| 1 | //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_ADT_ARRAYREF_H |
| 10 | #define LLVM_ADT_ARRAYREF_H |
| 11 | |
| 12 | #include "llvm/ADT/Hashing.h" |
| 13 | #include "llvm/ADT/SmallVector.h" |
| 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/Support/Compiler.h" |
| 16 | #include <algorithm> |
| 17 | #include <array> |
| 18 | #include <cassert> |
| 19 | #include <cstddef> |
| 20 | #include <initializer_list> |
| 21 | #include <iterator> |
| 22 | #include <memory> |
| 23 | #include <type_traits> |
| 24 | #include <vector> |
| 25 | |
| 26 | namespace llvm { |
| 27 | template<typename T> class [[nodiscard]] MutableArrayRef; |
| 28 | |
| 29 | /// ArrayRef - Represent a constant reference to an array (0 or more elements |
| 30 | /// consecutively in memory), i.e. a start pointer and a length. It allows |
| 31 | /// various APIs to take consecutive elements easily and conveniently. |
| 32 | /// |
| 33 | /// This class does not own the underlying data, it is expected to be used in |
| 34 | /// situations where the data resides in some other buffer, whose lifetime |
| 35 | /// extends past that of the ArrayRef. For this reason, it is not in general |
| 36 | /// safe to store an ArrayRef. |
| 37 | /// |
| 38 | /// This is intended to be trivially copyable, so it should be passed by |
| 39 | /// value. |
| 40 | template<typename T> |
| 41 | class LLVM_GSL_POINTER [[nodiscard]] ArrayRef { |
| 42 | public: |
| 43 | using value_type = T; |
| 44 | using pointer = value_type *; |
| 45 | using const_pointer = const value_type *; |
| 46 | using reference = value_type &; |
| 47 | using const_reference = const value_type &; |
| 48 | using iterator = const_pointer; |
| 49 | using const_iterator = const_pointer; |
| 50 | using reverse_iterator = std::reverse_iterator<iterator>; |
| 51 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| 52 | using size_type = size_t; |
| 53 | using difference_type = ptrdiff_t; |
| 54 | |
| 55 | private: |
| 56 | /// The start of the array, in an external buffer. |
| 57 | const T *Data = nullptr; |
| 58 | |
| 59 | /// The number of elements. |
| 60 | size_type Length = 0; |
| 61 | |
| 62 | public: |
| 63 | /// @name Constructors |
| 64 | /// @{ |
| 65 | |
| 66 | /// Construct an empty ArrayRef. |
| 67 | /*implicit*/ ArrayRef() = default; |
| 68 | |
| 69 | /// Construct an empty ArrayRef from std::nullopt. |
| 70 | /*implicit*/ ArrayRef(std::nullopt_t) {} |
| 71 | |
| 72 | /// Construct an ArrayRef from a single element. |
| 73 | /*implicit*/ ArrayRef(const T &OneElt) |
| 74 | : Data(&OneElt), Length(1) {} |
| 75 | |
| 76 | /// Construct an ArrayRef from a pointer and length. |
| 77 | constexpr /*implicit*/ ArrayRef(const T *data, size_t length) |
| 78 | : Data(data), Length(length) {} |
| 79 | |
| 80 | /// Construct an ArrayRef from a range. |
| 81 | constexpr ArrayRef(const T *begin, const T *end) |
| 82 | : Data(begin), Length(end - begin) { |
| 83 | assert(begin <= end); |
| 84 | } |
| 85 | |
| 86 | /// Construct an ArrayRef from a SmallVector. This is templated in order to |
| 87 | /// avoid instantiating SmallVectorTemplateCommon<T> whenever we |
| 88 | /// copy-construct an ArrayRef. |
| 89 | template<typename U> |
| 90 | /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) |
| 91 | : Data(Vec.data()), Length(Vec.size()) { |
| 92 | } |
| 93 | |
| 94 | /// Construct an ArrayRef from a std::vector. |
| 95 | template<typename A> |
| 96 | /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) |
| 97 | : Data(Vec.data()), Length(Vec.size()) {} |
| 98 | |
| 99 | /// Construct an ArrayRef from a std::array |
| 100 | template <size_t N> |
| 101 | /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) |
| 102 | : Data(Arr.data()), Length(N) {} |
| 103 | |
| 104 | /// Construct an ArrayRef from a C array. |
| 105 | template <size_t N> |
| 106 | /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} |
| 107 | |
| 108 | /// Construct an ArrayRef from a std::initializer_list. |
| 109 | #if LLVM_GNUC_PREREQ(9, 0, 0) |
| 110 | // Disable gcc's warning in this constructor as it generates an enormous amount |
| 111 | // of messages. Anyone using ArrayRef should already be aware of the fact that |
| 112 | // it does not do lifetime extension. |
| 113 | #pragma GCC diagnostic push |
| 114 | #pragma GCC diagnostic ignored "-Winit-list-lifetime" |
| 115 | #endif |
| 116 | constexpr /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) |
| 117 | : Data(Vec.begin() == Vec.end() ? (T *)nullptr : Vec.begin()), |
| 118 | Length(Vec.size()) {} |
| 119 | #if LLVM_GNUC_PREREQ(9, 0, 0) |
| 120 | #pragma GCC diagnostic pop |
| 121 | #endif |
| 122 | |
| 123 | /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to |
| 124 | /// ensure that only ArrayRefs of pointers can be converted. |
| 125 | template <typename U> |
| 126 | ArrayRef(const ArrayRef<U *> &A, |
| 127 | std::enable_if_t<std::is_convertible<U *const *, T const *>::value> |
| 128 | * = nullptr) |
| 129 | : Data(A.data()), Length(A.size()) {} |
| 130 | |
| 131 | /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is |
| 132 | /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> |
| 133 | /// whenever we copy-construct an ArrayRef. |
| 134 | template <typename U, typename DummyT> |
| 135 | /*implicit*/ ArrayRef( |
| 136 | const SmallVectorTemplateCommon<U *, DummyT> &Vec, |
| 137 | std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * = |
| 138 | nullptr) |
| 139 | : Data(Vec.data()), Length(Vec.size()) {} |
| 140 | |
| 141 | /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE |
| 142 | /// to ensure that only vectors of pointers can be converted. |
| 143 | template <typename U, typename A> |
| 144 | ArrayRef(const std::vector<U *, A> &Vec, |
| 145 | std::enable_if_t<std::is_convertible<U *const *, T const *>::value> |
| 146 | * = nullptr) |
| 147 | : Data(Vec.data()), Length(Vec.size()) {} |
| 148 | |
| 149 | /// @} |
| 150 | /// @name Simple Operations |
| 151 | /// @{ |
| 152 | |
| 153 | iterator begin() const { return Data; } |
| 154 | iterator end() const { return Data + Length; } |
| 155 | |
| 156 | reverse_iterator rbegin() const { return reverse_iterator(end()); } |
| 157 | reverse_iterator rend() const { return reverse_iterator(begin()); } |
| 158 | |
| 159 | /// empty - Check if the array is empty. |
| 160 | bool empty() const { return Length == 0; } |
| 161 | |
| 162 | const T *data() const { return Data; } |
| 163 | |
| 164 | /// size - Get the array size. |
| 165 | size_t size() const { return Length; } |
| 166 | |
| 167 | /// front - Get the first element. |
| 168 | const T &front() const { |
| 169 | assert(!empty()); |
| 170 | return Data[0]; |
| 171 | } |
| 172 | |
| 173 | /// back - Get the last element. |
| 174 | const T &back() const { |
| 175 | assert(!empty()); |
| 176 | return Data[Length-1]; |
| 177 | } |
| 178 | |
| 179 | // copy - Allocate copy in Allocator and return ArrayRef<T> to it. |
| 180 | template <typename Allocator> MutableArrayRef<T> copy(Allocator &A) { |
| 181 | T *Buff = A.template Allocate<T>(Length); |
| 182 | std::uninitialized_copy(begin(), end(), Buff); |
| 183 | return MutableArrayRef<T>(Buff, Length); |
| 184 | } |
| 185 | |
| 186 | /// equals - Check for element-wise equality. |
| 187 | bool equals(ArrayRef RHS) const { |
| 188 | if (Length != RHS.Length) |
| 189 | return false; |
| 190 | return std::equal(begin(), end(), RHS.begin()); |
| 191 | } |
| 192 | |
| 193 | /// slice(n, m) - Chop off the first N elements of the array, and keep M |
| 194 | /// elements in the array. |
| 195 | ArrayRef<T> slice(size_t N, size_t M) const { |
| 196 | assert(N+M <= size() && "Invalid specifier" ); |
| 197 | return ArrayRef<T>(data()+N, M); |
| 198 | } |
| 199 | |
| 200 | /// slice(n) - Chop off the first N elements of the array. |
| 201 | ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } |
| 202 | |
| 203 | /// Drop the first \p N elements of the array. |
| 204 | ArrayRef<T> drop_front(size_t N = 1) const { |
| 205 | assert(size() >= N && "Dropping more elements than exist" ); |
| 206 | return slice(N, size() - N); |
| 207 | } |
| 208 | |
| 209 | /// Drop the last \p N elements of the array. |
| 210 | ArrayRef<T> drop_back(size_t N = 1) const { |
| 211 | assert(size() >= N && "Dropping more elements than exist" ); |
| 212 | return slice(0, size() - N); |
| 213 | } |
| 214 | |
| 215 | /// Return a copy of *this with the first N elements satisfying the |
| 216 | /// given predicate removed. |
| 217 | template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { |
| 218 | return ArrayRef<T>(find_if_not(*this, Pred), end()); |
| 219 | } |
| 220 | |
| 221 | /// Return a copy of *this with the first N elements not satisfying |
| 222 | /// the given predicate removed. |
| 223 | template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { |
| 224 | return ArrayRef<T>(find_if(*this, Pred), end()); |
| 225 | } |
| 226 | |
| 227 | /// Return a copy of *this with only the first \p N elements. |
| 228 | ArrayRef<T> take_front(size_t N = 1) const { |
| 229 | if (N >= size()) |
| 230 | return *this; |
| 231 | return drop_back(N: size() - N); |
| 232 | } |
| 233 | |
| 234 | /// Return a copy of *this with only the last \p N elements. |
| 235 | ArrayRef<T> take_back(size_t N = 1) const { |
| 236 | if (N >= size()) |
| 237 | return *this; |
| 238 | return drop_front(N: size() - N); |
| 239 | } |
| 240 | |
| 241 | /// Return the first N elements of this Array that satisfy the given |
| 242 | /// predicate. |
| 243 | template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { |
| 244 | return ArrayRef<T>(begin(), find_if_not(*this, Pred)); |
| 245 | } |
| 246 | |
| 247 | /// Return the first N elements of this Array that don't satisfy the |
| 248 | /// given predicate. |
| 249 | template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { |
| 250 | return ArrayRef<T>(begin(), find_if(*this, Pred)); |
| 251 | } |
| 252 | |
| 253 | /// @} |
| 254 | /// @name Operator Overloads |
| 255 | /// @{ |
| 256 | const T &operator[](size_t Index) const { |
| 257 | assert(Index < Length && "Invalid index!" ); |
| 258 | return Data[Index]; |
| 259 | } |
| 260 | |
| 261 | /// Disallow accidental assignment from a temporary. |
| 262 | /// |
| 263 | /// The declaration here is extra complicated so that "arrayRef = {}" |
| 264 | /// continues to select the move assignment operator. |
| 265 | template <typename U> |
| 266 | std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> & |
| 267 | operator=(U &&Temporary) = delete; |
| 268 | |
| 269 | /// Disallow accidental assignment from a temporary. |
| 270 | /// |
| 271 | /// The declaration here is extra complicated so that "arrayRef = {}" |
| 272 | /// continues to select the move assignment operator. |
| 273 | template <typename U> |
| 274 | std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> & |
| 275 | operator=(std::initializer_list<U>) = delete; |
| 276 | |
| 277 | /// @} |
| 278 | /// @name Expensive Operations |
| 279 | /// @{ |
| 280 | std::vector<T> vec() const { |
| 281 | return std::vector<T>(Data, Data+Length); |
| 282 | } |
| 283 | |
| 284 | /// @} |
| 285 | /// @name Conversion operators |
| 286 | /// @{ |
| 287 | operator std::vector<T>() const { |
| 288 | return std::vector<T>(Data, Data+Length); |
| 289 | } |
| 290 | |
| 291 | /// @} |
| 292 | }; |
| 293 | |
| 294 | /// MutableArrayRef - Represent a mutable reference to an array (0 or more |
| 295 | /// elements consecutively in memory), i.e. a start pointer and a length. It |
| 296 | /// allows various APIs to take and modify consecutive elements easily and |
| 297 | /// conveniently. |
| 298 | /// |
| 299 | /// This class does not own the underlying data, it is expected to be used in |
| 300 | /// situations where the data resides in some other buffer, whose lifetime |
| 301 | /// extends past that of the MutableArrayRef. For this reason, it is not in |
| 302 | /// general safe to store a MutableArrayRef. |
| 303 | /// |
| 304 | /// This is intended to be trivially copyable, so it should be passed by |
| 305 | /// value. |
| 306 | template<typename T> |
| 307 | class [[nodiscard]] MutableArrayRef : public ArrayRef<T> { |
| 308 | public: |
| 309 | using value_type = T; |
| 310 | using pointer = value_type *; |
| 311 | using const_pointer = const value_type *; |
| 312 | using reference = value_type &; |
| 313 | using const_reference = const value_type &; |
| 314 | using iterator = pointer; |
| 315 | using const_iterator = const_pointer; |
| 316 | using reverse_iterator = std::reverse_iterator<iterator>; |
| 317 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| 318 | using size_type = size_t; |
| 319 | using difference_type = ptrdiff_t; |
| 320 | |
| 321 | /// Construct an empty MutableArrayRef. |
| 322 | /*implicit*/ MutableArrayRef() = default; |
| 323 | |
| 324 | /// Construct an empty MutableArrayRef from std::nullopt. |
| 325 | /*implicit*/ MutableArrayRef(std::nullopt_t) : ArrayRef<T>() {} |
| 326 | |
| 327 | /// Construct a MutableArrayRef from a single element. |
| 328 | /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} |
| 329 | |
| 330 | /// Construct a MutableArrayRef from a pointer and length. |
| 331 | /*implicit*/ MutableArrayRef(T *data, size_t length) |
| 332 | : ArrayRef<T>(data, length) {} |
| 333 | |
| 334 | /// Construct a MutableArrayRef from a range. |
| 335 | MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} |
| 336 | |
| 337 | /// Construct a MutableArrayRef from a SmallVector. |
| 338 | /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) |
| 339 | : ArrayRef<T>(Vec) {} |
| 340 | |
| 341 | /// Construct a MutableArrayRef from a std::vector. |
| 342 | /*implicit*/ MutableArrayRef(std::vector<T> &Vec) |
| 343 | : ArrayRef<T>(Vec) {} |
| 344 | |
| 345 | /// Construct a MutableArrayRef from a std::array |
| 346 | template <size_t N> |
| 347 | /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) |
| 348 | : ArrayRef<T>(Arr) {} |
| 349 | |
| 350 | /// Construct a MutableArrayRef from a C array. |
| 351 | template <size_t N> |
| 352 | /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} |
| 353 | |
| 354 | T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } |
| 355 | |
| 356 | iterator begin() const { return data(); } |
| 357 | iterator end() const { return data() + this->size(); } |
| 358 | |
| 359 | reverse_iterator rbegin() const { return reverse_iterator(end()); } |
| 360 | reverse_iterator rend() const { return reverse_iterator(begin()); } |
| 361 | |
| 362 | /// front - Get the first element. |
| 363 | T &front() const { |
| 364 | assert(!this->empty()); |
| 365 | return data()[0]; |
| 366 | } |
| 367 | |
| 368 | /// back - Get the last element. |
| 369 | T &back() const { |
| 370 | assert(!this->empty()); |
| 371 | return data()[this->size()-1]; |
| 372 | } |
| 373 | |
| 374 | /// slice(n, m) - Chop off the first N elements of the array, and keep M |
| 375 | /// elements in the array. |
| 376 | MutableArrayRef<T> slice(size_t N, size_t M) const { |
| 377 | assert(N + M <= this->size() && "Invalid specifier" ); |
| 378 | return MutableArrayRef<T>(this->data() + N, M); |
| 379 | } |
| 380 | |
| 381 | /// slice(n) - Chop off the first N elements of the array. |
| 382 | MutableArrayRef<T> slice(size_t N) const { |
| 383 | return slice(N, this->size() - N); |
| 384 | } |
| 385 | |
| 386 | /// Drop the first \p N elements of the array. |
| 387 | MutableArrayRef<T> drop_front(size_t N = 1) const { |
| 388 | assert(this->size() >= N && "Dropping more elements than exist" ); |
| 389 | return slice(N, this->size() - N); |
| 390 | } |
| 391 | |
| 392 | MutableArrayRef<T> drop_back(size_t N = 1) const { |
| 393 | assert(this->size() >= N && "Dropping more elements than exist" ); |
| 394 | return slice(0, this->size() - N); |
| 395 | } |
| 396 | |
| 397 | /// Return a copy of *this with the first N elements satisfying the |
| 398 | /// given predicate removed. |
| 399 | template <class PredicateT> |
| 400 | MutableArrayRef<T> drop_while(PredicateT Pred) const { |
| 401 | return MutableArrayRef<T>(find_if_not(*this, Pred), end()); |
| 402 | } |
| 403 | |
| 404 | /// Return a copy of *this with the first N elements not satisfying |
| 405 | /// the given predicate removed. |
| 406 | template <class PredicateT> |
| 407 | MutableArrayRef<T> drop_until(PredicateT Pred) const { |
| 408 | return MutableArrayRef<T>(find_if(*this, Pred), end()); |
| 409 | } |
| 410 | |
| 411 | /// Return a copy of *this with only the first \p N elements. |
| 412 | MutableArrayRef<T> take_front(size_t N = 1) const { |
| 413 | if (N >= this->size()) |
| 414 | return *this; |
| 415 | return drop_back(N: this->size() - N); |
| 416 | } |
| 417 | |
| 418 | /// Return a copy of *this with only the last \p N elements. |
| 419 | MutableArrayRef<T> take_back(size_t N = 1) const { |
| 420 | if (N >= this->size()) |
| 421 | return *this; |
| 422 | return drop_front(N: this->size() - N); |
| 423 | } |
| 424 | |
| 425 | /// Return the first N elements of this Array that satisfy the given |
| 426 | /// predicate. |
| 427 | template <class PredicateT> |
| 428 | MutableArrayRef<T> take_while(PredicateT Pred) const { |
| 429 | return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); |
| 430 | } |
| 431 | |
| 432 | /// Return the first N elements of this Array that don't satisfy the |
| 433 | /// given predicate. |
| 434 | template <class PredicateT> |
| 435 | MutableArrayRef<T> take_until(PredicateT Pred) const { |
| 436 | return MutableArrayRef<T>(begin(), find_if(*this, Pred)); |
| 437 | } |
| 438 | |
| 439 | /// @} |
| 440 | /// @name Operator Overloads |
| 441 | /// @{ |
| 442 | T &operator[](size_t Index) const { |
| 443 | assert(Index < this->size() && "Invalid index!" ); |
| 444 | return data()[Index]; |
| 445 | } |
| 446 | }; |
| 447 | |
| 448 | /// This is a MutableArrayRef that owns its array. |
| 449 | template <typename T> class OwningArrayRef : public MutableArrayRef<T> { |
| 450 | public: |
| 451 | OwningArrayRef() = default; |
| 452 | OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} |
| 453 | |
| 454 | OwningArrayRef(ArrayRef<T> Data) |
| 455 | : MutableArrayRef<T>(new T[Data.size()], Data.size()) { |
| 456 | std::copy(Data.begin(), Data.end(), this->begin()); |
| 457 | } |
| 458 | |
| 459 | OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); } |
| 460 | |
| 461 | OwningArrayRef &operator=(OwningArrayRef &&Other) { |
| 462 | delete[] this->data(); |
| 463 | this->MutableArrayRef<T>::operator=(Other); |
| 464 | Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); |
| 465 | return *this; |
| 466 | } |
| 467 | |
| 468 | ~OwningArrayRef() { delete[] this->data(); } |
| 469 | }; |
| 470 | |
| 471 | /// @name ArrayRef Deduction guides |
| 472 | /// @{ |
| 473 | /// Deduction guide to construct an ArrayRef from a single element. |
| 474 | template <typename T> ArrayRef(const T &OneElt) -> ArrayRef<T>; |
| 475 | |
| 476 | /// Deduction guide to construct an ArrayRef from a pointer and length |
| 477 | template <typename T> ArrayRef(const T *data, size_t length) -> ArrayRef<T>; |
| 478 | |
| 479 | /// Deduction guide to construct an ArrayRef from a range |
| 480 | template <typename T> ArrayRef(const T *data, const T *end) -> ArrayRef<T>; |
| 481 | |
| 482 | /// Deduction guide to construct an ArrayRef from a SmallVector |
| 483 | template <typename T> ArrayRef(const SmallVectorImpl<T> &Vec) -> ArrayRef<T>; |
| 484 | |
| 485 | /// Deduction guide to construct an ArrayRef from a SmallVector |
| 486 | template <typename T, unsigned N> |
| 487 | ArrayRef(const SmallVector<T, N> &Vec) -> ArrayRef<T>; |
| 488 | |
| 489 | /// Deduction guide to construct an ArrayRef from a std::vector |
| 490 | template <typename T> ArrayRef(const std::vector<T> &Vec) -> ArrayRef<T>; |
| 491 | |
| 492 | /// Deduction guide to construct an ArrayRef from a std::array |
| 493 | template <typename T, std::size_t N> |
| 494 | ArrayRef(const std::array<T, N> &Vec) -> ArrayRef<T>; |
| 495 | |
| 496 | /// Deduction guide to construct an ArrayRef from an ArrayRef (const) |
| 497 | template <typename T> ArrayRef(const ArrayRef<T> &Vec) -> ArrayRef<T>; |
| 498 | |
| 499 | /// Deduction guide to construct an ArrayRef from an ArrayRef |
| 500 | template <typename T> ArrayRef(ArrayRef<T> &Vec) -> ArrayRef<T>; |
| 501 | |
| 502 | /// Deduction guide to construct an ArrayRef from a C array. |
| 503 | template <typename T, size_t N> ArrayRef(const T (&Arr)[N]) -> ArrayRef<T>; |
| 504 | |
| 505 | /// @} |
| 506 | |
| 507 | /// @name ArrayRef Convenience constructors |
| 508 | /// @{ |
| 509 | /// Construct an ArrayRef from a single element. |
| 510 | template <typename T> |
| 511 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 512 | ArrayRef<T> makeArrayRef(const T &OneElt) { |
| 513 | return OneElt; |
| 514 | } |
| 515 | |
| 516 | /// Construct an ArrayRef from a pointer and length. |
| 517 | template <typename T> |
| 518 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 519 | ArrayRef<T> makeArrayRef(const T *data, size_t length) { |
| 520 | return ArrayRef<T>(data, length); |
| 521 | } |
| 522 | |
| 523 | /// Construct an ArrayRef from a range. |
| 524 | template <typename T> |
| 525 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 526 | ArrayRef<T> makeArrayRef(const T *begin, const T *end) { |
| 527 | return ArrayRef<T>(begin, end); |
| 528 | } |
| 529 | |
| 530 | /// Construct an ArrayRef from a SmallVector. |
| 531 | template <typename T> |
| 532 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 533 | ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { |
| 534 | return Vec; |
| 535 | } |
| 536 | |
| 537 | /// Construct an ArrayRef from a SmallVector. |
| 538 | template <typename T, unsigned N> |
| 539 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 540 | ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { |
| 541 | return Vec; |
| 542 | } |
| 543 | |
| 544 | /// Construct an ArrayRef from a std::vector. |
| 545 | template <typename T> |
| 546 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 547 | ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { |
| 548 | return Vec; |
| 549 | } |
| 550 | |
| 551 | /// Construct an ArrayRef from a std::array. |
| 552 | template <typename T, std::size_t N> |
| 553 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 554 | ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) { |
| 555 | return Arr; |
| 556 | } |
| 557 | |
| 558 | /// Construct an ArrayRef from an ArrayRef (no-op) (const) |
| 559 | template <typename T> |
| 560 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 561 | ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { |
| 562 | return Vec; |
| 563 | } |
| 564 | |
| 565 | /// Construct an ArrayRef from an ArrayRef (no-op) |
| 566 | template <typename T> |
| 567 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 568 | ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { |
| 569 | return Vec; |
| 570 | } |
| 571 | |
| 572 | /// Construct an ArrayRef from a C array. |
| 573 | template <typename T, size_t N> |
| 574 | LLVM_DEPRECATED("Use deduction guide instead" , "ArrayRef" ) |
| 575 | ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { |
| 576 | return ArrayRef<T>(Arr); |
| 577 | } |
| 578 | |
| 579 | /// @name MutableArrayRef Deduction guides |
| 580 | /// @{ |
| 581 | /// Deduction guide to construct a `MutableArrayRef` from a single element |
| 582 | template <class T> MutableArrayRef(T &OneElt) -> MutableArrayRef<T>; |
| 583 | |
| 584 | /// Deduction guide to construct a `MutableArrayRef` from a pointer and |
| 585 | /// length. |
| 586 | template <class T> |
| 587 | MutableArrayRef(T *data, size_t length) -> MutableArrayRef<T>; |
| 588 | |
| 589 | /// Deduction guide to construct a `MutableArrayRef` from a `SmallVector`. |
| 590 | template <class T> |
| 591 | MutableArrayRef(SmallVectorImpl<T> &Vec) -> MutableArrayRef<T>; |
| 592 | |
| 593 | template <class T, unsigned N> |
| 594 | MutableArrayRef(SmallVector<T, N> &Vec) -> MutableArrayRef<T>; |
| 595 | |
| 596 | /// Deduction guide to construct a `MutableArrayRef` from a `std::vector`. |
| 597 | template <class T> MutableArrayRef(std::vector<T> &Vec) -> MutableArrayRef<T>; |
| 598 | |
| 599 | /// Deduction guide to construct a `MutableArrayRef` from a `std::array`. |
| 600 | template <class T, std::size_t N> |
| 601 | MutableArrayRef(std::array<T, N> &Vec) -> MutableArrayRef<T>; |
| 602 | |
| 603 | /// Deduction guide to construct a `MutableArrayRef` from a C array. |
| 604 | template <typename T, size_t N> |
| 605 | MutableArrayRef(T (&Arr)[N]) -> MutableArrayRef<T>; |
| 606 | |
| 607 | /// @} |
| 608 | |
| 609 | /// Construct a MutableArrayRef from a single element. |
| 610 | template <typename T> |
| 611 | LLVM_DEPRECATED("Use deduction guide instead" , "MutableArrayRef" ) |
| 612 | MutableArrayRef<T> makeMutableArrayRef(T &OneElt) { |
| 613 | return OneElt; |
| 614 | } |
| 615 | |
| 616 | /// Construct a MutableArrayRef from a pointer and length. |
| 617 | template <typename T> |
| 618 | LLVM_DEPRECATED("Use deduction guide instead" , "MutableArrayRef" ) |
| 619 | MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) { |
| 620 | return MutableArrayRef<T>(data, length); |
| 621 | } |
| 622 | |
| 623 | /// Construct a MutableArrayRef from a SmallVector. |
| 624 | template <typename T> |
| 625 | LLVM_DEPRECATED("Use deduction guide instead" , "MutableArrayRef" ) |
| 626 | MutableArrayRef<T> makeMutableArrayRef(SmallVectorImpl<T> &Vec) { |
| 627 | return Vec; |
| 628 | } |
| 629 | |
| 630 | /// Construct a MutableArrayRef from a SmallVector. |
| 631 | template <typename T, unsigned N> |
| 632 | LLVM_DEPRECATED("Use deduction guide instead" , "MutableArrayRef" ) |
| 633 | MutableArrayRef<T> makeMutableArrayRef(SmallVector<T, N> &Vec) { |
| 634 | return Vec; |
| 635 | } |
| 636 | |
| 637 | /// Construct a MutableArrayRef from a std::vector. |
| 638 | template <typename T> |
| 639 | LLVM_DEPRECATED("Use deduction guide instead" , "MutableArrayRef" ) |
| 640 | MutableArrayRef<T> makeMutableArrayRef(std::vector<T> &Vec) { |
| 641 | return Vec; |
| 642 | } |
| 643 | |
| 644 | /// Construct a MutableArrayRef from a std::array. |
| 645 | template <typename T, std::size_t N> |
| 646 | LLVM_DEPRECATED("Use deduction guide instead" , "MutableArrayRef" ) |
| 647 | MutableArrayRef<T> makeMutableArrayRef(std::array<T, N> &Arr) { |
| 648 | return Arr; |
| 649 | } |
| 650 | |
| 651 | /// Construct a MutableArrayRef from a MutableArrayRef (no-op) (const) |
| 652 | template <typename T> |
| 653 | LLVM_DEPRECATED("Use deduction guide instead" , "MutableArrayRef" ) |
| 654 | MutableArrayRef<T> makeMutableArrayRef(const MutableArrayRef<T> &Vec) { |
| 655 | return Vec; |
| 656 | } |
| 657 | |
| 658 | /// Construct a MutableArrayRef from a C array. |
| 659 | template <typename T, size_t N> |
| 660 | LLVM_DEPRECATED("Use deduction guide instead" , "MutableArrayRef" ) |
| 661 | MutableArrayRef<T> makeMutableArrayRef(T (&Arr)[N]) { |
| 662 | return MutableArrayRef<T>(Arr); |
| 663 | } |
| 664 | |
| 665 | /// @} |
| 666 | /// @name ArrayRef Comparison Operators |
| 667 | /// @{ |
| 668 | |
| 669 | template<typename T> |
| 670 | inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { |
| 671 | return LHS.equals(RHS); |
| 672 | } |
| 673 | |
| 674 | template <typename T> |
| 675 | inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) { |
| 676 | return ArrayRef<T>(LHS).equals(RHS); |
| 677 | } |
| 678 | |
| 679 | template <typename T> |
| 680 | inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { |
| 681 | return !(LHS == RHS); |
| 682 | } |
| 683 | |
| 684 | template <typename T> |
| 685 | inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) { |
| 686 | return !(LHS == RHS); |
| 687 | } |
| 688 | |
| 689 | /// @} |
| 690 | |
| 691 | template <typename T> hash_code hash_value(ArrayRef<T> S) { |
| 692 | return hash_combine_range(S.begin(), S.end()); |
| 693 | } |
| 694 | |
| 695 | // Provide DenseMapInfo for ArrayRefs. |
| 696 | template <typename T> struct DenseMapInfo<ArrayRef<T>, void> { |
| 697 | static inline ArrayRef<T> getEmptyKey() { |
| 698 | return ArrayRef<T>( |
| 699 | reinterpret_cast<const T *>(~static_cast<uintptr_t>(0)), size_t(0)); |
| 700 | } |
| 701 | |
| 702 | static inline ArrayRef<T> getTombstoneKey() { |
| 703 | return ArrayRef<T>( |
| 704 | reinterpret_cast<const T *>(~static_cast<uintptr_t>(1)), size_t(0)); |
| 705 | } |
| 706 | |
| 707 | static unsigned getHashValue(ArrayRef<T> Val) { |
| 708 | assert(Val.data() != getEmptyKey().data() && |
| 709 | "Cannot hash the empty key!" ); |
| 710 | assert(Val.data() != getTombstoneKey().data() && |
| 711 | "Cannot hash the tombstone key!" ); |
| 712 | return (unsigned)(hash_value(Val)); |
| 713 | } |
| 714 | |
| 715 | static bool isEqual(ArrayRef<T> LHS, ArrayRef<T> RHS) { |
| 716 | if (RHS.data() == getEmptyKey().data()) |
| 717 | return LHS.data() == getEmptyKey().data(); |
| 718 | if (RHS.data() == getTombstoneKey().data()) |
| 719 | return LHS.data() == getTombstoneKey().data(); |
| 720 | return LHS == RHS; |
| 721 | } |
| 722 | }; |
| 723 | |
| 724 | } // end namespace llvm |
| 725 | |
| 726 | #endif // LLVM_ADT_ARRAYREF_H |
| 727 | |