| 1 | //===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements the APSInt class, which is a simple class that |
| 11 | /// represents an arbitrary sized integer that knows its signedness. |
| 12 | /// |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_ADT_APSINT_H |
| 16 | #define LLVM_ADT_APSINT_H |
| 17 | |
| 18 | #include "llvm/ADT/APInt.h" |
| 19 | |
| 20 | namespace llvm { |
| 21 | |
| 22 | /// An arbitrary precision integer that knows its signedness. |
| 23 | class [[nodiscard]] APSInt : public APInt { |
| 24 | bool IsUnsigned = false; |
| 25 | |
| 26 | public: |
| 27 | /// Default constructor that creates an uninitialized APInt. |
| 28 | explicit APSInt() = default; |
| 29 | |
| 30 | /// Create an APSInt with the specified width, default to unsigned. |
| 31 | explicit APSInt(uint32_t BitWidth, bool isUnsigned = true) |
| 32 | : APInt(BitWidth, 0), IsUnsigned(isUnsigned) {} |
| 33 | |
| 34 | explicit APSInt(APInt I, bool isUnsigned = true) |
| 35 | : APInt(std::move(I)), IsUnsigned(isUnsigned) {} |
| 36 | |
| 37 | /// Construct an APSInt from a string representation. |
| 38 | /// |
| 39 | /// This constructor interprets the string \p Str using the radix of 10. |
| 40 | /// The interpretation stops at the end of the string. The bit width of the |
| 41 | /// constructed APSInt is determined automatically. |
| 42 | /// |
| 43 | /// \param Str the string to be interpreted. |
| 44 | explicit APSInt(StringRef Str); |
| 45 | |
| 46 | /// Determine sign of this APSInt. |
| 47 | /// |
| 48 | /// \returns true if this APSInt is negative, false otherwise |
| 49 | bool isNegative() const { return isSigned() && APInt::isNegative(); } |
| 50 | |
| 51 | /// Determine if this APSInt Value is non-negative (>= 0) |
| 52 | /// |
| 53 | /// \returns true if this APSInt is non-negative, false otherwise |
| 54 | bool isNonNegative() const { return !isNegative(); } |
| 55 | |
| 56 | /// Determine if this APSInt Value is positive. |
| 57 | /// |
| 58 | /// This tests if the value of this APSInt is positive (> 0). Note |
| 59 | /// that 0 is not a positive value. |
| 60 | /// |
| 61 | /// \returns true if this APSInt is positive. |
| 62 | bool isStrictlyPositive() const { return isNonNegative() && !isZero(); } |
| 63 | |
| 64 | APSInt &operator=(APInt RHS) { |
| 65 | // Retain our current sign. |
| 66 | APInt::operator=(that: std::move(RHS)); |
| 67 | return *this; |
| 68 | } |
| 69 | |
| 70 | APSInt &operator=(uint64_t RHS) { |
| 71 | // Retain our current sign. |
| 72 | APInt::operator=(RHS); |
| 73 | return *this; |
| 74 | } |
| 75 | |
| 76 | // Query sign information. |
| 77 | bool isSigned() const { return !IsUnsigned; } |
| 78 | bool isUnsigned() const { return IsUnsigned; } |
| 79 | void setIsUnsigned(bool Val) { IsUnsigned = Val; } |
| 80 | void setIsSigned(bool Val) { IsUnsigned = !Val; } |
| 81 | |
| 82 | /// Append this APSInt to the specified SmallString. |
| 83 | void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
| 84 | APInt::toString(Str, Radix, Signed: isSigned()); |
| 85 | } |
| 86 | using APInt::toString; |
| 87 | |
| 88 | /// If this int is representable using an int64_t. |
| 89 | bool isRepresentableByInt64() const { |
| 90 | // For unsigned values with 64 active bits, they technically fit into a |
| 91 | // int64_t, but the user may get negative numbers and has to manually cast |
| 92 | // them to unsigned. Let's not bet the user has the sanity to do that and |
| 93 | // not give them a vague value at the first place. |
| 94 | return isSigned() ? isSignedIntN(N: 64) : isIntN(N: 63); |
| 95 | } |
| 96 | |
| 97 | /// Get the correctly-extended \c int64_t value. |
| 98 | int64_t getExtValue() const { |
| 99 | assert(isRepresentableByInt64() && "Too many bits for int64_t" ); |
| 100 | return isSigned() ? getSExtValue() : getZExtValue(); |
| 101 | } |
| 102 | |
| 103 | std::optional<int64_t> tryExtValue() const { |
| 104 | return isRepresentableByInt64() ? std::optional<int64_t>(getExtValue()) |
| 105 | : std::nullopt; |
| 106 | } |
| 107 | |
| 108 | APSInt trunc(uint32_t width) const { |
| 109 | return APSInt(APInt::trunc(width), IsUnsigned); |
| 110 | } |
| 111 | |
| 112 | APSInt extend(uint32_t width) const { |
| 113 | if (IsUnsigned) |
| 114 | return APSInt(zext(width), IsUnsigned); |
| 115 | else |
| 116 | return APSInt(sext(width), IsUnsigned); |
| 117 | } |
| 118 | |
| 119 | APSInt extOrTrunc(uint32_t width) const { |
| 120 | if (IsUnsigned) |
| 121 | return APSInt(zextOrTrunc(width), IsUnsigned); |
| 122 | else |
| 123 | return APSInt(sextOrTrunc(width), IsUnsigned); |
| 124 | } |
| 125 | |
| 126 | const APSInt &operator%=(const APSInt &RHS) { |
| 127 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 128 | if (IsUnsigned) |
| 129 | *this = urem(RHS); |
| 130 | else |
| 131 | *this = srem(RHS); |
| 132 | return *this; |
| 133 | } |
| 134 | const APSInt &operator/=(const APSInt &RHS) { |
| 135 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 136 | if (IsUnsigned) |
| 137 | *this = udiv(RHS); |
| 138 | else |
| 139 | *this = sdiv(RHS); |
| 140 | return *this; |
| 141 | } |
| 142 | APSInt operator%(const APSInt &RHS) const { |
| 143 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 144 | return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false); |
| 145 | } |
| 146 | APSInt operator/(const APSInt &RHS) const { |
| 147 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 148 | return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false); |
| 149 | } |
| 150 | |
| 151 | APSInt operator>>(unsigned Amt) const { |
| 152 | return IsUnsigned ? APSInt(lshr(shiftAmt: Amt), true) : APSInt(ashr(ShiftAmt: Amt), false); |
| 153 | } |
| 154 | APSInt &operator>>=(unsigned Amt) { |
| 155 | if (IsUnsigned) |
| 156 | lshrInPlace(ShiftAmt: Amt); |
| 157 | else |
| 158 | ashrInPlace(ShiftAmt: Amt); |
| 159 | return *this; |
| 160 | } |
| 161 | APSInt relativeShr(unsigned Amt) const { |
| 162 | return IsUnsigned ? APSInt(relativeLShr(RelativeShift: Amt), true) |
| 163 | : APSInt(relativeAShr(RelativeShift: Amt), false); |
| 164 | } |
| 165 | |
| 166 | inline bool operator<(const APSInt &RHS) const { |
| 167 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 168 | return IsUnsigned ? ult(RHS) : slt(RHS); |
| 169 | } |
| 170 | inline bool operator>(const APSInt &RHS) const { |
| 171 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 172 | return IsUnsigned ? ugt(RHS) : sgt(RHS); |
| 173 | } |
| 174 | inline bool operator<=(const APSInt &RHS) const { |
| 175 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 176 | return IsUnsigned ? ule(RHS) : sle(RHS); |
| 177 | } |
| 178 | inline bool operator>=(const APSInt &RHS) const { |
| 179 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 180 | return IsUnsigned ? uge(RHS) : sge(RHS); |
| 181 | } |
| 182 | inline bool operator==(const APSInt &RHS) const { |
| 183 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 184 | return eq(RHS); |
| 185 | } |
| 186 | inline bool operator!=(const APSInt &RHS) const { return !((*this) == RHS); } |
| 187 | |
| 188 | bool operator==(int64_t RHS) const { |
| 189 | return compareValues(I1: *this, I2: get(X: RHS)) == 0; |
| 190 | } |
| 191 | bool operator!=(int64_t RHS) const { |
| 192 | return compareValues(I1: *this, I2: get(X: RHS)) != 0; |
| 193 | } |
| 194 | bool operator<=(int64_t RHS) const { |
| 195 | return compareValues(I1: *this, I2: get(X: RHS)) <= 0; |
| 196 | } |
| 197 | bool operator>=(int64_t RHS) const { |
| 198 | return compareValues(I1: *this, I2: get(X: RHS)) >= 0; |
| 199 | } |
| 200 | bool operator<(int64_t RHS) const { |
| 201 | return compareValues(I1: *this, I2: get(X: RHS)) < 0; |
| 202 | } |
| 203 | bool operator>(int64_t RHS) const { |
| 204 | return compareValues(I1: *this, I2: get(X: RHS)) > 0; |
| 205 | } |
| 206 | |
| 207 | // The remaining operators just wrap the logic of APInt, but retain the |
| 208 | // signedness information. |
| 209 | |
| 210 | APSInt operator<<(unsigned Bits) const { |
| 211 | return APSInt(static_cast<const APInt &>(*this) << Bits, IsUnsigned); |
| 212 | } |
| 213 | APSInt &operator<<=(unsigned Amt) { |
| 214 | static_cast<APInt &>(*this) <<= Amt; |
| 215 | return *this; |
| 216 | } |
| 217 | APSInt relativeShl(unsigned Amt) const { |
| 218 | return IsUnsigned ? APSInt(relativeLShl(RelativeShift: Amt), true) |
| 219 | : APSInt(relativeAShl(RelativeShift: Amt), false); |
| 220 | } |
| 221 | |
| 222 | APSInt &operator++() { |
| 223 | ++(static_cast<APInt &>(*this)); |
| 224 | return *this; |
| 225 | } |
| 226 | APSInt &operator--() { |
| 227 | --(static_cast<APInt &>(*this)); |
| 228 | return *this; |
| 229 | } |
| 230 | APSInt operator++(int) { |
| 231 | return APSInt(++static_cast<APInt &>(*this), IsUnsigned); |
| 232 | } |
| 233 | APSInt operator--(int) { |
| 234 | return APSInt(--static_cast<APInt &>(*this), IsUnsigned); |
| 235 | } |
| 236 | APSInt operator-() const { |
| 237 | return APSInt(-static_cast<const APInt &>(*this), IsUnsigned); |
| 238 | } |
| 239 | APSInt &operator+=(const APSInt &RHS) { |
| 240 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 241 | static_cast<APInt &>(*this) += RHS; |
| 242 | return *this; |
| 243 | } |
| 244 | APSInt &operator-=(const APSInt &RHS) { |
| 245 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 246 | static_cast<APInt &>(*this) -= RHS; |
| 247 | return *this; |
| 248 | } |
| 249 | APSInt &operator*=(const APSInt &RHS) { |
| 250 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 251 | static_cast<APInt &>(*this) *= RHS; |
| 252 | return *this; |
| 253 | } |
| 254 | APSInt &operator&=(const APSInt &RHS) { |
| 255 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 256 | static_cast<APInt &>(*this) &= RHS; |
| 257 | return *this; |
| 258 | } |
| 259 | APSInt &operator|=(const APSInt &RHS) { |
| 260 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 261 | static_cast<APInt &>(*this) |= RHS; |
| 262 | return *this; |
| 263 | } |
| 264 | APSInt &operator^=(const APSInt &RHS) { |
| 265 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 266 | static_cast<APInt &>(*this) ^= RHS; |
| 267 | return *this; |
| 268 | } |
| 269 | |
| 270 | APSInt operator&(const APSInt &RHS) const { |
| 271 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 272 | return APSInt(static_cast<const APInt &>(*this) & RHS, IsUnsigned); |
| 273 | } |
| 274 | |
| 275 | APSInt operator|(const APSInt &RHS) const { |
| 276 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 277 | return APSInt(static_cast<const APInt &>(*this) | RHS, IsUnsigned); |
| 278 | } |
| 279 | |
| 280 | APSInt operator^(const APSInt &RHS) const { |
| 281 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 282 | return APSInt(static_cast<const APInt &>(*this) ^ RHS, IsUnsigned); |
| 283 | } |
| 284 | |
| 285 | APSInt operator*(const APSInt &RHS) const { |
| 286 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 287 | return APSInt(static_cast<const APInt &>(*this) * RHS, IsUnsigned); |
| 288 | } |
| 289 | APSInt operator+(const APSInt &RHS) const { |
| 290 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 291 | return APSInt(static_cast<const APInt &>(*this) + RHS, IsUnsigned); |
| 292 | } |
| 293 | APSInt operator-(const APSInt &RHS) const { |
| 294 | assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!" ); |
| 295 | return APSInt(static_cast<const APInt &>(*this) - RHS, IsUnsigned); |
| 296 | } |
| 297 | APSInt operator~() const { |
| 298 | return APSInt(~static_cast<const APInt &>(*this), IsUnsigned); |
| 299 | } |
| 300 | |
| 301 | /// Return the APSInt representing the maximum integer value with the given |
| 302 | /// bit width and signedness. |
| 303 | static APSInt getMaxValue(uint32_t numBits, bool Unsigned) { |
| 304 | return APSInt(Unsigned ? APInt::getMaxValue(numBits) |
| 305 | : APInt::getSignedMaxValue(numBits), |
| 306 | Unsigned); |
| 307 | } |
| 308 | |
| 309 | /// Return the APSInt representing the minimum integer value with the given |
| 310 | /// bit width and signedness. |
| 311 | static APSInt getMinValue(uint32_t numBits, bool Unsigned) { |
| 312 | return APSInt(Unsigned ? APInt::getMinValue(numBits) |
| 313 | : APInt::getSignedMinValue(numBits), |
| 314 | Unsigned); |
| 315 | } |
| 316 | |
| 317 | /// Determine if two APSInts have the same value, zero- or |
| 318 | /// sign-extending as needed. |
| 319 | static bool isSameValue(const APSInt &I1, const APSInt &I2) { |
| 320 | return !compareValues(I1, I2); |
| 321 | } |
| 322 | |
| 323 | /// Compare underlying values of two numbers. |
| 324 | static int compareValues(const APSInt &I1, const APSInt &I2) { |
| 325 | if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned()) |
| 326 | return I1.IsUnsigned ? I1.compare(RHS: I2) : I1.compareSigned(RHS: I2); |
| 327 | |
| 328 | // Check for a bit-width mismatch. |
| 329 | if (I1.getBitWidth() > I2.getBitWidth()) |
| 330 | return compareValues(I1, I2: I2.extend(width: I1.getBitWidth())); |
| 331 | if (I2.getBitWidth() > I1.getBitWidth()) |
| 332 | return compareValues(I1: I1.extend(width: I2.getBitWidth()), I2); |
| 333 | |
| 334 | // We have a signedness mismatch. Check for negative values and do an |
| 335 | // unsigned compare if both are positive. |
| 336 | if (I1.isSigned()) { |
| 337 | assert(!I2.isSigned() && "Expected signed mismatch" ); |
| 338 | if (I1.isNegative()) |
| 339 | return -1; |
| 340 | } else { |
| 341 | assert(I2.isSigned() && "Expected signed mismatch" ); |
| 342 | if (I2.isNegative()) |
| 343 | return 1; |
| 344 | } |
| 345 | |
| 346 | return I1.compare(RHS: I2); |
| 347 | } |
| 348 | |
| 349 | static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); } |
| 350 | static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); } |
| 351 | |
| 352 | /// Used to insert APSInt objects, or objects that contain APSInt objects, |
| 353 | /// into FoldingSets. |
| 354 | void Profile(FoldingSetNodeID &ID) const; |
| 355 | }; |
| 356 | |
| 357 | inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; } |
| 358 | inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; } |
| 359 | inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; } |
| 360 | inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; } |
| 361 | inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; } |
| 362 | inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; } |
| 363 | |
| 364 | inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) { |
| 365 | I.print(OS, isSigned: I.isSigned()); |
| 366 | return OS; |
| 367 | } |
| 368 | |
| 369 | /// Provide DenseMapInfo for APSInt, using the DenseMapInfo for APInt. |
| 370 | template <> struct DenseMapInfo<APSInt, void> { |
| 371 | static inline APSInt getEmptyKey() { |
| 372 | return APSInt(DenseMapInfo<APInt, void>::getEmptyKey()); |
| 373 | } |
| 374 | |
| 375 | static inline APSInt getTombstoneKey() { |
| 376 | return APSInt(DenseMapInfo<APInt, void>::getTombstoneKey()); |
| 377 | } |
| 378 | |
| 379 | static unsigned getHashValue(const APSInt &Key) { |
| 380 | return DenseMapInfo<APInt, void>::getHashValue(Key); |
| 381 | } |
| 382 | |
| 383 | static bool isEqual(const APSInt &LHS, const APSInt &RHS) { |
| 384 | return LHS.getBitWidth() == RHS.getBitWidth() && |
| 385 | LHS.isUnsigned() == RHS.isUnsigned() && LHS == RHS; |
| 386 | } |
| 387 | }; |
| 388 | |
| 389 | } // end namespace llvm |
| 390 | |
| 391 | #endif |
| 392 | |