1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file contains some templates that are useful if you are working with
11/// the STL at all.
12///
13/// No library is required when using these functions.
14///
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/ADL.h"
21#include "llvm/ADT/Hashing.h"
22#include "llvm/ADT/STLForwardCompat.h"
23#include "llvm/ADT/STLFunctionalExtras.h"
24#include "llvm/ADT/identity.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Config/abi-breaking.h"
28#include "llvm/Support/ErrorHandling.h"
29#include <algorithm>
30#include <cassert>
31#include <cstddef>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <initializer_list>
36#include <iterator>
37#include <limits>
38#include <memory>
39#include <optional>
40#include <tuple>
41#include <type_traits>
42#include <utility>
43
44#ifdef EXPENSIVE_CHECKS
45#include <random> // for std::mt19937
46#endif
47
48namespace llvm {
49
50//===----------------------------------------------------------------------===//
51// Extra additions to <type_traits>
52//===----------------------------------------------------------------------===//
53
54template <typename T> struct make_const_ptr {
55 using type = std::add_pointer_t<std::add_const_t<T>>;
56};
57
58template <typename T> struct make_const_ref {
59 using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
60};
61
62namespace detail {
63template <class, template <class...> class Op, class... Args> struct detector {
64 using value_t = std::false_type;
65};
66template <template <class...> class Op, class... Args>
67struct detector<std::void_t<Op<Args...>>, Op, Args...> {
68 using value_t = std::true_type;
69};
70} // end namespace detail
71
72/// Detects if a given trait holds for some set of arguments 'Args'.
73/// For example, the given trait could be used to detect if a given type
74/// has a copy assignment operator:
75/// template<class T>
76/// using has_copy_assign_t = decltype(std::declval<T&>()
77/// = std::declval<const T&>());
78/// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
79template <template <class...> class Op, class... Args>
80using is_detected = typename detail::detector<void, Op, Args...>::value_t;
81
82/// This class provides various trait information about a callable object.
83/// * To access the number of arguments: Traits::num_args
84/// * To access the type of an argument: Traits::arg_t<Index>
85/// * To access the type of the result: Traits::result_t
86template <typename T, bool isClass = std::is_class<T>::value>
87struct function_traits : public function_traits<decltype(&T::operator())> {};
88
89/// Overload for class function types.
90template <typename ClassType, typename ReturnType, typename... Args>
91struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
92 /// The number of arguments to this function.
93 enum { num_args = sizeof...(Args) };
94
95 /// The result type of this function.
96 using result_t = ReturnType;
97
98 /// The type of an argument to this function.
99 template <size_t Index>
100 using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
101};
102/// Overload for class function types.
103template <typename ClassType, typename ReturnType, typename... Args>
104struct function_traits<ReturnType (ClassType::*)(Args...), false>
105 : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
106/// Overload for non-class function types.
107template <typename ReturnType, typename... Args>
108struct function_traits<ReturnType (*)(Args...), false> {
109 /// The number of arguments to this function.
110 enum { num_args = sizeof...(Args) };
111
112 /// The result type of this function.
113 using result_t = ReturnType;
114
115 /// The type of an argument to this function.
116 template <size_t i>
117 using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
118};
119template <typename ReturnType, typename... Args>
120struct function_traits<ReturnType (*const)(Args...), false>
121 : public function_traits<ReturnType (*)(Args...)> {};
122/// Overload for non-class function type references.
123template <typename ReturnType, typename... Args>
124struct function_traits<ReturnType (&)(Args...), false>
125 : public function_traits<ReturnType (*)(Args...)> {};
126
127/// traits class for checking whether type T is one of any of the given
128/// types in the variadic list.
129template <typename T, typename... Ts>
130using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
131
132/// traits class for checking whether type T is a base class for all
133/// the given types in the variadic list.
134template <typename T, typename... Ts>
135using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
136
137namespace detail {
138template <typename T, typename... Us> struct TypesAreDistinct;
139template <typename T, typename... Us>
140struct TypesAreDistinct
141 : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
142 TypesAreDistinct<Us...>::value> {};
143template <typename T> struct TypesAreDistinct<T> : std::true_type {};
144} // namespace detail
145
146/// Determine if all types in Ts are distinct.
147///
148/// Useful to statically assert when Ts is intended to describe a non-multi set
149/// of types.
150///
151/// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
152/// asserted once per instantiation of a type which requires it.
153template <typename... Ts> struct TypesAreDistinct;
154template <> struct TypesAreDistinct<> : std::true_type {};
155template <typename... Ts>
156struct TypesAreDistinct
157 : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
158
159/// Find the first index where a type appears in a list of types.
160///
161/// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
162///
163/// Typically only meaningful when it is otherwise statically known that the
164/// type pack has no duplicate types. This should be guaranteed explicitly with
165/// static_assert(TypesAreDistinct<Us...>::value).
166///
167/// It is a compile-time error to instantiate when T is not present in Us, i.e.
168/// if is_one_of<T, Us...>::value is false.
169template <typename T, typename... Us> struct FirstIndexOfType;
170template <typename T, typename U, typename... Us>
171struct FirstIndexOfType<T, U, Us...>
172 : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
173template <typename T, typename... Us>
174struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
175
176/// Find the type at a given index in a list of types.
177///
178/// TypeAtIndex<I, Ts...> is the type at index I in Ts.
179template <size_t I, typename... Ts>
180using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
181
182/// Helper which adds two underlying types of enumeration type.
183/// Implicit conversion to a common type is accepted.
184template <typename EnumTy1, typename EnumTy2,
185 typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
186 std::underlying_type_t<EnumTy1>>,
187 typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
188 std::underlying_type_t<EnumTy2>>>
189constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
190 return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
191}
192
193//===----------------------------------------------------------------------===//
194// Extra additions to <iterator>
195//===----------------------------------------------------------------------===//
196
197namespace callable_detail {
198
199/// Templated storage wrapper for a callable.
200///
201/// This class is consistently default constructible, copy / move
202/// constructible / assignable.
203///
204/// Supported callable types:
205/// - Function pointer
206/// - Function reference
207/// - Lambda
208/// - Function object
209template <typename T,
210 bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
211class Callable {
212 using value_type = std::remove_reference_t<T>;
213 using reference = value_type &;
214 using const_reference = value_type const &;
215
216 std::optional<value_type> Obj;
217
218 static_assert(!std::is_pointer_v<value_type>,
219 "Pointers to non-functions are not callable.");
220
221public:
222 Callable() = default;
223 Callable(T const &O) : Obj(std::in_place, O) {}
224
225 Callable(Callable const &Other) = default;
226 Callable(Callable &&Other) = default;
227
228 Callable &operator=(Callable const &Other) {
229 Obj = std::nullopt;
230 if (Other.Obj)
231 Obj.emplace(*Other.Obj);
232 return *this;
233 }
234
235 Callable &operator=(Callable &&Other) {
236 Obj = std::nullopt;
237 if (Other.Obj)
238 Obj.emplace(std::move(*Other.Obj));
239 return *this;
240 }
241
242 template <typename... Pn,
243 std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
244 decltype(auto) operator()(Pn &&...Params) {
245 return (*Obj)(std::forward<Pn>(Params)...);
246 }
247
248 template <typename... Pn,
249 std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
250 decltype(auto) operator()(Pn &&...Params) const {
251 return (*Obj)(std::forward<Pn>(Params)...);
252 }
253
254 bool valid() const { return Obj != std::nullopt; }
255 bool reset() { return Obj = std::nullopt; }
256
257 operator reference() { return *Obj; }
258 operator const_reference() const { return *Obj; }
259};
260
261// Function specialization. No need to waste extra space wrapping with a
262// std::optional.
263template <typename T> class Callable<T, true> {
264 static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
265
266 using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
267 using CastT = std::conditional_t<IsPtr, T, T &>;
268
269private:
270 StorageT Func = nullptr;
271
272private:
273 template <typename In> static constexpr auto convertIn(In &&I) {
274 if constexpr (IsPtr) {
275 // Pointer... just echo it back.
276 return I;
277 } else {
278 // Must be a function reference. Return its address.
279 return &I;
280 }
281 }
282
283public:
284 Callable() = default;
285
286 // Construct from a function pointer or reference.
287 //
288 // Disable this constructor for references to 'Callable' so we don't violate
289 // the rule of 0.
290 template < // clang-format off
291 typename FnPtrOrRef,
292 std::enable_if_t<
293 !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
294 > = 0
295 > // clang-format on
296 Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
297
298 template <typename... Pn,
299 std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
300 decltype(auto) operator()(Pn &&...Params) const {
301 return Func(std::forward<Pn>(Params)...);
302 }
303
304 bool valid() const { return Func != nullptr; }
305 void reset() { Func = nullptr; }
306
307 operator T const &() const {
308 if constexpr (IsPtr) {
309 // T is a pointer... just echo it back.
310 return Func;
311 } else {
312 static_assert(std::is_reference_v<T>,
313 "Expected a reference to a function.");
314 // T is a function reference... dereference the stored pointer.
315 return *Func;
316 }
317 }
318};
319
320} // namespace callable_detail
321
322/// Returns true if the given container only contains a single element.
323template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
324 auto B = std::begin(C), E = std::end(C);
325 return B != E && std::next(B) == E;
326}
327
328/// Return a range covering \p RangeOrContainer with the first N elements
329/// excluded.
330template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
331 return make_range(std::next(adl_begin(RangeOrContainer), N),
332 adl_end(RangeOrContainer));
333}
334
335/// Return a range covering \p RangeOrContainer with the last N elements
336/// excluded.
337template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
338 return make_range(adl_begin(RangeOrContainer),
339 std::prev(adl_end(RangeOrContainer), N));
340}
341
342// mapped_iterator - This is a simple iterator adapter that causes a function to
343// be applied whenever operator* is invoked on the iterator.
344
345template <typename ItTy, typename FuncTy,
346 typename ReferenceTy =
347 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
348class mapped_iterator
349 : public iterator_adaptor_base<
350 mapped_iterator<ItTy, FuncTy>, ItTy,
351 typename std::iterator_traits<ItTy>::iterator_category,
352 std::remove_reference_t<ReferenceTy>,
353 typename std::iterator_traits<ItTy>::difference_type,
354 std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
355public:
356 mapped_iterator() = default;
357 mapped_iterator(ItTy U, FuncTy F)
358 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
359
360 ItTy getCurrent() { return this->I; }
361
362 const FuncTy &getFunction() const { return F; }
363
364 ReferenceTy operator*() const { return F(*this->I); }
365
366private:
367 callable_detail::Callable<FuncTy> F{};
368};
369
370// map_iterator - Provide a convenient way to create mapped_iterators, just like
371// make_pair is useful for creating pairs...
372template <class ItTy, class FuncTy>
373inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
374 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
375}
376
377template <class ContainerTy, class FuncTy>
378auto map_range(ContainerTy &&C, FuncTy F) {
379 return make_range(map_iterator(std::begin(C), F),
380 map_iterator(std::end(C), F));
381}
382
383/// A base type of mapped iterator, that is useful for building derived
384/// iterators that do not need/want to store the map function (as in
385/// mapped_iterator). These iterators must simply provide a `mapElement` method
386/// that defines how to map a value of the iterator to the provided reference
387/// type.
388template <typename DerivedT, typename ItTy, typename ReferenceTy>
389class mapped_iterator_base
390 : public iterator_adaptor_base<
391 DerivedT, ItTy,
392 typename std::iterator_traits<ItTy>::iterator_category,
393 std::remove_reference_t<ReferenceTy>,
394 typename std::iterator_traits<ItTy>::difference_type,
395 std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
396public:
397 using BaseT = mapped_iterator_base;
398
399 mapped_iterator_base(ItTy U)
400 : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
401
402 ItTy getCurrent() { return this->I; }
403
404 ReferenceTy operator*() const {
405 return static_cast<const DerivedT &>(*this).mapElement(*this->I);
406 }
407};
408
409/// Helper to determine if type T has a member called rbegin().
410template <typename Ty> class has_rbegin_impl {
411 using yes = char[1];
412 using no = char[2];
413
414 template <typename Inner>
415 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
416
417 template <typename>
418 static no& test(...);
419
420public:
421 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
422};
423
424/// Metafunction to determine if T& or T has a member called rbegin().
425template <typename Ty>
426struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {};
427
428// Returns an iterator_range over the given container which iterates in reverse.
429template <typename ContainerTy> auto reverse(ContainerTy &&C) {
430 if constexpr (has_rbegin<ContainerTy>::value)
431 return make_range(C.rbegin(), C.rend());
432 else
433 return make_range(std::make_reverse_iterator(std::end(C)),
434 std::make_reverse_iterator(std::begin(C)));
435}
436
437/// An iterator adaptor that filters the elements of given inner iterators.
438///
439/// The predicate parameter should be a callable object that accepts the wrapped
440/// iterator's reference type and returns a bool. When incrementing or
441/// decrementing the iterator, it will call the predicate on each element and
442/// skip any where it returns false.
443///
444/// \code
445/// int A[] = { 1, 2, 3, 4 };
446/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
447/// // R contains { 1, 3 }.
448/// \endcode
449///
450/// Note: filter_iterator_base implements support for forward iteration.
451/// filter_iterator_impl exists to provide support for bidirectional iteration,
452/// conditional on whether the wrapped iterator supports it.
453template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
454class filter_iterator_base
455 : public iterator_adaptor_base<
456 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
457 WrappedIteratorT,
458 std::common_type_t<IterTag,
459 typename std::iterator_traits<
460 WrappedIteratorT>::iterator_category>> {
461 using BaseT = typename filter_iterator_base::iterator_adaptor_base;
462
463protected:
464 WrappedIteratorT End;
465 PredicateT Pred;
466
467 void findNextValid() {
468 while (this->I != End && !Pred(*this->I))
469 BaseT::operator++();
470 }
471
472 filter_iterator_base() = default;
473
474 // Construct the iterator. The begin iterator needs to know where the end
475 // is, so that it can properly stop when it gets there. The end iterator only
476 // needs the predicate to support bidirectional iteration.
477 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
478 PredicateT Pred)
479 : BaseT(Begin), End(End), Pred(Pred) {
480 findNextValid();
481 }
482
483public:
484 using BaseT::operator++;
485
486 filter_iterator_base &operator++() {
487 BaseT::operator++();
488 findNextValid();
489 return *this;
490 }
491
492 decltype(auto) operator*() const {
493 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
494 return BaseT::operator*();
495 }
496
497 decltype(auto) operator->() const {
498 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
499 return BaseT::operator->();
500 }
501};
502
503/// Specialization of filter_iterator_base for forward iteration only.
504template <typename WrappedIteratorT, typename PredicateT,
505 typename IterTag = std::forward_iterator_tag>
506class filter_iterator_impl
507 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
508public:
509 filter_iterator_impl() = default;
510
511 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
512 PredicateT Pred)
513 : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
514};
515
516/// Specialization of filter_iterator_base for bidirectional iteration.
517template <typename WrappedIteratorT, typename PredicateT>
518class filter_iterator_impl<WrappedIteratorT, PredicateT,
519 std::bidirectional_iterator_tag>
520 : public filter_iterator_base<WrappedIteratorT, PredicateT,
521 std::bidirectional_iterator_tag> {
522 using BaseT = typename filter_iterator_impl::filter_iterator_base;
523
524 void findPrevValid() {
525 while (!this->Pred(*this->I))
526 BaseT::operator--();
527 }
528
529public:
530 using BaseT::operator--;
531
532 filter_iterator_impl() = default;
533
534 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
535 PredicateT Pred)
536 : BaseT(Begin, End, Pred) {}
537
538 filter_iterator_impl &operator--() {
539 BaseT::operator--();
540 findPrevValid();
541 return *this;
542 }
543};
544
545namespace detail {
546
547template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
548 using type = std::forward_iterator_tag;
549};
550
551template <> struct fwd_or_bidi_tag_impl<true> {
552 using type = std::bidirectional_iterator_tag;
553};
554
555/// Helper which sets its type member to forward_iterator_tag if the category
556/// of \p IterT does not derive from bidirectional_iterator_tag, and to
557/// bidirectional_iterator_tag otherwise.
558template <typename IterT> struct fwd_or_bidi_tag {
559 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
560 std::bidirectional_iterator_tag,
561 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
562};
563
564} // namespace detail
565
566/// Defines filter_iterator to a suitable specialization of
567/// filter_iterator_impl, based on the underlying iterator's category.
568template <typename WrappedIteratorT, typename PredicateT>
569using filter_iterator = filter_iterator_impl<
570 WrappedIteratorT, PredicateT,
571 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
572
573/// Convenience function that takes a range of elements and a predicate,
574/// and return a new filter_iterator range.
575///
576/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
577/// lifetime of that temporary is not kept by the returned range object, and the
578/// temporary is going to be dropped on the floor after the make_iterator_range
579/// full expression that contains this function call.
580template <typename RangeT, typename PredicateT>
581iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
582make_filter_range(RangeT &&Range, PredicateT Pred) {
583 using FilterIteratorT =
584 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
585 return make_range(
586 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
587 std::end(std::forward<RangeT>(Range)), Pred),
588 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
589 std::end(std::forward<RangeT>(Range)), Pred));
590}
591
592/// A pseudo-iterator adaptor that is designed to implement "early increment"
593/// style loops.
594///
595/// This is *not a normal iterator* and should almost never be used directly. It
596/// is intended primarily to be used with range based for loops and some range
597/// algorithms.
598///
599/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
600/// somewhere between them. The constraints of these iterators are:
601///
602/// - On construction or after being incremented, it is comparable and
603/// dereferencable. It is *not* incrementable.
604/// - After being dereferenced, it is neither comparable nor dereferencable, it
605/// is only incrementable.
606///
607/// This means you can only dereference the iterator once, and you can only
608/// increment it once between dereferences.
609template <typename WrappedIteratorT>
610class early_inc_iterator_impl
611 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
612 WrappedIteratorT, std::input_iterator_tag> {
613 using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
614
615 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
616
617protected:
618#if LLVM_ENABLE_ABI_BREAKING_CHECKS
619 bool IsEarlyIncremented = false;
620#endif
621
622public:
623 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
624
625 using BaseT::operator*;
626 decltype(*std::declval<WrappedIteratorT>()) operator*() {
627#if LLVM_ENABLE_ABI_BREAKING_CHECKS
628 assert(!IsEarlyIncremented && "Cannot dereference twice!");
629 IsEarlyIncremented = true;
630#endif
631 return *(this->I)++;
632 }
633
634 using BaseT::operator++;
635 early_inc_iterator_impl &operator++() {
636#if LLVM_ENABLE_ABI_BREAKING_CHECKS
637 assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
638 IsEarlyIncremented = false;
639#endif
640 return *this;
641 }
642
643 friend bool operator==(const early_inc_iterator_impl &LHS,
644 const early_inc_iterator_impl &RHS) {
645#if LLVM_ENABLE_ABI_BREAKING_CHECKS
646 assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
647#endif
648 return (const BaseT &)LHS == (const BaseT &)RHS;
649 }
650};
651
652/// Make a range that does early increment to allow mutation of the underlying
653/// range without disrupting iteration.
654///
655/// The underlying iterator will be incremented immediately after it is
656/// dereferenced, allowing deletion of the current node or insertion of nodes to
657/// not disrupt iteration provided they do not invalidate the *next* iterator --
658/// the current iterator can be invalidated.
659///
660/// This requires a very exact pattern of use that is only really suitable to
661/// range based for loops and other range algorithms that explicitly guarantee
662/// to dereference exactly once each element, and to increment exactly once each
663/// element.
664template <typename RangeT>
665iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
666make_early_inc_range(RangeT &&Range) {
667 using EarlyIncIteratorT =
668 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
669 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
670 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
671}
672
673// Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
674template <typename R, typename UnaryPredicate>
675bool all_of(R &&range, UnaryPredicate P);
676
677template <typename R, typename UnaryPredicate>
678bool any_of(R &&range, UnaryPredicate P);
679
680template <typename T> bool all_equal(std::initializer_list<T> Values);
681
682template <typename R> constexpr size_t range_size(R &&Range);
683
684namespace detail {
685
686using std::declval;
687
688// We have to alias this since inlining the actual type at the usage site
689// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
690template<typename... Iters> struct ZipTupleType {
691 using type = std::tuple<decltype(*declval<Iters>())...>;
692};
693
694template <typename ZipType, typename ReferenceTupleType, typename... Iters>
695using zip_traits = iterator_facade_base<
696 ZipType,
697 std::common_type_t<
698 std::bidirectional_iterator_tag,
699 typename std::iterator_traits<Iters>::iterator_category...>,
700 // ^ TODO: Implement random access methods.
701 ReferenceTupleType,
702 typename std::iterator_traits<
703 std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
704 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
705 // inner iterators have the same difference_type. It would fail if, for
706 // instance, the second field's difference_type were non-numeric while the
707 // first is.
708 ReferenceTupleType *, ReferenceTupleType>;
709
710template <typename ZipType, typename ReferenceTupleType, typename... Iters>
711struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> {
712 using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>;
713 using IndexSequence = std::index_sequence_for<Iters...>;
714 using value_type = typename Base::value_type;
715
716 std::tuple<Iters...> iterators;
717
718protected:
719 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
720 return value_type(*std::get<Ns>(iterators)...);
721 }
722
723 template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) {
724 (++std::get<Ns>(iterators), ...);
725 }
726
727 template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) {
728 (--std::get<Ns>(iterators), ...);
729 }
730
731 template <size_t... Ns>
732 bool test_all_equals(const zip_common &other,
733 std::index_sequence<Ns...>) const {
734 return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
735 ...);
736 }
737
738public:
739 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
740
741 value_type operator*() const { return deref(IndexSequence{}); }
742
743 ZipType &operator++() {
744 tup_inc(IndexSequence{});
745 return static_cast<ZipType &>(*this);
746 }
747
748 ZipType &operator--() {
749 static_assert(Base::IsBidirectional,
750 "All inner iterators must be at least bidirectional.");
751 tup_dec(IndexSequence{});
752 return static_cast<ZipType &>(*this);
753 }
754
755 /// Return true if all the iterator are matching `other`'s iterators.
756 bool all_equals(zip_common &other) {
757 return test_all_equals(other, IndexSequence{});
758 }
759};
760
761template <typename... Iters>
762struct zip_first : zip_common<zip_first<Iters...>,
763 typename ZipTupleType<Iters...>::type, Iters...> {
764 using zip_common<zip_first, typename ZipTupleType<Iters...>::type,
765 Iters...>::zip_common;
766
767 bool operator==(const zip_first &other) const {
768 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
769 }
770};
771
772template <typename... Iters>
773struct zip_shortest
774 : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type,
775 Iters...> {
776 using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type,
777 Iters...>::zip_common;
778
779 bool operator==(const zip_shortest &other) const {
780 return any_iterator_equals(other, std::index_sequence_for<Iters...>{});
781 }
782
783private:
784 template <size_t... Ns>
785 bool any_iterator_equals(const zip_shortest &other,
786 std::index_sequence<Ns...>) const {
787 return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) ||
788 ...);
789 }
790};
791
792/// Helper to obtain the iterator types for the tuple storage within `zippy`.
793template <template <typename...> class ItType, typename TupleStorageType,
794 typename IndexSequence>
795struct ZippyIteratorTuple;
796
797/// Partial specialization for non-const tuple storage.
798template <template <typename...> class ItType, typename... Args,
799 std::size_t... Ns>
800struct ZippyIteratorTuple<ItType, std::tuple<Args...>,
801 std::index_sequence<Ns...>> {
802 using type = ItType<decltype(adl_begin(
803 std::get<Ns>(declval<std::tuple<Args...> &>())))...>;
804};
805
806/// Partial specialization for const tuple storage.
807template <template <typename...> class ItType, typename... Args,
808 std::size_t... Ns>
809struct ZippyIteratorTuple<ItType, const std::tuple<Args...>,
810 std::index_sequence<Ns...>> {
811 using type = ItType<decltype(adl_begin(
812 std::get<Ns>(declval<const std::tuple<Args...> &>())))...>;
813};
814
815template <template <typename...> class ItType, typename... Args> class zippy {
816private:
817 std::tuple<Args...> storage;
818 using IndexSequence = std::index_sequence_for<Args...>;
819
820public:
821 using iterator = typename ZippyIteratorTuple<ItType, decltype(storage),
822 IndexSequence>::type;
823 using const_iterator =
824 typename ZippyIteratorTuple<ItType, const decltype(storage),
825 IndexSequence>::type;
826 using iterator_category = typename iterator::iterator_category;
827 using value_type = typename iterator::value_type;
828 using difference_type = typename iterator::difference_type;
829 using pointer = typename iterator::pointer;
830 using reference = typename iterator::reference;
831 using const_reference = typename const_iterator::reference;
832
833 zippy(Args &&...args) : storage(std::forward<Args>(args)...) {}
834
835 const_iterator begin() const { return begin_impl(IndexSequence{}); }
836 iterator begin() { return begin_impl(IndexSequence{}); }
837 const_iterator end() const { return end_impl(IndexSequence{}); }
838 iterator end() { return end_impl(IndexSequence{}); }
839
840private:
841 template <size_t... Ns>
842 const_iterator begin_impl(std::index_sequence<Ns...>) const {
843 return const_iterator(adl_begin(std::get<Ns>(storage))...);
844 }
845 template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
846 return iterator(adl_begin(std::get<Ns>(storage))...);
847 }
848
849 template <size_t... Ns>
850 const_iterator end_impl(std::index_sequence<Ns...>) const {
851 return const_iterator(adl_end(std::get<Ns>(storage))...);
852 }
853 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
854 return iterator(adl_end(std::get<Ns>(storage))...);
855 }
856};
857
858} // end namespace detail
859
860/// zip iterator for two or more iteratable types. Iteration continues until the
861/// end of the *shortest* iteratee is reached.
862template <typename T, typename U, typename... Args>
863detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
864 Args &&...args) {
865 return detail::zippy<detail::zip_shortest, T, U, Args...>(
866 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
867}
868
869/// zip iterator that assumes that all iteratees have the same length.
870/// In builds with assertions on, this assumption is checked before the
871/// iteration starts.
872template <typename T, typename U, typename... Args>
873detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
874 Args &&...args) {
875 assert(all_equal({range_size(t), range_size(u), range_size(args)...}) &&
876 "Iteratees do not have equal length");
877 return detail::zippy<detail::zip_first, T, U, Args...>(
878 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
879}
880
881/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
882/// be the shortest. Iteration continues until the end of the first iteratee is
883/// reached. In builds with assertions on, we check that the assumption about
884/// the first iteratee being the shortest holds.
885template <typename T, typename U, typename... Args>
886detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
887 Args &&...args) {
888 assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) &&
889 "First iteratee is not the shortest");
890
891 return detail::zippy<detail::zip_first, T, U, Args...>(
892 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
893}
894
895namespace detail {
896template <typename Iter>
897Iter next_or_end(const Iter &I, const Iter &End) {
898 if (I == End)
899 return End;
900 return std::next(I);
901}
902
903template <typename Iter>
904auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
905 std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
906 if (I == End)
907 return std::nullopt;
908 return *I;
909}
910
911template <typename Iter> struct ZipLongestItemType {
912 using type = std::optional<std::remove_const_t<
913 std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
914};
915
916template <typename... Iters> struct ZipLongestTupleType {
917 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
918};
919
920template <typename... Iters>
921class zip_longest_iterator
922 : public iterator_facade_base<
923 zip_longest_iterator<Iters...>,
924 std::common_type_t<
925 std::forward_iterator_tag,
926 typename std::iterator_traits<Iters>::iterator_category...>,
927 typename ZipLongestTupleType<Iters...>::type,
928 typename std::iterator_traits<
929 std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
930 typename ZipLongestTupleType<Iters...>::type *,
931 typename ZipLongestTupleType<Iters...>::type> {
932public:
933 using value_type = typename ZipLongestTupleType<Iters...>::type;
934
935private:
936 std::tuple<Iters...> iterators;
937 std::tuple<Iters...> end_iterators;
938
939 template <size_t... Ns>
940 bool test(const zip_longest_iterator<Iters...> &other,
941 std::index_sequence<Ns...>) const {
942 return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
943 ...);
944 }
945
946 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
947 return value_type(
948 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
949 }
950
951 template <size_t... Ns>
952 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
953 return std::tuple<Iters...>(
954 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
955 }
956
957public:
958 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
959 : iterators(std::forward<Iters>(ts.first)...),
960 end_iterators(std::forward<Iters>(ts.second)...) {}
961
962 value_type operator*() const {
963 return deref(std::index_sequence_for<Iters...>{});
964 }
965
966 zip_longest_iterator<Iters...> &operator++() {
967 iterators = tup_inc(std::index_sequence_for<Iters...>{});
968 return *this;
969 }
970
971 bool operator==(const zip_longest_iterator<Iters...> &other) const {
972 return !test(other, std::index_sequence_for<Iters...>{});
973 }
974};
975
976template <typename... Args> class zip_longest_range {
977public:
978 using iterator =
979 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
980 using iterator_category = typename iterator::iterator_category;
981 using value_type = typename iterator::value_type;
982 using difference_type = typename iterator::difference_type;
983 using pointer = typename iterator::pointer;
984 using reference = typename iterator::reference;
985
986private:
987 std::tuple<Args...> ts;
988
989 template <size_t... Ns>
990 iterator begin_impl(std::index_sequence<Ns...>) const {
991 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
992 adl_end(std::get<Ns>(ts)))...);
993 }
994
995 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
996 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
997 adl_end(std::get<Ns>(ts)))...);
998 }
999
1000public:
1001 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
1002
1003 iterator begin() const {
1004 return begin_impl(std::index_sequence_for<Args...>{});
1005 }
1006 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
1007};
1008} // namespace detail
1009
1010/// Iterate over two or more iterators at the same time. Iteration continues
1011/// until all iterators reach the end. The std::optional only contains a value
1012/// if the iterator has not reached the end.
1013template <typename T, typename U, typename... Args>
1014detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
1015 Args &&... args) {
1016 return detail::zip_longest_range<T, U, Args...>(
1017 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
1018}
1019
1020/// Iterator wrapper that concatenates sequences together.
1021///
1022/// This can concatenate different iterators, even with different types, into
1023/// a single iterator provided the value types of all the concatenated
1024/// iterators expose `reference` and `pointer` types that can be converted to
1025/// `ValueT &` and `ValueT *` respectively. It doesn't support more
1026/// interesting/customized pointer or reference types.
1027///
1028/// Currently this only supports forward or higher iterator categories as
1029/// inputs and always exposes a forward iterator interface.
1030template <typename ValueT, typename... IterTs>
1031class concat_iterator
1032 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
1033 std::forward_iterator_tag, ValueT> {
1034 using BaseT = typename concat_iterator::iterator_facade_base;
1035
1036 /// We store both the current and end iterators for each concatenated
1037 /// sequence in a tuple of pairs.
1038 ///
1039 /// Note that something like iterator_range seems nice at first here, but the
1040 /// range properties are of little benefit and end up getting in the way
1041 /// because we need to do mutation on the current iterators.
1042 std::tuple<IterTs...> Begins;
1043 std::tuple<IterTs...> Ends;
1044
1045 /// Attempts to increment a specific iterator.
1046 ///
1047 /// Returns true if it was able to increment the iterator. Returns false if
1048 /// the iterator is already at the end iterator.
1049 template <size_t Index> bool incrementHelper() {
1050 auto &Begin = std::get<Index>(Begins);
1051 auto &End = std::get<Index>(Ends);
1052 if (Begin == End)
1053 return false;
1054
1055 ++Begin;
1056 return true;
1057 }
1058
1059 /// Increments the first non-end iterator.
1060 ///
1061 /// It is an error to call this with all iterators at the end.
1062 template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
1063 // Build a sequence of functions to increment each iterator if possible.
1064 bool (concat_iterator::*IncrementHelperFns[])() = {
1065 &concat_iterator::incrementHelper<Ns>...};
1066
1067 // Loop over them, and stop as soon as we succeed at incrementing one.
1068 for (auto &IncrementHelperFn : IncrementHelperFns)
1069 if ((this->*IncrementHelperFn)())
1070 return;
1071
1072 llvm_unreachable("Attempted to increment an end concat iterator!");
1073 }
1074
1075 /// Returns null if the specified iterator is at the end. Otherwise,
1076 /// dereferences the iterator and returns the address of the resulting
1077 /// reference.
1078 template <size_t Index> ValueT *getHelper() const {
1079 auto &Begin = std::get<Index>(Begins);
1080 auto &End = std::get<Index>(Ends);
1081 if (Begin == End)
1082 return nullptr;
1083
1084 return &*Begin;
1085 }
1086
1087 /// Finds the first non-end iterator, dereferences, and returns the resulting
1088 /// reference.
1089 ///
1090 /// It is an error to call this with all iterators at the end.
1091 template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
1092 // Build a sequence of functions to get from iterator if possible.
1093 ValueT *(concat_iterator::*GetHelperFns[])() const = {
1094 &concat_iterator::getHelper<Ns>...};
1095
1096 // Loop over them, and return the first result we find.
1097 for (auto &GetHelperFn : GetHelperFns)
1098 if (ValueT *P = (this->*GetHelperFn)())
1099 return *P;
1100
1101 llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
1102 }
1103
1104public:
1105 /// Constructs an iterator from a sequence of ranges.
1106 ///
1107 /// We need the full range to know how to switch between each of the
1108 /// iterators.
1109 template <typename... RangeTs>
1110 explicit concat_iterator(RangeTs &&... Ranges)
1111 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
1112
1113 using BaseT::operator++;
1114
1115 concat_iterator &operator++() {
1116 increment(std::index_sequence_for<IterTs...>());
1117 return *this;
1118 }
1119
1120 ValueT &operator*() const {
1121 return get(std::index_sequence_for<IterTs...>());
1122 }
1123
1124 bool operator==(const concat_iterator &RHS) const {
1125 return Begins == RHS.Begins && Ends == RHS.Ends;
1126 }
1127};
1128
1129namespace detail {
1130
1131/// Helper to store a sequence of ranges being concatenated and access them.
1132///
1133/// This is designed to facilitate providing actual storage when temporaries
1134/// are passed into the constructor such that we can use it as part of range
1135/// based for loops.
1136template <typename ValueT, typename... RangeTs> class concat_range {
1137public:
1138 using iterator =
1139 concat_iterator<ValueT,
1140 decltype(std::begin(std::declval<RangeTs &>()))...>;
1141
1142private:
1143 std::tuple<RangeTs...> Ranges;
1144
1145 template <size_t... Ns>
1146 iterator begin_impl(std::index_sequence<Ns...>) {
1147 return iterator(std::get<Ns>(Ranges)...);
1148 }
1149 template <size_t... Ns>
1150 iterator begin_impl(std::index_sequence<Ns...>) const {
1151 return iterator(std::get<Ns>(Ranges)...);
1152 }
1153 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1154 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1155 std::end(std::get<Ns>(Ranges)))...);
1156 }
1157 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1158 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1159 std::end(std::get<Ns>(Ranges)))...);
1160 }
1161
1162public:
1163 concat_range(RangeTs &&... Ranges)
1164 : Ranges(std::forward<RangeTs>(Ranges)...) {}
1165
1166 iterator begin() {
1167 return begin_impl(std::index_sequence_for<RangeTs...>{});
1168 }
1169 iterator begin() const {
1170 return begin_impl(std::index_sequence_for<RangeTs...>{});
1171 }
1172 iterator end() {
1173 return end_impl(std::index_sequence_for<RangeTs...>{});
1174 }
1175 iterator end() const {
1176 return end_impl(std::index_sequence_for<RangeTs...>{});
1177 }
1178};
1179
1180} // end namespace detail
1181
1182/// Concatenated range across two or more ranges.
1183///
1184/// The desired value type must be explicitly specified.
1185template <typename ValueT, typename... RangeTs>
1186detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
1187 static_assert(sizeof...(RangeTs) > 1,
1188 "Need more than one range to concatenate!");
1189 return detail::concat_range<ValueT, RangeTs...>(
1190 std::forward<RangeTs>(Ranges)...);
1191}
1192
1193/// A utility class used to implement an iterator that contains some base object
1194/// and an index. The iterator moves the index but keeps the base constant.
1195template <typename DerivedT, typename BaseT, typename T,
1196 typename PointerT = T *, typename ReferenceT = T &>
1197class indexed_accessor_iterator
1198 : public llvm::iterator_facade_base<DerivedT,
1199 std::random_access_iterator_tag, T,
1200 std::ptrdiff_t, PointerT, ReferenceT> {
1201public:
1202 ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1203 assert(base == rhs.base && "incompatible iterators");
1204 return index - rhs.index;
1205 }
1206 bool operator==(const indexed_accessor_iterator &rhs) const {
1207 return base == rhs.base && index == rhs.index;
1208 }
1209 bool operator<(const indexed_accessor_iterator &rhs) const {
1210 assert(base == rhs.base && "incompatible iterators");
1211 return index < rhs.index;
1212 }
1213
1214 DerivedT &operator+=(ptrdiff_t offset) {
1215 this->index += offset;
1216 return static_cast<DerivedT &>(*this);
1217 }
1218 DerivedT &operator-=(ptrdiff_t offset) {
1219 this->index -= offset;
1220 return static_cast<DerivedT &>(*this);
1221 }
1222
1223 /// Returns the current index of the iterator.
1224 ptrdiff_t getIndex() const { return index; }
1225
1226 /// Returns the current base of the iterator.
1227 const BaseT &getBase() const { return base; }
1228
1229protected:
1230 indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1231 : base(base), index(index) {}
1232 BaseT base;
1233 ptrdiff_t index;
1234};
1235
1236namespace detail {
1237/// The class represents the base of a range of indexed_accessor_iterators. It
1238/// provides support for many different range functionalities, e.g.
1239/// drop_front/slice/etc.. Derived range classes must implement the following
1240/// static methods:
1241/// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1242/// - Dereference an iterator pointing to the base object at the given
1243/// index.
1244/// * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1245/// - Return a new base that is offset from the provide base by 'index'
1246/// elements.
1247template <typename DerivedT, typename BaseT, typename T,
1248 typename PointerT = T *, typename ReferenceT = T &>
1249class indexed_accessor_range_base {
1250public:
1251 using RangeBaseT = indexed_accessor_range_base;
1252
1253 /// An iterator element of this range.
1254 class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1255 PointerT, ReferenceT> {
1256 public:
1257 // Index into this iterator, invoking a static method on the derived type.
1258 ReferenceT operator*() const {
1259 return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1260 }
1261
1262 private:
1263 iterator(BaseT owner, ptrdiff_t curIndex)
1264 : iterator::indexed_accessor_iterator(owner, curIndex) {}
1265
1266 /// Allow access to the constructor.
1267 friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1268 ReferenceT>;
1269 };
1270
1271 indexed_accessor_range_base(iterator begin, iterator end)
1272 : base(offset_base(base: begin.getBase(), n: begin.getIndex())),
1273 count(end.getIndex() - begin.getIndex()) {}
1274 indexed_accessor_range_base(const iterator_range<iterator> &range)
1275 : indexed_accessor_range_base(range.begin(), range.end()) {}
1276 indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1277 : base(base), count(count) {}
1278
1279 iterator begin() const { return iterator(base, 0); }
1280 iterator end() const { return iterator(base, count); }
1281 ReferenceT operator[](size_t Index) const {
1282 assert(Index < size() && "invalid index for value range");
1283 return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1284 }
1285 ReferenceT front() const {
1286 assert(!empty() && "expected non-empty range");
1287 return (*this)[0];
1288 }
1289 ReferenceT back() const {
1290 assert(!empty() && "expected non-empty range");
1291 return (*this)[size() - 1];
1292 }
1293
1294 /// Compare this range with another.
1295 template <typename OtherT>
1296 friend bool operator==(const indexed_accessor_range_base &lhs,
1297 const OtherT &rhs) {
1298 return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
1299 }
1300 template <typename OtherT>
1301 friend bool operator!=(const indexed_accessor_range_base &lhs,
1302 const OtherT &rhs) {
1303 return !(lhs == rhs);
1304 }
1305
1306 /// Return the size of this range.
1307 size_t size() const { return count; }
1308
1309 /// Return if the range is empty.
1310 bool empty() const { return size() == 0; }
1311
1312 /// Drop the first N elements, and keep M elements.
1313 DerivedT slice(size_t n, size_t m) const {
1314 assert(n + m <= size() && "invalid size specifiers");
1315 return DerivedT(offset_base(base, n), m);
1316 }
1317
1318 /// Drop the first n elements.
1319 DerivedT drop_front(size_t n = 1) const {
1320 assert(size() >= n && "Dropping more elements than exist");
1321 return slice(n, m: size() - n);
1322 }
1323 /// Drop the last n elements.
1324 DerivedT drop_back(size_t n = 1) const {
1325 assert(size() >= n && "Dropping more elements than exist");
1326 return DerivedT(base, size() - n);
1327 }
1328
1329 /// Take the first n elements.
1330 DerivedT take_front(size_t n = 1) const {
1331 return n < size() ? drop_back(n: size() - n)
1332 : static_cast<const DerivedT &>(*this);
1333 }
1334
1335 /// Take the last n elements.
1336 DerivedT take_back(size_t n = 1) const {
1337 return n < size() ? drop_front(n: size() - n)
1338 : static_cast<const DerivedT &>(*this);
1339 }
1340
1341 /// Allow conversion to any type accepting an iterator_range.
1342 template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1343 RangeT, iterator_range<iterator>>::value>>
1344 operator RangeT() const {
1345 return RangeT(iterator_range<iterator>(*this));
1346 }
1347
1348 /// Returns the base of this range.
1349 const BaseT &getBase() const { return base; }
1350
1351private:
1352 /// Offset the given base by the given amount.
1353 static BaseT offset_base(const BaseT &base, size_t n) {
1354 return n == 0 ? base : DerivedT::offset_base(base, n);
1355 }
1356
1357protected:
1358 indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1359 indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1360 indexed_accessor_range_base &
1361 operator=(const indexed_accessor_range_base &) = default;
1362
1363 /// The base that owns the provided range of values.
1364 BaseT base;
1365 /// The size from the owning range.
1366 ptrdiff_t count;
1367};
1368} // end namespace detail
1369
1370/// This class provides an implementation of a range of
1371/// indexed_accessor_iterators where the base is not indexable. Ranges with
1372/// bases that are offsetable should derive from indexed_accessor_range_base
1373/// instead. Derived range classes are expected to implement the following
1374/// static method:
1375/// * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1376/// - Dereference an iterator pointing to a parent base at the given index.
1377template <typename DerivedT, typename BaseT, typename T,
1378 typename PointerT = T *, typename ReferenceT = T &>
1379class indexed_accessor_range
1380 : public detail::indexed_accessor_range_base<
1381 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1382public:
1383 indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1384 : detail::indexed_accessor_range_base<
1385 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1386 std::make_pair(base, startIndex), count) {}
1387 using detail::indexed_accessor_range_base<
1388 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1389 ReferenceT>::indexed_accessor_range_base;
1390
1391 /// Returns the current base of the range.
1392 const BaseT &getBase() const { return this->base.first; }
1393
1394 /// Returns the current start index of the range.
1395 ptrdiff_t getStartIndex() const { return this->base.second; }
1396
1397 /// See `detail::indexed_accessor_range_base` for details.
1398 static std::pair<BaseT, ptrdiff_t>
1399 offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1400 // We encode the internal base as a pair of the derived base and a start
1401 // index into the derived base.
1402 return std::make_pair(base.first, base.second + index);
1403 }
1404 /// See `detail::indexed_accessor_range_base` for details.
1405 static ReferenceT
1406 dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1407 ptrdiff_t index) {
1408 return DerivedT::dereference(base.first, base.second + index);
1409 }
1410};
1411
1412namespace detail {
1413/// Return a reference to the first or second member of a reference. Otherwise,
1414/// return a copy of the member of a temporary.
1415///
1416/// When passing a range whose iterators return values instead of references,
1417/// the reference must be dropped from `decltype((elt.first))`, which will
1418/// always be a reference, to avoid returning a reference to a temporary.
1419template <typename EltTy, typename FirstTy> class first_or_second_type {
1420public:
1421 using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1422 std::remove_reference_t<FirstTy>>;
1423};
1424} // end namespace detail
1425
1426/// Given a container of pairs, return a range over the first elements.
1427template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1428 using EltTy = decltype((*std::begin(c)));
1429 return llvm::map_range(std::forward<ContainerTy>(c),
1430 [](EltTy elt) -> typename detail::first_or_second_type<
1431 EltTy, decltype((elt.first))>::type {
1432 return elt.first;
1433 });
1434}
1435
1436/// Given a container of pairs, return a range over the second elements.
1437template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1438 using EltTy = decltype((*std::begin(c)));
1439 return llvm::map_range(
1440 std::forward<ContainerTy>(c),
1441 [](EltTy elt) ->
1442 typename detail::first_or_second_type<EltTy,
1443 decltype((elt.second))>::type {
1444 return elt.second;
1445 });
1446}
1447
1448//===----------------------------------------------------------------------===//
1449// Extra additions to <utility>
1450//===----------------------------------------------------------------------===//
1451
1452/// Function object to check whether the first component of a container
1453/// supported by std::get (like std::pair and std::tuple) compares less than the
1454/// first component of another container.
1455struct less_first {
1456 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1457 return std::less<>()(std::get<0>(lhs), std::get<0>(rhs));
1458 }
1459};
1460
1461/// Function object to check whether the second component of a container
1462/// supported by std::get (like std::pair and std::tuple) compares less than the
1463/// second component of another container.
1464struct less_second {
1465 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1466 return std::less<>()(std::get<1>(lhs), std::get<1>(rhs));
1467 }
1468};
1469
1470/// \brief Function object to apply a binary function to the first component of
1471/// a std::pair.
1472template<typename FuncTy>
1473struct on_first {
1474 FuncTy func;
1475
1476 template <typename T>
1477 decltype(auto) operator()(const T &lhs, const T &rhs) const {
1478 return func(lhs.first, rhs.first);
1479 }
1480};
1481
1482/// Utility type to build an inheritance chain that makes it easy to rank
1483/// overload candidates.
1484template <int N> struct rank : rank<N - 1> {};
1485template <> struct rank<0> {};
1486
1487/// traits class for checking whether type T is one of any of the given
1488/// types in the variadic list.
1489template <typename T, typename... Ts>
1490using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
1491
1492/// traits class for checking whether type T is a base class for all
1493/// the given types in the variadic list.
1494template <typename T, typename... Ts>
1495using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
1496
1497namespace detail {
1498template <typename... Ts> struct Visitor;
1499
1500template <typename HeadT, typename... TailTs>
1501struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1502 explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1503 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1504 Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1505 using remove_cvref_t<HeadT>::operator();
1506 using Visitor<TailTs...>::operator();
1507};
1508
1509template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1510 explicit constexpr Visitor(HeadT &&Head)
1511 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1512 using remove_cvref_t<HeadT>::operator();
1513};
1514} // namespace detail
1515
1516/// Returns an opaquely-typed Callable object whose operator() overload set is
1517/// the sum of the operator() overload sets of each CallableT in CallableTs.
1518///
1519/// The type of the returned object derives from each CallableT in CallableTs.
1520/// The returned object is constructed by invoking the appropriate copy or move
1521/// constructor of each CallableT, as selected by overload resolution on the
1522/// corresponding argument to makeVisitor.
1523///
1524/// Example:
1525///
1526/// \code
1527/// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1528/// [](int i) { return "int"; },
1529/// [](std::string s) { return "str"; });
1530/// auto a = visitor(42); // `a` is now "int".
1531/// auto b = visitor("foo"); // `b` is now "str".
1532/// auto c = visitor(3.14f); // `c` is now "unhandled type".
1533/// \endcode
1534///
1535/// Example of making a visitor with a lambda which captures a move-only type:
1536///
1537/// \code
1538/// std::unique_ptr<FooHandler> FH = /* ... */;
1539/// auto visitor = makeVisitor(
1540/// [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1541/// [](int i) { return i; },
1542/// [](std::string s) { return atoi(s); });
1543/// \endcode
1544template <typename... CallableTs>
1545constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1546 return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1547}
1548
1549//===----------------------------------------------------------------------===//
1550// Extra additions to <algorithm>
1551//===----------------------------------------------------------------------===//
1552
1553// We have a copy here so that LLVM behaves the same when using different
1554// standard libraries.
1555template <class Iterator, class RNG>
1556void shuffle(Iterator first, Iterator last, RNG &&g) {
1557 // It would be better to use a std::uniform_int_distribution,
1558 // but that would be stdlib dependent.
1559 typedef
1560 typename std::iterator_traits<Iterator>::difference_type difference_type;
1561 for (auto size = last - first; size > 1; ++first, (void)--size) {
1562 difference_type offset = g() % size;
1563 // Avoid self-assignment due to incorrect assertions in libstdc++
1564 // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1565 if (offset != difference_type(0))
1566 std::iter_swap(first, first + offset);
1567 }
1568}
1569
1570/// Adapt std::less<T> for array_pod_sort.
1571template<typename T>
1572inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1573 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1574 *reinterpret_cast<const T*>(P2)))
1575 return -1;
1576 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1577 *reinterpret_cast<const T*>(P1)))
1578 return 1;
1579 return 0;
1580}
1581
1582/// get_array_pod_sort_comparator - This is an internal helper function used to
1583/// get type deduction of T right.
1584template<typename T>
1585inline int (*get_array_pod_sort_comparator(const T &))
1586 (const void*, const void*) {
1587 return array_pod_sort_comparator<T>;
1588}
1589
1590#ifdef EXPENSIVE_CHECKS
1591namespace detail {
1592
1593inline unsigned presortShuffleEntropy() {
1594 static unsigned Result(std::random_device{}());
1595 return Result;
1596}
1597
1598template <class IteratorTy>
1599inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1600 std::mt19937 Generator(presortShuffleEntropy());
1601 llvm::shuffle(Start, End, Generator);
1602}
1603
1604} // end namespace detail
1605#endif
1606
1607/// array_pod_sort - This sorts an array with the specified start and end
1608/// extent. This is just like std::sort, except that it calls qsort instead of
1609/// using an inlined template. qsort is slightly slower than std::sort, but
1610/// most sorts are not performance critical in LLVM and std::sort has to be
1611/// template instantiated for each type, leading to significant measured code
1612/// bloat. This function should generally be used instead of std::sort where
1613/// possible.
1614///
1615/// This function assumes that you have simple POD-like types that can be
1616/// compared with std::less and can be moved with memcpy. If this isn't true,
1617/// you should use std::sort.
1618///
1619/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1620/// default to std::less.
1621template<class IteratorTy>
1622inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1623 // Don't inefficiently call qsort with one element or trigger undefined
1624 // behavior with an empty sequence.
1625 auto NElts = End - Start;
1626 if (NElts <= 1) return;
1627#ifdef EXPENSIVE_CHECKS
1628 detail::presortShuffle<IteratorTy>(Start, End);
1629#endif
1630 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1631}
1632
1633template <class IteratorTy>
1634inline void array_pod_sort(
1635 IteratorTy Start, IteratorTy End,
1636 int (*Compare)(
1637 const typename std::iterator_traits<IteratorTy>::value_type *,
1638 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1639 // Don't inefficiently call qsort with one element or trigger undefined
1640 // behavior with an empty sequence.
1641 auto NElts = End - Start;
1642 if (NElts <= 1) return;
1643#ifdef EXPENSIVE_CHECKS
1644 detail::presortShuffle<IteratorTy>(Start, End);
1645#endif
1646 qsort(&*Start, NElts, sizeof(*Start),
1647 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1648}
1649
1650namespace detail {
1651template <typename T>
1652// We can use qsort if the iterator type is a pointer and the underlying value
1653// is trivially copyable.
1654using sort_trivially_copyable = std::conjunction<
1655 std::is_pointer<T>,
1656 std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1657} // namespace detail
1658
1659// Provide wrappers to std::sort which shuffle the elements before sorting
1660// to help uncover non-deterministic behavior (PR35135).
1661template <typename IteratorTy>
1662inline void sort(IteratorTy Start, IteratorTy End) {
1663 if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
1664 // Forward trivially copyable types to array_pod_sort. This avoids a large
1665 // amount of code bloat for a minor performance hit.
1666 array_pod_sort(Start, End);
1667 } else {
1668#ifdef EXPENSIVE_CHECKS
1669 detail::presortShuffle<IteratorTy>(Start, End);
1670#endif
1671 std::sort(Start, End);
1672 }
1673}
1674
1675template <typename Container> inline void sort(Container &&C) {
1676 llvm::sort(adl_begin(C), adl_end(C));
1677}
1678
1679template <typename IteratorTy, typename Compare>
1680inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1681#ifdef EXPENSIVE_CHECKS
1682 detail::presortShuffle<IteratorTy>(Start, End);
1683#endif
1684 std::sort(Start, End, Comp);
1685}
1686
1687template <typename Container, typename Compare>
1688inline void sort(Container &&C, Compare Comp) {
1689 llvm::sort(adl_begin(C), adl_end(C), Comp);
1690}
1691
1692/// Get the size of a range. This is a wrapper function around std::distance
1693/// which is only enabled when the operation is O(1).
1694template <typename R>
1695auto size(R &&Range,
1696 std::enable_if_t<
1697 std::is_base_of<std::random_access_iterator_tag,
1698 typename std::iterator_traits<decltype(
1699 Range.begin())>::iterator_category>::value,
1700 void> * = nullptr) {
1701 return std::distance(Range.begin(), Range.end());
1702}
1703
1704namespace detail {
1705template <typename Range>
1706using check_has_free_function_size =
1707 decltype(adl_size(std::declval<Range &>()));
1708
1709template <typename Range>
1710static constexpr bool HasFreeFunctionSize =
1711 is_detected<check_has_free_function_size, Range>::value;
1712} // namespace detail
1713
1714/// Returns the size of the \p Range, i.e., the number of elements. This
1715/// implementation takes inspiration from `std::ranges::size` from C++20 and
1716/// delegates the size check to `adl_size` or `std::distance`, in this order of
1717/// preference. Unlike `llvm::size`, this function does *not* guarantee O(1)
1718/// running time, and is intended to be used in generic code that does not know
1719/// the exact range type.
1720template <typename R> constexpr size_t range_size(R &&Range) {
1721 if constexpr (detail::HasFreeFunctionSize<R>)
1722 return adl_size(Range);
1723 else
1724 return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range)));
1725}
1726
1727/// Provide wrappers to std::for_each which take ranges instead of having to
1728/// pass begin/end explicitly.
1729template <typename R, typename UnaryFunction>
1730UnaryFunction for_each(R &&Range, UnaryFunction F) {
1731 return std::for_each(adl_begin(Range), adl_end(Range), F);
1732}
1733
1734/// Provide wrappers to std::all_of which take ranges instead of having to pass
1735/// begin/end explicitly.
1736template <typename R, typename UnaryPredicate>
1737bool all_of(R &&Range, UnaryPredicate P) {
1738 return std::all_of(adl_begin(Range), adl_end(Range), P);
1739}
1740
1741/// Provide wrappers to std::any_of which take ranges instead of having to pass
1742/// begin/end explicitly.
1743template <typename R, typename UnaryPredicate>
1744bool any_of(R &&Range, UnaryPredicate P) {
1745 return std::any_of(adl_begin(Range), adl_end(Range), P);
1746}
1747
1748/// Provide wrappers to std::none_of which take ranges instead of having to pass
1749/// begin/end explicitly.
1750template <typename R, typename UnaryPredicate>
1751bool none_of(R &&Range, UnaryPredicate P) {
1752 return std::none_of(adl_begin(Range), adl_end(Range), P);
1753}
1754
1755/// Provide wrappers to std::find which take ranges instead of having to pass
1756/// begin/end explicitly.
1757template <typename R, typename T> auto find(R &&Range, const T &Val) {
1758 return std::find(adl_begin(Range), adl_end(Range), Val);
1759}
1760
1761/// Provide wrappers to std::find_if which take ranges instead of having to pass
1762/// begin/end explicitly.
1763template <typename R, typename UnaryPredicate>
1764auto find_if(R &&Range, UnaryPredicate P) {
1765 return std::find_if(adl_begin(Range), adl_end(Range), P);
1766}
1767
1768template <typename R, typename UnaryPredicate>
1769auto find_if_not(R &&Range, UnaryPredicate P) {
1770 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1771}
1772
1773/// Provide wrappers to std::remove_if which take ranges instead of having to
1774/// pass begin/end explicitly.
1775template <typename R, typename UnaryPredicate>
1776auto remove_if(R &&Range, UnaryPredicate P) {
1777 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1778}
1779
1780/// Provide wrappers to std::copy_if which take ranges instead of having to
1781/// pass begin/end explicitly.
1782template <typename R, typename OutputIt, typename UnaryPredicate>
1783OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1784 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1785}
1786
1787/// Return the single value in \p Range that satisfies
1788/// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
1789/// when no values or multiple values were found.
1790/// When \p AllowRepeats is true, multiple values that compare equal
1791/// are allowed.
1792template <typename T, typename R, typename Predicate>
1793T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
1794 T *RC = nullptr;
1795 for (auto *A : Range) {
1796 if (T *PRC = P(A, AllowRepeats)) {
1797 if (RC) {
1798 if (!AllowRepeats || PRC != RC)
1799 return nullptr;
1800 } else
1801 RC = PRC;
1802 }
1803 }
1804 return RC;
1805}
1806
1807/// Return a pair consisting of the single value in \p Range that satisfies
1808/// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
1809/// nullptr when no values or multiple values were found, and a bool indicating
1810/// whether multiple values were found to cause the nullptr.
1811/// When \p AllowRepeats is true, multiple values that compare equal are
1812/// allowed. The predicate \p P returns a pair<T *, bool> where T is the
1813/// singleton while the bool indicates whether multiples have already been
1814/// found. It is expected that first will be nullptr when second is true.
1815/// This allows using find_singleton_nested within the predicate \P.
1816template <typename T, typename R, typename Predicate>
1817std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
1818 bool AllowRepeats = false) {
1819 T *RC = nullptr;
1820 for (auto *A : Range) {
1821 std::pair<T *, bool> PRC = P(A, AllowRepeats);
1822 if (PRC.second) {
1823 assert(PRC.first == nullptr &&
1824 "Inconsistent return values in find_singleton_nested.");
1825 return PRC;
1826 }
1827 if (PRC.first) {
1828 if (RC) {
1829 if (!AllowRepeats || PRC.first != RC)
1830 return {nullptr, true};
1831 } else
1832 RC = PRC.first;
1833 }
1834 }
1835 return {RC, false};
1836}
1837
1838template <typename R, typename OutputIt>
1839OutputIt copy(R &&Range, OutputIt Out) {
1840 return std::copy(adl_begin(Range), adl_end(Range), Out);
1841}
1842
1843/// Provide wrappers to std::replace_copy_if which take ranges instead of having
1844/// to pass begin/end explicitly.
1845template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
1846OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
1847 const T &NewValue) {
1848 return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
1849 NewValue);
1850}
1851
1852/// Provide wrappers to std::replace_copy which take ranges instead of having to
1853/// pass begin/end explicitly.
1854template <typename R, typename OutputIt, typename T>
1855OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
1856 const T &NewValue) {
1857 return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
1858 NewValue);
1859}
1860
1861/// Provide wrappers to std::move which take ranges instead of having to
1862/// pass begin/end explicitly.
1863template <typename R, typename OutputIt>
1864OutputIt move(R &&Range, OutputIt Out) {
1865 return std::move(adl_begin(Range), adl_end(Range), Out);
1866}
1867
1868namespace detail {
1869template <typename Range, typename Element>
1870using check_has_member_contains_t =
1871 decltype(std::declval<Range &>().contains(std::declval<const Element &>()));
1872
1873template <typename Range, typename Element>
1874static constexpr bool HasMemberContains =
1875 is_detected<check_has_member_contains_t, Range, Element>::value;
1876
1877template <typename Range, typename Element>
1878using check_has_member_find_t =
1879 decltype(std::declval<Range &>().find(std::declval<const Element &>()) !=
1880 std::declval<Range &>().end());
1881
1882template <typename Range, typename Element>
1883static constexpr bool HasMemberFind =
1884 is_detected<check_has_member_find_t, Range, Element>::value;
1885
1886} // namespace detail
1887
1888/// Returns true if \p Element is found in \p Range. Delegates the check to
1889/// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this
1890/// order of preference. This is intended as the canonical way to check if an
1891/// element exists in a range in generic code or range type that does not
1892/// expose a `.contains(Element)` member.
1893template <typename R, typename E>
1894bool is_contained(R &&Range, const E &Element) {
1895 if constexpr (detail::HasMemberContains<R, E>)
1896 return Range.contains(Element);
1897 else if constexpr (detail::HasMemberFind<R, E>)
1898 return Range.find(Element) != Range.end();
1899 else
1900 return std::find(adl_begin(Range), adl_end(Range), Element) !=
1901 adl_end(Range);
1902}
1903
1904/// Returns true iff \p Element exists in \p Set. This overload takes \p Set as
1905/// an initializer list and is `constexpr`-friendly.
1906template <typename T, typename E>
1907constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) {
1908 // TODO: Use std::find when we switch to C++20.
1909 for (const T &V : Set)
1910 if (V == Element)
1911 return true;
1912 return false;
1913}
1914
1915/// Wrapper function around std::is_sorted to check if elements in a range \p R
1916/// are sorted with respect to a comparator \p C.
1917template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1918 return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1919}
1920
1921/// Wrapper function around std::is_sorted to check if elements in a range \p R
1922/// are sorted in non-descending order.
1923template <typename R> bool is_sorted(R &&Range) {
1924 return std::is_sorted(adl_begin(Range), adl_end(Range));
1925}
1926
1927/// Wrapper function around std::count to count the number of times an element
1928/// \p Element occurs in the given range \p Range.
1929template <typename R, typename E> auto count(R &&Range, const E &Element) {
1930 return std::count(adl_begin(Range), adl_end(Range), Element);
1931}
1932
1933/// Wrapper function around std::count_if to count the number of times an
1934/// element satisfying a given predicate occurs in a range.
1935template <typename R, typename UnaryPredicate>
1936auto count_if(R &&Range, UnaryPredicate P) {
1937 return std::count_if(adl_begin(Range), adl_end(Range), P);
1938}
1939
1940/// Wrapper function around std::transform to apply a function to a range and
1941/// store the result elsewhere.
1942template <typename R, typename OutputIt, typename UnaryFunction>
1943OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1944 return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1945}
1946
1947/// Provide wrappers to std::partition which take ranges instead of having to
1948/// pass begin/end explicitly.
1949template <typename R, typename UnaryPredicate>
1950auto partition(R &&Range, UnaryPredicate P) {
1951 return std::partition(adl_begin(Range), adl_end(Range), P);
1952}
1953
1954/// Provide wrappers to std::lower_bound which take ranges instead of having to
1955/// pass begin/end explicitly.
1956template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1957 return std::lower_bound(adl_begin(Range), adl_end(Range),
1958 std::forward<T>(Value));
1959}
1960
1961template <typename R, typename T, typename Compare>
1962auto lower_bound(R &&Range, T &&Value, Compare C) {
1963 return std::lower_bound(adl_begin(Range), adl_end(Range),
1964 std::forward<T>(Value), C);
1965}
1966
1967/// Provide wrappers to std::upper_bound which take ranges instead of having to
1968/// pass begin/end explicitly.
1969template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1970 return std::upper_bound(adl_begin(Range), adl_end(Range),
1971 std::forward<T>(Value));
1972}
1973
1974template <typename R, typename T, typename Compare>
1975auto upper_bound(R &&Range, T &&Value, Compare C) {
1976 return std::upper_bound(adl_begin(Range), adl_end(Range),
1977 std::forward<T>(Value), C);
1978}
1979
1980template <typename R>
1981void stable_sort(R &&Range) {
1982 std::stable_sort(adl_begin(Range), adl_end(Range));
1983}
1984
1985template <typename R, typename Compare>
1986void stable_sort(R &&Range, Compare C) {
1987 std::stable_sort(adl_begin(Range), adl_end(Range), C);
1988}
1989
1990/// Binary search for the first iterator in a range where a predicate is false.
1991/// Requires that C is always true below some limit, and always false above it.
1992template <typename R, typename Predicate,
1993 typename Val = decltype(*adl_begin(std::declval<R>()))>
1994auto partition_point(R &&Range, Predicate P) {
1995 return std::partition_point(adl_begin(Range), adl_end(Range), P);
1996}
1997
1998template<typename Range, typename Predicate>
1999auto unique(Range &&R, Predicate P) {
2000 return std::unique(adl_begin(R), adl_end(R), P);
2001}
2002
2003/// Wrapper function around std::equal to detect if pair-wise elements between
2004/// two ranges are the same.
2005template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
2006 return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
2007 adl_end(RRange));
2008}
2009
2010/// Returns true if all elements in Range are equal or when the Range is empty.
2011template <typename R> bool all_equal(R &&Range) {
2012 auto Begin = adl_begin(Range);
2013 auto End = adl_end(Range);
2014 return Begin == End || std::equal(Begin + 1, End, Begin);
2015}
2016
2017/// Returns true if all Values in the initializer lists are equal or the list
2018// is empty.
2019template <typename T> bool all_equal(std::initializer_list<T> Values) {
2020 return all_equal<std::initializer_list<T>>(std::move(Values));
2021}
2022
2023/// Provide a container algorithm similar to C++ Library Fundamentals v2's
2024/// `erase_if` which is equivalent to:
2025///
2026/// C.erase(remove_if(C, pred), C.end());
2027///
2028/// This version works for any container with an erase method call accepting
2029/// two iterators.
2030template <typename Container, typename UnaryPredicate>
2031void erase_if(Container &C, UnaryPredicate P) {
2032 C.erase(remove_if(C, P), C.end());
2033}
2034
2035/// Wrapper function to remove a value from a container:
2036///
2037/// C.erase(remove(C.begin(), C.end(), V), C.end());
2038template <typename Container, typename ValueType>
2039void erase_value(Container &C, ValueType V) {
2040 C.erase(std::remove(C.begin(), C.end(), V), C.end());
2041}
2042
2043/// Wrapper function to append a range to a container.
2044///
2045/// C.insert(C.end(), R.begin(), R.end());
2046template <typename Container, typename Range>
2047inline void append_range(Container &C, Range &&R) {
2048 C.insert(C.end(), adl_begin(R), adl_end(R));
2049}
2050
2051/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2052/// the range [ValIt, ValEnd) (which is not from the same container).
2053template<typename Container, typename RandomAccessIterator>
2054void replace(Container &Cont, typename Container::iterator ContIt,
2055 typename Container::iterator ContEnd, RandomAccessIterator ValIt,
2056 RandomAccessIterator ValEnd) {
2057 while (true) {
2058 if (ValIt == ValEnd) {
2059 Cont.erase(ContIt, ContEnd);
2060 return;
2061 } else if (ContIt == ContEnd) {
2062 Cont.insert(ContIt, ValIt, ValEnd);
2063 return;
2064 }
2065 *ContIt++ = *ValIt++;
2066 }
2067}
2068
2069/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2070/// the range R.
2071template<typename Container, typename Range = std::initializer_list<
2072 typename Container::value_type>>
2073void replace(Container &Cont, typename Container::iterator ContIt,
2074 typename Container::iterator ContEnd, Range R) {
2075 replace(Cont, ContIt, ContEnd, R.begin(), R.end());
2076}
2077
2078/// An STL-style algorithm similar to std::for_each that applies a second
2079/// functor between every pair of elements.
2080///
2081/// This provides the control flow logic to, for example, print a
2082/// comma-separated list:
2083/// \code
2084/// interleave(names.begin(), names.end(),
2085/// [&](StringRef name) { os << name; },
2086/// [&] { os << ", "; });
2087/// \endcode
2088template <typename ForwardIterator, typename UnaryFunctor,
2089 typename NullaryFunctor,
2090 typename = std::enable_if_t<
2091 !std::is_constructible<StringRef, UnaryFunctor>::value &&
2092 !std::is_constructible<StringRef, NullaryFunctor>::value>>
2093inline void interleave(ForwardIterator begin, ForwardIterator end,
2094 UnaryFunctor each_fn, NullaryFunctor between_fn) {
2095 if (begin == end)
2096 return;
2097 each_fn(*begin);
2098 ++begin;
2099 for (; begin != end; ++begin) {
2100 between_fn();
2101 each_fn(*begin);
2102 }
2103}
2104
2105template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
2106 typename = std::enable_if_t<
2107 !std::is_constructible<StringRef, UnaryFunctor>::value &&
2108 !std::is_constructible<StringRef, NullaryFunctor>::value>>
2109inline void interleave(const Container &c, UnaryFunctor each_fn,
2110 NullaryFunctor between_fn) {
2111 interleave(c.begin(), c.end(), each_fn, between_fn);
2112}
2113
2114/// Overload of interleave for the common case of string separator.
2115template <typename Container, typename UnaryFunctor, typename StreamT,
2116 typename T = detail::ValueOfRange<Container>>
2117inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
2118 const StringRef &separator) {
2119 interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
2120}
2121template <typename Container, typename StreamT,
2122 typename T = detail::ValueOfRange<Container>>
2123inline void interleave(const Container &c, StreamT &os,
2124 const StringRef &separator) {
2125 interleave(
2126 c, os, [&](const T &a) { os << a; }, separator);
2127}
2128
2129template <typename Container, typename UnaryFunctor, typename StreamT,
2130 typename T = detail::ValueOfRange<Container>>
2131inline void interleaveComma(const Container &c, StreamT &os,
2132 UnaryFunctor each_fn) {
2133 interleave(c, os, each_fn, ", ");
2134}
2135template <typename Container, typename StreamT,
2136 typename T = detail::ValueOfRange<Container>>
2137inline void interleaveComma(const Container &c, StreamT &os) {
2138 interleaveComma(c, os, [&](const T &a) { os << a; });
2139}
2140
2141//===----------------------------------------------------------------------===//
2142// Extra additions to <memory>
2143//===----------------------------------------------------------------------===//
2144
2145struct FreeDeleter {
2146 void operator()(void* v) {
2147 ::free(ptr: v);
2148 }
2149};
2150
2151template<typename First, typename Second>
2152struct pair_hash {
2153 size_t operator()(const std::pair<First, Second> &P) const {
2154 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
2155 }
2156};
2157
2158/// Binary functor that adapts to any other binary functor after dereferencing
2159/// operands.
2160template <typename T> struct deref {
2161 T func;
2162
2163 // Could be further improved to cope with non-derivable functors and
2164 // non-binary functors (should be a variadic template member function
2165 // operator()).
2166 template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
2167 assert(lhs);
2168 assert(rhs);
2169 return func(*lhs, *rhs);
2170 }
2171};
2172
2173namespace detail {
2174
2175/// Tuple-like type for `zip_enumerator` dereference.
2176template <typename... Refs> struct enumerator_result;
2177
2178template <typename... Iters>
2179using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>;
2180
2181/// Zippy iterator that uses the second iterator for comparisons. For the
2182/// increment to be safe, the second range has to be the shortest.
2183/// Returns `enumerator_result` on dereference to provide `.index()` and
2184/// `.value()` member functions.
2185/// Note: Because the dereference operator returns `enumerator_result` as a
2186/// value instead of a reference and does not strictly conform to the C++17's
2187/// definition of forward iterator. However, it satisfies all the
2188/// forward_iterator requirements that the `zip_common` and `zippy` depend on
2189/// and fully conforms to the C++20 definition of forward iterator.
2190/// This is similar to `std::vector<bool>::iterator` that returns bit reference
2191/// wrappers on dereference.
2192template <typename... Iters>
2193struct zip_enumerator : zip_common<zip_enumerator<Iters...>,
2194 EnumeratorTupleType<Iters...>, Iters...> {
2195 static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees");
2196 using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>,
2197 Iters...>::zip_common;
2198
2199 bool operator==(const zip_enumerator &Other) const {
2200 return std::get<1>(this->iterators) == std::get<1>(Other.iterators);
2201 }
2202};
2203
2204template <typename... Refs> struct enumerator_result<std::size_t, Refs...> {
2205 static constexpr std::size_t NumRefs = sizeof...(Refs);
2206 static_assert(NumRefs != 0);
2207 // `NumValues` includes the index.
2208 static constexpr std::size_t NumValues = NumRefs + 1;
2209
2210 // Tuple type whose element types are references for each `Ref`.
2211 using range_reference_tuple = std::tuple<Refs...>;
2212 // Tuple type who elements are references to all values, including both
2213 // the index and `Refs` reference types.
2214 using value_reference_tuple = std::tuple<std::size_t, Refs...>;
2215
2216 enumerator_result(std::size_t Index, Refs &&...Rs)
2217 : Idx(Index), Storage(std::forward<Refs>(Rs)...) {}
2218
2219 /// Returns the 0-based index of the current position within the original
2220 /// input range(s).
2221 std::size_t index() const { return Idx; }
2222
2223 /// Returns the value(s) for the current iterator. This does not include the
2224 /// index.
2225 decltype(auto) value() const {
2226 if constexpr (NumRefs == 1)
2227 return std::get<0>(Storage);
2228 else
2229 return Storage;
2230 }
2231
2232 /// Returns the value at index `I`. This case covers the index.
2233 template <std::size_t I, typename = std::enable_if_t<I == 0>>
2234 friend std::size_t get(const enumerator_result &Result) {
2235 return Result.Idx;
2236 }
2237
2238 /// Returns the value at index `I`. This case covers references to the
2239 /// iteratees.
2240 template <std::size_t I, typename = std::enable_if_t<I != 0>>
2241 friend decltype(auto) get(const enumerator_result &Result) {
2242 // Note: This is a separate function from the other `get`, instead of an
2243 // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler
2244 // (Visual Studio 2022 17.1) return type deduction bug.
2245 return std::get<I - 1>(Result.Storage);
2246 }
2247
2248 template <typename... Ts>
2249 friend bool operator==(const enumerator_result &Result,
2250 const std::tuple<std::size_t, Ts...> &Other) {
2251 static_assert(NumRefs == sizeof...(Ts), "Size mismatch");
2252 if (Result.Idx != std::get<0>(Other))
2253 return false;
2254 return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{});
2255 }
2256
2257private:
2258 template <typename Tuple, std::size_t... Idx>
2259 bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const {
2260 return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...);
2261 }
2262
2263 std::size_t Idx;
2264 // Make this tuple mutable to avoid casts that obfuscate const-correctness
2265 // issues. Const-correctness of references is taken care of by `zippy` that
2266 // defines const-non and const iterator types that will propagate down to
2267 // `enumerator_result`'s `Refs`.
2268 // Note that unlike the results of `zip*` functions, `enumerate`'s result are
2269 // supposed to be modifiable even when defined as
2270 // `const`.
2271 mutable range_reference_tuple Storage;
2272};
2273
2274/// Infinite stream of increasing 0-based `size_t` indices.
2275struct index_stream {
2276 struct iterator : iterator_facade_base<iterator, std::forward_iterator_tag,
2277 const iterator> {
2278 iterator &operator++() {
2279 assert(Index != std::numeric_limits<std::size_t>::max() &&
2280 "Attempting to increment end iterator");
2281 ++Index;
2282 return *this;
2283 }
2284
2285 // Note: This dereference operator returns a value instead of a reference
2286 // and does not strictly conform to the C++17's definition of forward
2287 // iterator. However, it satisfies all the forward_iterator requirements
2288 // that the `zip_common` depends on and fully conforms to the C++20
2289 // definition of forward iterator.
2290 std::size_t operator*() const { return Index; }
2291
2292 friend bool operator==(const iterator &Lhs, const iterator &Rhs) {
2293 return Lhs.Index == Rhs.Index;
2294 }
2295
2296 std::size_t Index = 0;
2297 };
2298
2299 iterator begin() const { return {}; }
2300 iterator end() const {
2301 // We approximate 'infinity' with the max size_t value, which should be good
2302 // enough to index over any container.
2303 iterator It;
2304 It.Index = std::numeric_limits<std::size_t>::max();
2305 return It;
2306 }
2307};
2308
2309} // end namespace detail
2310
2311/// Given two or more input ranges, returns a new range whose values are are
2312/// tuples (A, B, C, ...), such that A is the 0-based index of the item in the
2313/// sequence, and B, C, ..., are the values from the original input ranges. All
2314/// input ranges are required to have equal lengths. Note that the returned
2315/// iterator allows for the values (B, C, ...) to be modified. Example:
2316///
2317/// ```c++
2318/// std::vector<char> Letters = {'A', 'B', 'C', 'D'};
2319/// std::vector<int> Vals = {10, 11, 12, 13};
2320///
2321/// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) {
2322/// printf("Item %zu - %c: %d\n", Index, Letter, Value);
2323/// Value -= 10;
2324/// }
2325/// ```
2326///
2327/// Output:
2328/// Item 0 - A: 10
2329/// Item 1 - B: 11
2330/// Item 2 - C: 12
2331/// Item 3 - D: 13
2332///
2333/// or using an iterator:
2334/// ```c++
2335/// for (auto it : enumerate(Vals)) {
2336/// it.value() += 10;
2337/// printf("Item %zu: %d\n", it.index(), it.value());
2338/// }
2339/// ```
2340///
2341/// Output:
2342/// Item 0: 20
2343/// Item 1: 21
2344/// Item 2: 22
2345/// Item 3: 23
2346///
2347template <typename FirstRange, typename... RestRanges>
2348auto enumerate(FirstRange &&First, RestRanges &&...Rest) {
2349 if constexpr (sizeof...(Rest) != 0) {
2350#ifndef NDEBUG
2351 // Note: Create an array instead of an initializer list to work around an
2352 // Apple clang 14 compiler bug.
2353 size_t sizes[] = {range_size(First), range_size(Rest)...};
2354 assert(all_equal(sizes) && "Ranges have different length");
2355#endif
2356 }
2357 using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream,
2358 FirstRange, RestRanges...>;
2359 return enumerator(detail::index_stream{}, std::forward<FirstRange>(First),
2360 std::forward<RestRanges>(Rest)...);
2361}
2362
2363namespace detail {
2364
2365template <typename Predicate, typename... Args>
2366bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2367 auto z = zip(args...);
2368 auto it = z.begin();
2369 auto end = z.end();
2370 while (it != end) {
2371 if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
2372 return false;
2373 ++it;
2374 }
2375 return it.all_equals(end);
2376}
2377
2378// Just an adaptor to switch the order of argument and have the predicate before
2379// the zipped inputs.
2380template <typename... ArgsThenPredicate, size_t... InputIndexes>
2381bool all_of_zip_predicate_last(
2382 std::tuple<ArgsThenPredicate...> argsThenPredicate,
2383 std::index_sequence<InputIndexes...>) {
2384 auto constexpr OutputIndex =
2385 std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2386 return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2387 std::get<InputIndexes>(argsThenPredicate)...);
2388}
2389
2390} // end namespace detail
2391
2392/// Compare two zipped ranges using the provided predicate (as last argument).
2393/// Return true if all elements satisfy the predicate and false otherwise.
2394// Return false if the zipped iterator aren't all at end (size mismatch).
2395template <typename... ArgsAndPredicate>
2396bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2397 return detail::all_of_zip_predicate_last(
2398 std::forward_as_tuple(argsAndPredicate...),
2399 std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2400}
2401
2402/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2403/// time. Not meant for use with random-access iterators.
2404/// Can optionally take a predicate to filter lazily some items.
2405template <typename IterTy,
2406 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2407bool hasNItems(
2408 IterTy &&Begin, IterTy &&End, unsigned N,
2409 Pred &&ShouldBeCounted =
2410 [](const decltype(*std::declval<IterTy>()) &) { return true; },
2411 std::enable_if_t<
2412 !std::is_base_of<std::random_access_iterator_tag,
2413 typename std::iterator_traits<std::remove_reference_t<
2414 decltype(Begin)>>::iterator_category>::value,
2415 void> * = nullptr) {
2416 for (; N; ++Begin) {
2417 if (Begin == End)
2418 return false; // Too few.
2419 N -= ShouldBeCounted(*Begin);
2420 }
2421 for (; Begin != End; ++Begin)
2422 if (ShouldBeCounted(*Begin))
2423 return false; // Too many.
2424 return true;
2425}
2426
2427/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2428/// time. Not meant for use with random-access iterators.
2429/// Can optionally take a predicate to lazily filter some items.
2430template <typename IterTy,
2431 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2432bool hasNItemsOrMore(
2433 IterTy &&Begin, IterTy &&End, unsigned N,
2434 Pred &&ShouldBeCounted =
2435 [](const decltype(*std::declval<IterTy>()) &) { return true; },
2436 std::enable_if_t<
2437 !std::is_base_of<std::random_access_iterator_tag,
2438 typename std::iterator_traits<std::remove_reference_t<
2439 decltype(Begin)>>::iterator_category>::value,
2440 void> * = nullptr) {
2441 for (; N; ++Begin) {
2442 if (Begin == End)
2443 return false; // Too few.
2444 N -= ShouldBeCounted(*Begin);
2445 }
2446 return true;
2447}
2448
2449/// Returns true if the sequence [Begin, End) has N or less items. Can
2450/// optionally take a predicate to lazily filter some items.
2451template <typename IterTy,
2452 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2453bool hasNItemsOrLess(
2454 IterTy &&Begin, IterTy &&End, unsigned N,
2455 Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2456 return true;
2457 }) {
2458 assert(N != std::numeric_limits<unsigned>::max());
2459 return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2460}
2461
2462/// Returns true if the given container has exactly N items
2463template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2464 return hasNItems(std::begin(C), std::end(C), N);
2465}
2466
2467/// Returns true if the given container has N or more items
2468template <typename ContainerTy>
2469bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2470 return hasNItemsOrMore(std::begin(C), std::end(C), N);
2471}
2472
2473/// Returns true if the given container has N or less items
2474template <typename ContainerTy>
2475bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2476 return hasNItemsOrLess(std::begin(C), std::end(C), N);
2477}
2478
2479/// Returns a raw pointer that represents the same address as the argument.
2480///
2481/// This implementation can be removed once we move to C++20 where it's defined
2482/// as std::to_address().
2483///
2484/// The std::pointer_traits<>::to_address(p) variations of these overloads has
2485/// not been implemented.
2486template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2487template <class T> constexpr T *to_address(T *P) { return P; }
2488
2489} // end namespace llvm
2490
2491namespace std {
2492template <typename... Refs>
2493struct tuple_size<llvm::detail::enumerator_result<Refs...>>
2494 : std::integral_constant<std::size_t, sizeof...(Refs)> {};
2495
2496template <std::size_t I, typename... Refs>
2497struct tuple_element<I, llvm::detail::enumerator_result<Refs...>>
2498 : std::tuple_element<I, std::tuple<Refs...>> {};
2499
2500template <std::size_t I, typename... Refs>
2501struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>>
2502 : std::tuple_element<I, std::tuple<Refs...>> {};
2503
2504} // namespace std
2505
2506#endif // LLVM_ADT_STLEXTRAS_H
2507

source code of include/llvm-17/llvm/ADT/STLExtras.h