /// }).join().unwrap();
702 /// ```
703 ///
704 /// [`get`]: Slab::get
705 /// [`Arc`]: std::sync::Arc
706 pub fn get_owned(self: Arc<Self>, key: usize) -> Option<OwnedEntry<T, C>> {
707 let tid = C::unpack_tid(key);
708
709 test_println!("get_owned {:?}; current={:?}", tid, Tid::<C>::current());
710 let shard = self.shards.get(tid.as_usize())?;
711 shard.with_slot(key, |slot| {
712 let inner = slot.get(C::unpack_gen(key))?;
713 let value = ptr::NonNull::from(slot.value().as_ref().unwrap());
714 Some(OwnedEntry {
715 inner,
716 value,
717 slab: self.clone(),
718 key,
719 })
720 })
721 }
722
723 /// Returns `true` if the slab contains a value for the given key.
724 ///
725 /// # Examples
726 ///
727 /// ```
728 /// let slab = sharded_slab::Slab::new();
729 ///
730 /// let key = slab.insert("hello world").unwrap();
731 /// assert!(slab.contains(key));
732 ///
733 /// slab.take(key).unwrap();
734 /// assert!(!slab.contains(key));
735 /// ```
736 pub fn contains(&self, key: usize) -> bool {
737 self.get(key).is_some()
738 }
739
740 /// Returns an iterator over all the items in the slab.
741 ///
742 /// Because this iterator exclusively borrows the slab (i.e. it holds an
743 /// `&mut Slab<T>`), elements will not be added or removed while the
744 /// iteration is in progress.
745 pub fn unique_iter(&mut self) -> iter::UniqueIter<'_, T, C> {
746 let mut shards = self.shards.iter_mut();
747
748 let (pages, slots) = match shards.next() {
749 Some(shard) => {
750 let mut pages = shard.iter();
751 let slots = pages.next().and_then(page::Shared::iter);
752 (pages, slots)
753 }
754 None => ([].iter(), None),
755 };
756
757 iter::UniqueIter {
758 shards,
759 pages,
760 slots,
761 }
762 }
763}
764
765impl<T> Default for Slab<T> {
766 fn default() -> Self {
767 Self::new()
768 }
769}
770
771impl<T: fmt::Debug, C: cfg::Config> fmt::Debug for Slab<T, C> {
772 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
773 f.debug_struct("Slab")
774 .field("shards", &self.shards)
775 .field("config", &C::debug())
776 .finish()
777 }
778}
779
780unsafe impl<T: Send, C: cfg::Config> Send for Slab<T, C> {}
781unsafe impl<T: Sync, C: cfg::Config> Sync for Slab<T, C> {}
782
783// === impl Entry ===
784
785impl<'a, T, C: cfg::Config> Entry<'a, T, C> {
786 /// Returns the key used to access the guard.
787 pub fn key(&self) -> usize {
788 self.key
789 }
790
791 #[inline(always)]
792 fn value(&self) -> &T {
793 unsafe {
794 // Safety: this is always going to be valid, as it's projected from
795 // the safe reference to `self.value` --- this is just to avoid
796 // having to `expect` an option in the hot path when dereferencing.
797 self.value.as_ref()
798 }
799 }
800}
801
802impl<'a, T, C: cfg::Config> std::ops::Deref for Entry<'a, T, C> {
803 type Target = T;
804
805 fn deref(&self) -> &Self::Target {
806 self.value()
807 }
808}
809
810impl<'a, T, C: cfg::Config> Drop for Entry<'a, T, C> {
811 fn drop(&mut self) {
812 let should_remove = unsafe {
813 // Safety: calling `slot::Guard::release` is unsafe, since the
814 // `Guard` value contains a pointer to the slot that may outlive the
815 // slab containing that slot. Here, the `Entry` guard owns a
816 // borrowed reference to the shard containing that slot, which
817 // ensures that the slot will not be dropped while this `Guard`
818 // exists.
819 self.inner.release()
820 };
821 if should_remove {
822 self.shard.clear_after_release(self.key)
823 }
824 }
825}
826
827impl<'a, T, C> fmt::Debug for Entry<'a, T, C>
828where
829 T: fmt::Debug,
830 C: cfg::Config,
831{
832 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
833 fmt::Debug::fmt(self.value(), f)
834 }
835}
836
837impl<'a, T, C> PartialEq<T> for Entry<'a, T, C>
838where
839 T: PartialEq<T>,
840 C: cfg::Config,
841{
842 fn eq(&self, other: &T) -> bool {
843 self.value().eq(other)
844 }
845}
846
847// === impl VacantEntry ===
848
849impl<'a, T, C: cfg::Config> VacantEntry<'a, T, C> {
850 /// Insert a value in the entry.
851 ///
852 /// To get the integer index at which this value will be inserted, use
853 /// [`key`] prior to calling `insert`.
854 ///
855 /// # Examples
856 ///
857 /// ```
858 /// # use sharded_slab::Slab;
859 /// let mut slab = Slab::new();
860 ///
861 /// let hello = {
862 /// let entry = slab.vacant_entry().unwrap();
863 /// let key = entry.key();
864 ///
865 /// entry.insert((key, "hello"));
866 /// key
867 /// };
868 ///
869 /// assert_eq!(hello, slab.get(hello).unwrap().0);
870 /// assert_eq!("hello", slab.get(hello).unwrap().1);
871 /// ```
872 ///
873 /// [`key`]: VacantEntry::key
874 pub fn insert(mut self, val: T) {
875 let value = unsafe {
876 // Safety: this `VacantEntry` only lives as long as the `Slab` it was
877 // borrowed from, so it cannot outlive the entry's slot.
878 self.inner.value_mut()
879 };
880 debug_assert!(
881 value.is_none(),
882 "tried to insert to a slot that already had a value!"
883 );
884 *value = Some(val);
885 let _released = unsafe {
886 // Safety: again, this `VacantEntry` only lives as long as the
887 // `Slab` it was borrowed from, so it cannot outlive the entry's
888 // slot.
889 self.inner.release()
890 };
891 debug_assert!(
892 !_released,
893 "removing a value before it was inserted should be a no-op"
894 )
895 }
896
897 /// Return the integer index at which this entry will be inserted.
898 ///
899 /// A value stored in this entry will be associated with this key.
900 ///
901 /// # Examples
902 ///
903 /// ```
904 /// # use sharded_slab::*;
905 /// let mut slab = Slab::new();
906 ///
907 /// let hello = {
908 /// let entry = slab.vacant_entry().unwrap();
909 /// let key = entry.key();
910 ///
911 /// entry.insert((key, "hello"));
912 /// key
913 /// };
914 ///
915 /// assert_eq!(hello, slab.get(hello).unwrap().0);
916 /// assert_eq!("hello", slab.get(hello).unwrap().1);
917 /// ```
918 pub fn key(&self) -> usize {
919 self.key
920 }
921}
922// === impl OwnedEntry ===
923
924impl<T, C> OwnedEntry<T, C>
925where
926 C: cfg::Config,
927{
928 /// Returns the key used to access this guard
929 pub fn key(&self) -> usize {
930 self.key
931 }
932
933 #[inline(always)]
934 fn value(&self) -> &T {
935 unsafe {
936 // Safety: this is always going to be valid, as it's projected from
937 // the safe reference to `self.value` --- this is just to avoid
938 // having to `expect` an option in the hot path when dereferencing.
939 self.value.as_ref()
940 }
941 }
942}
943
944impl<T, C> std::ops::Deref for OwnedEntry<T, C>
945where
946 C: cfg::Config,
947{
948 type Target = T;
949
950 fn deref(&self) -> &Self::Target {
951 self.value()
952 }
953}
954
955impl<T, C> Drop for OwnedEntry<T, C>
956where
957 C: cfg::Config,
958{
959 fn drop(&mut self) {
960 test_println!("drop OwnedEntry: try clearing data");
961 let should_clear = unsafe {
962 // Safety: calling `slot::Guard::release` is unsafe, since the
963 // `Guard` value contains a pointer to the slot that may outlive the
964 // slab containing that slot. Here, the `OwnedEntry` owns an `Arc`
965 // clone of the pool, which keeps it alive as long as the `OwnedEntry`
966 // exists.
967 self.inner.release()
968 };
969 if should_clear {
970 let shard_idx = Tid::<C>::from_packed(self.key);
971 test_println!("-> shard={:?}", shard_idx);
972 if let Some(shard) = self.slab.shards.get(shard_idx.as_usize()) {
973 shard.clear_after_release(self.key)
974 } else {
975 test_println!("-> shard={:?} does not exist! THIS IS A BUG", shard_idx);
976 debug_assert!(std::thread::panicking(), "[internal error] tried to drop an `OwnedEntry` to a slot on a shard that never existed!");
977 }
978 }
979 }
980}
981
982impl<T, C> fmt::Debug for OwnedEntry<T, C>
983where
984 T: fmt::Debug,
985 C: cfg::Config,
986{
987 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
988 fmt::Debug::fmt(self.value(), f)
989 }
990}
991
992impl<T, C> PartialEq<T> for OwnedEntry<T, C>
993where
994 T: PartialEq<T>,
995 C: cfg::Config,
996{
997 fn eq(&self, other: &T) -> bool {
998 *self.value() == *other
999 }
1000}
1001
1002unsafe impl<T, C> Sync for OwnedEntry<T, C>
1003where
1004 T: Sync,
1005 C: cfg::Config,
1006{
1007}
1008
1009unsafe impl<T, C> Send for OwnedEntry<T, C>
1010where
1011 T: Sync,
1012 C: cfg::Config,
1013{
1014}
1015
1016// === pack ===
1017
1018pub(crate) trait Pack<C: cfg::Config>: Sized {
1019 // ====== provided by each implementation =================================
1020
1021 /// The number of bits occupied by this type when packed into a usize.
1022 ///
1023 /// This must be provided to determine the number of bits into which to pack
1024 /// the type.
1025 const LEN: usize;
1026 /// The type packed on the less significant side of this type.
1027 ///
1028 /// If this type is packed into the least significant bit of a usize, this
1029 /// should be `()`, which occupies no bytes.
1030 ///
1031 /// This is used to calculate the shift amount for packing this value.
1032 type Prev: Pack<C>;
1033
1034 // ====== calculated automatically ========================================
1035
1036 /// A number consisting of `Self::LEN` 1 bits, starting at the least
1037 /// significant bit.
1038 ///
1039 /// This is the higest value this type can represent. This number is shifted
1040 /// left by `Self::SHIFT` bits to calculate this type's `MASK`.
1041 ///
1042 /// This is computed automatically based on `Self::LEN`.
1043 const BITS: usize = {
1044 let shift = 1 << (Self::LEN - 1);
1045 shift | (shift - 1)
1046 };
1047 /// The number of bits to shift a number to pack it into a usize with other
1048 /// values.
1049 ///
1050 /// This is caculated automatically based on the `LEN` and `SHIFT` constants
1051 /// of the previous value.
1052 const SHIFT: usize = Self::Prev::SHIFT + Self::Prev::LEN;
1053
1054 /// The mask to extract only this type from a packed `usize`.
1055 ///
1056 /// This is calculated by shifting `Self::BITS` left by `Self::SHIFT`.
1057 const MASK: usize = Self::BITS << Self::SHIFT;
1058
1059 fn as_usize(&self) -> usize;
1060 fn from_usize(val: usize) -> Self;
1061
1062 #[inline(always)]
1063 fn pack(&self, to: usize) -> usize {
1064 let value = self.as_usize();
1065 debug_assert!(value <= Self::BITS);
1066
1067 (to & !Self::MASK) | (value << Self::SHIFT)
1068 }
1069
1070 #[inline(always)]
1071 fn from_packed(from: usize) -> Self {
1072 let value = (from & Self::MASK) >> Self::SHIFT;
1073 debug_assert!(value <= Self::BITS);
1074 Self::from_usize(value)
1075 }
1076}
1077
1078impl<C: cfg::Config> Pack<C> for () {
1079 const BITS: usize = 0;
1080 const LEN: usize = 0;
1081 const SHIFT: usize = 0;
1082 const MASK: usize = 0;
1083
1084 type Prev = ();
1085
1086 fn as_usize(&self) -> usize {
1087 unreachable!()
1088 }
1089 fn from_usize(_val: usize) -> Self {
1090 unreachable!()
1091 }
1092
1093 fn pack(&self, _to: usize) -> usize {
1094 unreachable!()
1095 }
1096
1097 fn from_packed(_from: usize) -> Self {
1098 unreachable!()
1099 }
1100}
1101
1102#[cfg(test)]
1103pub(crate) use self::tests::util as test_util;
1104
1105#[cfg(test)]
1106mod tests;
1107