1 | //! A queue of delayed elements. |
2 | //! |
3 | //! See [`DelayQueue`] for more details. |
4 | //! |
5 | //! [`DelayQueue`]: struct@DelayQueue |
6 | |
7 | use crate::time::wheel::{self, Wheel}; |
8 | |
9 | use futures_core::ready; |
10 | use tokio::time::{sleep_until, Duration, Instant, Sleep}; |
11 | |
12 | use core::ops::{Index, IndexMut}; |
13 | use slab::Slab; |
14 | use std::cmp; |
15 | use std::collections::HashMap; |
16 | use std::convert::From; |
17 | use std::fmt; |
18 | use std::fmt::Debug; |
19 | use std::future::Future; |
20 | use std::marker::PhantomData; |
21 | use std::pin::Pin; |
22 | use std::task::{self, Poll, Waker}; |
23 | |
24 | /// A queue of delayed elements. |
25 | /// |
26 | /// Once an element is inserted into the `DelayQueue`, it is yielded once the |
27 | /// specified deadline has been reached. |
28 | /// |
29 | /// # Usage |
30 | /// |
31 | /// Elements are inserted into `DelayQueue` using the [`insert`] or |
32 | /// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is |
33 | /// returned. The key is used to remove the entry or to change the deadline at |
34 | /// which it should be yielded back. |
35 | /// |
36 | /// Once delays have been configured, the `DelayQueue` is used via its |
37 | /// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its |
38 | /// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the |
39 | /// current task will be notified once the deadline has been reached. |
40 | /// |
41 | /// # `Stream` implementation |
42 | /// |
43 | /// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have |
44 | /// expired, no items are returned. In this case, `Poll::Pending` is returned and the |
45 | /// current task is registered to be notified once the next item's delay has |
46 | /// expired. |
47 | /// |
48 | /// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll` |
49 | /// returns `Poll::Ready(None)`. This indicates that the stream has reached an end. |
50 | /// However, if a new item is inserted *after*, `poll` will once again start |
51 | /// returning items or `Poll::Pending`. |
52 | /// |
53 | /// Items are returned ordered by their expirations. Items that are configured |
54 | /// to expire first will be returned first. There are no ordering guarantees |
55 | /// for items configured to expire at the same instant. Also note that delays are |
56 | /// rounded to the closest millisecond. |
57 | /// |
58 | /// # Implementation |
59 | /// |
60 | /// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally |
61 | /// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same |
62 | /// performance and scalability benefits. |
63 | /// |
64 | /// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation, |
65 | /// and allows reuse of the memory allocated for expired entries. |
66 | /// |
67 | /// Capacity can be checked using [`capacity`] and allocated preemptively by using |
68 | /// the [`reserve`] method. |
69 | /// |
70 | /// # Usage |
71 | /// |
72 | /// Using `DelayQueue` to manage cache entries. |
73 | /// |
74 | /// ```rust,no_run |
75 | /// use tokio_util::time::{DelayQueue, delay_queue}; |
76 | /// |
77 | /// use futures::ready; |
78 | /// use std::collections::HashMap; |
79 | /// use std::task::{Context, Poll}; |
80 | /// use std::time::Duration; |
81 | /// # type CacheKey = String; |
82 | /// # type Value = String; |
83 | /// |
84 | /// struct Cache { |
85 | /// entries: HashMap<CacheKey, (Value, delay_queue::Key)>, |
86 | /// expirations: DelayQueue<CacheKey>, |
87 | /// } |
88 | /// |
89 | /// const TTL_SECS: u64 = 30; |
90 | /// |
91 | /// impl Cache { |
92 | /// fn insert(&mut self, key: CacheKey, value: Value) { |
93 | /// let delay = self.expirations |
94 | /// .insert(key.clone(), Duration::from_secs(TTL_SECS)); |
95 | /// |
96 | /// self.entries.insert(key, (value, delay)); |
97 | /// } |
98 | /// |
99 | /// fn get(&self, key: &CacheKey) -> Option<&Value> { |
100 | /// self.entries.get(key) |
101 | /// .map(|&(ref v, _)| v) |
102 | /// } |
103 | /// |
104 | /// fn remove(&mut self, key: &CacheKey) { |
105 | /// if let Some((_, cache_key)) = self.entries.remove(key) { |
106 | /// self.expirations.remove(&cache_key); |
107 | /// } |
108 | /// } |
109 | /// |
110 | /// fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<()> { |
111 | /// while let Some(entry) = ready!(self.expirations.poll_expired(cx)) { |
112 | /// self.entries.remove(entry.get_ref()); |
113 | /// } |
114 | /// |
115 | /// Poll::Ready(()) |
116 | /// } |
117 | /// } |
118 | /// ``` |
119 | /// |
120 | /// [`insert`]: method@Self::insert |
121 | /// [`insert_at`]: method@Self::insert_at |
122 | /// [`Key`]: struct@Key |
123 | /// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html |
124 | /// [`poll_expired`]: method@Self::poll_expired |
125 | /// [`Stream::poll_expired`]: method@Self::poll_expired |
126 | /// [`DelayQueue`]: struct@DelayQueue |
127 | /// [`sleep`]: fn@tokio::time::sleep |
128 | /// [`slab`]: slab |
129 | /// [`capacity`]: method@Self::capacity |
130 | /// [`reserve`]: method@Self::reserve |
131 | #[derive(Debug)] |
132 | pub struct DelayQueue<T> { |
133 | /// Stores data associated with entries |
134 | slab: SlabStorage<T>, |
135 | |
136 | /// Lookup structure tracking all delays in the queue |
137 | wheel: Wheel<Stack<T>>, |
138 | |
139 | /// Delays that were inserted when already expired. These cannot be stored |
140 | /// in the wheel |
141 | expired: Stack<T>, |
142 | |
143 | /// Delay expiring when the *first* item in the queue expires |
144 | delay: Option<Pin<Box<Sleep>>>, |
145 | |
146 | /// Wheel polling state |
147 | wheel_now: u64, |
148 | |
149 | /// Instant at which the timer starts |
150 | start: Instant, |
151 | |
152 | /// Waker that is invoked when we potentially need to reset the timer. |
153 | /// Because we lazily create the timer when the first entry is created, we |
154 | /// need to awaken any poller that polled us before that point. |
155 | waker: Option<Waker>, |
156 | } |
157 | |
158 | #[derive(Default)] |
159 | struct SlabStorage<T> { |
160 | inner: Slab<Data<T>>, |
161 | |
162 | // A `compact` call requires a re-mapping of the `Key`s that were changed |
163 | // during the `compact` call of the `slab`. Since the keys that were given out |
164 | // cannot be changed retroactively we need to keep track of these re-mappings. |
165 | // The keys of `key_map` correspond to the old keys that were given out and |
166 | // the values to the `Key`s that were re-mapped by the `compact` call. |
167 | key_map: HashMap<Key, KeyInternal>, |
168 | |
169 | // Index used to create new keys to hand out. |
170 | next_key_index: usize, |
171 | |
172 | // Whether `compact` has been called, necessary in order to decide whether |
173 | // to include keys in `key_map`. |
174 | compact_called: bool, |
175 | } |
176 | |
177 | impl<T> SlabStorage<T> { |
178 | pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> { |
179 | SlabStorage { |
180 | inner: Slab::with_capacity(capacity), |
181 | key_map: HashMap::new(), |
182 | next_key_index: 0, |
183 | compact_called: false, |
184 | } |
185 | } |
186 | |
187 | // Inserts data into the inner slab and re-maps keys if necessary |
188 | pub(crate) fn insert(&mut self, val: Data<T>) -> Key { |
189 | let mut key = KeyInternal::new(self.inner.insert(val)); |
190 | let key_contained = self.key_map.contains_key(&key.into()); |
191 | |
192 | if key_contained { |
193 | // It's possible that a `compact` call creates capacity in `self.inner` in |
194 | // such a way that a `self.inner.insert` call creates a `key` which was |
195 | // previously given out during an `insert` call prior to the `compact` call. |
196 | // If `key` is contained in `self.key_map`, we have encountered this exact situation, |
197 | // We need to create a new key `key_to_give_out` and include the relation |
198 | // `key_to_give_out` -> `key` in `self.key_map`. |
199 | let key_to_give_out = self.create_new_key(); |
200 | assert!(!self.key_map.contains_key(&key_to_give_out.into())); |
201 | self.key_map.insert(key_to_give_out.into(), key); |
202 | key = key_to_give_out; |
203 | } else if self.compact_called { |
204 | // Include an identity mapping in `self.key_map` in order to allow us to |
205 | // panic if a key that was handed out is removed more than once. |
206 | self.key_map.insert(key.into(), key); |
207 | } |
208 | |
209 | key.into() |
210 | } |
211 | |
212 | // Re-map the key in case compact was previously called. |
213 | // Note: Since we include identity mappings in key_map after compact was called, |
214 | // we have information about all keys that were handed out. In the case in which |
215 | // compact was called and we try to remove a Key that was previously removed |
216 | // we can detect invalid keys if no key is found in `key_map`. This is necessary |
217 | // in order to prevent situations in which a previously removed key |
218 | // corresponds to a re-mapped key internally and which would then be incorrectly |
219 | // removed from the slab. |
220 | // |
221 | // Example to illuminate this problem: |
222 | // |
223 | // Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we |
224 | // were to remove 1 again, we would not find it inside `key_map` anymore. |
225 | // If we were to imply from this that no re-mapping was necessary, we would |
226 | // incorrectly remove 1 from `self.slab.inner`, which corresponds to the |
227 | // handed-out key 2. |
228 | pub(crate) fn remove(&mut self, key: &Key) -> Data<T> { |
229 | let remapped_key = if self.compact_called { |
230 | match self.key_map.remove(key) { |
231 | Some(key_internal) => key_internal, |
232 | None => panic!("invalid key" ), |
233 | } |
234 | } else { |
235 | (*key).into() |
236 | }; |
237 | |
238 | self.inner.remove(remapped_key.index) |
239 | } |
240 | |
241 | pub(crate) fn shrink_to_fit(&mut self) { |
242 | self.inner.shrink_to_fit(); |
243 | self.key_map.shrink_to_fit(); |
244 | } |
245 | |
246 | pub(crate) fn compact(&mut self) { |
247 | if !self.compact_called { |
248 | for (key, _) in self.inner.iter() { |
249 | self.key_map.insert(Key::new(key), KeyInternal::new(key)); |
250 | } |
251 | } |
252 | |
253 | let mut remapping = HashMap::new(); |
254 | self.inner.compact(|_, from, to| { |
255 | remapping.insert(from, to); |
256 | true |
257 | }); |
258 | |
259 | // At this point `key_map` contains a mapping for every element. |
260 | for internal_key in self.key_map.values_mut() { |
261 | if let Some(new_internal_key) = remapping.get(&internal_key.index) { |
262 | *internal_key = KeyInternal::new(*new_internal_key); |
263 | } |
264 | } |
265 | |
266 | if self.key_map.capacity() > 2 * self.key_map.len() { |
267 | self.key_map.shrink_to_fit(); |
268 | } |
269 | |
270 | self.compact_called = true; |
271 | } |
272 | |
273 | // Tries to re-map a `Key` that was given out to the user to its |
274 | // corresponding internal key. |
275 | fn remap_key(&self, key: &Key) -> Option<KeyInternal> { |
276 | let key_map = &self.key_map; |
277 | if self.compact_called { |
278 | key_map.get(key).copied() |
279 | } else { |
280 | Some((*key).into()) |
281 | } |
282 | } |
283 | |
284 | fn create_new_key(&mut self) -> KeyInternal { |
285 | while self.key_map.contains_key(&Key::new(self.next_key_index)) { |
286 | self.next_key_index = self.next_key_index.wrapping_add(1); |
287 | } |
288 | |
289 | KeyInternal::new(self.next_key_index) |
290 | } |
291 | |
292 | pub(crate) fn len(&self) -> usize { |
293 | self.inner.len() |
294 | } |
295 | |
296 | pub(crate) fn capacity(&self) -> usize { |
297 | self.inner.capacity() |
298 | } |
299 | |
300 | pub(crate) fn clear(&mut self) { |
301 | self.inner.clear(); |
302 | self.key_map.clear(); |
303 | self.compact_called = false; |
304 | } |
305 | |
306 | pub(crate) fn reserve(&mut self, additional: usize) { |
307 | self.inner.reserve(additional); |
308 | |
309 | if self.compact_called { |
310 | self.key_map.reserve(additional); |
311 | } |
312 | } |
313 | |
314 | pub(crate) fn is_empty(&self) -> bool { |
315 | self.inner.is_empty() |
316 | } |
317 | |
318 | pub(crate) fn contains(&self, key: &Key) -> bool { |
319 | let remapped_key = self.remap_key(key); |
320 | |
321 | match remapped_key { |
322 | Some(internal_key) => self.inner.contains(internal_key.index), |
323 | None => false, |
324 | } |
325 | } |
326 | } |
327 | |
328 | impl<T> fmt::Debug for SlabStorage<T> |
329 | where |
330 | T: fmt::Debug, |
331 | { |
332 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
333 | if fmt.alternate() { |
334 | fmt.debug_map().entries(self.inner.iter()).finish() |
335 | } else { |
336 | fmt.debug_struct("Slab" ) |
337 | .field("len" , &self.len()) |
338 | .field("cap" , &self.capacity()) |
339 | .finish() |
340 | } |
341 | } |
342 | } |
343 | |
344 | impl<T> Index<Key> for SlabStorage<T> { |
345 | type Output = Data<T>; |
346 | |
347 | fn index(&self, key: Key) -> &Self::Output { |
348 | let remapped_key = self.remap_key(&key); |
349 | |
350 | match remapped_key { |
351 | Some(internal_key) => &self.inner[internal_key.index], |
352 | None => panic!("Invalid index {}" , key.index), |
353 | } |
354 | } |
355 | } |
356 | |
357 | impl<T> IndexMut<Key> for SlabStorage<T> { |
358 | fn index_mut(&mut self, key: Key) -> &mut Data<T> { |
359 | let remapped_key = self.remap_key(&key); |
360 | |
361 | match remapped_key { |
362 | Some(internal_key) => &mut self.inner[internal_key.index], |
363 | None => panic!("Invalid index {}" , key.index), |
364 | } |
365 | } |
366 | } |
367 | |
368 | /// An entry in `DelayQueue` that has expired and been removed. |
369 | /// |
370 | /// Values are returned by [`DelayQueue::poll_expired`]. |
371 | /// |
372 | /// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired |
373 | #[derive(Debug)] |
374 | pub struct Expired<T> { |
375 | /// The data stored in the queue |
376 | data: T, |
377 | |
378 | /// The expiration time |
379 | deadline: Instant, |
380 | |
381 | /// The key associated with the entry |
382 | key: Key, |
383 | } |
384 | |
385 | /// Token to a value stored in a `DelayQueue`. |
386 | /// |
387 | /// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`] |
388 | /// documentation for more details. |
389 | /// |
390 | /// [`DelayQueue`]: struct@DelayQueue |
391 | /// [`DelayQueue::insert`]: method@DelayQueue::insert |
392 | #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] |
393 | pub struct Key { |
394 | index: usize, |
395 | } |
396 | |
397 | // Whereas `Key` is given out to users that use `DelayQueue`, internally we use |
398 | // `KeyInternal` as the key type in order to make the logic of mapping between keys |
399 | // as a result of `compact` calls clearer. |
400 | #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] |
401 | struct KeyInternal { |
402 | index: usize, |
403 | } |
404 | |
405 | #[derive(Debug)] |
406 | struct Stack<T> { |
407 | /// Head of the stack |
408 | head: Option<Key>, |
409 | _p: PhantomData<fn() -> T>, |
410 | } |
411 | |
412 | #[derive(Debug)] |
413 | struct Data<T> { |
414 | /// The data being stored in the queue and will be returned at the requested |
415 | /// instant. |
416 | inner: T, |
417 | |
418 | /// The instant at which the item is returned. |
419 | when: u64, |
420 | |
421 | /// Set to true when stored in the `expired` queue |
422 | expired: bool, |
423 | |
424 | /// Next entry in the stack |
425 | next: Option<Key>, |
426 | |
427 | /// Previous entry in the stack |
428 | prev: Option<Key>, |
429 | } |
430 | |
431 | /// Maximum number of entries the queue can handle |
432 | const MAX_ENTRIES: usize = (1 << 30) - 1; |
433 | |
434 | impl<T> DelayQueue<T> { |
435 | /// Creates a new, empty, `DelayQueue`. |
436 | /// |
437 | /// The queue will not allocate storage until items are inserted into it. |
438 | /// |
439 | /// # Examples |
440 | /// |
441 | /// ```rust |
442 | /// # use tokio_util::time::DelayQueue; |
443 | /// let delay_queue: DelayQueue<u32> = DelayQueue::new(); |
444 | /// ``` |
445 | pub fn new() -> DelayQueue<T> { |
446 | DelayQueue::with_capacity(0) |
447 | } |
448 | |
449 | /// Creates a new, empty, `DelayQueue` with the specified capacity. |
450 | /// |
451 | /// The queue will be able to hold at least `capacity` elements without |
452 | /// reallocating. If `capacity` is 0, the queue will not allocate for |
453 | /// storage. |
454 | /// |
455 | /// # Examples |
456 | /// |
457 | /// ```rust |
458 | /// # use tokio_util::time::DelayQueue; |
459 | /// # use std::time::Duration; |
460 | /// |
461 | /// # #[tokio::main] |
462 | /// # async fn main() { |
463 | /// let mut delay_queue = DelayQueue::with_capacity(10); |
464 | /// |
465 | /// // These insertions are done without further allocation |
466 | /// for i in 0..10 { |
467 | /// delay_queue.insert(i, Duration::from_secs(i)); |
468 | /// } |
469 | /// |
470 | /// // This will make the queue allocate additional storage |
471 | /// delay_queue.insert(11, Duration::from_secs(11)); |
472 | /// # } |
473 | /// ``` |
474 | pub fn with_capacity(capacity: usize) -> DelayQueue<T> { |
475 | DelayQueue { |
476 | wheel: Wheel::new(), |
477 | slab: SlabStorage::with_capacity(capacity), |
478 | expired: Stack::default(), |
479 | delay: None, |
480 | wheel_now: 0, |
481 | start: Instant::now(), |
482 | waker: None, |
483 | } |
484 | } |
485 | |
486 | /// Inserts `value` into the queue set to expire at a specific instant in |
487 | /// time. |
488 | /// |
489 | /// This function is identical to `insert`, but takes an `Instant` instead |
490 | /// of a `Duration`. |
491 | /// |
492 | /// `value` is stored in the queue until `when` is reached. At which point, |
493 | /// `value` will be returned from [`poll_expired`]. If `when` has already been |
494 | /// reached, then `value` is immediately made available to poll. |
495 | /// |
496 | /// The return value represents the insertion and is used as an argument to |
497 | /// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once |
498 | /// `value` is removed from the queue either by calling [`poll_expired`] after |
499 | /// `when` is reached or by calling [`remove`]. At this point, the caller |
500 | /// must take care to not use the returned [`Key`] again as it may reference |
501 | /// a different item in the queue. |
502 | /// |
503 | /// See [type] level documentation for more details. |
504 | /// |
505 | /// # Panics |
506 | /// |
507 | /// This function panics if `when` is too far in the future. |
508 | /// |
509 | /// # Examples |
510 | /// |
511 | /// Basic usage |
512 | /// |
513 | /// ```rust |
514 | /// use tokio::time::{Duration, Instant}; |
515 | /// use tokio_util::time::DelayQueue; |
516 | /// |
517 | /// # #[tokio::main] |
518 | /// # async fn main() { |
519 | /// let mut delay_queue = DelayQueue::new(); |
520 | /// let key = delay_queue.insert_at( |
521 | /// "foo" , Instant::now() + Duration::from_secs(5)); |
522 | /// |
523 | /// // Remove the entry |
524 | /// let item = delay_queue.remove(&key); |
525 | /// assert_eq!(*item.get_ref(), "foo" ); |
526 | /// # } |
527 | /// ``` |
528 | /// |
529 | /// [`poll_expired`]: method@Self::poll_expired |
530 | /// [`remove`]: method@Self::remove |
531 | /// [`reset`]: method@Self::reset |
532 | /// [`Key`]: struct@Key |
533 | /// [type]: # |
534 | #[track_caller ] |
535 | pub fn insert_at(&mut self, value: T, when: Instant) -> Key { |
536 | assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded" ); |
537 | |
538 | // Normalize the deadline. Values cannot be set to expire in the past. |
539 | let when = self.normalize_deadline(when); |
540 | |
541 | // Insert the value in the store |
542 | let key = self.slab.insert(Data { |
543 | inner: value, |
544 | when, |
545 | expired: false, |
546 | next: None, |
547 | prev: None, |
548 | }); |
549 | |
550 | self.insert_idx(when, key); |
551 | |
552 | // Set a new delay if the current's deadline is later than the one of the new item |
553 | let should_set_delay = if let Some(ref delay) = self.delay { |
554 | let current_exp = self.normalize_deadline(delay.deadline()); |
555 | current_exp > when |
556 | } else { |
557 | true |
558 | }; |
559 | |
560 | if should_set_delay { |
561 | if let Some(waker) = self.waker.take() { |
562 | waker.wake(); |
563 | } |
564 | |
565 | let delay_time = self.start + Duration::from_millis(when); |
566 | if let Some(ref mut delay) = &mut self.delay { |
567 | delay.as_mut().reset(delay_time); |
568 | } else { |
569 | self.delay = Some(Box::pin(sleep_until(delay_time))); |
570 | } |
571 | } |
572 | |
573 | key |
574 | } |
575 | |
576 | /// Attempts to pull out the next value of the delay queue, registering the |
577 | /// current task for wakeup if the value is not yet available, and returning |
578 | /// `None` if the queue is exhausted. |
579 | pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>> { |
580 | if !self |
581 | .waker |
582 | .as_ref() |
583 | .map(|w| w.will_wake(cx.waker())) |
584 | .unwrap_or(false) |
585 | { |
586 | self.waker = Some(cx.waker().clone()); |
587 | } |
588 | |
589 | let item = ready!(self.poll_idx(cx)); |
590 | Poll::Ready(item.map(|key| { |
591 | let data = self.slab.remove(&key); |
592 | debug_assert!(data.next.is_none()); |
593 | debug_assert!(data.prev.is_none()); |
594 | |
595 | Expired { |
596 | key, |
597 | data: data.inner, |
598 | deadline: self.start + Duration::from_millis(data.when), |
599 | } |
600 | })) |
601 | } |
602 | |
603 | /// Inserts `value` into the queue set to expire after the requested duration |
604 | /// elapses. |
605 | /// |
606 | /// This function is identical to `insert_at`, but takes a `Duration` |
607 | /// instead of an `Instant`. |
608 | /// |
609 | /// `value` is stored in the queue until `timeout` duration has |
610 | /// elapsed after `insert` was called. At that point, `value` will |
611 | /// be returned from [`poll_expired`]. If `timeout` is a `Duration` of |
612 | /// zero, then `value` is immediately made available to poll. |
613 | /// |
614 | /// The return value represents the insertion and is used as an |
615 | /// argument to [`remove`] and [`reset`]. Note that [`Key`] is a |
616 | /// token and is reused once `value` is removed from the queue |
617 | /// either by calling [`poll_expired`] after `timeout` has elapsed |
618 | /// or by calling [`remove`]. At this point, the caller must not |
619 | /// use the returned [`Key`] again as it may reference a different |
620 | /// item in the queue. |
621 | /// |
622 | /// See [type] level documentation for more details. |
623 | /// |
624 | /// # Panics |
625 | /// |
626 | /// This function panics if `timeout` is greater than the maximum |
627 | /// duration supported by the timer in the current `Runtime`. |
628 | /// |
629 | /// # Examples |
630 | /// |
631 | /// Basic usage |
632 | /// |
633 | /// ```rust |
634 | /// use tokio_util::time::DelayQueue; |
635 | /// use std::time::Duration; |
636 | /// |
637 | /// # #[tokio::main] |
638 | /// # async fn main() { |
639 | /// let mut delay_queue = DelayQueue::new(); |
640 | /// let key = delay_queue.insert("foo" , Duration::from_secs(5)); |
641 | /// |
642 | /// // Remove the entry |
643 | /// let item = delay_queue.remove(&key); |
644 | /// assert_eq!(*item.get_ref(), "foo" ); |
645 | /// # } |
646 | /// ``` |
647 | /// |
648 | /// [`poll_expired`]: method@Self::poll_expired |
649 | /// [`remove`]: method@Self::remove |
650 | /// [`reset`]: method@Self::reset |
651 | /// [`Key`]: struct@Key |
652 | /// [type]: # |
653 | #[track_caller ] |
654 | pub fn insert(&mut self, value: T, timeout: Duration) -> Key { |
655 | self.insert_at(value, Instant::now() + timeout) |
656 | } |
657 | |
658 | #[track_caller ] |
659 | fn insert_idx(&mut self, when: u64, key: Key) { |
660 | use self::wheel::{InsertError, Stack}; |
661 | |
662 | // Register the deadline with the timer wheel |
663 | match self.wheel.insert(when, key, &mut self.slab) { |
664 | Ok(_) => {} |
665 | Err((_, InsertError::Elapsed)) => { |
666 | self.slab[key].expired = true; |
667 | // The delay is already expired, store it in the expired queue |
668 | self.expired.push(key, &mut self.slab); |
669 | } |
670 | Err((_, err)) => panic!("invalid deadline; err={:?}" , err), |
671 | } |
672 | } |
673 | |
674 | /// Returns the deadline of the item associated with `key`. |
675 | /// |
676 | /// Since the queue operates at millisecond granularity, the returned |
677 | /// deadline may not exactly match the value that was given when initially |
678 | /// inserting the item into the queue. |
679 | /// |
680 | /// # Panics |
681 | /// |
682 | /// This function panics if `key` is not contained by the queue. |
683 | /// |
684 | /// # Examples |
685 | /// |
686 | /// Basic usage |
687 | /// |
688 | /// ```rust |
689 | /// use tokio_util::time::DelayQueue; |
690 | /// use std::time::Duration; |
691 | /// |
692 | /// # #[tokio::main] |
693 | /// # async fn main() { |
694 | /// let mut delay_queue = DelayQueue::new(); |
695 | /// |
696 | /// let key1 = delay_queue.insert("foo" , Duration::from_secs(5)); |
697 | /// let key2 = delay_queue.insert("bar" , Duration::from_secs(10)); |
698 | /// |
699 | /// assert!(delay_queue.deadline(&key1) < delay_queue.deadline(&key2)); |
700 | /// # } |
701 | /// ``` |
702 | #[track_caller ] |
703 | pub fn deadline(&self, key: &Key) -> Instant { |
704 | self.start + Duration::from_millis(self.slab[*key].when) |
705 | } |
706 | |
707 | /// Removes the key from the expired queue or the timer wheel |
708 | /// depending on its expiration status. |
709 | /// |
710 | /// # Panics |
711 | /// |
712 | /// Panics if the key is not contained in the expired queue or the wheel. |
713 | #[track_caller ] |
714 | fn remove_key(&mut self, key: &Key) { |
715 | use crate::time::wheel::Stack; |
716 | |
717 | // Special case the `expired` queue |
718 | if self.slab[*key].expired { |
719 | self.expired.remove(key, &mut self.slab); |
720 | } else { |
721 | self.wheel.remove(key, &mut self.slab); |
722 | } |
723 | } |
724 | |
725 | /// Removes the item associated with `key` from the queue. |
726 | /// |
727 | /// There must be an item associated with `key`. The function returns the |
728 | /// removed item as well as the `Instant` at which it will the delay will |
729 | /// have expired. |
730 | /// |
731 | /// # Panics |
732 | /// |
733 | /// The function panics if `key` is not contained by the queue. |
734 | /// |
735 | /// # Examples |
736 | /// |
737 | /// Basic usage |
738 | /// |
739 | /// ```rust |
740 | /// use tokio_util::time::DelayQueue; |
741 | /// use std::time::Duration; |
742 | /// |
743 | /// # #[tokio::main] |
744 | /// # async fn main() { |
745 | /// let mut delay_queue = DelayQueue::new(); |
746 | /// let key = delay_queue.insert("foo" , Duration::from_secs(5)); |
747 | /// |
748 | /// // Remove the entry |
749 | /// let item = delay_queue.remove(&key); |
750 | /// assert_eq!(*item.get_ref(), "foo" ); |
751 | /// # } |
752 | /// ``` |
753 | #[track_caller ] |
754 | pub fn remove(&mut self, key: &Key) -> Expired<T> { |
755 | let prev_deadline = self.next_deadline(); |
756 | |
757 | self.remove_key(key); |
758 | let data = self.slab.remove(key); |
759 | |
760 | let next_deadline = self.next_deadline(); |
761 | if prev_deadline != next_deadline { |
762 | match (next_deadline, &mut self.delay) { |
763 | (None, _) => self.delay = None, |
764 | (Some(deadline), Some(delay)) => delay.as_mut().reset(deadline), |
765 | (Some(deadline), None) => self.delay = Some(Box::pin(sleep_until(deadline))), |
766 | } |
767 | } |
768 | |
769 | Expired { |
770 | key: Key::new(key.index), |
771 | data: data.inner, |
772 | deadline: self.start + Duration::from_millis(data.when), |
773 | } |
774 | } |
775 | |
776 | /// Attempts to remove the item associated with `key` from the queue. |
777 | /// |
778 | /// Removes the item associated with `key`, and returns it along with the |
779 | /// `Instant` at which it would have expired, if it exists. |
780 | /// |
781 | /// Returns `None` if `key` is not in the queue. |
782 | /// |
783 | /// # Examples |
784 | /// |
785 | /// Basic usage |
786 | /// |
787 | /// ```rust |
788 | /// use tokio_util::time::DelayQueue; |
789 | /// use std::time::Duration; |
790 | /// |
791 | /// # #[tokio::main(flavor = "current_thread" )] |
792 | /// # async fn main() { |
793 | /// let mut delay_queue = DelayQueue::new(); |
794 | /// let key = delay_queue.insert("foo" , Duration::from_secs(5)); |
795 | /// |
796 | /// // The item is in the queue, `try_remove` returns `Some(Expired("foo"))`. |
797 | /// let item = delay_queue.try_remove(&key); |
798 | /// assert_eq!(item.unwrap().into_inner(), "foo" ); |
799 | /// |
800 | /// // The item is not in the queue anymore, `try_remove` returns `None`. |
801 | /// let item = delay_queue.try_remove(&key); |
802 | /// assert!(item.is_none()); |
803 | /// # } |
804 | /// ``` |
805 | pub fn try_remove(&mut self, key: &Key) -> Option<Expired<T>> { |
806 | if self.slab.contains(key) { |
807 | Some(self.remove(key)) |
808 | } else { |
809 | None |
810 | } |
811 | } |
812 | |
813 | /// Sets the delay of the item associated with `key` to expire at `when`. |
814 | /// |
815 | /// This function is identical to `reset` but takes an `Instant` instead of |
816 | /// a `Duration`. |
817 | /// |
818 | /// The item remains in the queue but the delay is set to expire at `when`. |
819 | /// If `when` is in the past, then the item is immediately made available to |
820 | /// the caller. |
821 | /// |
822 | /// # Panics |
823 | /// |
824 | /// This function panics if `when` is too far in the future or if `key` is |
825 | /// not contained by the queue. |
826 | /// |
827 | /// # Examples |
828 | /// |
829 | /// Basic usage |
830 | /// |
831 | /// ```rust |
832 | /// use tokio::time::{Duration, Instant}; |
833 | /// use tokio_util::time::DelayQueue; |
834 | /// |
835 | /// # #[tokio::main] |
836 | /// # async fn main() { |
837 | /// let mut delay_queue = DelayQueue::new(); |
838 | /// let key = delay_queue.insert("foo" , Duration::from_secs(5)); |
839 | /// |
840 | /// // "foo" is scheduled to be returned in 5 seconds |
841 | /// |
842 | /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10)); |
843 | /// |
844 | /// // "foo" is now scheduled to be returned in 10 seconds |
845 | /// # } |
846 | /// ``` |
847 | #[track_caller ] |
848 | pub fn reset_at(&mut self, key: &Key, when: Instant) { |
849 | self.remove_key(key); |
850 | |
851 | // Normalize the deadline. Values cannot be set to expire in the past. |
852 | let when = self.normalize_deadline(when); |
853 | |
854 | self.slab[*key].when = when; |
855 | self.slab[*key].expired = false; |
856 | |
857 | self.insert_idx(when, *key); |
858 | |
859 | let next_deadline = self.next_deadline(); |
860 | if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) { |
861 | // This should awaken us if necessary (ie, if already expired) |
862 | delay.as_mut().reset(deadline); |
863 | } |
864 | } |
865 | |
866 | /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation. |
867 | /// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab |
868 | /// to the number of elements still contained in it, because elements cannot be moved to a different |
869 | /// index. To decrease the capacity to the size of the slab use [`compact`]. |
870 | /// |
871 | /// This function can take O(n) time even when the capacity cannot be reduced or the allocation is |
872 | /// shrunk in place. Repeated calls run in O(1) though. |
873 | /// |
874 | /// [`compact`]: method@Self::compact |
875 | pub fn shrink_to_fit(&mut self) { |
876 | self.slab.shrink_to_fit(); |
877 | } |
878 | |
879 | /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation, |
880 | /// to the number of elements that are contained in it. |
881 | /// |
882 | /// This methods runs in O(n). |
883 | /// |
884 | /// # Examples |
885 | /// |
886 | /// Basic usage |
887 | /// |
888 | /// ```rust |
889 | /// use tokio_util::time::DelayQueue; |
890 | /// use std::time::Duration; |
891 | /// |
892 | /// # #[tokio::main] |
893 | /// # async fn main() { |
894 | /// let mut delay_queue = DelayQueue::with_capacity(10); |
895 | /// |
896 | /// let key1 = delay_queue.insert(5, Duration::from_secs(5)); |
897 | /// let key2 = delay_queue.insert(10, Duration::from_secs(10)); |
898 | /// let key3 = delay_queue.insert(15, Duration::from_secs(15)); |
899 | /// |
900 | /// delay_queue.remove(&key2); |
901 | /// |
902 | /// delay_queue.compact(); |
903 | /// assert_eq!(delay_queue.capacity(), 2); |
904 | /// # } |
905 | /// ``` |
906 | pub fn compact(&mut self) { |
907 | self.slab.compact(); |
908 | } |
909 | |
910 | /// Gets the [`Key`] that [`poll_expired`] will pull out of the queue next, without |
911 | /// pulling it out or waiting for the deadline to expire. |
912 | /// |
913 | /// Entries that have already expired may be returned in any order, but it is |
914 | /// guaranteed that this method returns them in the same order as when items |
915 | /// are popped from the `DelayQueue`. |
916 | /// |
917 | /// # Examples |
918 | /// |
919 | /// Basic usage |
920 | /// |
921 | /// ```rust |
922 | /// use tokio_util::time::DelayQueue; |
923 | /// use std::time::Duration; |
924 | /// |
925 | /// # #[tokio::main] |
926 | /// # async fn main() { |
927 | /// let mut delay_queue = DelayQueue::new(); |
928 | /// |
929 | /// let key1 = delay_queue.insert("foo" , Duration::from_secs(10)); |
930 | /// let key2 = delay_queue.insert("bar" , Duration::from_secs(5)); |
931 | /// let key3 = delay_queue.insert("baz" , Duration::from_secs(15)); |
932 | /// |
933 | /// assert_eq!(delay_queue.peek().unwrap(), key2); |
934 | /// # } |
935 | /// ``` |
936 | /// |
937 | /// [`Key`]: struct@Key |
938 | /// [`poll_expired`]: method@Self::poll_expired |
939 | pub fn peek(&self) -> Option<Key> { |
940 | use self::wheel::Stack; |
941 | |
942 | self.expired.peek().or_else(|| self.wheel.peek()) |
943 | } |
944 | |
945 | /// Returns the next time to poll as determined by the wheel. |
946 | /// |
947 | /// Note that this does not include deadlines in the `expired` queue. |
948 | fn next_deadline(&self) -> Option<Instant> { |
949 | self.wheel |
950 | .poll_at() |
951 | .map(|poll_at| self.start + Duration::from_millis(poll_at)) |
952 | } |
953 | |
954 | /// Sets the delay of the item associated with `key` to expire after |
955 | /// `timeout`. |
956 | /// |
957 | /// This function is identical to `reset_at` but takes a `Duration` instead |
958 | /// of an `Instant`. |
959 | /// |
960 | /// The item remains in the queue but the delay is set to expire after |
961 | /// `timeout`. If `timeout` is zero, then the item is immediately made |
962 | /// available to the caller. |
963 | /// |
964 | /// # Panics |
965 | /// |
966 | /// This function panics if `timeout` is greater than the maximum supported |
967 | /// duration or if `key` is not contained by the queue. |
968 | /// |
969 | /// # Examples |
970 | /// |
971 | /// Basic usage |
972 | /// |
973 | /// ```rust |
974 | /// use tokio_util::time::DelayQueue; |
975 | /// use std::time::Duration; |
976 | /// |
977 | /// # #[tokio::main] |
978 | /// # async fn main() { |
979 | /// let mut delay_queue = DelayQueue::new(); |
980 | /// let key = delay_queue.insert("foo" , Duration::from_secs(5)); |
981 | /// |
982 | /// // "foo" is scheduled to be returned in 5 seconds |
983 | /// |
984 | /// delay_queue.reset(&key, Duration::from_secs(10)); |
985 | /// |
986 | /// // "foo"is now scheduled to be returned in 10 seconds |
987 | /// # } |
988 | /// ``` |
989 | #[track_caller ] |
990 | pub fn reset(&mut self, key: &Key, timeout: Duration) { |
991 | self.reset_at(key, Instant::now() + timeout); |
992 | } |
993 | |
994 | /// Clears the queue, removing all items. |
995 | /// |
996 | /// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`. |
997 | /// |
998 | /// Note that this method has no effect on the allocated capacity. |
999 | /// |
1000 | /// [`poll_expired`]: method@Self::poll_expired |
1001 | /// |
1002 | /// # Examples |
1003 | /// |
1004 | /// ```rust |
1005 | /// use tokio_util::time::DelayQueue; |
1006 | /// use std::time::Duration; |
1007 | /// |
1008 | /// # #[tokio::main] |
1009 | /// # async fn main() { |
1010 | /// let mut delay_queue = DelayQueue::new(); |
1011 | /// |
1012 | /// delay_queue.insert("foo" , Duration::from_secs(5)); |
1013 | /// |
1014 | /// assert!(!delay_queue.is_empty()); |
1015 | /// |
1016 | /// delay_queue.clear(); |
1017 | /// |
1018 | /// assert!(delay_queue.is_empty()); |
1019 | /// # } |
1020 | /// ``` |
1021 | pub fn clear(&mut self) { |
1022 | self.slab.clear(); |
1023 | self.expired = Stack::default(); |
1024 | self.wheel = Wheel::new(); |
1025 | self.delay = None; |
1026 | } |
1027 | |
1028 | /// Returns the number of elements the queue can hold without reallocating. |
1029 | /// |
1030 | /// # Examples |
1031 | /// |
1032 | /// ```rust |
1033 | /// use tokio_util::time::DelayQueue; |
1034 | /// |
1035 | /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10); |
1036 | /// assert_eq!(delay_queue.capacity(), 10); |
1037 | /// ``` |
1038 | pub fn capacity(&self) -> usize { |
1039 | self.slab.capacity() |
1040 | } |
1041 | |
1042 | /// Returns the number of elements currently in the queue. |
1043 | /// |
1044 | /// # Examples |
1045 | /// |
1046 | /// ```rust |
1047 | /// use tokio_util::time::DelayQueue; |
1048 | /// use std::time::Duration; |
1049 | /// |
1050 | /// # #[tokio::main] |
1051 | /// # async fn main() { |
1052 | /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10); |
1053 | /// assert_eq!(delay_queue.len(), 0); |
1054 | /// delay_queue.insert(3, Duration::from_secs(5)); |
1055 | /// assert_eq!(delay_queue.len(), 1); |
1056 | /// # } |
1057 | /// ``` |
1058 | pub fn len(&self) -> usize { |
1059 | self.slab.len() |
1060 | } |
1061 | |
1062 | /// Reserves capacity for at least `additional` more items to be queued |
1063 | /// without allocating. |
1064 | /// |
1065 | /// `reserve` does nothing if the queue already has sufficient capacity for |
1066 | /// `additional` more values. If more capacity is required, a new segment of |
1067 | /// memory will be allocated and all existing values will be copied into it. |
1068 | /// As such, if the queue is already very large, a call to `reserve` can end |
1069 | /// up being expensive. |
1070 | /// |
1071 | /// The queue may reserve more than `additional` extra space in order to |
1072 | /// avoid frequent reallocations. |
1073 | /// |
1074 | /// # Panics |
1075 | /// |
1076 | /// Panics if the new capacity exceeds the maximum number of entries the |
1077 | /// queue can contain. |
1078 | /// |
1079 | /// # Examples |
1080 | /// |
1081 | /// ``` |
1082 | /// use tokio_util::time::DelayQueue; |
1083 | /// use std::time::Duration; |
1084 | /// |
1085 | /// # #[tokio::main] |
1086 | /// # async fn main() { |
1087 | /// let mut delay_queue = DelayQueue::new(); |
1088 | /// |
1089 | /// delay_queue.insert("hello" , Duration::from_secs(10)); |
1090 | /// delay_queue.reserve(10); |
1091 | /// |
1092 | /// assert!(delay_queue.capacity() >= 11); |
1093 | /// # } |
1094 | /// ``` |
1095 | #[track_caller ] |
1096 | pub fn reserve(&mut self, additional: usize) { |
1097 | assert!( |
1098 | self.slab.capacity() + additional <= MAX_ENTRIES, |
1099 | "max queue capacity exceeded" |
1100 | ); |
1101 | self.slab.reserve(additional); |
1102 | } |
1103 | |
1104 | /// Returns `true` if there are no items in the queue. |
1105 | /// |
1106 | /// Note that this function returns `false` even if all items have not yet |
1107 | /// expired and a call to `poll` will return `Poll::Pending`. |
1108 | /// |
1109 | /// # Examples |
1110 | /// |
1111 | /// ``` |
1112 | /// use tokio_util::time::DelayQueue; |
1113 | /// use std::time::Duration; |
1114 | /// |
1115 | /// # #[tokio::main] |
1116 | /// # async fn main() { |
1117 | /// let mut delay_queue = DelayQueue::new(); |
1118 | /// assert!(delay_queue.is_empty()); |
1119 | /// |
1120 | /// delay_queue.insert("hello" , Duration::from_secs(5)); |
1121 | /// assert!(!delay_queue.is_empty()); |
1122 | /// # } |
1123 | /// ``` |
1124 | pub fn is_empty(&self) -> bool { |
1125 | self.slab.is_empty() |
1126 | } |
1127 | |
1128 | /// Polls the queue, returning the index of the next slot in the slab that |
1129 | /// should be returned. |
1130 | /// |
1131 | /// A slot should be returned when the associated deadline has been reached. |
1132 | fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> { |
1133 | use self::wheel::Stack; |
1134 | |
1135 | let expired = self.expired.pop(&mut self.slab); |
1136 | |
1137 | if expired.is_some() { |
1138 | return Poll::Ready(expired); |
1139 | } |
1140 | |
1141 | loop { |
1142 | if let Some(ref mut delay) = self.delay { |
1143 | if !delay.is_elapsed() { |
1144 | ready!(Pin::new(&mut *delay).poll(cx)); |
1145 | } |
1146 | |
1147 | let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down); |
1148 | |
1149 | self.wheel_now = now; |
1150 | } |
1151 | |
1152 | // We poll the wheel to get the next value out before finding the next deadline. |
1153 | let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab); |
1154 | |
1155 | self.delay = self.next_deadline().map(|when| Box::pin(sleep_until(when))); |
1156 | |
1157 | if let Some(idx) = wheel_idx { |
1158 | return Poll::Ready(Some(idx)); |
1159 | } |
1160 | |
1161 | if self.delay.is_none() { |
1162 | return Poll::Ready(None); |
1163 | } |
1164 | } |
1165 | } |
1166 | |
1167 | fn normalize_deadline(&self, when: Instant) -> u64 { |
1168 | let when = if when < self.start { |
1169 | 0 |
1170 | } else { |
1171 | crate::time::ms(when - self.start, crate::time::Round::Up) |
1172 | }; |
1173 | |
1174 | cmp::max(when, self.wheel.elapsed()) |
1175 | } |
1176 | } |
1177 | |
1178 | // We never put `T` in a `Pin`... |
1179 | impl<T> Unpin for DelayQueue<T> {} |
1180 | |
1181 | impl<T> Default for DelayQueue<T> { |
1182 | fn default() -> DelayQueue<T> { |
1183 | DelayQueue::new() |
1184 | } |
1185 | } |
1186 | |
1187 | impl<T> futures_core::Stream for DelayQueue<T> { |
1188 | // DelayQueue seems much more specific, where a user may care that it |
1189 | // has reached capacity, so return those errors instead of panicking. |
1190 | type Item = Expired<T>; |
1191 | |
1192 | fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> { |
1193 | DelayQueue::poll_expired(self.get_mut(), cx) |
1194 | } |
1195 | } |
1196 | |
1197 | impl<T> wheel::Stack for Stack<T> { |
1198 | type Owned = Key; |
1199 | type Borrowed = Key; |
1200 | type Store = SlabStorage<T>; |
1201 | |
1202 | fn is_empty(&self) -> bool { |
1203 | self.head.is_none() |
1204 | } |
1205 | |
1206 | fn push(&mut self, item: Self::Owned, store: &mut Self::Store) { |
1207 | // Ensure the entry is not already in a stack. |
1208 | debug_assert!(store[item].next.is_none()); |
1209 | debug_assert!(store[item].prev.is_none()); |
1210 | |
1211 | // Remove the old head entry |
1212 | let old = self.head.take(); |
1213 | |
1214 | if let Some(idx) = old { |
1215 | store[idx].prev = Some(item); |
1216 | } |
1217 | |
1218 | store[item].next = old; |
1219 | self.head = Some(item); |
1220 | } |
1221 | |
1222 | fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> { |
1223 | if let Some(key) = self.head { |
1224 | self.head = store[key].next; |
1225 | |
1226 | if let Some(idx) = self.head { |
1227 | store[idx].prev = None; |
1228 | } |
1229 | |
1230 | store[key].next = None; |
1231 | debug_assert!(store[key].prev.is_none()); |
1232 | |
1233 | Some(key) |
1234 | } else { |
1235 | None |
1236 | } |
1237 | } |
1238 | |
1239 | fn peek(&self) -> Option<Self::Owned> { |
1240 | self.head |
1241 | } |
1242 | |
1243 | #[track_caller ] |
1244 | fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) { |
1245 | let key = *item; |
1246 | assert!(store.contains(item)); |
1247 | |
1248 | // Ensure that the entry is in fact contained by the stack |
1249 | debug_assert!({ |
1250 | // This walks the full linked list even if an entry is found. |
1251 | let mut next = self.head; |
1252 | let mut contains = false; |
1253 | |
1254 | while let Some(idx) = next { |
1255 | let data = &store[idx]; |
1256 | |
1257 | if idx == *item { |
1258 | debug_assert!(!contains); |
1259 | contains = true; |
1260 | } |
1261 | |
1262 | next = data.next; |
1263 | } |
1264 | |
1265 | contains |
1266 | }); |
1267 | |
1268 | if let Some(next) = store[key].next { |
1269 | store[next].prev = store[key].prev; |
1270 | } |
1271 | |
1272 | if let Some(prev) = store[key].prev { |
1273 | store[prev].next = store[key].next; |
1274 | } else { |
1275 | self.head = store[key].next; |
1276 | } |
1277 | |
1278 | store[key].next = None; |
1279 | store[key].prev = None; |
1280 | } |
1281 | |
1282 | fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 { |
1283 | store[*item].when |
1284 | } |
1285 | } |
1286 | |
1287 | impl<T> Default for Stack<T> { |
1288 | fn default() -> Stack<T> { |
1289 | Stack { |
1290 | head: None, |
1291 | _p: PhantomData, |
1292 | } |
1293 | } |
1294 | } |
1295 | |
1296 | impl Key { |
1297 | pub(crate) fn new(index: usize) -> Key { |
1298 | Key { index } |
1299 | } |
1300 | } |
1301 | |
1302 | impl KeyInternal { |
1303 | pub(crate) fn new(index: usize) -> KeyInternal { |
1304 | KeyInternal { index } |
1305 | } |
1306 | } |
1307 | |
1308 | impl From<Key> for KeyInternal { |
1309 | fn from(item: Key) -> Self { |
1310 | KeyInternal::new(item.index) |
1311 | } |
1312 | } |
1313 | |
1314 | impl From<KeyInternal> for Key { |
1315 | fn from(item: KeyInternal) -> Self { |
1316 | Key::new(item.index) |
1317 | } |
1318 | } |
1319 | |
1320 | impl<T> Expired<T> { |
1321 | /// Returns a reference to the inner value. |
1322 | pub fn get_ref(&self) -> &T { |
1323 | &self.data |
1324 | } |
1325 | |
1326 | /// Returns a mutable reference to the inner value. |
1327 | pub fn get_mut(&mut self) -> &mut T { |
1328 | &mut self.data |
1329 | } |
1330 | |
1331 | /// Consumes `self` and returns the inner value. |
1332 | pub fn into_inner(self) -> T { |
1333 | self.data |
1334 | } |
1335 | |
1336 | /// Returns the deadline that the expiration was set to. |
1337 | pub fn deadline(&self) -> Instant { |
1338 | self.deadline |
1339 | } |
1340 | |
1341 | /// Returns the key that the expiration is indexed by. |
1342 | pub fn key(&self) -> Key { |
1343 | self.key |
1344 | } |
1345 | } |
1346 | |