1 | //! A lock-free concurrent object pool. |
2 | //! |
3 | //! See the [`Pool` type's documentation][pool] for details on the object pool API and how |
4 | //! it differs from the [`Slab`] API. |
5 | //! |
6 | //! [pool]: ../struct.Pool.html |
7 | //! [`Slab`]: ../struct.Slab.html |
8 | use crate::{ |
9 | cfg::{self, CfgPrivate, DefaultConfig}, |
10 | clear::Clear, |
11 | page, shard, |
12 | tid::Tid, |
13 | Pack, Shard, |
14 | }; |
15 | |
16 | use std::{fmt, marker::PhantomData, sync::Arc}; |
17 | |
18 | /// A lock-free concurrent object pool. |
19 | /// |
20 | /// Slabs provide pre-allocated storage for many instances of a single type. But, when working with |
21 | /// heap allocated objects, the advantages of a slab are lost, as the memory allocated for the |
22 | /// object is freed when the object is removed from the slab. With a pool, we can instead reuse |
23 | /// this memory for objects being added to the pool in the future, therefore reducing memory |
24 | /// fragmentation and avoiding additional allocations. |
25 | /// |
26 | /// This type implements a lock-free concurrent pool, indexed by `usize`s. The items stored in this |
27 | /// type need to implement [`Clear`] and `Default`. |
28 | /// |
29 | /// The `Pool` type shares similar semantics to [`Slab`] when it comes to sharing across threads |
30 | /// and storing mutable shared data. The biggest difference is there are no [`Slab::insert`] and |
31 | /// [`Slab::take`] analouges for the `Pool` type. Instead new items are added to the pool by using |
32 | /// the [`Pool::create`] method, and marked for clearing by the [`Pool::clear`] method. |
33 | /// |
34 | /// # Examples |
35 | /// |
36 | /// Add an entry to the pool, returning an index: |
37 | /// ``` |
38 | /// # use sharded_slab::Pool; |
39 | /// let pool: Pool<String> = Pool::new(); |
40 | /// |
41 | /// let key = pool.create_with(|item| item.push_str("hello world" )).unwrap(); |
42 | /// assert_eq!(pool.get(key).unwrap(), String::from("hello world" )); |
43 | /// ``` |
44 | /// |
45 | /// Create a new pooled item, returning a guard that allows mutable access: |
46 | /// ``` |
47 | /// # use sharded_slab::Pool; |
48 | /// let pool: Pool<String> = Pool::new(); |
49 | /// |
50 | /// let mut guard = pool.create().unwrap(); |
51 | /// let key = guard.key(); |
52 | /// guard.push_str("hello world" ); |
53 | /// |
54 | /// drop(guard); // release the guard, allowing immutable access. |
55 | /// assert_eq!(pool.get(key).unwrap(), String::from("hello world" )); |
56 | /// ``` |
57 | /// |
58 | /// Pool entries can be cleared by calling [`Pool::clear`]. This marks the entry to |
59 | /// be cleared when the guards referencing to it are dropped. |
60 | /// ``` |
61 | /// # use sharded_slab::Pool; |
62 | /// let pool: Pool<String> = Pool::new(); |
63 | /// |
64 | /// let key = pool.create_with(|item| item.push_str("hello world" )).unwrap(); |
65 | /// |
66 | /// // Mark this entry to be cleared. |
67 | /// pool.clear(key); |
68 | /// |
69 | /// // The cleared entry is no longer available in the pool |
70 | /// assert!(pool.get(key).is_none()); |
71 | /// ``` |
72 | /// # Configuration |
73 | /// |
74 | /// Both `Pool` and [`Slab`] share the same configuration mechanism. See [crate level documentation][config-doc] |
75 | /// for more details. |
76 | /// |
77 | /// [`Slab::take`]: crate::Slab::take |
78 | /// [`Slab::insert`]: crate::Slab::insert |
79 | /// [`Pool::create`]: Pool::create |
80 | /// [`Pool::clear`]: Pool::clear |
81 | /// [config-doc]: crate#configuration |
82 | /// [`Clear`]: crate::Clear |
83 | /// [`Slab`]: crate::Slab |
84 | pub struct Pool<T, C = DefaultConfig> |
85 | where |
86 | T: Clear + Default, |
87 | C: cfg::Config, |
88 | { |
89 | shards: shard::Array<T, C>, |
90 | _cfg: PhantomData<C>, |
91 | } |
92 | |
93 | /// A guard that allows access to an object in a pool. |
94 | /// |
95 | /// While the guard exists, it indicates to the pool that the item the guard references is |
96 | /// currently being accessed. If the item is removed from the pool while the guard exists, the |
97 | /// removal will be deferred until all guards are dropped. |
98 | pub struct Ref<'a, T, C = DefaultConfig> |
99 | where |
100 | T: Clear + Default, |
101 | C: cfg::Config, |
102 | { |
103 | inner: page::slot::Guard<T, C>, |
104 | shard: &'a Shard<T, C>, |
105 | key: usize, |
106 | } |
107 | |
108 | /// A guard that allows exclusive mutable access to an object in a pool. |
109 | /// |
110 | /// While the guard exists, it indicates to the pool that the item the guard |
111 | /// references is currently being accessed. If the item is removed from the pool |
112 | /// while a guard exists, the removal will be deferred until the guard is |
113 | /// dropped. The slot cannot be accessed by other threads while it is accessed |
114 | /// mutably. |
115 | pub struct RefMut<'a, T, C = DefaultConfig> |
116 | where |
117 | T: Clear + Default, |
118 | C: cfg::Config, |
119 | { |
120 | inner: page::slot::InitGuard<T, C>, |
121 | shard: &'a Shard<T, C>, |
122 | key: usize, |
123 | } |
124 | |
125 | /// An owned guard that allows shared immutable access to an object in a pool. |
126 | /// |
127 | /// While the guard exists, it indicates to the pool that the item the guard references is |
128 | /// currently being accessed. If the item is removed from the pool while the guard exists, the |
129 | /// removal will be deferred until all guards are dropped. |
130 | /// |
131 | /// Unlike [`Ref`], which borrows the pool, an `OwnedRef` clones the `Arc` |
132 | /// around the pool. Therefore, it keeps the pool from being dropped until all |
133 | /// such guards have been dropped. This means that an `OwnedRef` may be held for |
134 | /// an arbitrary lifetime. |
135 | /// |
136 | /// |
137 | /// # Examples |
138 | /// |
139 | /// ``` |
140 | /// # use sharded_slab::Pool; |
141 | /// use std::sync::Arc; |
142 | /// |
143 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
144 | /// let key = pool.create_with(|item| item.push_str("hello world" )).unwrap(); |
145 | /// |
146 | /// // Look up the created `Key`, returning an `OwnedRef`. |
147 | /// let value = pool.clone().get_owned(key).unwrap(); |
148 | /// |
149 | /// // Now, the original `Arc` clone of the pool may be dropped, but the |
150 | /// // returned `OwnedRef` can still access the value. |
151 | /// assert_eq!(value, String::from("hello world" )); |
152 | /// ``` |
153 | /// |
154 | /// Unlike [`Ref`], an `OwnedRef` may be stored in a struct which must live |
155 | /// for the `'static` lifetime: |
156 | /// |
157 | /// ``` |
158 | /// # use sharded_slab::Pool; |
159 | /// use sharded_slab::pool::OwnedRef; |
160 | /// use std::sync::Arc; |
161 | /// |
162 | /// pub struct MyStruct { |
163 | /// pool_ref: OwnedRef<String>, |
164 | /// // ... other fields ... |
165 | /// } |
166 | /// |
167 | /// // Suppose this is some arbitrary function which requires a value that |
168 | /// // lives for the 'static lifetime... |
169 | /// fn function_requiring_static<T: 'static>(t: &T) { |
170 | /// // ... do something extremely important and interesting ... |
171 | /// } |
172 | /// |
173 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
174 | /// let key = pool.create_with(|item| item.push_str("hello world" )).unwrap(); |
175 | /// |
176 | /// // Look up the created `Key`, returning an `OwnedRef`. |
177 | /// let pool_ref = pool.clone().get_owned(key).unwrap(); |
178 | /// let my_struct = MyStruct { |
179 | /// pool_ref, |
180 | /// // ... |
181 | /// }; |
182 | /// |
183 | /// // We can use `my_struct` anywhere where it is required to have the |
184 | /// // `'static` lifetime: |
185 | /// function_requiring_static(&my_struct); |
186 | /// ``` |
187 | /// |
188 | /// `OwnedRef`s may be sent between threads: |
189 | /// |
190 | /// ``` |
191 | /// # use sharded_slab::Pool; |
192 | /// use std::{thread, sync::Arc}; |
193 | /// |
194 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
195 | /// let key = pool.create_with(|item| item.push_str("hello world" )).unwrap(); |
196 | /// |
197 | /// // Look up the created `Key`, returning an `OwnedRef`. |
198 | /// let value = pool.clone().get_owned(key).unwrap(); |
199 | /// |
200 | /// thread::spawn(move || { |
201 | /// assert_eq!(value, String::from("hello world" )); |
202 | /// // ... |
203 | /// }).join().unwrap(); |
204 | /// ``` |
205 | /// |
206 | /// [`Ref`]: crate::pool::Ref |
207 | pub struct OwnedRef<T, C = DefaultConfig> |
208 | where |
209 | T: Clear + Default, |
210 | C: cfg::Config, |
211 | { |
212 | inner: page::slot::Guard<T, C>, |
213 | pool: Arc<Pool<T, C>>, |
214 | key: usize, |
215 | } |
216 | |
217 | /// An owned guard that allows exclusive, mutable access to an object in a pool. |
218 | /// |
219 | /// An `OwnedRefMut<T>` functions more or less identically to an owned |
220 | /// `Box<T>`: it can be passed to functions, stored in structure fields, and |
221 | /// borrowed mutably or immutably, and can be owned for arbitrary lifetimes. |
222 | /// The difference is that, unlike a `Box<T>`, the memory allocation for the |
223 | /// `T` lives in the `Pool`; when an `OwnedRefMut` is created, it may reuse |
224 | /// memory that was allocated for a previous pooled object that has been |
225 | /// cleared. Additionally, the `OwnedRefMut` may be [downgraded] to an |
226 | /// [`OwnedRef`] which may be shared freely, essentially turning the `Box` |
227 | /// into an `Arc`. |
228 | /// |
229 | /// This is returned by [`Pool::create_owned`]. |
230 | /// |
231 | /// While the guard exists, it indicates to the pool that the item the guard |
232 | /// references is currently being accessed. If the item is removed from the pool |
233 | /// while the guard exists, theremoval will be deferred until all guards are |
234 | /// dropped. |
235 | /// |
236 | /// Unlike [`RefMut`], which borrows the pool, an `OwnedRefMut` clones the `Arc` |
237 | /// around the pool. Therefore, it keeps the pool from being dropped until all |
238 | /// such guards have been dropped. This means that an `OwnedRefMut` may be held for |
239 | /// an arbitrary lifetime. |
240 | /// |
241 | /// # Examples |
242 | /// |
243 | /// ```rust |
244 | /// # use sharded_slab::Pool; |
245 | /// # use std::thread; |
246 | /// use std::sync::Arc; |
247 | /// |
248 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
249 | /// |
250 | /// // Create a new pooled item, returning an owned guard that allows mutable |
251 | /// // access to the new item. |
252 | /// let mut item = pool.clone().create_owned().unwrap(); |
253 | /// // Return a key that allows indexing the created item once the guard |
254 | /// // has been dropped. |
255 | /// let key = item.key(); |
256 | /// |
257 | /// // Mutate the item. |
258 | /// item.push_str("Hello" ); |
259 | /// // Drop the guard, releasing mutable access to the new item. |
260 | /// drop(item); |
261 | /// |
262 | /// /// Other threads may now (immutably) access the item using the returned key. |
263 | /// thread::spawn(move || { |
264 | /// assert_eq!(pool.get(key).unwrap(), String::from("Hello" )); |
265 | /// }).join().unwrap(); |
266 | /// ``` |
267 | /// |
268 | /// ```rust |
269 | /// # use sharded_slab::Pool; |
270 | /// use std::sync::Arc; |
271 | /// |
272 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
273 | /// |
274 | /// // Create a new item, returning an owned, mutable guard. |
275 | /// let mut value = pool.clone().create_owned().unwrap(); |
276 | /// |
277 | /// // Now, the original `Arc` clone of the pool may be dropped, but the |
278 | /// // returned `OwnedRefMut` can still access the value. |
279 | /// drop(pool); |
280 | /// |
281 | /// value.push_str("hello world" ); |
282 | /// assert_eq!(value, String::from("hello world" )); |
283 | /// ``` |
284 | /// |
285 | /// Unlike [`RefMut`], an `OwnedRefMut` may be stored in a struct which must live |
286 | /// for the `'static` lifetime: |
287 | /// |
288 | /// ``` |
289 | /// # use sharded_slab::Pool; |
290 | /// use sharded_slab::pool::OwnedRefMut; |
291 | /// use std::sync::Arc; |
292 | /// |
293 | /// pub struct MyStruct { |
294 | /// pool_ref: OwnedRefMut<String>, |
295 | /// // ... other fields ... |
296 | /// } |
297 | /// |
298 | /// // Suppose this is some arbitrary function which requires a value that |
299 | /// // lives for the 'static lifetime... |
300 | /// fn function_requiring_static<T: 'static>(t: &T) { |
301 | /// // ... do something extremely important and interesting ... |
302 | /// } |
303 | /// |
304 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
305 | /// |
306 | /// // Create a new item, returning a mutable owned reference. |
307 | /// let pool_ref = pool.clone().create_owned().unwrap(); |
308 | /// |
309 | /// let my_struct = MyStruct { |
310 | /// pool_ref, |
311 | /// // ... |
312 | /// }; |
313 | /// |
314 | /// // We can use `my_struct` anywhere where it is required to have the |
315 | /// // `'static` lifetime: |
316 | /// function_requiring_static(&my_struct); |
317 | /// ``` |
318 | /// |
319 | /// `OwnedRefMut`s may be sent between threads: |
320 | /// |
321 | /// ``` |
322 | /// # use sharded_slab::Pool; |
323 | /// use std::{thread, sync::Arc}; |
324 | /// |
325 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
326 | /// |
327 | /// let mut value = pool.clone().create_owned().unwrap(); |
328 | /// let key = value.key(); |
329 | /// |
330 | /// thread::spawn(move || { |
331 | /// value.push_str("hello world" ); |
332 | /// // ... |
333 | /// }).join().unwrap(); |
334 | /// |
335 | /// // Once the `OwnedRefMut` has been dropped by the other thread, we may |
336 | /// // now access the value immutably on this thread. |
337 | /// |
338 | /// assert_eq!(pool.get(key).unwrap(), String::from("hello world" )); |
339 | /// ``` |
340 | /// |
341 | /// Downgrading from a mutable to an immutable reference: |
342 | /// |
343 | /// ``` |
344 | /// # use sharded_slab::Pool; |
345 | /// use std::{thread, sync::Arc}; |
346 | /// |
347 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
348 | /// |
349 | /// let mut value = pool.clone().create_owned().unwrap(); |
350 | /// let key = value.key(); |
351 | /// value.push_str("hello world" ); |
352 | /// |
353 | /// // Downgrade the mutable owned ref to an immutable owned ref. |
354 | /// let value = value.downgrade(); |
355 | /// |
356 | /// // Once the `OwnedRefMut` has been downgraded, other threads may |
357 | /// // immutably access the pooled value: |
358 | /// thread::spawn(move || { |
359 | /// assert_eq!(pool.get(key).unwrap(), String::from("hello world" )); |
360 | /// }).join().unwrap(); |
361 | /// |
362 | /// // This thread can still access the pooled value through the |
363 | /// // immutable owned ref: |
364 | /// assert_eq!(value, String::from("hello world" )); |
365 | /// ``` |
366 | /// |
367 | /// [`Pool::create_owned`]: crate::Pool::create_owned |
368 | /// [`RefMut`]: crate::pool::RefMut |
369 | /// [`OwnedRefMut`]: crate::pool::OwnedRefMut |
370 | /// [downgraded]: crate::pool::OwnedRefMut::downgrade |
371 | pub struct OwnedRefMut<T, C = DefaultConfig> |
372 | where |
373 | T: Clear + Default, |
374 | C: cfg::Config, |
375 | { |
376 | inner: page::slot::InitGuard<T, C>, |
377 | pool: Arc<Pool<T, C>>, |
378 | key: usize, |
379 | } |
380 | |
381 | impl<T> Pool<T> |
382 | where |
383 | T: Clear + Default, |
384 | { |
385 | /// Returns a new `Pool` with the default configuration parameters. |
386 | pub fn new() -> Self { |
387 | Self::new_with_config() |
388 | } |
389 | |
390 | /// Returns a new `Pool` with the provided configuration parameters. |
391 | pub fn new_with_config<C: cfg::Config>() -> Pool<T, C> { |
392 | C::validate(); |
393 | Pool { |
394 | shards: shard::Array::new(), |
395 | _cfg: PhantomData, |
396 | } |
397 | } |
398 | } |
399 | |
400 | impl<T, C> Pool<T, C> |
401 | where |
402 | T: Clear + Default, |
403 | C: cfg::Config, |
404 | { |
405 | /// The number of bits in each index which are used by the pool. |
406 | /// |
407 | /// If other data is packed into the `usize` indices returned by |
408 | /// [`Pool::create`], user code is free to use any bits higher than the |
409 | /// `USED_BITS`-th bit freely. |
410 | /// |
411 | /// This is determined by the [`Config`] type that configures the pool's |
412 | /// parameters. By default, all bits are used; this can be changed by |
413 | /// overriding the [`Config::RESERVED_BITS`][res] constant. |
414 | /// |
415 | /// [`Config`]: trait.Config.html |
416 | /// [res]: trait.Config.html#associatedconstant.RESERVED_BITS |
417 | /// [`Slab::insert`]: struct.Slab.html#method.insert |
418 | pub const USED_BITS: usize = C::USED_BITS; |
419 | |
420 | /// Creates a new object in the pool, returning an [`RefMut`] guard that |
421 | /// may be used to mutate the new object. |
422 | /// |
423 | /// If this function returns `None`, then the shard for the current thread is full and no items |
424 | /// can be added until some are removed, or the maximum number of shards has been reached. |
425 | /// |
426 | /// # Examples |
427 | /// ```rust |
428 | /// # use sharded_slab::Pool; |
429 | /// # use std::thread; |
430 | /// let pool: Pool<String> = Pool::new(); |
431 | /// |
432 | /// // Create a new pooled item, returning a guard that allows mutable |
433 | /// // access to the new item. |
434 | /// let mut item = pool.create().unwrap(); |
435 | /// // Return a key that allows indexing the created item once the guard |
436 | /// // has been dropped. |
437 | /// let key = item.key(); |
438 | /// |
439 | /// // Mutate the item. |
440 | /// item.push_str("Hello" ); |
441 | /// // Drop the guard, releasing mutable access to the new item. |
442 | /// drop(item); |
443 | /// |
444 | /// /// Other threads may now (immutably) access the item using the returned key. |
445 | /// thread::spawn(move || { |
446 | /// assert_eq!(pool.get(key).unwrap(), String::from("Hello" )); |
447 | /// }).join().unwrap(); |
448 | /// ``` |
449 | /// |
450 | /// [`RefMut`]: crate::pool::RefMut |
451 | pub fn create(&self) -> Option<RefMut<'_, T, C>> { |
452 | let (tid, shard) = self.shards.current(); |
453 | test_println!("pool: create {:?}" , tid); |
454 | let (key, inner) = shard.init_with(|idx, slot| { |
455 | let guard = slot.init()?; |
456 | let gen = guard.generation(); |
457 | Some((gen.pack(idx), guard)) |
458 | })?; |
459 | Some(RefMut { |
460 | inner, |
461 | key: tid.pack(key), |
462 | shard, |
463 | }) |
464 | } |
465 | |
466 | /// Creates a new object in the pool, returning an [`OwnedRefMut`] guard that |
467 | /// may be used to mutate the new object. |
468 | /// |
469 | /// If this function returns `None`, then the shard for the current thread |
470 | /// is full and no items can be added until some are removed, or the maximum |
471 | /// number of shards has been reached. |
472 | /// |
473 | /// Unlike [`create`], which borrows the pool, this method _clones_ the `Arc` |
474 | /// around the pool if a value exists for the given key. This means that the |
475 | /// returned [`OwnedRefMut`] can be held for an arbitrary lifetime. However, |
476 | /// this method requires that the pool itself be wrapped in an `Arc`. |
477 | /// |
478 | /// An `OwnedRefMut<T>` functions more or less identically to an owned |
479 | /// `Box<T>`: it can be passed to functions, stored in structure fields, and |
480 | /// borrowed mutably or immutably, and can be owned for arbitrary lifetimes. |
481 | /// The difference is that, unlike a `Box<T>`, the memory allocation for the |
482 | /// `T` lives in the `Pool`; when an `OwnedRefMut` is created, it may reuse |
483 | /// memory that was allocated for a previous pooled object that has been |
484 | /// cleared. Additionally, the `OwnedRefMut` may be [downgraded] to an |
485 | /// [`OwnedRef`] which may be shared freely, essentially turning the `Box` |
486 | /// into an `Arc`. |
487 | /// |
488 | /// # Examples |
489 | /// |
490 | /// ```rust |
491 | /// # use sharded_slab::Pool; |
492 | /// # use std::thread; |
493 | /// use std::sync::Arc; |
494 | /// |
495 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
496 | /// |
497 | /// // Create a new pooled item, returning an owned guard that allows mutable |
498 | /// // access to the new item. |
499 | /// let mut item = pool.clone().create_owned().unwrap(); |
500 | /// // Return a key that allows indexing the created item once the guard |
501 | /// // has been dropped. |
502 | /// let key = item.key(); |
503 | /// |
504 | /// // Mutate the item. |
505 | /// item.push_str("Hello" ); |
506 | /// // Drop the guard, releasing mutable access to the new item. |
507 | /// drop(item); |
508 | /// |
509 | /// /// Other threads may now (immutably) access the item using the returned key. |
510 | /// thread::spawn(move || { |
511 | /// assert_eq!(pool.get(key).unwrap(), String::from("Hello" )); |
512 | /// }).join().unwrap(); |
513 | /// ``` |
514 | /// |
515 | /// ```rust |
516 | /// # use sharded_slab::Pool; |
517 | /// use std::sync::Arc; |
518 | /// |
519 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
520 | /// |
521 | /// // Create a new item, returning an owned, mutable guard. |
522 | /// let mut value = pool.clone().create_owned().unwrap(); |
523 | /// |
524 | /// // Now, the original `Arc` clone of the pool may be dropped, but the |
525 | /// // returned `OwnedRefMut` can still access the value. |
526 | /// drop(pool); |
527 | /// |
528 | /// value.push_str("hello world" ); |
529 | /// assert_eq!(value, String::from("hello world" )); |
530 | /// ``` |
531 | /// |
532 | /// Unlike [`RefMut`], an `OwnedRefMut` may be stored in a struct which must live |
533 | /// for the `'static` lifetime: |
534 | /// |
535 | /// ``` |
536 | /// # use sharded_slab::Pool; |
537 | /// use sharded_slab::pool::OwnedRefMut; |
538 | /// use std::sync::Arc; |
539 | /// |
540 | /// pub struct MyStruct { |
541 | /// pool_ref: OwnedRefMut<String>, |
542 | /// // ... other fields ... |
543 | /// } |
544 | /// |
545 | /// // Suppose this is some arbitrary function which requires a value that |
546 | /// // lives for the 'static lifetime... |
547 | /// fn function_requiring_static<T: 'static>(t: &T) { |
548 | /// // ... do something extremely important and interesting ... |
549 | /// } |
550 | /// |
551 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
552 | /// |
553 | /// // Create a new item, returning a mutable owned reference. |
554 | /// let pool_ref = pool.clone().create_owned().unwrap(); |
555 | /// |
556 | /// let my_struct = MyStruct { |
557 | /// pool_ref, |
558 | /// // ... |
559 | /// }; |
560 | /// |
561 | /// // We can use `my_struct` anywhere where it is required to have the |
562 | /// // `'static` lifetime: |
563 | /// function_requiring_static(&my_struct); |
564 | /// ``` |
565 | /// |
566 | /// `OwnedRefMut`s may be sent between threads: |
567 | /// |
568 | /// ``` |
569 | /// # use sharded_slab::Pool; |
570 | /// use std::{thread, sync::Arc}; |
571 | /// |
572 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
573 | /// |
574 | /// let mut value = pool.clone().create_owned().unwrap(); |
575 | /// let key = value.key(); |
576 | /// |
577 | /// thread::spawn(move || { |
578 | /// value.push_str("hello world" ); |
579 | /// // ... |
580 | /// }).join().unwrap(); |
581 | /// |
582 | /// // Once the `OwnedRefMut` has been dropped by the other thread, we may |
583 | /// // now access the value immutably on this thread. |
584 | /// |
585 | /// assert_eq!(pool.get(key).unwrap(), String::from("hello world" )); |
586 | /// ``` |
587 | /// |
588 | /// Downgrading from a mutable to an immutable reference: |
589 | /// |
590 | /// ``` |
591 | /// # use sharded_slab::Pool; |
592 | /// use std::{thread, sync::Arc}; |
593 | /// |
594 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
595 | /// |
596 | /// let mut value = pool.clone().create_owned().unwrap(); |
597 | /// let key = value.key(); |
598 | /// value.push_str("hello world" ); |
599 | /// |
600 | /// // Downgrade the mutable owned ref to an immutable owned ref. |
601 | /// let value = value.downgrade(); |
602 | /// |
603 | /// // Once the `OwnedRefMut` has been downgraded, other threads may |
604 | /// // immutably access the pooled value: |
605 | /// thread::spawn(move || { |
606 | /// assert_eq!(pool.get(key).unwrap(), String::from("hello world" )); |
607 | /// }).join().unwrap(); |
608 | /// |
609 | /// // This thread can still access the pooled value through the |
610 | /// // immutable owned ref: |
611 | /// assert_eq!(value, String::from("hello world" )); |
612 | /// ``` |
613 | /// |
614 | /// [`create`]: Pool::create |
615 | /// [`OwnedRef`]: crate::pool::OwnedRef |
616 | /// [`RefMut`]: crate::pool::RefMut |
617 | /// [`OwnedRefMut`]: crate::pool::OwnedRefMut |
618 | /// [downgraded]: crate::pool::OwnedRefMut::downgrade |
619 | pub fn create_owned(self: Arc<Self>) -> Option<OwnedRefMut<T, C>> { |
620 | let (tid, shard) = self.shards.current(); |
621 | test_println!("pool: create_owned {:?}" , tid); |
622 | let (inner, key) = shard.init_with(|idx, slot| { |
623 | let inner = slot.init()?; |
624 | let gen = inner.generation(); |
625 | Some((inner, tid.pack(gen.pack(idx)))) |
626 | })?; |
627 | Some(OwnedRefMut { |
628 | inner, |
629 | pool: self, |
630 | key, |
631 | }) |
632 | } |
633 | |
634 | /// Creates a new object in the pool with the provided initializer, |
635 | /// returning a key that may be used to access the new object. |
636 | /// |
637 | /// If this function returns `None`, then the shard for the current thread is full and no items |
638 | /// can be added until some are removed, or the maximum number of shards has been reached. |
639 | /// |
640 | /// # Examples |
641 | /// ```rust |
642 | /// # use sharded_slab::Pool; |
643 | /// # use std::thread; |
644 | /// let pool: Pool<String> = Pool::new(); |
645 | /// |
646 | /// // Create a new pooled item, returning its integer key. |
647 | /// let key = pool.create_with(|s| s.push_str("Hello" )).unwrap(); |
648 | /// |
649 | /// /// Other threads may now (immutably) access the item using the key. |
650 | /// thread::spawn(move || { |
651 | /// assert_eq!(pool.get(key).unwrap(), String::from("Hello" )); |
652 | /// }).join().unwrap(); |
653 | /// ``` |
654 | pub fn create_with(&self, init: impl FnOnce(&mut T)) -> Option<usize> { |
655 | test_println!("pool: create_with" ); |
656 | let mut guard = self.create()?; |
657 | init(&mut guard); |
658 | Some(guard.key()) |
659 | } |
660 | |
661 | /// Return a borrowed reference to the value associated with the given key. |
662 | /// |
663 | /// If the pool does not contain a value for the given key, `None` is returned instead. |
664 | /// |
665 | /// # Examples |
666 | /// |
667 | /// ```rust |
668 | /// # use sharded_slab::Pool; |
669 | /// let pool: Pool<String> = Pool::new(); |
670 | /// let key = pool.create_with(|item| item.push_str("hello world" )).unwrap(); |
671 | /// |
672 | /// assert_eq!(pool.get(key).unwrap(), String::from("hello world" )); |
673 | /// assert!(pool.get(12345).is_none()); |
674 | /// ``` |
675 | pub fn get(&self, key: usize) -> Option<Ref<'_, T, C>> { |
676 | let tid = C::unpack_tid(key); |
677 | |
678 | test_println!("pool: get{:?}; current={:?}" , tid, Tid::<C>::current()); |
679 | let shard = self.shards.get(tid.as_usize())?; |
680 | let inner = shard.with_slot(key, |slot| slot.get(C::unpack_gen(key)))?; |
681 | Some(Ref { inner, shard, key }) |
682 | } |
683 | |
684 | /// Return an owned reference to the value associated with the given key. |
685 | /// |
686 | /// If the pool does not contain a value for the given key, `None` is |
687 | /// returned instead. |
688 | /// |
689 | /// Unlike [`get`], which borrows the pool, this method _clones_ the `Arc` |
690 | /// around the pool if a value exists for the given key. This means that the |
691 | /// returned [`OwnedRef`] can be held for an arbitrary lifetime. However, |
692 | /// this method requires that the pool itself be wrapped in an `Arc`. |
693 | /// |
694 | /// # Examples |
695 | /// |
696 | /// ```rust |
697 | /// # use sharded_slab::Pool; |
698 | /// use std::sync::Arc; |
699 | /// |
700 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
701 | /// let key = pool.create_with(|item| item.push_str("hello world" )).unwrap(); |
702 | /// |
703 | /// // Look up the created `Key`, returning an `OwnedRef`. |
704 | /// let value = pool.clone().get_owned(key).unwrap(); |
705 | /// |
706 | /// // Now, the original `Arc` clone of the pool may be dropped, but the |
707 | /// // returned `OwnedRef` can still access the value. |
708 | /// assert_eq!(value, String::from("hello world" )); |
709 | /// ``` |
710 | /// |
711 | /// Unlike [`Ref`], an `OwnedRef` may be stored in a struct which must live |
712 | /// for the `'static` lifetime: |
713 | /// |
714 | /// ``` |
715 | /// # use sharded_slab::Pool; |
716 | /// use sharded_slab::pool::OwnedRef; |
717 | /// use std::sync::Arc; |
718 | /// |
719 | /// pub struct MyStruct { |
720 | /// pool_ref: OwnedRef<String>, |
721 | /// // ... other fields ... |
722 | /// } |
723 | /// |
724 | /// // Suppose this is some arbitrary function which requires a value that |
725 | /// // lives for the 'static lifetime... |
726 | /// fn function_requiring_static<T: 'static>(t: &T) { |
727 | /// // ... do something extremely important and interesting ... |
728 | /// } |
729 | /// |
730 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
731 | /// let key = pool.create_with(|item| item.push_str("hello world" )).unwrap(); |
732 | /// |
733 | /// // Look up the created `Key`, returning an `OwnedRef`. |
734 | /// let pool_ref = pool.clone().get_owned(key).unwrap(); |
735 | /// let my_struct = MyStruct { |
736 | /// pool_ref, |
737 | /// // ... |
738 | /// }; |
739 | /// |
740 | /// // We can use `my_struct` anywhere where it is required to have the |
741 | /// // `'static` lifetime: |
742 | /// function_requiring_static(&my_struct); |
743 | /// ``` |
744 | /// |
745 | /// `OwnedRef`s may be sent between threads: |
746 | /// |
747 | /// ``` |
748 | /// # use sharded_slab::Pool; |
749 | /// use std::{thread, sync::Arc}; |
750 | /// |
751 | /// let pool: Arc<Pool<String>> = Arc::new(Pool::new()); |
752 | /// let key = pool.create_with(|item| item.push_str("hello world" )).unwrap(); |
753 | /// |
754 | /// // Look up the created `Key`, returning an `OwnedRef`. |
755 | /// let value = pool.clone().get_owned(key).unwrap(); |
756 | /// |
757 | /// thread::spawn(move || { |
758 | /// assert_eq!(value, String::from("hello world" )); |
759 | /// // ... |
760 | /// }).join().unwrap(); |
761 | /// ``` |
762 | /// |
763 | /// [`get`]: Pool::get |
764 | /// [`OwnedRef`]: crate::pool::OwnedRef |
765 | /// [`Ref`]: crate::pool::Ref |
766 | pub fn get_owned(self: Arc<Self>, key: usize) -> Option<OwnedRef<T, C>> { |
767 | let tid = C::unpack_tid(key); |
768 | |
769 | test_println!("pool: get{:?}; current={:?}" , tid, Tid::<C>::current()); |
770 | let shard = self.shards.get(tid.as_usize())?; |
771 | let inner = shard.with_slot(key, |slot| slot.get(C::unpack_gen(key)))?; |
772 | Some(OwnedRef { |
773 | inner, |
774 | pool: self.clone(), |
775 | key, |
776 | }) |
777 | } |
778 | |
779 | /// Remove the value using the storage associated with the given key from the pool, returning |
780 | /// `true` if the value was removed. |
781 | /// |
782 | /// This method does _not_ block the current thread until the value can be |
783 | /// cleared. Instead, if another thread is currently accessing that value, this marks it to be |
784 | /// cleared by that thread when it is done accessing that value. |
785 | /// |
786 | /// # Examples |
787 | /// |
788 | /// ```rust |
789 | /// # use sharded_slab::Pool; |
790 | /// let pool: Pool<String> = Pool::new(); |
791 | /// |
792 | /// // Check out an item from the pool. |
793 | /// let mut item = pool.create().unwrap(); |
794 | /// let key = item.key(); |
795 | /// item.push_str("hello world" ); |
796 | /// drop(item); |
797 | /// |
798 | /// assert_eq!(pool.get(key).unwrap(), String::from("hello world" )); |
799 | /// |
800 | /// pool.clear(key); |
801 | /// assert!(pool.get(key).is_none()); |
802 | /// ``` |
803 | /// |
804 | /// ``` |
805 | /// # use sharded_slab::Pool; |
806 | /// let pool: Pool<String> = Pool::new(); |
807 | /// |
808 | /// let key = pool.create_with(|item| item.push_str("Hello world!" )).unwrap(); |
809 | /// |
810 | /// // Clearing a key that doesn't exist in the `Pool` will return `false` |
811 | /// assert_eq!(pool.clear(key + 69420), false); |
812 | /// |
813 | /// // Clearing a key that does exist returns `true` |
814 | /// assert!(pool.clear(key)); |
815 | /// |
816 | /// // Clearing a key that has previously been cleared will return `false` |
817 | /// assert_eq!(pool.clear(key), false); |
818 | /// ``` |
819 | /// [`clear`]: #method.clear |
820 | pub fn clear(&self, key: usize) -> bool { |
821 | let tid = C::unpack_tid(key); |
822 | |
823 | let shard = self.shards.get(tid.as_usize()); |
824 | if tid.is_current() { |
825 | shard |
826 | .map(|shard| shard.mark_clear_local(key)) |
827 | .unwrap_or(false) |
828 | } else { |
829 | shard |
830 | .map(|shard| shard.mark_clear_remote(key)) |
831 | .unwrap_or(false) |
832 | } |
833 | } |
834 | } |
835 | |
836 | unsafe impl<T, C> Send for Pool<T, C> |
837 | where |
838 | T: Send + Clear + Default, |
839 | C: cfg::Config, |
840 | { |
841 | } |
842 | unsafe impl<T, C> Sync for Pool<T, C> |
843 | where |
844 | T: Sync + Clear + Default, |
845 | C: cfg::Config, |
846 | { |
847 | } |
848 | |
849 | impl<T> Default for Pool<T> |
850 | where |
851 | T: Clear + Default, |
852 | { |
853 | fn default() -> Self { |
854 | Self::new() |
855 | } |
856 | } |
857 | |
858 | impl<T, C> fmt::Debug for Pool<T, C> |
859 | where |
860 | T: fmt::Debug + Clear + Default, |
861 | C: cfg::Config, |
862 | { |
863 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
864 | f.debug_struct("Pool" ) |
865 | .field("shards" , &self.shards) |
866 | .field("config" , &C::debug()) |
867 | .finish() |
868 | } |
869 | } |
870 | |
871 | // === impl Ref === |
872 | |
873 | impl<'a, T, C> Ref<'a, T, C> |
874 | where |
875 | T: Clear + Default, |
876 | C: cfg::Config, |
877 | { |
878 | /// Returns the key used to access this guard |
879 | pub fn key(&self) -> usize { |
880 | self.key |
881 | } |
882 | |
883 | #[inline ] |
884 | fn value(&self) -> &T { |
885 | unsafe { |
886 | // Safety: calling `slot::Guard::value` is unsafe, since the `Guard` |
887 | // value contains a pointer to the slot that may outlive the slab |
888 | // containing that slot. Here, the `Ref` has a borrowed reference to |
889 | // the shard containing that slot, which ensures that the slot will |
890 | // not be dropped while this `Guard` exists. |
891 | self.inner.value() |
892 | } |
893 | } |
894 | } |
895 | |
896 | impl<'a, T, C> std::ops::Deref for Ref<'a, T, C> |
897 | where |
898 | T: Clear + Default, |
899 | C: cfg::Config, |
900 | { |
901 | type Target = T; |
902 | |
903 | fn deref(&self) -> &Self::Target { |
904 | self.value() |
905 | } |
906 | } |
907 | |
908 | impl<'a, T, C> Drop for Ref<'a, T, C> |
909 | where |
910 | T: Clear + Default, |
911 | C: cfg::Config, |
912 | { |
913 | fn drop(&mut self) { |
914 | test_println!("drop Ref: try clearing data" ); |
915 | let should_clear = unsafe { |
916 | // Safety: calling `slot::Guard::release` is unsafe, since the |
917 | // `Guard` value contains a pointer to the slot that may outlive the |
918 | // slab containing that slot. Here, the `Ref` guard owns a |
919 | // borrowed reference to the shard containing that slot, which |
920 | // ensures that the slot will not be dropped while this `Ref` |
921 | // exists. |
922 | self.inner.release() |
923 | }; |
924 | if should_clear { |
925 | self.shard.clear_after_release(self.key); |
926 | } |
927 | } |
928 | } |
929 | |
930 | impl<'a, T, C> fmt::Debug for Ref<'a, T, C> |
931 | where |
932 | T: fmt::Debug + Clear + Default, |
933 | C: cfg::Config, |
934 | { |
935 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
936 | fmt::Debug::fmt(self.value(), f) |
937 | } |
938 | } |
939 | |
940 | impl<'a, T, C> PartialEq<T> for Ref<'a, T, C> |
941 | where |
942 | T: PartialEq<T> + Clear + Default, |
943 | C: cfg::Config, |
944 | { |
945 | fn eq(&self, other: &T) -> bool { |
946 | *self.value() == *other |
947 | } |
948 | } |
949 | |
950 | // === impl GuardMut === |
951 | |
952 | impl<'a, T, C: cfg::Config> RefMut<'a, T, C> |
953 | where |
954 | T: Clear + Default, |
955 | C: cfg::Config, |
956 | { |
957 | /// Returns the key used to access the guard. |
958 | pub fn key(&self) -> usize { |
959 | self.key |
960 | } |
961 | |
962 | /// Downgrades the mutable guard to an immutable guard, allowing access to |
963 | /// the pooled value from other threads. |
964 | /// |
965 | /// ## Examples |
966 | /// |
967 | /// ``` |
968 | /// # use sharded_slab::Pool; |
969 | /// # use std::{sync::Arc, thread}; |
970 | /// let pool = Arc::new(Pool::<String>::new()); |
971 | /// |
972 | /// let mut guard_mut = pool.clone().create_owned().unwrap(); |
973 | /// let key = guard_mut.key(); |
974 | /// guard_mut.push_str("Hello" ); |
975 | /// |
976 | /// // The pooled string is currently borrowed mutably, so other threads |
977 | /// // may not access it. |
978 | /// let pool2 = pool.clone(); |
979 | /// thread::spawn(move || { |
980 | /// assert!(pool2.get(key).is_none()) |
981 | /// }).join().unwrap(); |
982 | /// |
983 | /// // Downgrade the guard to an immutable reference. |
984 | /// let guard = guard_mut.downgrade(); |
985 | /// |
986 | /// // Now, other threads may also access the pooled value. |
987 | /// let pool2 = pool.clone(); |
988 | /// thread::spawn(move || { |
989 | /// let guard = pool2.get(key) |
990 | /// .expect("the item may now be referenced by other threads" ); |
991 | /// assert_eq!(guard, String::from("Hello" )); |
992 | /// }).join().unwrap(); |
993 | /// |
994 | /// // We can still access the value immutably through the downgraded guard. |
995 | /// assert_eq!(guard, String::from("Hello" )); |
996 | /// ``` |
997 | pub fn downgrade(mut self) -> Ref<'a, T, C> { |
998 | let inner = unsafe { self.inner.downgrade() }; |
999 | Ref { |
1000 | inner, |
1001 | shard: self.shard, |
1002 | key: self.key, |
1003 | } |
1004 | } |
1005 | |
1006 | #[inline ] |
1007 | fn value(&self) -> &T { |
1008 | unsafe { |
1009 | // Safety: we are holding a reference to the shard which keeps the |
1010 | // pointed slot alive. The returned reference will not outlive |
1011 | // `self`. |
1012 | self.inner.value() |
1013 | } |
1014 | } |
1015 | } |
1016 | |
1017 | impl<'a, T, C: cfg::Config> std::ops::Deref for RefMut<'a, T, C> |
1018 | where |
1019 | T: Clear + Default, |
1020 | C: cfg::Config, |
1021 | { |
1022 | type Target = T; |
1023 | |
1024 | fn deref(&self) -> &Self::Target { |
1025 | self.value() |
1026 | } |
1027 | } |
1028 | |
1029 | impl<'a, T, C> std::ops::DerefMut for RefMut<'a, T, C> |
1030 | where |
1031 | T: Clear + Default, |
1032 | C: cfg::Config, |
1033 | { |
1034 | fn deref_mut(&mut self) -> &mut Self::Target { |
1035 | unsafe { |
1036 | // Safety: we are holding a reference to the shard which keeps the |
1037 | // pointed slot alive. The returned reference will not outlive `self`. |
1038 | self.inner.value_mut() |
1039 | } |
1040 | } |
1041 | } |
1042 | |
1043 | impl<'a, T, C> Drop for RefMut<'a, T, C> |
1044 | where |
1045 | T: Clear + Default, |
1046 | C: cfg::Config, |
1047 | { |
1048 | fn drop(&mut self) { |
1049 | test_println!(" -> drop RefMut: try clearing data" ); |
1050 | let should_clear = unsafe { |
1051 | // Safety: we are holding a reference to the shard which keeps the |
1052 | // pointed slot alive. The returned reference will not outlive `self`. |
1053 | self.inner.release() |
1054 | }; |
1055 | if should_clear { |
1056 | self.shard.clear_after_release(self.key); |
1057 | } |
1058 | } |
1059 | } |
1060 | |
1061 | impl<'a, T, C> fmt::Debug for RefMut<'a, T, C> |
1062 | where |
1063 | T: fmt::Debug + Clear + Default, |
1064 | C: cfg::Config, |
1065 | { |
1066 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1067 | fmt::Debug::fmt(self.value(), f) |
1068 | } |
1069 | } |
1070 | |
1071 | impl<'a, T, C> PartialEq<T> for RefMut<'a, T, C> |
1072 | where |
1073 | T: PartialEq<T> + Clear + Default, |
1074 | C: cfg::Config, |
1075 | { |
1076 | fn eq(&self, other: &T) -> bool { |
1077 | self.value().eq(other) |
1078 | } |
1079 | } |
1080 | |
1081 | // === impl OwnedRef === |
1082 | |
1083 | impl<T, C> OwnedRef<T, C> |
1084 | where |
1085 | T: Clear + Default, |
1086 | C: cfg::Config, |
1087 | { |
1088 | /// Returns the key used to access this guard |
1089 | pub fn key(&self) -> usize { |
1090 | self.key |
1091 | } |
1092 | |
1093 | #[inline ] |
1094 | fn value(&self) -> &T { |
1095 | unsafe { |
1096 | // Safety: calling `slot::Guard::value` is unsafe, since the `Guard` |
1097 | // value contains a pointer to the slot that may outlive the slab |
1098 | // containing that slot. Here, the `Ref` has a borrowed reference to |
1099 | // the shard containing that slot, which ensures that the slot will |
1100 | // not be dropped while this `Guard` exists. |
1101 | self.inner.value() |
1102 | } |
1103 | } |
1104 | } |
1105 | |
1106 | impl<T, C> std::ops::Deref for OwnedRef<T, C> |
1107 | where |
1108 | T: Clear + Default, |
1109 | C: cfg::Config, |
1110 | { |
1111 | type Target = T; |
1112 | |
1113 | fn deref(&self) -> &Self::Target { |
1114 | self.value() |
1115 | } |
1116 | } |
1117 | |
1118 | impl<T, C> Drop for OwnedRef<T, C> |
1119 | where |
1120 | T: Clear + Default, |
1121 | C: cfg::Config, |
1122 | { |
1123 | fn drop(&mut self) { |
1124 | test_println!("drop OwnedRef: try clearing data" ); |
1125 | let should_clear = unsafe { |
1126 | // Safety: calling `slot::Guard::release` is unsafe, since the |
1127 | // `Guard` value contains a pointer to the slot that may outlive the |
1128 | // slab containing that slot. Here, the `OwnedRef` owns an `Arc` |
1129 | // clone of the pool, which keeps it alive as long as the `OwnedRef` |
1130 | // exists. |
1131 | self.inner.release() |
1132 | }; |
1133 | if should_clear { |
1134 | let shard_idx = Tid::<C>::from_packed(self.key); |
1135 | test_println!("-> shard={:?}" , shard_idx); |
1136 | if let Some(shard) = self.pool.shards.get(shard_idx.as_usize()) { |
1137 | shard.clear_after_release(self.key); |
1138 | } else { |
1139 | test_println!("-> shard={:?} does not exist! THIS IS A BUG" , shard_idx); |
1140 | debug_assert!(std::thread::panicking(), "[internal error] tried to drop an `OwnedRef` to a slot on a shard that never existed!" ); |
1141 | } |
1142 | } |
1143 | } |
1144 | } |
1145 | |
1146 | impl<T, C> fmt::Debug for OwnedRef<T, C> |
1147 | where |
1148 | T: fmt::Debug + Clear + Default, |
1149 | C: cfg::Config, |
1150 | { |
1151 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1152 | fmt::Debug::fmt(self.value(), f) |
1153 | } |
1154 | } |
1155 | |
1156 | impl<T, C> PartialEq<T> for OwnedRef<T, C> |
1157 | where |
1158 | T: PartialEq<T> + Clear + Default, |
1159 | C: cfg::Config, |
1160 | { |
1161 | fn eq(&self, other: &T) -> bool { |
1162 | *self.value() == *other |
1163 | } |
1164 | } |
1165 | |
1166 | unsafe impl<T, C> Sync for OwnedRef<T, C> |
1167 | where |
1168 | T: Sync + Clear + Default, |
1169 | C: cfg::Config, |
1170 | { |
1171 | } |
1172 | |
1173 | unsafe impl<T, C> Send for OwnedRef<T, C> |
1174 | where |
1175 | T: Sync + Clear + Default, |
1176 | C: cfg::Config, |
1177 | { |
1178 | } |
1179 | |
1180 | // === impl OwnedRefMut === |
1181 | |
1182 | impl<T, C> OwnedRefMut<T, C> |
1183 | where |
1184 | T: Clear + Default, |
1185 | C: cfg::Config, |
1186 | { |
1187 | /// Returns the key used to access this guard |
1188 | pub fn key(&self) -> usize { |
1189 | self.key |
1190 | } |
1191 | |
1192 | /// Downgrades the owned mutable guard to an owned immutable guard, allowing |
1193 | /// access to the pooled value from other threads. |
1194 | /// |
1195 | /// ## Examples |
1196 | /// |
1197 | /// ``` |
1198 | /// # use sharded_slab::Pool; |
1199 | /// # use std::{sync::Arc, thread}; |
1200 | /// let pool = Arc::new(Pool::<String>::new()); |
1201 | /// |
1202 | /// let mut guard_mut = pool.clone().create_owned().unwrap(); |
1203 | /// let key = guard_mut.key(); |
1204 | /// guard_mut.push_str("Hello" ); |
1205 | /// |
1206 | /// // The pooled string is currently borrowed mutably, so other threads |
1207 | /// // may not access it. |
1208 | /// let pool2 = pool.clone(); |
1209 | /// thread::spawn(move || { |
1210 | /// assert!(pool2.get(key).is_none()) |
1211 | /// }).join().unwrap(); |
1212 | /// |
1213 | /// // Downgrade the guard to an immutable reference. |
1214 | /// let guard = guard_mut.downgrade(); |
1215 | /// |
1216 | /// // Now, other threads may also access the pooled value. |
1217 | /// let pool2 = pool.clone(); |
1218 | /// thread::spawn(move || { |
1219 | /// let guard = pool2.get(key) |
1220 | /// .expect("the item may now be referenced by other threads" ); |
1221 | /// assert_eq!(guard, String::from("Hello" )); |
1222 | /// }).join().unwrap(); |
1223 | /// |
1224 | /// // We can still access the value immutably through the downgraded guard. |
1225 | /// assert_eq!(guard, String::from("Hello" )); |
1226 | /// ``` |
1227 | pub fn downgrade(mut self) -> OwnedRef<T, C> { |
1228 | let inner = unsafe { self.inner.downgrade() }; |
1229 | OwnedRef { |
1230 | inner, |
1231 | pool: self.pool.clone(), |
1232 | key: self.key, |
1233 | } |
1234 | } |
1235 | |
1236 | fn shard(&self) -> Option<&Shard<T, C>> { |
1237 | let shard_idx = Tid::<C>::from_packed(self.key); |
1238 | test_println!("-> shard={:?}" , shard_idx); |
1239 | self.pool.shards.get(shard_idx.as_usize()) |
1240 | } |
1241 | |
1242 | #[inline ] |
1243 | fn value(&self) -> &T { |
1244 | unsafe { |
1245 | // Safety: calling `slot::InitGuard::value` is unsafe, since the `Guard` |
1246 | // value contains a pointer to the slot that may outlive the slab |
1247 | // containing that slot. Here, the `OwnedRefMut` has an `Arc` clone of |
1248 | // the shard containing that slot, which ensures that the slot will |
1249 | // not be dropped while this `Guard` exists. |
1250 | self.inner.value() |
1251 | } |
1252 | } |
1253 | } |
1254 | |
1255 | impl<T, C> std::ops::Deref for OwnedRefMut<T, C> |
1256 | where |
1257 | T: Clear + Default, |
1258 | C: cfg::Config, |
1259 | { |
1260 | type Target = T; |
1261 | |
1262 | fn deref(&self) -> &Self::Target { |
1263 | self.value() |
1264 | } |
1265 | } |
1266 | |
1267 | impl<T, C> std::ops::DerefMut for OwnedRefMut<T, C> |
1268 | where |
1269 | T: Clear + Default, |
1270 | C: cfg::Config, |
1271 | { |
1272 | fn deref_mut(&mut self) -> &mut Self::Target { |
1273 | unsafe { |
1274 | // Safety: calling `slot::InitGuard::value_mut` is unsafe, since the |
1275 | // `Guard` value contains a pointer to the slot that may outlive |
1276 | // the slab containing that slot. Here, the `OwnedRefMut` has an |
1277 | // `Arc` clone of the shard containing that slot, which ensures that |
1278 | // the slot will not be dropped while this `Guard` exists. |
1279 | self.inner.value_mut() |
1280 | } |
1281 | } |
1282 | } |
1283 | |
1284 | impl<T, C> Drop for OwnedRefMut<T, C> |
1285 | where |
1286 | T: Clear + Default, |
1287 | C: cfg::Config, |
1288 | { |
1289 | fn drop(&mut self) { |
1290 | test_println!("drop OwnedRefMut: try clearing data" ); |
1291 | let should_clear = unsafe { |
1292 | // Safety: calling `slot::Guard::release` is unsafe, since the |
1293 | // `Guard` value contains a pointer to the slot that may outlive the |
1294 | // slab containing that slot. Here, the `OwnedRefMut` owns an `Arc` |
1295 | // clone of the pool, which keeps it alive as long as the |
1296 | // `OwnedRefMut` exists. |
1297 | self.inner.release() |
1298 | }; |
1299 | if should_clear { |
1300 | if let Some(shard) = self.shard() { |
1301 | shard.clear_after_release(self.key); |
1302 | } else { |
1303 | test_println!("-> shard does not exist! THIS IS A BUG" ); |
1304 | debug_assert!(std::thread::panicking(), "[internal error] tried to drop an `OwnedRefMut` to a slot on a shard that never existed!" ); |
1305 | } |
1306 | } |
1307 | } |
1308 | } |
1309 | |
1310 | impl<T, C> fmt::Debug for OwnedRefMut<T, C> |
1311 | where |
1312 | T: fmt::Debug + Clear + Default, |
1313 | C: cfg::Config, |
1314 | { |
1315 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1316 | fmt::Debug::fmt(self.value(), f) |
1317 | } |
1318 | } |
1319 | |
1320 | impl<T, C> PartialEq<T> for OwnedRefMut<T, C> |
1321 | where |
1322 | T: PartialEq<T> + Clear + Default, |
1323 | C: cfg::Config, |
1324 | { |
1325 | fn eq(&self, other: &T) -> bool { |
1326 | *self.value() == *other |
1327 | } |
1328 | } |
1329 | |
1330 | unsafe impl<T, C> Sync for OwnedRefMut<T, C> |
1331 | where |
1332 | T: Sync + Clear + Default, |
1333 | C: cfg::Config, |
1334 | { |
1335 | } |
1336 | |
1337 | unsafe impl<T, C> Send for OwnedRefMut<T, C> |
1338 | where |
1339 | T: Sync + Clear + Default, |
1340 | C: cfg::Config, |
1341 | { |
1342 | } |
1343 | |