| 1 | //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file defines the SmallVector class. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_SMALLVECTOR_H |
| 15 | #define LLVM_ADT_SMALLVECTOR_H |
| 16 | |
| 17 | #include "llvm/Support/Compiler.h" |
| 18 | #include "llvm/Support/type_traits.h" |
| 19 | #include <algorithm> |
| 20 | #include <cassert> |
| 21 | #include <cstddef> |
| 22 | #include <cstdlib> |
| 23 | #include <cstring> |
| 24 | #include <functional> |
| 25 | #include <initializer_list> |
| 26 | #include <iterator> |
| 27 | #include <limits> |
| 28 | #include <memory> |
| 29 | #include <new> |
| 30 | #include <type_traits> |
| 31 | #include <utility> |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | template <typename T> class ArrayRef; |
| 36 | |
| 37 | template <typename IteratorT> class iterator_range; |
| 38 | |
| 39 | template <class Iterator> |
| 40 | using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible< |
| 41 | typename std::iterator_traits<Iterator>::iterator_category, |
| 42 | std::input_iterator_tag>::value>; |
| 43 | |
| 44 | /// This is all the stuff common to all SmallVectors. |
| 45 | /// |
| 46 | /// The template parameter specifies the type which should be used to hold the |
| 47 | /// Size and Capacity of the SmallVector, so it can be adjusted. |
| 48 | /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
| 49 | /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
| 50 | /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
| 51 | /// buffering bitcode output - which can exceed 4GB. |
| 52 | template <class Size_T> class SmallVectorBase { |
| 53 | protected: |
| 54 | void *BeginX; |
| 55 | Size_T Size = 0, Capacity; |
| 56 | |
| 57 | /// The maximum value of the Size_T used. |
| 58 | static constexpr size_t SizeTypeMax() { |
| 59 | return std::numeric_limits<Size_T>::max(); |
| 60 | } |
| 61 | |
| 62 | SmallVectorBase() = delete; |
| 63 | SmallVectorBase(void *FirstEl, size_t TotalCapacity) |
| 64 | : BeginX(FirstEl), Capacity(TotalCapacity) {} |
| 65 | |
| 66 | /// This is a helper for \a grow() that's out of line to reduce code |
| 67 | /// duplication. This function will report a fatal error if it can't grow at |
| 68 | /// least to \p MinSize. |
| 69 | void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize, |
| 70 | size_t &NewCapacity); |
| 71 | |
| 72 | /// This is an implementation of the grow() method which only works |
| 73 | /// on POD-like data types and is out of line to reduce code duplication. |
| 74 | /// This function will report a fatal error if it cannot increase capacity. |
| 75 | void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); |
| 76 | |
| 77 | /// If vector was first created with capacity 0, getFirstEl() points to the |
| 78 | /// memory right after, an area unallocated. If a subsequent allocation, |
| 79 | /// that grows the vector, happens to return the same pointer as getFirstEl(), |
| 80 | /// get a new allocation, otherwise isSmall() will falsely return that no |
| 81 | /// allocation was done (true) and the memory will not be freed in the |
| 82 | /// destructor. If a VSize is given (vector size), also copy that many |
| 83 | /// elements to the new allocation - used if realloca fails to increase |
| 84 | /// space, and happens to allocate precisely at BeginX. |
| 85 | /// This is unlikely to be called often, but resolves a memory leak when the |
| 86 | /// situation does occur. |
| 87 | void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity, |
| 88 | size_t VSize = 0); |
| 89 | |
| 90 | public: |
| 91 | size_t size() const { return Size; } |
| 92 | size_t capacity() const { return Capacity; } |
| 93 | |
| 94 | [[nodiscard]] bool empty() const { return !Size; } |
| 95 | |
| 96 | protected: |
| 97 | /// Set the array size to \p N, which the current array must have enough |
| 98 | /// capacity for. |
| 99 | /// |
| 100 | /// This does not construct or destroy any elements in the vector. |
| 101 | void set_size(size_t N) { |
| 102 | assert(N <= capacity()); |
| 103 | Size = N; |
| 104 | } |
| 105 | }; |
| 106 | |
| 107 | template <class T> |
| 108 | using SmallVectorSizeType = |
| 109 | std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, |
| 110 | uint32_t>; |
| 111 | |
| 112 | /// Figure out the offset of the first element. |
| 113 | template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
| 114 | alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
| 115 | SmallVectorBase<SmallVectorSizeType<T>>)]; |
| 116 | alignas(T) char FirstEl[sizeof(T)]; |
| 117 | }; |
| 118 | |
| 119 | /// This is the part of SmallVectorTemplateBase which does not depend on whether |
| 120 | /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
| 121 | /// to avoid unnecessarily requiring T to be complete. |
| 122 | template <typename T, typename = void> |
| 123 | class SmallVectorTemplateCommon |
| 124 | : public SmallVectorBase<SmallVectorSizeType<T>> { |
| 125 | using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
| 126 | |
| 127 | protected: |
| 128 | /// Find the address of the first element. For this pointer math to be valid |
| 129 | /// with small-size of 0 for T with lots of alignment, it's important that |
| 130 | /// SmallVectorStorage is properly-aligned even for small-size of 0. |
| 131 | void *getFirstEl() const { |
| 132 | return const_cast<void *>(reinterpret_cast<const void *>( |
| 133 | reinterpret_cast<const char *>(this) + |
| 134 | offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); |
| 135 | } |
| 136 | // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
| 137 | |
| 138 | SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
| 139 | |
| 140 | void grow_pod(size_t MinSize, size_t TSize) { |
| 141 | Base::grow_pod(getFirstEl(), MinSize, TSize); |
| 142 | } |
| 143 | |
| 144 | /// Return true if this is a smallvector which has not had dynamic |
| 145 | /// memory allocated for it. |
| 146 | bool isSmall() const { return this->BeginX == getFirstEl(); } |
| 147 | |
| 148 | /// Put this vector in a state of being small. |
| 149 | void resetToSmall() { |
| 150 | this->BeginX = getFirstEl(); |
| 151 | this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
| 152 | } |
| 153 | |
| 154 | /// Return true if V is an internal reference to the given range. |
| 155 | bool isReferenceToRange(const void *V, const void *First, const void *Last) const { |
| 156 | // Use std::less to avoid UB. |
| 157 | std::less<> LessThan; |
| 158 | return !LessThan(V, First) && LessThan(V, Last); |
| 159 | } |
| 160 | |
| 161 | /// Return true if V is an internal reference to this vector. |
| 162 | bool isReferenceToStorage(const void *V) const { |
| 163 | return isReferenceToRange(V, First: this->begin(), Last: this->end()); |
| 164 | } |
| 165 | |
| 166 | /// Return true if First and Last form a valid (possibly empty) range in this |
| 167 | /// vector's storage. |
| 168 | bool isRangeInStorage(const void *First, const void *Last) const { |
| 169 | // Use std::less to avoid UB. |
| 170 | std::less<> LessThan; |
| 171 | return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
| 172 | !LessThan(this->end(), Last); |
| 173 | } |
| 174 | |
| 175 | /// Return true unless Elt will be invalidated by resizing the vector to |
| 176 | /// NewSize. |
| 177 | bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| 178 | // Past the end. |
| 179 | if (LLVM_LIKELY(!isReferenceToStorage(Elt))) |
| 180 | return true; |
| 181 | |
| 182 | // Return false if Elt will be destroyed by shrinking. |
| 183 | if (NewSize <= this->size()) |
| 184 | return Elt < this->begin() + NewSize; |
| 185 | |
| 186 | // Return false if we need to grow. |
| 187 | return NewSize <= this->capacity(); |
| 188 | } |
| 189 | |
| 190 | /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
| 191 | void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| 192 | assert(isSafeToReferenceAfterResize(Elt, NewSize) && |
| 193 | "Attempting to reference an element of the vector in an operation " |
| 194 | "that invalidates it" ); |
| 195 | } |
| 196 | |
| 197 | /// Check whether Elt will be invalidated by increasing the size of the |
| 198 | /// vector by N. |
| 199 | void assertSafeToAdd(const void *Elt, size_t N = 1) { |
| 200 | this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
| 201 | } |
| 202 | |
| 203 | /// Check whether any part of the range will be invalidated by clearing. |
| 204 | void assertSafeToReferenceAfterClear(const T *From, const T *To) { |
| 205 | if (From == To) |
| 206 | return; |
| 207 | this->assertSafeToReferenceAfterResize(From, 0); |
| 208 | this->assertSafeToReferenceAfterResize(To - 1, 0); |
| 209 | } |
| 210 | template < |
| 211 | class ItTy, |
| 212 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| 213 | bool> = false> |
| 214 | void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
| 215 | |
| 216 | /// Check whether any part of the range will be invalidated by growing. |
| 217 | void assertSafeToAddRange(const T *From, const T *To) { |
| 218 | if (From == To) |
| 219 | return; |
| 220 | this->assertSafeToAdd(From, To - From); |
| 221 | this->assertSafeToAdd(To - 1, To - From); |
| 222 | } |
| 223 | template < |
| 224 | class ItTy, |
| 225 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| 226 | bool> = false> |
| 227 | void assertSafeToAddRange(ItTy, ItTy) {} |
| 228 | |
| 229 | /// Reserve enough space to add one element, and return the updated element |
| 230 | /// pointer in case it was a reference to the storage. |
| 231 | template <class U> |
| 232 | static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, |
| 233 | size_t N) { |
| 234 | size_t NewSize = This->size() + N; |
| 235 | if (LLVM_LIKELY(NewSize <= This->capacity())) |
| 236 | return &Elt; |
| 237 | |
| 238 | bool ReferencesStorage = false; |
| 239 | int64_t Index = -1; |
| 240 | if (!U::TakesParamByValue) { |
| 241 | if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) { |
| 242 | ReferencesStorage = true; |
| 243 | Index = &Elt - This->begin(); |
| 244 | } |
| 245 | } |
| 246 | This->grow(NewSize); |
| 247 | return ReferencesStorage ? This->begin() + Index : &Elt; |
| 248 | } |
| 249 | |
| 250 | public: |
| 251 | using size_type = size_t; |
| 252 | using difference_type = ptrdiff_t; |
| 253 | using value_type = T; |
| 254 | using iterator = T *; |
| 255 | using const_iterator = const T *; |
| 256 | |
| 257 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| 258 | using reverse_iterator = std::reverse_iterator<iterator>; |
| 259 | |
| 260 | using reference = T &; |
| 261 | using const_reference = const T &; |
| 262 | using pointer = T *; |
| 263 | using const_pointer = const T *; |
| 264 | |
| 265 | using Base::capacity; |
| 266 | using Base::empty; |
| 267 | using Base::size; |
| 268 | |
| 269 | // forward iterator creation methods. |
| 270 | iterator begin() { return (iterator)this->BeginX; } |
| 271 | const_iterator begin() const { return (const_iterator)this->BeginX; } |
| 272 | iterator end() { return begin() + size(); } |
| 273 | const_iterator end() const { return begin() + size(); } |
| 274 | |
| 275 | // reverse iterator creation methods. |
| 276 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
| 277 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
| 278 | reverse_iterator rend() { return reverse_iterator(begin()); } |
| 279 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
| 280 | |
| 281 | size_type size_in_bytes() const { return size() * sizeof(T); } |
| 282 | size_type max_size() const { |
| 283 | return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
| 284 | } |
| 285 | |
| 286 | size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
| 287 | |
| 288 | /// Return a pointer to the vector's buffer, even if empty(). |
| 289 | pointer data() { return pointer(begin()); } |
| 290 | /// Return a pointer to the vector's buffer, even if empty(). |
| 291 | const_pointer data() const { return const_pointer(begin()); } |
| 292 | |
| 293 | reference operator[](size_type idx) { |
| 294 | assert(idx < size()); |
| 295 | return begin()[idx]; |
| 296 | } |
| 297 | const_reference operator[](size_type idx) const { |
| 298 | assert(idx < size()); |
| 299 | return begin()[idx]; |
| 300 | } |
| 301 | |
| 302 | reference front() { |
| 303 | assert(!empty()); |
| 304 | return begin()[0]; |
| 305 | } |
| 306 | const_reference front() const { |
| 307 | assert(!empty()); |
| 308 | return begin()[0]; |
| 309 | } |
| 310 | |
| 311 | reference back() { |
| 312 | assert(!empty()); |
| 313 | return end()[-1]; |
| 314 | } |
| 315 | const_reference back() const { |
| 316 | assert(!empty()); |
| 317 | return end()[-1]; |
| 318 | } |
| 319 | }; |
| 320 | |
| 321 | /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
| 322 | /// method implementations that are designed to work with non-trivial T's. |
| 323 | /// |
| 324 | /// We approximate is_trivially_copyable with trivial move/copy construction and |
| 325 | /// trivial destruction. While the standard doesn't specify that you're allowed |
| 326 | /// copy these types with memcpy, there is no way for the type to observe this. |
| 327 | /// This catches the important case of std::pair<POD, POD>, which is not |
| 328 | /// trivially assignable. |
| 329 | template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) && |
| 330 | (std::is_trivially_move_constructible<T>::value) && |
| 331 | std::is_trivially_destructible<T>::value> |
| 332 | class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
| 333 | friend class SmallVectorTemplateCommon<T>; |
| 334 | |
| 335 | protected: |
| 336 | static constexpr bool TakesParamByValue = false; |
| 337 | using ValueParamT = const T &; |
| 338 | |
| 339 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| 340 | |
| 341 | static void destroy_range(T *S, T *E) { |
| 342 | while (S != E) { |
| 343 | --E; |
| 344 | E->~T(); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
| 349 | /// constructing elements as needed. |
| 350 | template<typename It1, typename It2> |
| 351 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| 352 | std::uninitialized_move(I, E, Dest); |
| 353 | } |
| 354 | |
| 355 | /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
| 356 | /// constructing elements as needed. |
| 357 | template<typename It1, typename It2> |
| 358 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| 359 | std::uninitialized_copy(I, E, Dest); |
| 360 | } |
| 361 | |
| 362 | /// Grow the allocated memory (without initializing new elements), doubling |
| 363 | /// the size of the allocated memory. Guarantees space for at least one more |
| 364 | /// element, or MinSize more elements if specified. |
| 365 | void grow(size_t MinSize = 0); |
| 366 | |
| 367 | /// Create a new allocation big enough for \p MinSize and pass back its size |
| 368 | /// in \p NewCapacity. This is the first section of \a grow(). |
| 369 | T *mallocForGrow(size_t MinSize, size_t &NewCapacity); |
| 370 | |
| 371 | /// Move existing elements over to the new allocation \p NewElts, the middle |
| 372 | /// section of \a grow(). |
| 373 | void moveElementsForGrow(T *NewElts); |
| 374 | |
| 375 | /// Transfer ownership of the allocation, finishing up \a grow(). |
| 376 | void takeAllocationForGrow(T *NewElts, size_t NewCapacity); |
| 377 | |
| 378 | /// Reserve enough space to add one element, and return the updated element |
| 379 | /// pointer in case it was a reference to the storage. |
| 380 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| 381 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| 382 | } |
| 383 | |
| 384 | /// Reserve enough space to add one element, and return the updated element |
| 385 | /// pointer in case it was a reference to the storage. |
| 386 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| 387 | return const_cast<T *>( |
| 388 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| 389 | } |
| 390 | |
| 391 | static T &&forward_value_param(T &&V) { return std::move(V); } |
| 392 | static const T &forward_value_param(const T &V) { return V; } |
| 393 | |
| 394 | void growAndAssign(size_t NumElts, const T &Elt) { |
| 395 | // Grow manually in case Elt is an internal reference. |
| 396 | size_t NewCapacity; |
| 397 | T *NewElts = mallocForGrow(MinSize: NumElts, NewCapacity); |
| 398 | std::uninitialized_fill_n(NewElts, NumElts, Elt); |
| 399 | this->destroy_range(this->begin(), this->end()); |
| 400 | takeAllocationForGrow(NewElts, NewCapacity); |
| 401 | this->set_size(NumElts); |
| 402 | } |
| 403 | |
| 404 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| 405 | // Grow manually in case one of Args is an internal reference. |
| 406 | size_t NewCapacity; |
| 407 | T *NewElts = mallocForGrow(MinSize: 0, NewCapacity); |
| 408 | ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
| 409 | moveElementsForGrow(NewElts); |
| 410 | takeAllocationForGrow(NewElts, NewCapacity); |
| 411 | this->set_size(this->size() + 1); |
| 412 | return this->back(); |
| 413 | } |
| 414 | |
| 415 | public: |
| 416 | void push_back(const T &Elt) { |
| 417 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 418 | ::new ((void *)this->end()) T(*EltPtr); |
| 419 | this->set_size(this->size() + 1); |
| 420 | } |
| 421 | |
| 422 | void push_back(T &&Elt) { |
| 423 | T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 424 | ::new ((void *)this->end()) T(::std::move(*EltPtr)); |
| 425 | this->set_size(this->size() + 1); |
| 426 | } |
| 427 | |
| 428 | void pop_back() { |
| 429 | this->set_size(this->size() - 1); |
| 430 | this->end()->~T(); |
| 431 | } |
| 432 | }; |
| 433 | |
| 434 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 435 | template <typename T, bool TriviallyCopyable> |
| 436 | void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
| 437 | size_t NewCapacity; |
| 438 | T *NewElts = mallocForGrow(MinSize, NewCapacity); |
| 439 | moveElementsForGrow(NewElts); |
| 440 | takeAllocationForGrow(NewElts, NewCapacity); |
| 441 | } |
| 442 | |
| 443 | template <typename T, bool TriviallyCopyable> |
| 444 | T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow( |
| 445 | size_t MinSize, size_t &NewCapacity) { |
| 446 | return static_cast<T *>( |
| 447 | SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
| 448 | this->getFirstEl(), MinSize, sizeof(T), NewCapacity)); |
| 449 | } |
| 450 | |
| 451 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 452 | template <typename T, bool TriviallyCopyable> |
| 453 | void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
| 454 | T *NewElts) { |
| 455 | // Move the elements over. |
| 456 | this->uninitialized_move(this->begin(), this->end(), NewElts); |
| 457 | |
| 458 | // Destroy the original elements. |
| 459 | destroy_range(S: this->begin(), E: this->end()); |
| 460 | } |
| 461 | |
| 462 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 463 | template <typename T, bool TriviallyCopyable> |
| 464 | void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
| 465 | T *NewElts, size_t NewCapacity) { |
| 466 | // If this wasn't grown from the inline copy, deallocate the old space. |
| 467 | if (!this->isSmall()) |
| 468 | free(this->begin()); |
| 469 | |
| 470 | this->BeginX = NewElts; |
| 471 | this->Capacity = NewCapacity; |
| 472 | } |
| 473 | |
| 474 | /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
| 475 | /// method implementations that are designed to work with trivially copyable |
| 476 | /// T's. This allows using memcpy in place of copy/move construction and |
| 477 | /// skipping destruction. |
| 478 | template <typename T> |
| 479 | class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
| 480 | friend class SmallVectorTemplateCommon<T>; |
| 481 | |
| 482 | protected: |
| 483 | /// True if it's cheap enough to take parameters by value. Doing so avoids |
| 484 | /// overhead related to mitigations for reference invalidation. |
| 485 | static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); |
| 486 | |
| 487 | /// Either const T& or T, depending on whether it's cheap enough to take |
| 488 | /// parameters by value. |
| 489 | using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>; |
| 490 | |
| 491 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| 492 | |
| 493 | // No need to do a destroy loop for POD's. |
| 494 | static void destroy_range(T *, T *) {} |
| 495 | |
| 496 | /// Move the range [I, E) onto the uninitialized memory |
| 497 | /// starting with "Dest", constructing elements into it as needed. |
| 498 | template<typename It1, typename It2> |
| 499 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| 500 | // Just do a copy. |
| 501 | uninitialized_copy(I, E, Dest); |
| 502 | } |
| 503 | |
| 504 | /// Copy the range [I, E) onto the uninitialized memory |
| 505 | /// starting with "Dest", constructing elements into it as needed. |
| 506 | template<typename It1, typename It2> |
| 507 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| 508 | // Arbitrary iterator types; just use the basic implementation. |
| 509 | std::uninitialized_copy(I, E, Dest); |
| 510 | } |
| 511 | |
| 512 | /// Copy the range [I, E) onto the uninitialized memory |
| 513 | /// starting with "Dest", constructing elements into it as needed. |
| 514 | template <typename T1, typename T2> |
| 515 | static void uninitialized_copy( |
| 516 | T1 *I, T1 *E, T2 *Dest, |
| 517 | std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * = |
| 518 | nullptr) { |
| 519 | // Use memcpy for PODs iterated by pointers (which includes SmallVector |
| 520 | // iterators): std::uninitialized_copy optimizes to memmove, but we can |
| 521 | // use memcpy here. Note that I and E are iterators and thus might be |
| 522 | // invalid for memcpy if they are equal. |
| 523 | if (I != E) |
| 524 | memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
| 525 | } |
| 526 | |
| 527 | /// Double the size of the allocated memory, guaranteeing space for at |
| 528 | /// least one more element or MinSize if specified. |
| 529 | void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
| 530 | |
| 531 | /// Reserve enough space to add one element, and return the updated element |
| 532 | /// pointer in case it was a reference to the storage. |
| 533 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| 534 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| 535 | } |
| 536 | |
| 537 | /// Reserve enough space to add one element, and return the updated element |
| 538 | /// pointer in case it was a reference to the storage. |
| 539 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| 540 | return const_cast<T *>( |
| 541 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| 542 | } |
| 543 | |
| 544 | /// Copy \p V or return a reference, depending on \a ValueParamT. |
| 545 | static ValueParamT forward_value_param(ValueParamT V) { return V; } |
| 546 | |
| 547 | void growAndAssign(size_t NumElts, T Elt) { |
| 548 | // Elt has been copied in case it's an internal reference, side-stepping |
| 549 | // reference invalidation problems without losing the realloc optimization. |
| 550 | this->set_size(0); |
| 551 | this->grow(NumElts); |
| 552 | std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
| 553 | this->set_size(NumElts); |
| 554 | } |
| 555 | |
| 556 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| 557 | // Use push_back with a copy in case Args has an internal reference, |
| 558 | // side-stepping reference invalidation problems without losing the realloc |
| 559 | // optimization. |
| 560 | push_back(Elt: T(std::forward<ArgTypes>(Args)...)); |
| 561 | return this->back(); |
| 562 | } |
| 563 | |
| 564 | public: |
| 565 | void push_back(ValueParamT Elt) { |
| 566 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 567 | memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); |
| 568 | this->set_size(this->size() + 1); |
| 569 | } |
| 570 | |
| 571 | void pop_back() { this->set_size(this->size() - 1); } |
| 572 | }; |
| 573 | |
| 574 | /// This class consists of common code factored out of the SmallVector class to |
| 575 | /// reduce code duplication based on the SmallVector 'N' template parameter. |
| 576 | template <typename T> |
| 577 | class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
| 578 | using SuperClass = SmallVectorTemplateBase<T>; |
| 579 | |
| 580 | public: |
| 581 | using iterator = typename SuperClass::iterator; |
| 582 | using const_iterator = typename SuperClass::const_iterator; |
| 583 | using reference = typename SuperClass::reference; |
| 584 | using size_type = typename SuperClass::size_type; |
| 585 | |
| 586 | protected: |
| 587 | using SmallVectorTemplateBase<T>::TakesParamByValue; |
| 588 | using ValueParamT = typename SuperClass::ValueParamT; |
| 589 | |
| 590 | // Default ctor - Initialize to empty. |
| 591 | explicit SmallVectorImpl(unsigned N) |
| 592 | : SmallVectorTemplateBase<T>(N) {} |
| 593 | |
| 594 | void assignRemote(SmallVectorImpl &&RHS) { |
| 595 | this->destroy_range(this->begin(), this->end()); |
| 596 | if (!this->isSmall()) |
| 597 | free(this->begin()); |
| 598 | this->BeginX = RHS.BeginX; |
| 599 | this->Size = RHS.Size; |
| 600 | this->Capacity = RHS.Capacity; |
| 601 | RHS.resetToSmall(); |
| 602 | } |
| 603 | |
| 604 | public: |
| 605 | SmallVectorImpl(const SmallVectorImpl &) = delete; |
| 606 | |
| 607 | ~SmallVectorImpl() { |
| 608 | // Subclass has already destructed this vector's elements. |
| 609 | // If this wasn't grown from the inline copy, deallocate the old space. |
| 610 | if (!this->isSmall()) |
| 611 | free(this->begin()); |
| 612 | } |
| 613 | |
| 614 | void clear() { |
| 615 | this->destroy_range(this->begin(), this->end()); |
| 616 | this->Size = 0; |
| 617 | } |
| 618 | |
| 619 | private: |
| 620 | // Make set_size() private to avoid misuse in subclasses. |
| 621 | using SuperClass::set_size; |
| 622 | |
| 623 | template <bool ForOverwrite> void resizeImpl(size_type N) { |
| 624 | if (N == this->size()) |
| 625 | return; |
| 626 | |
| 627 | if (N < this->size()) { |
| 628 | this->truncate(N); |
| 629 | return; |
| 630 | } |
| 631 | |
| 632 | this->reserve(N); |
| 633 | for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
| 634 | if (ForOverwrite) |
| 635 | new (&*I) T; |
| 636 | else |
| 637 | new (&*I) T(); |
| 638 | this->set_size(N); |
| 639 | } |
| 640 | |
| 641 | public: |
| 642 | void resize(size_type N) { resizeImpl<false>(N); } |
| 643 | |
| 644 | /// Like resize, but \ref T is POD, the new values won't be initialized. |
| 645 | void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } |
| 646 | |
| 647 | /// Like resize, but requires that \p N is less than \a size(). |
| 648 | void truncate(size_type N) { |
| 649 | assert(this->size() >= N && "Cannot increase size with truncate" ); |
| 650 | this->destroy_range(this->begin() + N, this->end()); |
| 651 | this->set_size(N); |
| 652 | } |
| 653 | |
| 654 | void resize(size_type N, ValueParamT NV) { |
| 655 | if (N == this->size()) |
| 656 | return; |
| 657 | |
| 658 | if (N < this->size()) { |
| 659 | this->truncate(N); |
| 660 | return; |
| 661 | } |
| 662 | |
| 663 | // N > this->size(). Defer to append. |
| 664 | this->append(N - this->size(), NV); |
| 665 | } |
| 666 | |
| 667 | void reserve(size_type N) { |
| 668 | if (this->capacity() < N) |
| 669 | this->grow(N); |
| 670 | } |
| 671 | |
| 672 | void pop_back_n(size_type NumItems) { |
| 673 | assert(this->size() >= NumItems); |
| 674 | truncate(N: this->size() - NumItems); |
| 675 | } |
| 676 | |
| 677 | [[nodiscard]] T pop_back_val() { |
| 678 | T Result = ::std::move(this->back()); |
| 679 | this->pop_back(); |
| 680 | return Result; |
| 681 | } |
| 682 | |
| 683 | void swap(SmallVectorImpl &RHS); |
| 684 | |
| 685 | /// Add the specified range to the end of the SmallVector. |
| 686 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
| 687 | void append(ItTy in_start, ItTy in_end) { |
| 688 | this->assertSafeToAddRange(in_start, in_end); |
| 689 | size_type NumInputs = std::distance(in_start, in_end); |
| 690 | this->reserve(this->size() + NumInputs); |
| 691 | this->uninitialized_copy(in_start, in_end, this->end()); |
| 692 | this->set_size(this->size() + NumInputs); |
| 693 | } |
| 694 | |
| 695 | /// Append \p NumInputs copies of \p Elt to the end. |
| 696 | void append(size_type NumInputs, ValueParamT Elt) { |
| 697 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
| 698 | std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
| 699 | this->set_size(this->size() + NumInputs); |
| 700 | } |
| 701 | |
| 702 | void append(std::initializer_list<T> IL) { |
| 703 | append(IL.begin(), IL.end()); |
| 704 | } |
| 705 | |
| 706 | void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } |
| 707 | |
| 708 | void assign(size_type NumElts, ValueParamT Elt) { |
| 709 | // Note that Elt could be an internal reference. |
| 710 | if (NumElts > this->capacity()) { |
| 711 | this->growAndAssign(NumElts, Elt); |
| 712 | return; |
| 713 | } |
| 714 | |
| 715 | // Assign over existing elements. |
| 716 | std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
| 717 | if (NumElts > this->size()) |
| 718 | std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
| 719 | else if (NumElts < this->size()) |
| 720 | this->destroy_range(this->begin() + NumElts, this->end()); |
| 721 | this->set_size(NumElts); |
| 722 | } |
| 723 | |
| 724 | // FIXME: Consider assigning over existing elements, rather than clearing & |
| 725 | // re-initializing them - for all assign(...) variants. |
| 726 | |
| 727 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
| 728 | void assign(ItTy in_start, ItTy in_end) { |
| 729 | this->assertSafeToReferenceAfterClear(in_start, in_end); |
| 730 | clear(); |
| 731 | append(in_start, in_end); |
| 732 | } |
| 733 | |
| 734 | void assign(std::initializer_list<T> IL) { |
| 735 | clear(); |
| 736 | append(IL); |
| 737 | } |
| 738 | |
| 739 | void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } |
| 740 | |
| 741 | iterator erase(const_iterator CI) { |
| 742 | // Just cast away constness because this is a non-const member function. |
| 743 | iterator I = const_cast<iterator>(CI); |
| 744 | |
| 745 | assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds." ); |
| 746 | |
| 747 | iterator N = I; |
| 748 | // Shift all elts down one. |
| 749 | std::move(I+1, this->end(), I); |
| 750 | // Drop the last elt. |
| 751 | this->pop_back(); |
| 752 | return(N); |
| 753 | } |
| 754 | |
| 755 | iterator erase(const_iterator CS, const_iterator CE) { |
| 756 | // Just cast away constness because this is a non-const member function. |
| 757 | iterator S = const_cast<iterator>(CS); |
| 758 | iterator E = const_cast<iterator>(CE); |
| 759 | |
| 760 | assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds." ); |
| 761 | |
| 762 | iterator N = S; |
| 763 | // Shift all elts down. |
| 764 | iterator I = std::move(E, this->end(), S); |
| 765 | // Drop the last elts. |
| 766 | this->destroy_range(I, this->end()); |
| 767 | this->set_size(I - this->begin()); |
| 768 | return(N); |
| 769 | } |
| 770 | |
| 771 | private: |
| 772 | template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { |
| 773 | // Callers ensure that ArgType is derived from T. |
| 774 | static_assert( |
| 775 | std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, |
| 776 | T>::value, |
| 777 | "ArgType must be derived from T!" ); |
| 778 | |
| 779 | if (I == this->end()) { // Important special case for empty vector. |
| 780 | this->push_back(::std::forward<ArgType>(Elt)); |
| 781 | return this->end()-1; |
| 782 | } |
| 783 | |
| 784 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds." ); |
| 785 | |
| 786 | // Grow if necessary. |
| 787 | size_t Index = I - this->begin(); |
| 788 | std::remove_reference_t<ArgType> *EltPtr = |
| 789 | this->reserveForParamAndGetAddress(Elt); |
| 790 | I = this->begin() + Index; |
| 791 | |
| 792 | ::new ((void*) this->end()) T(::std::move(this->back())); |
| 793 | // Push everything else over. |
| 794 | std::move_backward(I, this->end()-1, this->end()); |
| 795 | this->set_size(this->size() + 1); |
| 796 | |
| 797 | // If we just moved the element we're inserting, be sure to update |
| 798 | // the reference (never happens if TakesParamByValue). |
| 799 | static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, |
| 800 | "ArgType must be 'T' when taking by value!" ); |
| 801 | if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
| 802 | ++EltPtr; |
| 803 | |
| 804 | *I = ::std::forward<ArgType>(*EltPtr); |
| 805 | return I; |
| 806 | } |
| 807 | |
| 808 | public: |
| 809 | iterator insert(iterator I, T &&Elt) { |
| 810 | return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
| 811 | } |
| 812 | |
| 813 | iterator insert(iterator I, const T &Elt) { |
| 814 | return insert_one_impl(I, this->forward_value_param(Elt)); |
| 815 | } |
| 816 | |
| 817 | iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
| 818 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| 819 | size_t InsertElt = I - this->begin(); |
| 820 | |
| 821 | if (I == this->end()) { // Important special case for empty vector. |
| 822 | append(NumToInsert, Elt); |
| 823 | return this->begin()+InsertElt; |
| 824 | } |
| 825 | |
| 826 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds." ); |
| 827 | |
| 828 | // Ensure there is enough space, and get the (maybe updated) address of |
| 829 | // Elt. |
| 830 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
| 831 | |
| 832 | // Uninvalidate the iterator. |
| 833 | I = this->begin()+InsertElt; |
| 834 | |
| 835 | // If there are more elements between the insertion point and the end of the |
| 836 | // range than there are being inserted, we can use a simple approach to |
| 837 | // insertion. Since we already reserved space, we know that this won't |
| 838 | // reallocate the vector. |
| 839 | if (size_t(this->end()-I) >= NumToInsert) { |
| 840 | T *OldEnd = this->end(); |
| 841 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| 842 | std::move_iterator<iterator>(this->end())); |
| 843 | |
| 844 | // Copy the existing elements that get replaced. |
| 845 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| 846 | |
| 847 | // If we just moved the element we're inserting, be sure to update |
| 848 | // the reference (never happens if TakesParamByValue). |
| 849 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| 850 | EltPtr += NumToInsert; |
| 851 | |
| 852 | std::fill_n(I, NumToInsert, *EltPtr); |
| 853 | return I; |
| 854 | } |
| 855 | |
| 856 | // Otherwise, we're inserting more elements than exist already, and we're |
| 857 | // not inserting at the end. |
| 858 | |
| 859 | // Move over the elements that we're about to overwrite. |
| 860 | T *OldEnd = this->end(); |
| 861 | this->set_size(this->size() + NumToInsert); |
| 862 | size_t NumOverwritten = OldEnd-I; |
| 863 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| 864 | |
| 865 | // If we just moved the element we're inserting, be sure to update |
| 866 | // the reference (never happens if TakesParamByValue). |
| 867 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| 868 | EltPtr += NumToInsert; |
| 869 | |
| 870 | // Replace the overwritten part. |
| 871 | std::fill_n(I, NumOverwritten, *EltPtr); |
| 872 | |
| 873 | // Insert the non-overwritten middle part. |
| 874 | std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
| 875 | return I; |
| 876 | } |
| 877 | |
| 878 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
| 879 | iterator insert(iterator I, ItTy From, ItTy To) { |
| 880 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| 881 | size_t InsertElt = I - this->begin(); |
| 882 | |
| 883 | if (I == this->end()) { // Important special case for empty vector. |
| 884 | append(From, To); |
| 885 | return this->begin()+InsertElt; |
| 886 | } |
| 887 | |
| 888 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds." ); |
| 889 | |
| 890 | // Check that the reserve that follows doesn't invalidate the iterators. |
| 891 | this->assertSafeToAddRange(From, To); |
| 892 | |
| 893 | size_t NumToInsert = std::distance(From, To); |
| 894 | |
| 895 | // Ensure there is enough space. |
| 896 | reserve(N: this->size() + NumToInsert); |
| 897 | |
| 898 | // Uninvalidate the iterator. |
| 899 | I = this->begin()+InsertElt; |
| 900 | |
| 901 | // If there are more elements between the insertion point and the end of the |
| 902 | // range than there are being inserted, we can use a simple approach to |
| 903 | // insertion. Since we already reserved space, we know that this won't |
| 904 | // reallocate the vector. |
| 905 | if (size_t(this->end()-I) >= NumToInsert) { |
| 906 | T *OldEnd = this->end(); |
| 907 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| 908 | std::move_iterator<iterator>(this->end())); |
| 909 | |
| 910 | // Copy the existing elements that get replaced. |
| 911 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| 912 | |
| 913 | std::copy(From, To, I); |
| 914 | return I; |
| 915 | } |
| 916 | |
| 917 | // Otherwise, we're inserting more elements than exist already, and we're |
| 918 | // not inserting at the end. |
| 919 | |
| 920 | // Move over the elements that we're about to overwrite. |
| 921 | T *OldEnd = this->end(); |
| 922 | this->set_size(this->size() + NumToInsert); |
| 923 | size_t NumOverwritten = OldEnd-I; |
| 924 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| 925 | |
| 926 | // Replace the overwritten part. |
| 927 | for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
| 928 | *J = *From; |
| 929 | ++J; ++From; |
| 930 | } |
| 931 | |
| 932 | // Insert the non-overwritten middle part. |
| 933 | this->uninitialized_copy(From, To, OldEnd); |
| 934 | return I; |
| 935 | } |
| 936 | |
| 937 | void insert(iterator I, std::initializer_list<T> IL) { |
| 938 | insert(I, IL.begin(), IL.end()); |
| 939 | } |
| 940 | |
| 941 | template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { |
| 942 | if (LLVM_UNLIKELY(this->size() >= this->capacity())) |
| 943 | return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
| 944 | |
| 945 | ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
| 946 | this->set_size(this->size() + 1); |
| 947 | return this->back(); |
| 948 | } |
| 949 | |
| 950 | SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
| 951 | |
| 952 | SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
| 953 | |
| 954 | bool operator==(const SmallVectorImpl &RHS) const { |
| 955 | if (this->size() != RHS.size()) return false; |
| 956 | return std::equal(this->begin(), this->end(), RHS.begin()); |
| 957 | } |
| 958 | bool operator!=(const SmallVectorImpl &RHS) const { |
| 959 | return !(*this == RHS); |
| 960 | } |
| 961 | |
| 962 | bool operator<(const SmallVectorImpl &RHS) const { |
| 963 | return std::lexicographical_compare(this->begin(), this->end(), |
| 964 | RHS.begin(), RHS.end()); |
| 965 | } |
| 966 | bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; } |
| 967 | bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); } |
| 968 | bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); } |
| 969 | }; |
| 970 | |
| 971 | template <typename T> |
| 972 | void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
| 973 | if (this == &RHS) return; |
| 974 | |
| 975 | // We can only avoid copying elements if neither vector is small. |
| 976 | if (!this->isSmall() && !RHS.isSmall()) { |
| 977 | std::swap(this->BeginX, RHS.BeginX); |
| 978 | std::swap(this->Size, RHS.Size); |
| 979 | std::swap(this->Capacity, RHS.Capacity); |
| 980 | return; |
| 981 | } |
| 982 | this->reserve(RHS.size()); |
| 983 | RHS.reserve(this->size()); |
| 984 | |
| 985 | // Swap the shared elements. |
| 986 | size_t NumShared = this->size(); |
| 987 | if (NumShared > RHS.size()) NumShared = RHS.size(); |
| 988 | for (size_type i = 0; i != NumShared; ++i) |
| 989 | std::swap((*this)[i], RHS[i]); |
| 990 | |
| 991 | // Copy over the extra elts. |
| 992 | if (this->size() > RHS.size()) { |
| 993 | size_t EltDiff = this->size() - RHS.size(); |
| 994 | this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
| 995 | RHS.set_size(RHS.size() + EltDiff); |
| 996 | this->destroy_range(this->begin()+NumShared, this->end()); |
| 997 | this->set_size(NumShared); |
| 998 | } else if (RHS.size() > this->size()) { |
| 999 | size_t EltDiff = RHS.size() - this->size(); |
| 1000 | this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
| 1001 | this->set_size(this->size() + EltDiff); |
| 1002 | this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
| 1003 | RHS.set_size(NumShared); |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | template <typename T> |
| 1008 | SmallVectorImpl<T> &SmallVectorImpl<T>:: |
| 1009 | operator=(const SmallVectorImpl<T> &RHS) { |
| 1010 | // Avoid self-assignment. |
| 1011 | if (this == &RHS) return *this; |
| 1012 | |
| 1013 | // If we already have sufficient space, assign the common elements, then |
| 1014 | // destroy any excess. |
| 1015 | size_t RHSSize = RHS.size(); |
| 1016 | size_t CurSize = this->size(); |
| 1017 | if (CurSize >= RHSSize) { |
| 1018 | // Assign common elements. |
| 1019 | iterator NewEnd; |
| 1020 | if (RHSSize) |
| 1021 | NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
| 1022 | else |
| 1023 | NewEnd = this->begin(); |
| 1024 | |
| 1025 | // Destroy excess elements. |
| 1026 | this->destroy_range(NewEnd, this->end()); |
| 1027 | |
| 1028 | // Trim. |
| 1029 | this->set_size(RHSSize); |
| 1030 | return *this; |
| 1031 | } |
| 1032 | |
| 1033 | // If we have to grow to have enough elements, destroy the current elements. |
| 1034 | // This allows us to avoid copying them during the grow. |
| 1035 | // FIXME: don't do this if they're efficiently moveable. |
| 1036 | if (this->capacity() < RHSSize) { |
| 1037 | // Destroy current elements. |
| 1038 | this->clear(); |
| 1039 | CurSize = 0; |
| 1040 | this->grow(RHSSize); |
| 1041 | } else if (CurSize) { |
| 1042 | // Otherwise, use assignment for the already-constructed elements. |
| 1043 | std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| 1044 | } |
| 1045 | |
| 1046 | // Copy construct the new elements in place. |
| 1047 | this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
| 1048 | this->begin()+CurSize); |
| 1049 | |
| 1050 | // Set end. |
| 1051 | this->set_size(RHSSize); |
| 1052 | return *this; |
| 1053 | } |
| 1054 | |
| 1055 | template <typename T> |
| 1056 | SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
| 1057 | // Avoid self-assignment. |
| 1058 | if (this == &RHS) return *this; |
| 1059 | |
| 1060 | // If the RHS isn't small, clear this vector and then steal its buffer. |
| 1061 | if (!RHS.isSmall()) { |
| 1062 | this->assignRemote(std::move(RHS)); |
| 1063 | return *this; |
| 1064 | } |
| 1065 | |
| 1066 | // If we already have sufficient space, assign the common elements, then |
| 1067 | // destroy any excess. |
| 1068 | size_t RHSSize = RHS.size(); |
| 1069 | size_t CurSize = this->size(); |
| 1070 | if (CurSize >= RHSSize) { |
| 1071 | // Assign common elements. |
| 1072 | iterator NewEnd = this->begin(); |
| 1073 | if (RHSSize) |
| 1074 | NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
| 1075 | |
| 1076 | // Destroy excess elements and trim the bounds. |
| 1077 | this->destroy_range(NewEnd, this->end()); |
| 1078 | this->set_size(RHSSize); |
| 1079 | |
| 1080 | // Clear the RHS. |
| 1081 | RHS.clear(); |
| 1082 | |
| 1083 | return *this; |
| 1084 | } |
| 1085 | |
| 1086 | // If we have to grow to have enough elements, destroy the current elements. |
| 1087 | // This allows us to avoid copying them during the grow. |
| 1088 | // FIXME: this may not actually make any sense if we can efficiently move |
| 1089 | // elements. |
| 1090 | if (this->capacity() < RHSSize) { |
| 1091 | // Destroy current elements. |
| 1092 | this->clear(); |
| 1093 | CurSize = 0; |
| 1094 | this->grow(RHSSize); |
| 1095 | } else if (CurSize) { |
| 1096 | // Otherwise, use assignment for the already-constructed elements. |
| 1097 | std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| 1098 | } |
| 1099 | |
| 1100 | // Move-construct the new elements in place. |
| 1101 | this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
| 1102 | this->begin()+CurSize); |
| 1103 | |
| 1104 | // Set end. |
| 1105 | this->set_size(RHSSize); |
| 1106 | |
| 1107 | RHS.clear(); |
| 1108 | return *this; |
| 1109 | } |
| 1110 | |
| 1111 | /// Storage for the SmallVector elements. This is specialized for the N=0 case |
| 1112 | /// to avoid allocating unnecessary storage. |
| 1113 | template <typename T, unsigned N> |
| 1114 | struct SmallVectorStorage { |
| 1115 | alignas(T) char InlineElts[N * sizeof(T)]; |
| 1116 | }; |
| 1117 | |
| 1118 | /// We need the storage to be properly aligned even for small-size of 0 so that |
| 1119 | /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
| 1120 | /// well-defined. |
| 1121 | template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; |
| 1122 | |
| 1123 | /// Forward declaration of SmallVector so that |
| 1124 | /// calculateSmallVectorDefaultInlinedElements can reference |
| 1125 | /// `sizeof(SmallVector<T, 0>)`. |
| 1126 | template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector; |
| 1127 | |
| 1128 | /// Helper class for calculating the default number of inline elements for |
| 1129 | /// `SmallVector<T>`. |
| 1130 | /// |
| 1131 | /// This should be migrated to a constexpr function when our minimum |
| 1132 | /// compiler support is enough for multi-statement constexpr functions. |
| 1133 | template <typename T> struct CalculateSmallVectorDefaultInlinedElements { |
| 1134 | // Parameter controlling the default number of inlined elements |
| 1135 | // for `SmallVector<T>`. |
| 1136 | // |
| 1137 | // The default number of inlined elements ensures that |
| 1138 | // 1. There is at least one inlined element. |
| 1139 | // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
| 1140 | // it contradicts 1. |
| 1141 | static constexpr size_t kPreferredSmallVectorSizeof = 64; |
| 1142 | |
| 1143 | // static_assert that sizeof(T) is not "too big". |
| 1144 | // |
| 1145 | // Because our policy guarantees at least one inlined element, it is possible |
| 1146 | // for an arbitrarily large inlined element to allocate an arbitrarily large |
| 1147 | // amount of inline storage. We generally consider it an antipattern for a |
| 1148 | // SmallVector to allocate an excessive amount of inline storage, so we want |
| 1149 | // to call attention to these cases and make sure that users are making an |
| 1150 | // intentional decision if they request a lot of inline storage. |
| 1151 | // |
| 1152 | // We want this assertion to trigger in pathological cases, but otherwise |
| 1153 | // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
| 1154 | // larger than kPreferredSmallVectorSizeof (otherwise, |
| 1155 | // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
| 1156 | // pattern seems useful in practice). |
| 1157 | // |
| 1158 | // One wrinkle is that this assertion is in theory non-portable, since |
| 1159 | // sizeof(T) is in general platform-dependent. However, we don't expect this |
| 1160 | // to be much of an issue, because most LLVM development happens on 64-bit |
| 1161 | // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
| 1162 | // 32-bit hosts, dodging the issue. The reverse situation, where development |
| 1163 | // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
| 1164 | // 64-bit host, is expected to be very rare. |
| 1165 | static_assert( |
| 1166 | sizeof(T) <= 256, |
| 1167 | "You are trying to use a default number of inlined elements for " |
| 1168 | "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
| 1169 | "explicit number of inlined elements with `SmallVector<T, N>` to make " |
| 1170 | "sure you really want that much inline storage." ); |
| 1171 | |
| 1172 | // Discount the size of the header itself when calculating the maximum inline |
| 1173 | // bytes. |
| 1174 | static constexpr size_t PreferredInlineBytes = |
| 1175 | kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
| 1176 | static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
| 1177 | static constexpr size_t value = |
| 1178 | NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
| 1179 | }; |
| 1180 | |
| 1181 | /// This is a 'vector' (really, a variable-sized array), optimized |
| 1182 | /// for the case when the array is small. It contains some number of elements |
| 1183 | /// in-place, which allows it to avoid heap allocation when the actual number of |
| 1184 | /// elements is below that threshold. This allows normal "small" cases to be |
| 1185 | /// fast without losing generality for large inputs. |
| 1186 | /// |
| 1187 | /// \note |
| 1188 | /// In the absence of a well-motivated choice for the number of inlined |
| 1189 | /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
| 1190 | /// omitting the \p N). This will choose a default number of inlined elements |
| 1191 | /// reasonable for allocation on the stack (for example, trying to keep \c |
| 1192 | /// sizeof(SmallVector<T>) around 64 bytes). |
| 1193 | /// |
| 1194 | /// \warning This does not attempt to be exception safe. |
| 1195 | /// |
| 1196 | /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
| 1197 | template <typename T, |
| 1198 | unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
| 1199 | class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>, |
| 1200 | SmallVectorStorage<T, N> { |
| 1201 | public: |
| 1202 | SmallVector() : SmallVectorImpl<T>(N) {} |
| 1203 | |
| 1204 | ~SmallVector() { |
| 1205 | // Destroy the constructed elements in the vector. |
| 1206 | this->destroy_range(this->begin(), this->end()); |
| 1207 | } |
| 1208 | |
| 1209 | explicit SmallVector(size_t Size) |
| 1210 | : SmallVectorImpl<T>(N) { |
| 1211 | this->resize(Size); |
| 1212 | } |
| 1213 | |
| 1214 | SmallVector(size_t Size, const T &Value) |
| 1215 | : SmallVectorImpl<T>(N) { |
| 1216 | this->assign(Size, Value); |
| 1217 | } |
| 1218 | |
| 1219 | template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
| 1220 | SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
| 1221 | this->append(S, E); |
| 1222 | } |
| 1223 | |
| 1224 | template <typename RangeTy> |
| 1225 | explicit SmallVector(const iterator_range<RangeTy> &R) |
| 1226 | : SmallVectorImpl<T>(N) { |
| 1227 | this->append(R.begin(), R.end()); |
| 1228 | } |
| 1229 | |
| 1230 | SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
| 1231 | this->append(IL); |
| 1232 | } |
| 1233 | |
| 1234 | template <typename U, |
| 1235 | typename = std::enable_if_t<std::is_convertible<U, T>::value>> |
| 1236 | explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) { |
| 1237 | this->append(A.begin(), A.end()); |
| 1238 | } |
| 1239 | |
| 1240 | SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
| 1241 | if (!RHS.empty()) |
| 1242 | SmallVectorImpl<T>::operator=(RHS); |
| 1243 | } |
| 1244 | |
| 1245 | SmallVector &operator=(const SmallVector &RHS) { |
| 1246 | SmallVectorImpl<T>::operator=(RHS); |
| 1247 | return *this; |
| 1248 | } |
| 1249 | |
| 1250 | SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
| 1251 | if (!RHS.empty()) |
| 1252 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1253 | } |
| 1254 | |
| 1255 | SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
| 1256 | if (!RHS.empty()) |
| 1257 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1258 | } |
| 1259 | |
| 1260 | SmallVector &operator=(SmallVector &&RHS) { |
| 1261 | if (N) { |
| 1262 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1263 | return *this; |
| 1264 | } |
| 1265 | // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the |
| 1266 | // case. |
| 1267 | if (this == &RHS) |
| 1268 | return *this; |
| 1269 | if (RHS.empty()) { |
| 1270 | this->destroy_range(this->begin(), this->end()); |
| 1271 | this->Size = 0; |
| 1272 | } else { |
| 1273 | this->assignRemote(std::move(RHS)); |
| 1274 | } |
| 1275 | return *this; |
| 1276 | } |
| 1277 | |
| 1278 | SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
| 1279 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1280 | return *this; |
| 1281 | } |
| 1282 | |
| 1283 | SmallVector &operator=(std::initializer_list<T> IL) { |
| 1284 | this->assign(IL); |
| 1285 | return *this; |
| 1286 | } |
| 1287 | }; |
| 1288 | |
| 1289 | template <typename T, unsigned N> |
| 1290 | inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
| 1291 | return X.capacity_in_bytes(); |
| 1292 | } |
| 1293 | |
| 1294 | template <typename RangeType> |
| 1295 | using ValueTypeFromRangeType = |
| 1296 | std::remove_const_t<std::remove_reference_t<decltype(*std::begin( |
| 1297 | std::declval<RangeType &>()))>>; |
| 1298 | |
| 1299 | /// Given a range of type R, iterate the entire range and return a |
| 1300 | /// SmallVector with elements of the vector. This is useful, for example, |
| 1301 | /// when you want to iterate a range and then sort the results. |
| 1302 | template <unsigned Size, typename R> |
| 1303 | SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) { |
| 1304 | return {std::begin(Range), std::end(Range)}; |
| 1305 | } |
| 1306 | template <typename R> |
| 1307 | SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) { |
| 1308 | return {std::begin(Range), std::end(Range)}; |
| 1309 | } |
| 1310 | |
| 1311 | template <typename Out, unsigned Size, typename R> |
| 1312 | SmallVector<Out, Size> to_vector_of(R &&Range) { |
| 1313 | return {std::begin(Range), std::end(Range)}; |
| 1314 | } |
| 1315 | |
| 1316 | template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) { |
| 1317 | return {std::begin(Range), std::end(Range)}; |
| 1318 | } |
| 1319 | |
| 1320 | // Explicit instantiations |
| 1321 | extern template class llvm::SmallVectorBase<uint32_t>; |
| 1322 | #if SIZE_MAX > UINT32_MAX |
| 1323 | extern template class llvm::SmallVectorBase<uint64_t>; |
| 1324 | #endif |
| 1325 | |
| 1326 | } // end namespace llvm |
| 1327 | |
| 1328 | namespace std { |
| 1329 | |
| 1330 | /// Implement std::swap in terms of SmallVector swap. |
| 1331 | template<typename T> |
| 1332 | inline void |
| 1333 | swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
| 1334 | LHS.swap(RHS); |
| 1335 | } |
| 1336 | |
| 1337 | /// Implement std::swap in terms of SmallVector swap. |
| 1338 | template<typename T, unsigned N> |
| 1339 | inline void |
| 1340 | swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
| 1341 | LHS.swap(RHS); |
| 1342 | } |
| 1343 | |
| 1344 | } // end namespace std |
| 1345 | |
| 1346 | #endif // LLVM_ADT_SMALLVECTOR_H |
| 1347 | |