| 1 | //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file contains some templates that are useful if you are working with |
| 11 | /// the STL at all. |
| 12 | /// |
| 13 | /// No library is required when using these functions. |
| 14 | /// |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef LLVM_ADT_STLEXTRAS_H |
| 18 | #define |
| 19 | |
| 20 | #include "llvm/ADT/ADL.h" |
| 21 | #include "llvm/ADT/Hashing.h" |
| 22 | #include "llvm/ADT/STLForwardCompat.h" |
| 23 | #include "llvm/ADT/STLFunctionalExtras.h" |
| 24 | #include "llvm/ADT/identity.h" |
| 25 | #include "llvm/ADT/iterator.h" |
| 26 | #include "llvm/ADT/iterator_range.h" |
| 27 | #include "llvm/Config/abi-breaking.h" |
| 28 | #include "llvm/Support/ErrorHandling.h" |
| 29 | #include <algorithm> |
| 30 | #include <cassert> |
| 31 | #include <cstddef> |
| 32 | #include <cstdint> |
| 33 | #include <cstdlib> |
| 34 | #include <functional> |
| 35 | #include <initializer_list> |
| 36 | #include <iterator> |
| 37 | #include <limits> |
| 38 | #include <memory> |
| 39 | #include <optional> |
| 40 | #include <tuple> |
| 41 | #include <type_traits> |
| 42 | #include <utility> |
| 43 | |
| 44 | #ifdef EXPENSIVE_CHECKS |
| 45 | #include <random> // for std::mt19937 |
| 46 | #endif |
| 47 | |
| 48 | namespace llvm { |
| 49 | |
| 50 | //===----------------------------------------------------------------------===// |
| 51 | // Extra additions to <type_traits> |
| 52 | //===----------------------------------------------------------------------===// |
| 53 | |
| 54 | template <typename T> struct make_const_ptr { |
| 55 | using type = std::add_pointer_t<std::add_const_t<T>>; |
| 56 | }; |
| 57 | |
| 58 | template <typename T> struct make_const_ref { |
| 59 | using type = std::add_lvalue_reference_t<std::add_const_t<T>>; |
| 60 | }; |
| 61 | |
| 62 | namespace detail { |
| 63 | template <class, template <class...> class Op, class... Args> struct detector { |
| 64 | using value_t = std::false_type; |
| 65 | }; |
| 66 | template <template <class...> class Op, class... Args> |
| 67 | struct detector<std::void_t<Op<Args...>>, Op, Args...> { |
| 68 | using value_t = std::true_type; |
| 69 | }; |
| 70 | } // end namespace detail |
| 71 | |
| 72 | /// Detects if a given trait holds for some set of arguments 'Args'. |
| 73 | /// For example, the given trait could be used to detect if a given type |
| 74 | /// has a copy assignment operator: |
| 75 | /// template<class T> |
| 76 | /// using has_copy_assign_t = decltype(std::declval<T&>() |
| 77 | /// = std::declval<const T&>()); |
| 78 | /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; |
| 79 | template <template <class...> class Op, class... Args> |
| 80 | using is_detected = typename detail::detector<void, Op, Args...>::value_t; |
| 81 | |
| 82 | /// This class provides various trait information about a callable object. |
| 83 | /// * To access the number of arguments: Traits::num_args |
| 84 | /// * To access the type of an argument: Traits::arg_t<Index> |
| 85 | /// * To access the type of the result: Traits::result_t |
| 86 | template <typename T, bool isClass = std::is_class<T>::value> |
| 87 | struct function_traits : public function_traits<decltype(&T::operator())> {}; |
| 88 | |
| 89 | /// Overload for class function types. |
| 90 | template <typename ClassType, typename ReturnType, typename... Args> |
| 91 | struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { |
| 92 | /// The number of arguments to this function. |
| 93 | enum { num_args = sizeof...(Args) }; |
| 94 | |
| 95 | /// The result type of this function. |
| 96 | using result_t = ReturnType; |
| 97 | |
| 98 | /// The type of an argument to this function. |
| 99 | template <size_t Index> |
| 100 | using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>; |
| 101 | }; |
| 102 | /// Overload for class function types. |
| 103 | template <typename ClassType, typename ReturnType, typename... Args> |
| 104 | struct function_traits<ReturnType (ClassType::*)(Args...), false> |
| 105 | : public function_traits<ReturnType (ClassType::*)(Args...) const> {}; |
| 106 | /// Overload for non-class function types. |
| 107 | template <typename ReturnType, typename... Args> |
| 108 | struct function_traits<ReturnType (*)(Args...), false> { |
| 109 | /// The number of arguments to this function. |
| 110 | enum { num_args = sizeof...(Args) }; |
| 111 | |
| 112 | /// The result type of this function. |
| 113 | using result_t = ReturnType; |
| 114 | |
| 115 | /// The type of an argument to this function. |
| 116 | template <size_t i> |
| 117 | using arg_t = std::tuple_element_t<i, std::tuple<Args...>>; |
| 118 | }; |
| 119 | template <typename ReturnType, typename... Args> |
| 120 | struct function_traits<ReturnType (*const)(Args...), false> |
| 121 | : public function_traits<ReturnType (*)(Args...)> {}; |
| 122 | /// Overload for non-class function type references. |
| 123 | template <typename ReturnType, typename... Args> |
| 124 | struct function_traits<ReturnType (&)(Args...), false> |
| 125 | : public function_traits<ReturnType (*)(Args...)> {}; |
| 126 | |
| 127 | /// traits class for checking whether type T is one of any of the given |
| 128 | /// types in the variadic list. |
| 129 | template <typename T, typename... Ts> |
| 130 | using is_one_of = std::disjunction<std::is_same<T, Ts>...>; |
| 131 | |
| 132 | /// traits class for checking whether type T is a base class for all |
| 133 | /// the given types in the variadic list. |
| 134 | template <typename T, typename... Ts> |
| 135 | using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; |
| 136 | |
| 137 | namespace detail { |
| 138 | template <typename T, typename... Us> struct TypesAreDistinct; |
| 139 | template <typename T, typename... Us> |
| 140 | struct TypesAreDistinct |
| 141 | : std::integral_constant<bool, !is_one_of<T, Us...>::value && |
| 142 | TypesAreDistinct<Us...>::value> {}; |
| 143 | template <typename T> struct TypesAreDistinct<T> : std::true_type {}; |
| 144 | } // namespace detail |
| 145 | |
| 146 | /// Determine if all types in Ts are distinct. |
| 147 | /// |
| 148 | /// Useful to statically assert when Ts is intended to describe a non-multi set |
| 149 | /// of types. |
| 150 | /// |
| 151 | /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be |
| 152 | /// asserted once per instantiation of a type which requires it. |
| 153 | template <typename... Ts> struct TypesAreDistinct; |
| 154 | template <> struct TypesAreDistinct<> : std::true_type {}; |
| 155 | template <typename... Ts> |
| 156 | struct TypesAreDistinct |
| 157 | : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {}; |
| 158 | |
| 159 | /// Find the first index where a type appears in a list of types. |
| 160 | /// |
| 161 | /// FirstIndexOfType<T, Us...>::value is the first index of T in Us. |
| 162 | /// |
| 163 | /// Typically only meaningful when it is otherwise statically known that the |
| 164 | /// type pack has no duplicate types. This should be guaranteed explicitly with |
| 165 | /// static_assert(TypesAreDistinct<Us...>::value). |
| 166 | /// |
| 167 | /// It is a compile-time error to instantiate when T is not present in Us, i.e. |
| 168 | /// if is_one_of<T, Us...>::value is false. |
| 169 | template <typename T, typename... Us> struct FirstIndexOfType; |
| 170 | template <typename T, typename U, typename... Us> |
| 171 | struct FirstIndexOfType<T, U, Us...> |
| 172 | : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {}; |
| 173 | template <typename T, typename... Us> |
| 174 | struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {}; |
| 175 | |
| 176 | /// Find the type at a given index in a list of types. |
| 177 | /// |
| 178 | /// TypeAtIndex<I, Ts...> is the type at index I in Ts. |
| 179 | template <size_t I, typename... Ts> |
| 180 | using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>; |
| 181 | |
| 182 | /// Helper which adds two underlying types of enumeration type. |
| 183 | /// Implicit conversion to a common type is accepted. |
| 184 | template <typename EnumTy1, typename EnumTy2, |
| 185 | typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value, |
| 186 | std::underlying_type_t<EnumTy1>>, |
| 187 | typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value, |
| 188 | std::underlying_type_t<EnumTy2>>> |
| 189 | constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) { |
| 190 | return static_cast<UT1>(LHS) + static_cast<UT2>(RHS); |
| 191 | } |
| 192 | |
| 193 | //===----------------------------------------------------------------------===// |
| 194 | // Extra additions to <iterator> |
| 195 | //===----------------------------------------------------------------------===// |
| 196 | |
| 197 | namespace callable_detail { |
| 198 | |
| 199 | /// Templated storage wrapper for a callable. |
| 200 | /// |
| 201 | /// This class is consistently default constructible, copy / move |
| 202 | /// constructible / assignable. |
| 203 | /// |
| 204 | /// Supported callable types: |
| 205 | /// - Function pointer |
| 206 | /// - Function reference |
| 207 | /// - Lambda |
| 208 | /// - Function object |
| 209 | template <typename T, |
| 210 | bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>> |
| 211 | class Callable { |
| 212 | using value_type = std::remove_reference_t<T>; |
| 213 | using reference = value_type &; |
| 214 | using const_reference = value_type const &; |
| 215 | |
| 216 | std::optional<value_type> Obj; |
| 217 | |
| 218 | static_assert(!std::is_pointer_v<value_type>, |
| 219 | "Pointers to non-functions are not callable." ); |
| 220 | |
| 221 | public: |
| 222 | Callable() = default; |
| 223 | Callable(T const &O) : Obj(std::in_place, O) {} |
| 224 | |
| 225 | Callable(Callable const &Other) = default; |
| 226 | Callable(Callable &&Other) = default; |
| 227 | |
| 228 | Callable &operator=(Callable const &Other) { |
| 229 | Obj = std::nullopt; |
| 230 | if (Other.Obj) |
| 231 | Obj.emplace(*Other.Obj); |
| 232 | return *this; |
| 233 | } |
| 234 | |
| 235 | Callable &operator=(Callable &&Other) { |
| 236 | Obj = std::nullopt; |
| 237 | if (Other.Obj) |
| 238 | Obj.emplace(std::move(*Other.Obj)); |
| 239 | return *this; |
| 240 | } |
| 241 | |
| 242 | template <typename... Pn, |
| 243 | std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> |
| 244 | decltype(auto) operator()(Pn &&...Params) { |
| 245 | return (*Obj)(std::forward<Pn>(Params)...); |
| 246 | } |
| 247 | |
| 248 | template <typename... Pn, |
| 249 | std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0> |
| 250 | decltype(auto) operator()(Pn &&...Params) const { |
| 251 | return (*Obj)(std::forward<Pn>(Params)...); |
| 252 | } |
| 253 | |
| 254 | bool valid() const { return Obj != std::nullopt; } |
| 255 | bool reset() { return Obj = std::nullopt; } |
| 256 | |
| 257 | operator reference() { return *Obj; } |
| 258 | operator const_reference() const { return *Obj; } |
| 259 | }; |
| 260 | |
| 261 | // Function specialization. No need to waste extra space wrapping with a |
| 262 | // std::optional. |
| 263 | template <typename T> class Callable<T, true> { |
| 264 | static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>; |
| 265 | |
| 266 | using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>; |
| 267 | using CastT = std::conditional_t<IsPtr, T, T &>; |
| 268 | |
| 269 | private: |
| 270 | StorageT Func = nullptr; |
| 271 | |
| 272 | private: |
| 273 | template <typename In> static constexpr auto convertIn(In &&I) { |
| 274 | if constexpr (IsPtr) { |
| 275 | // Pointer... just echo it back. |
| 276 | return I; |
| 277 | } else { |
| 278 | // Must be a function reference. Return its address. |
| 279 | return &I; |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | public: |
| 284 | Callable() = default; |
| 285 | |
| 286 | // Construct from a function pointer or reference. |
| 287 | // |
| 288 | // Disable this constructor for references to 'Callable' so we don't violate |
| 289 | // the rule of 0. |
| 290 | template < // clang-format off |
| 291 | typename FnPtrOrRef, |
| 292 | std::enable_if_t< |
| 293 | !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int |
| 294 | > = 0 |
| 295 | > // clang-format on |
| 296 | Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {} |
| 297 | |
| 298 | template <typename... Pn, |
| 299 | std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> |
| 300 | decltype(auto) operator()(Pn &&...Params) const { |
| 301 | return Func(std::forward<Pn>(Params)...); |
| 302 | } |
| 303 | |
| 304 | bool valid() const { return Func != nullptr; } |
| 305 | void reset() { Func = nullptr; } |
| 306 | |
| 307 | operator T const &() const { |
| 308 | if constexpr (IsPtr) { |
| 309 | // T is a pointer... just echo it back. |
| 310 | return Func; |
| 311 | } else { |
| 312 | static_assert(std::is_reference_v<T>, |
| 313 | "Expected a reference to a function." ); |
| 314 | // T is a function reference... dereference the stored pointer. |
| 315 | return *Func; |
| 316 | } |
| 317 | } |
| 318 | }; |
| 319 | |
| 320 | } // namespace callable_detail |
| 321 | |
| 322 | /// Returns true if the given container only contains a single element. |
| 323 | template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { |
| 324 | auto B = std::begin(C), E = std::end(C); |
| 325 | return B != E && std::next(B) == E; |
| 326 | } |
| 327 | |
| 328 | /// Return a range covering \p RangeOrContainer with the first N elements |
| 329 | /// excluded. |
| 330 | template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { |
| 331 | return make_range(std::next(adl_begin(RangeOrContainer), N), |
| 332 | adl_end(RangeOrContainer)); |
| 333 | } |
| 334 | |
| 335 | /// Return a range covering \p RangeOrContainer with the last N elements |
| 336 | /// excluded. |
| 337 | template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) { |
| 338 | return make_range(adl_begin(RangeOrContainer), |
| 339 | std::prev(adl_end(RangeOrContainer), N)); |
| 340 | } |
| 341 | |
| 342 | // mapped_iterator - This is a simple iterator adapter that causes a function to |
| 343 | // be applied whenever operator* is invoked on the iterator. |
| 344 | |
| 345 | template <typename ItTy, typename FuncTy, |
| 346 | typename ReferenceTy = |
| 347 | decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> |
| 348 | class mapped_iterator |
| 349 | : public iterator_adaptor_base< |
| 350 | mapped_iterator<ItTy, FuncTy>, ItTy, |
| 351 | typename std::iterator_traits<ItTy>::iterator_category, |
| 352 | std::remove_reference_t<ReferenceTy>, |
| 353 | typename std::iterator_traits<ItTy>::difference_type, |
| 354 | std::remove_reference_t<ReferenceTy> *, ReferenceTy> { |
| 355 | public: |
| 356 | mapped_iterator() = default; |
| 357 | mapped_iterator(ItTy U, FuncTy F) |
| 358 | : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} |
| 359 | |
| 360 | ItTy getCurrent() { return this->I; } |
| 361 | |
| 362 | const FuncTy &getFunction() const { return F; } |
| 363 | |
| 364 | ReferenceTy operator*() const { return F(*this->I); } |
| 365 | |
| 366 | private: |
| 367 | callable_detail::Callable<FuncTy> F{}; |
| 368 | }; |
| 369 | |
| 370 | // map_iterator - Provide a convenient way to create mapped_iterators, just like |
| 371 | // make_pair is useful for creating pairs... |
| 372 | template <class ItTy, class FuncTy> |
| 373 | inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { |
| 374 | return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); |
| 375 | } |
| 376 | |
| 377 | template <class ContainerTy, class FuncTy> |
| 378 | auto map_range(ContainerTy &&C, FuncTy F) { |
| 379 | return make_range(map_iterator(std::begin(C), F), |
| 380 | map_iterator(std::end(C), F)); |
| 381 | } |
| 382 | |
| 383 | /// A base type of mapped iterator, that is useful for building derived |
| 384 | /// iterators that do not need/want to store the map function (as in |
| 385 | /// mapped_iterator). These iterators must simply provide a `mapElement` method |
| 386 | /// that defines how to map a value of the iterator to the provided reference |
| 387 | /// type. |
| 388 | template <typename DerivedT, typename ItTy, typename ReferenceTy> |
| 389 | class mapped_iterator_base |
| 390 | : public iterator_adaptor_base< |
| 391 | DerivedT, ItTy, |
| 392 | typename std::iterator_traits<ItTy>::iterator_category, |
| 393 | std::remove_reference_t<ReferenceTy>, |
| 394 | typename std::iterator_traits<ItTy>::difference_type, |
| 395 | std::remove_reference_t<ReferenceTy> *, ReferenceTy> { |
| 396 | public: |
| 397 | using BaseT = mapped_iterator_base; |
| 398 | |
| 399 | mapped_iterator_base(ItTy U) |
| 400 | : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {} |
| 401 | |
| 402 | ItTy getCurrent() { return this->I; } |
| 403 | |
| 404 | ReferenceTy operator*() const { |
| 405 | return static_cast<const DerivedT &>(*this).mapElement(*this->I); |
| 406 | } |
| 407 | }; |
| 408 | |
| 409 | /// Helper to determine if type T has a member called rbegin(). |
| 410 | template <typename Ty> class has_rbegin_impl { |
| 411 | using yes = char[1]; |
| 412 | using no = char[2]; |
| 413 | |
| 414 | template <typename Inner> |
| 415 | static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); |
| 416 | |
| 417 | template <typename> |
| 418 | static no& test(...); |
| 419 | |
| 420 | public: |
| 421 | static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); |
| 422 | }; |
| 423 | |
| 424 | /// Metafunction to determine if T& or T has a member called rbegin(). |
| 425 | template <typename Ty> |
| 426 | struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {}; |
| 427 | |
| 428 | // Returns an iterator_range over the given container which iterates in reverse. |
| 429 | template <typename ContainerTy> auto reverse(ContainerTy &&C) { |
| 430 | if constexpr (has_rbegin<ContainerTy>::value) |
| 431 | return make_range(C.rbegin(), C.rend()); |
| 432 | else |
| 433 | return make_range(std::make_reverse_iterator(std::end(C)), |
| 434 | std::make_reverse_iterator(std::begin(C))); |
| 435 | } |
| 436 | |
| 437 | /// An iterator adaptor that filters the elements of given inner iterators. |
| 438 | /// |
| 439 | /// The predicate parameter should be a callable object that accepts the wrapped |
| 440 | /// iterator's reference type and returns a bool. When incrementing or |
| 441 | /// decrementing the iterator, it will call the predicate on each element and |
| 442 | /// skip any where it returns false. |
| 443 | /// |
| 444 | /// \code |
| 445 | /// int A[] = { 1, 2, 3, 4 }; |
| 446 | /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); |
| 447 | /// // R contains { 1, 3 }. |
| 448 | /// \endcode |
| 449 | /// |
| 450 | /// Note: filter_iterator_base implements support for forward iteration. |
| 451 | /// filter_iterator_impl exists to provide support for bidirectional iteration, |
| 452 | /// conditional on whether the wrapped iterator supports it. |
| 453 | template <typename WrappedIteratorT, typename PredicateT, typename IterTag> |
| 454 | class filter_iterator_base |
| 455 | : public iterator_adaptor_base< |
| 456 | filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, |
| 457 | WrappedIteratorT, |
| 458 | std::common_type_t<IterTag, |
| 459 | typename std::iterator_traits< |
| 460 | WrappedIteratorT>::iterator_category>> { |
| 461 | using BaseT = typename filter_iterator_base::iterator_adaptor_base; |
| 462 | |
| 463 | protected: |
| 464 | WrappedIteratorT End; |
| 465 | PredicateT Pred; |
| 466 | |
| 467 | void findNextValid() { |
| 468 | while (this->I != End && !Pred(*this->I)) |
| 469 | BaseT::operator++(); |
| 470 | } |
| 471 | |
| 472 | filter_iterator_base() = default; |
| 473 | |
| 474 | // Construct the iterator. The begin iterator needs to know where the end |
| 475 | // is, so that it can properly stop when it gets there. The end iterator only |
| 476 | // needs the predicate to support bidirectional iteration. |
| 477 | filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, |
| 478 | PredicateT Pred) |
| 479 | : BaseT(Begin), End(End), Pred(Pred) { |
| 480 | findNextValid(); |
| 481 | } |
| 482 | |
| 483 | public: |
| 484 | using BaseT::operator++; |
| 485 | |
| 486 | filter_iterator_base &operator++() { |
| 487 | BaseT::operator++(); |
| 488 | findNextValid(); |
| 489 | return *this; |
| 490 | } |
| 491 | |
| 492 | decltype(auto) operator*() const { |
| 493 | assert(BaseT::wrapped() != End && "Cannot dereference end iterator!" ); |
| 494 | return BaseT::operator*(); |
| 495 | } |
| 496 | |
| 497 | decltype(auto) operator->() const { |
| 498 | assert(BaseT::wrapped() != End && "Cannot dereference end iterator!" ); |
| 499 | return BaseT::operator->(); |
| 500 | } |
| 501 | }; |
| 502 | |
| 503 | /// Specialization of filter_iterator_base for forward iteration only. |
| 504 | template <typename WrappedIteratorT, typename PredicateT, |
| 505 | typename IterTag = std::forward_iterator_tag> |
| 506 | class filter_iterator_impl |
| 507 | : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { |
| 508 | public: |
| 509 | filter_iterator_impl() = default; |
| 510 | |
| 511 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
| 512 | PredicateT Pred) |
| 513 | : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {} |
| 514 | }; |
| 515 | |
| 516 | /// Specialization of filter_iterator_base for bidirectional iteration. |
| 517 | template <typename WrappedIteratorT, typename PredicateT> |
| 518 | class filter_iterator_impl<WrappedIteratorT, PredicateT, |
| 519 | std::bidirectional_iterator_tag> |
| 520 | : public filter_iterator_base<WrappedIteratorT, PredicateT, |
| 521 | std::bidirectional_iterator_tag> { |
| 522 | using BaseT = typename filter_iterator_impl::filter_iterator_base; |
| 523 | |
| 524 | void findPrevValid() { |
| 525 | while (!this->Pred(*this->I)) |
| 526 | BaseT::operator--(); |
| 527 | } |
| 528 | |
| 529 | public: |
| 530 | using BaseT::operator--; |
| 531 | |
| 532 | filter_iterator_impl() = default; |
| 533 | |
| 534 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
| 535 | PredicateT Pred) |
| 536 | : BaseT(Begin, End, Pred) {} |
| 537 | |
| 538 | filter_iterator_impl &operator--() { |
| 539 | BaseT::operator--(); |
| 540 | findPrevValid(); |
| 541 | return *this; |
| 542 | } |
| 543 | }; |
| 544 | |
| 545 | namespace detail { |
| 546 | |
| 547 | template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { |
| 548 | using type = std::forward_iterator_tag; |
| 549 | }; |
| 550 | |
| 551 | template <> struct fwd_or_bidi_tag_impl<true> { |
| 552 | using type = std::bidirectional_iterator_tag; |
| 553 | }; |
| 554 | |
| 555 | /// Helper which sets its type member to forward_iterator_tag if the category |
| 556 | /// of \p IterT does not derive from bidirectional_iterator_tag, and to |
| 557 | /// bidirectional_iterator_tag otherwise. |
| 558 | template <typename IterT> struct fwd_or_bidi_tag { |
| 559 | using type = typename fwd_or_bidi_tag_impl<std::is_base_of< |
| 560 | std::bidirectional_iterator_tag, |
| 561 | typename std::iterator_traits<IterT>::iterator_category>::value>::type; |
| 562 | }; |
| 563 | |
| 564 | } // namespace detail |
| 565 | |
| 566 | /// Defines filter_iterator to a suitable specialization of |
| 567 | /// filter_iterator_impl, based on the underlying iterator's category. |
| 568 | template <typename WrappedIteratorT, typename PredicateT> |
| 569 | using filter_iterator = filter_iterator_impl< |
| 570 | WrappedIteratorT, PredicateT, |
| 571 | typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; |
| 572 | |
| 573 | /// Convenience function that takes a range of elements and a predicate, |
| 574 | /// and return a new filter_iterator range. |
| 575 | /// |
| 576 | /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the |
| 577 | /// lifetime of that temporary is not kept by the returned range object, and the |
| 578 | /// temporary is going to be dropped on the floor after the make_iterator_range |
| 579 | /// full expression that contains this function call. |
| 580 | template <typename RangeT, typename PredicateT> |
| 581 | iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> |
| 582 | make_filter_range(RangeT &&Range, PredicateT Pred) { |
| 583 | using FilterIteratorT = |
| 584 | filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; |
| 585 | return make_range( |
| 586 | FilterIteratorT(std::begin(std::forward<RangeT>(Range)), |
| 587 | std::end(std::forward<RangeT>(Range)), Pred), |
| 588 | FilterIteratorT(std::end(std::forward<RangeT>(Range)), |
| 589 | std::end(std::forward<RangeT>(Range)), Pred)); |
| 590 | } |
| 591 | |
| 592 | /// A pseudo-iterator adaptor that is designed to implement "early increment" |
| 593 | /// style loops. |
| 594 | /// |
| 595 | /// This is *not a normal iterator* and should almost never be used directly. It |
| 596 | /// is intended primarily to be used with range based for loops and some range |
| 597 | /// algorithms. |
| 598 | /// |
| 599 | /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but |
| 600 | /// somewhere between them. The constraints of these iterators are: |
| 601 | /// |
| 602 | /// - On construction or after being incremented, it is comparable and |
| 603 | /// dereferencable. It is *not* incrementable. |
| 604 | /// - After being dereferenced, it is neither comparable nor dereferencable, it |
| 605 | /// is only incrementable. |
| 606 | /// |
| 607 | /// This means you can only dereference the iterator once, and you can only |
| 608 | /// increment it once between dereferences. |
| 609 | template <typename WrappedIteratorT> |
| 610 | class early_inc_iterator_impl |
| 611 | : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, |
| 612 | WrappedIteratorT, std::input_iterator_tag> { |
| 613 | using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base; |
| 614 | |
| 615 | using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; |
| 616 | |
| 617 | protected: |
| 618 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 619 | bool IsEarlyIncremented = false; |
| 620 | #endif |
| 621 | |
| 622 | public: |
| 623 | early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} |
| 624 | |
| 625 | using BaseT::operator*; |
| 626 | decltype(*std::declval<WrappedIteratorT>()) operator*() { |
| 627 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 628 | assert(!IsEarlyIncremented && "Cannot dereference twice!" ); |
| 629 | IsEarlyIncremented = true; |
| 630 | #endif |
| 631 | return *(this->I)++; |
| 632 | } |
| 633 | |
| 634 | using BaseT::operator++; |
| 635 | early_inc_iterator_impl &operator++() { |
| 636 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 637 | assert(IsEarlyIncremented && "Cannot increment before dereferencing!" ); |
| 638 | IsEarlyIncremented = false; |
| 639 | #endif |
| 640 | return *this; |
| 641 | } |
| 642 | |
| 643 | friend bool operator==(const early_inc_iterator_impl &LHS, |
| 644 | const early_inc_iterator_impl &RHS) { |
| 645 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 646 | assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!" ); |
| 647 | #endif |
| 648 | return (const BaseT &)LHS == (const BaseT &)RHS; |
| 649 | } |
| 650 | }; |
| 651 | |
| 652 | /// Make a range that does early increment to allow mutation of the underlying |
| 653 | /// range without disrupting iteration. |
| 654 | /// |
| 655 | /// The underlying iterator will be incremented immediately after it is |
| 656 | /// dereferenced, allowing deletion of the current node or insertion of nodes to |
| 657 | /// not disrupt iteration provided they do not invalidate the *next* iterator -- |
| 658 | /// the current iterator can be invalidated. |
| 659 | /// |
| 660 | /// This requires a very exact pattern of use that is only really suitable to |
| 661 | /// range based for loops and other range algorithms that explicitly guarantee |
| 662 | /// to dereference exactly once each element, and to increment exactly once each |
| 663 | /// element. |
| 664 | template <typename RangeT> |
| 665 | iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> |
| 666 | make_early_inc_range(RangeT &&Range) { |
| 667 | using EarlyIncIteratorT = |
| 668 | early_inc_iterator_impl<detail::IterOfRange<RangeT>>; |
| 669 | return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), |
| 670 | EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); |
| 671 | } |
| 672 | |
| 673 | // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest |
| 674 | template <typename R, typename UnaryPredicate> |
| 675 | bool all_of(R &&range, UnaryPredicate P); |
| 676 | |
| 677 | template <typename R, typename UnaryPredicate> |
| 678 | bool any_of(R &&range, UnaryPredicate P); |
| 679 | |
| 680 | template <typename T> bool all_equal(std::initializer_list<T> Values); |
| 681 | |
| 682 | template <typename R> constexpr size_t range_size(R &&Range); |
| 683 | |
| 684 | namespace detail { |
| 685 | |
| 686 | using std::declval; |
| 687 | |
| 688 | // We have to alias this since inlining the actual type at the usage site |
| 689 | // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. |
| 690 | template<typename... Iters> struct ZipTupleType { |
| 691 | using type = std::tuple<decltype(*declval<Iters>())...>; |
| 692 | }; |
| 693 | |
| 694 | template <typename ZipType, typename ReferenceTupleType, typename... Iters> |
| 695 | using zip_traits = iterator_facade_base< |
| 696 | ZipType, |
| 697 | std::common_type_t< |
| 698 | std::bidirectional_iterator_tag, |
| 699 | typename std::iterator_traits<Iters>::iterator_category...>, |
| 700 | // ^ TODO: Implement random access methods. |
| 701 | ReferenceTupleType, |
| 702 | typename std::iterator_traits< |
| 703 | std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, |
| 704 | // ^ FIXME: This follows boost::make_zip_iterator's assumption that all |
| 705 | // inner iterators have the same difference_type. It would fail if, for |
| 706 | // instance, the second field's difference_type were non-numeric while the |
| 707 | // first is. |
| 708 | ReferenceTupleType *, ReferenceTupleType>; |
| 709 | |
| 710 | template <typename ZipType, typename ReferenceTupleType, typename... Iters> |
| 711 | struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> { |
| 712 | using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>; |
| 713 | using IndexSequence = std::index_sequence_for<Iters...>; |
| 714 | using value_type = typename Base::value_type; |
| 715 | |
| 716 | std::tuple<Iters...> iterators; |
| 717 | |
| 718 | protected: |
| 719 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
| 720 | return value_type(*std::get<Ns>(iterators)...); |
| 721 | } |
| 722 | |
| 723 | template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) { |
| 724 | (++std::get<Ns>(iterators), ...); |
| 725 | } |
| 726 | |
| 727 | template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) { |
| 728 | (--std::get<Ns>(iterators), ...); |
| 729 | } |
| 730 | |
| 731 | template <size_t... Ns> |
| 732 | bool test_all_equals(const zip_common &other, |
| 733 | std::index_sequence<Ns...>) const { |
| 734 | return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) && |
| 735 | ...); |
| 736 | } |
| 737 | |
| 738 | public: |
| 739 | zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} |
| 740 | |
| 741 | value_type operator*() const { return deref(IndexSequence{}); } |
| 742 | |
| 743 | ZipType &operator++() { |
| 744 | tup_inc(IndexSequence{}); |
| 745 | return static_cast<ZipType &>(*this); |
| 746 | } |
| 747 | |
| 748 | ZipType &operator--() { |
| 749 | static_assert(Base::IsBidirectional, |
| 750 | "All inner iterators must be at least bidirectional." ); |
| 751 | tup_dec(IndexSequence{}); |
| 752 | return static_cast<ZipType &>(*this); |
| 753 | } |
| 754 | |
| 755 | /// Return true if all the iterator are matching `other`'s iterators. |
| 756 | bool all_equals(zip_common &other) { |
| 757 | return test_all_equals(other, IndexSequence{}); |
| 758 | } |
| 759 | }; |
| 760 | |
| 761 | template <typename... Iters> |
| 762 | struct zip_first : zip_common<zip_first<Iters...>, |
| 763 | typename ZipTupleType<Iters...>::type, Iters...> { |
| 764 | using zip_common<zip_first, typename ZipTupleType<Iters...>::type, |
| 765 | Iters...>::zip_common; |
| 766 | |
| 767 | bool operator==(const zip_first &other) const { |
| 768 | return std::get<0>(this->iterators) == std::get<0>(other.iterators); |
| 769 | } |
| 770 | }; |
| 771 | |
| 772 | template <typename... Iters> |
| 773 | struct zip_shortest |
| 774 | : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type, |
| 775 | Iters...> { |
| 776 | using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type, |
| 777 | Iters...>::zip_common; |
| 778 | |
| 779 | bool operator==(const zip_shortest &other) const { |
| 780 | return any_iterator_equals(other, std::index_sequence_for<Iters...>{}); |
| 781 | } |
| 782 | |
| 783 | private: |
| 784 | template <size_t... Ns> |
| 785 | bool any_iterator_equals(const zip_shortest &other, |
| 786 | std::index_sequence<Ns...>) const { |
| 787 | return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) || |
| 788 | ...); |
| 789 | } |
| 790 | }; |
| 791 | |
| 792 | /// Helper to obtain the iterator types for the tuple storage within `zippy`. |
| 793 | template <template <typename...> class ItType, typename TupleStorageType, |
| 794 | typename IndexSequence> |
| 795 | struct ZippyIteratorTuple; |
| 796 | |
| 797 | /// Partial specialization for non-const tuple storage. |
| 798 | template <template <typename...> class ItType, typename... Args, |
| 799 | std::size_t... Ns> |
| 800 | struct ZippyIteratorTuple<ItType, std::tuple<Args...>, |
| 801 | std::index_sequence<Ns...>> { |
| 802 | using type = ItType<decltype(adl_begin( |
| 803 | std::get<Ns>(declval<std::tuple<Args...> &>())))...>; |
| 804 | }; |
| 805 | |
| 806 | /// Partial specialization for const tuple storage. |
| 807 | template <template <typename...> class ItType, typename... Args, |
| 808 | std::size_t... Ns> |
| 809 | struct ZippyIteratorTuple<ItType, const std::tuple<Args...>, |
| 810 | std::index_sequence<Ns...>> { |
| 811 | using type = ItType<decltype(adl_begin( |
| 812 | std::get<Ns>(declval<const std::tuple<Args...> &>())))...>; |
| 813 | }; |
| 814 | |
| 815 | template <template <typename...> class ItType, typename... Args> class zippy { |
| 816 | private: |
| 817 | std::tuple<Args...> storage; |
| 818 | using IndexSequence = std::index_sequence_for<Args...>; |
| 819 | |
| 820 | public: |
| 821 | using iterator = typename ZippyIteratorTuple<ItType, decltype(storage), |
| 822 | IndexSequence>::type; |
| 823 | using const_iterator = |
| 824 | typename ZippyIteratorTuple<ItType, const decltype(storage), |
| 825 | IndexSequence>::type; |
| 826 | using iterator_category = typename iterator::iterator_category; |
| 827 | using value_type = typename iterator::value_type; |
| 828 | using difference_type = typename iterator::difference_type; |
| 829 | using pointer = typename iterator::pointer; |
| 830 | using reference = typename iterator::reference; |
| 831 | using const_reference = typename const_iterator::reference; |
| 832 | |
| 833 | zippy(Args &&...args) : storage(std::forward<Args>(args)...) {} |
| 834 | |
| 835 | const_iterator begin() const { return begin_impl(IndexSequence{}); } |
| 836 | iterator begin() { return begin_impl(IndexSequence{}); } |
| 837 | const_iterator end() const { return end_impl(IndexSequence{}); } |
| 838 | iterator end() { return end_impl(IndexSequence{}); } |
| 839 | |
| 840 | private: |
| 841 | template <size_t... Ns> |
| 842 | const_iterator begin_impl(std::index_sequence<Ns...>) const { |
| 843 | return const_iterator(adl_begin(std::get<Ns>(storage))...); |
| 844 | } |
| 845 | template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { |
| 846 | return iterator(adl_begin(std::get<Ns>(storage))...); |
| 847 | } |
| 848 | |
| 849 | template <size_t... Ns> |
| 850 | const_iterator end_impl(std::index_sequence<Ns...>) const { |
| 851 | return const_iterator(adl_end(std::get<Ns>(storage))...); |
| 852 | } |
| 853 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { |
| 854 | return iterator(adl_end(std::get<Ns>(storage))...); |
| 855 | } |
| 856 | }; |
| 857 | |
| 858 | } // end namespace detail |
| 859 | |
| 860 | /// zip iterator for two or more iteratable types. Iteration continues until the |
| 861 | /// end of the *shortest* iteratee is reached. |
| 862 | template <typename T, typename U, typename... Args> |
| 863 | detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, |
| 864 | Args &&...args) { |
| 865 | return detail::zippy<detail::zip_shortest, T, U, Args...>( |
| 866 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
| 867 | } |
| 868 | |
| 869 | /// zip iterator that assumes that all iteratees have the same length. |
| 870 | /// In builds with assertions on, this assumption is checked before the |
| 871 | /// iteration starts. |
| 872 | template <typename T, typename U, typename... Args> |
| 873 | detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u, |
| 874 | Args &&...args) { |
| 875 | assert(all_equal({range_size(t), range_size(u), range_size(args)...}) && |
| 876 | "Iteratees do not have equal length" ); |
| 877 | return detail::zippy<detail::zip_first, T, U, Args...>( |
| 878 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
| 879 | } |
| 880 | |
| 881 | /// zip iterator that, for the sake of efficiency, assumes the first iteratee to |
| 882 | /// be the shortest. Iteration continues until the end of the first iteratee is |
| 883 | /// reached. In builds with assertions on, we check that the assumption about |
| 884 | /// the first iteratee being the shortest holds. |
| 885 | template <typename T, typename U, typename... Args> |
| 886 | detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, |
| 887 | Args &&...args) { |
| 888 | assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) && |
| 889 | "First iteratee is not the shortest" ); |
| 890 | |
| 891 | return detail::zippy<detail::zip_first, T, U, Args...>( |
| 892 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
| 893 | } |
| 894 | |
| 895 | namespace detail { |
| 896 | template <typename Iter> |
| 897 | Iter next_or_end(const Iter &I, const Iter &End) { |
| 898 | if (I == End) |
| 899 | return End; |
| 900 | return std::next(I); |
| 901 | } |
| 902 | |
| 903 | template <typename Iter> |
| 904 | auto deref_or_none(const Iter &I, const Iter &End) -> std::optional< |
| 905 | std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { |
| 906 | if (I == End) |
| 907 | return std::nullopt; |
| 908 | return *I; |
| 909 | } |
| 910 | |
| 911 | template <typename Iter> struct ZipLongestItemType { |
| 912 | using type = std::optional<std::remove_const_t< |
| 913 | std::remove_reference_t<decltype(*std::declval<Iter>())>>>; |
| 914 | }; |
| 915 | |
| 916 | template <typename... Iters> struct ZipLongestTupleType { |
| 917 | using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; |
| 918 | }; |
| 919 | |
| 920 | template <typename... Iters> |
| 921 | class zip_longest_iterator |
| 922 | : public iterator_facade_base< |
| 923 | zip_longest_iterator<Iters...>, |
| 924 | std::common_type_t< |
| 925 | std::forward_iterator_tag, |
| 926 | typename std::iterator_traits<Iters>::iterator_category...>, |
| 927 | typename ZipLongestTupleType<Iters...>::type, |
| 928 | typename std::iterator_traits< |
| 929 | std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, |
| 930 | typename ZipLongestTupleType<Iters...>::type *, |
| 931 | typename ZipLongestTupleType<Iters...>::type> { |
| 932 | public: |
| 933 | using value_type = typename ZipLongestTupleType<Iters...>::type; |
| 934 | |
| 935 | private: |
| 936 | std::tuple<Iters...> iterators; |
| 937 | std::tuple<Iters...> end_iterators; |
| 938 | |
| 939 | template <size_t... Ns> |
| 940 | bool test(const zip_longest_iterator<Iters...> &other, |
| 941 | std::index_sequence<Ns...>) const { |
| 942 | return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) || |
| 943 | ...); |
| 944 | } |
| 945 | |
| 946 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
| 947 | return value_type( |
| 948 | deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
| 949 | } |
| 950 | |
| 951 | template <size_t... Ns> |
| 952 | decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { |
| 953 | return std::tuple<Iters...>( |
| 954 | next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
| 955 | } |
| 956 | |
| 957 | public: |
| 958 | zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) |
| 959 | : iterators(std::forward<Iters>(ts.first)...), |
| 960 | end_iterators(std::forward<Iters>(ts.second)...) {} |
| 961 | |
| 962 | value_type operator*() const { |
| 963 | return deref(std::index_sequence_for<Iters...>{}); |
| 964 | } |
| 965 | |
| 966 | zip_longest_iterator<Iters...> &operator++() { |
| 967 | iterators = tup_inc(std::index_sequence_for<Iters...>{}); |
| 968 | return *this; |
| 969 | } |
| 970 | |
| 971 | bool operator==(const zip_longest_iterator<Iters...> &other) const { |
| 972 | return !test(other, std::index_sequence_for<Iters...>{}); |
| 973 | } |
| 974 | }; |
| 975 | |
| 976 | template <typename... Args> class zip_longest_range { |
| 977 | public: |
| 978 | using iterator = |
| 979 | zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; |
| 980 | using iterator_category = typename iterator::iterator_category; |
| 981 | using value_type = typename iterator::value_type; |
| 982 | using difference_type = typename iterator::difference_type; |
| 983 | using pointer = typename iterator::pointer; |
| 984 | using reference = typename iterator::reference; |
| 985 | |
| 986 | private: |
| 987 | std::tuple<Args...> ts; |
| 988 | |
| 989 | template <size_t... Ns> |
| 990 | iterator begin_impl(std::index_sequence<Ns...>) const { |
| 991 | return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), |
| 992 | adl_end(std::get<Ns>(ts)))...); |
| 993 | } |
| 994 | |
| 995 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
| 996 | return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), |
| 997 | adl_end(std::get<Ns>(ts)))...); |
| 998 | } |
| 999 | |
| 1000 | public: |
| 1001 | zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
| 1002 | |
| 1003 | iterator begin() const { |
| 1004 | return begin_impl(std::index_sequence_for<Args...>{}); |
| 1005 | } |
| 1006 | iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } |
| 1007 | }; |
| 1008 | } // namespace detail |
| 1009 | |
| 1010 | /// Iterate over two or more iterators at the same time. Iteration continues |
| 1011 | /// until all iterators reach the end. The std::optional only contains a value |
| 1012 | /// if the iterator has not reached the end. |
| 1013 | template <typename T, typename U, typename... Args> |
| 1014 | detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, |
| 1015 | Args &&... args) { |
| 1016 | return detail::zip_longest_range<T, U, Args...>( |
| 1017 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
| 1018 | } |
| 1019 | |
| 1020 | /// Iterator wrapper that concatenates sequences together. |
| 1021 | /// |
| 1022 | /// This can concatenate different iterators, even with different types, into |
| 1023 | /// a single iterator provided the value types of all the concatenated |
| 1024 | /// iterators expose `reference` and `pointer` types that can be converted to |
| 1025 | /// `ValueT &` and `ValueT *` respectively. It doesn't support more |
| 1026 | /// interesting/customized pointer or reference types. |
| 1027 | /// |
| 1028 | /// Currently this only supports forward or higher iterator categories as |
| 1029 | /// inputs and always exposes a forward iterator interface. |
| 1030 | template <typename ValueT, typename... IterTs> |
| 1031 | class concat_iterator |
| 1032 | : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, |
| 1033 | std::forward_iterator_tag, ValueT> { |
| 1034 | using BaseT = typename concat_iterator::iterator_facade_base; |
| 1035 | |
| 1036 | /// We store both the current and end iterators for each concatenated |
| 1037 | /// sequence in a tuple of pairs. |
| 1038 | /// |
| 1039 | /// Note that something like iterator_range seems nice at first here, but the |
| 1040 | /// range properties are of little benefit and end up getting in the way |
| 1041 | /// because we need to do mutation on the current iterators. |
| 1042 | std::tuple<IterTs...> Begins; |
| 1043 | std::tuple<IterTs...> Ends; |
| 1044 | |
| 1045 | /// Attempts to increment a specific iterator. |
| 1046 | /// |
| 1047 | /// Returns true if it was able to increment the iterator. Returns false if |
| 1048 | /// the iterator is already at the end iterator. |
| 1049 | template <size_t Index> bool incrementHelper() { |
| 1050 | auto &Begin = std::get<Index>(Begins); |
| 1051 | auto &End = std::get<Index>(Ends); |
| 1052 | if (Begin == End) |
| 1053 | return false; |
| 1054 | |
| 1055 | ++Begin; |
| 1056 | return true; |
| 1057 | } |
| 1058 | |
| 1059 | /// Increments the first non-end iterator. |
| 1060 | /// |
| 1061 | /// It is an error to call this with all iterators at the end. |
| 1062 | template <size_t... Ns> void increment(std::index_sequence<Ns...>) { |
| 1063 | // Build a sequence of functions to increment each iterator if possible. |
| 1064 | bool (concat_iterator::*IncrementHelperFns[])() = { |
| 1065 | &concat_iterator::incrementHelper<Ns>...}; |
| 1066 | |
| 1067 | // Loop over them, and stop as soon as we succeed at incrementing one. |
| 1068 | for (auto &IncrementHelperFn : IncrementHelperFns) |
| 1069 | if ((this->*IncrementHelperFn)()) |
| 1070 | return; |
| 1071 | |
| 1072 | llvm_unreachable("Attempted to increment an end concat iterator!" ); |
| 1073 | } |
| 1074 | |
| 1075 | /// Returns null if the specified iterator is at the end. Otherwise, |
| 1076 | /// dereferences the iterator and returns the address of the resulting |
| 1077 | /// reference. |
| 1078 | template <size_t Index> ValueT *getHelper() const { |
| 1079 | auto &Begin = std::get<Index>(Begins); |
| 1080 | auto &End = std::get<Index>(Ends); |
| 1081 | if (Begin == End) |
| 1082 | return nullptr; |
| 1083 | |
| 1084 | return &*Begin; |
| 1085 | } |
| 1086 | |
| 1087 | /// Finds the first non-end iterator, dereferences, and returns the resulting |
| 1088 | /// reference. |
| 1089 | /// |
| 1090 | /// It is an error to call this with all iterators at the end. |
| 1091 | template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { |
| 1092 | // Build a sequence of functions to get from iterator if possible. |
| 1093 | ValueT *(concat_iterator::*GetHelperFns[])() const = { |
| 1094 | &concat_iterator::getHelper<Ns>...}; |
| 1095 | |
| 1096 | // Loop over them, and return the first result we find. |
| 1097 | for (auto &GetHelperFn : GetHelperFns) |
| 1098 | if (ValueT *P = (this->*GetHelperFn)()) |
| 1099 | return *P; |
| 1100 | |
| 1101 | llvm_unreachable("Attempted to get a pointer from an end concat iterator!" ); |
| 1102 | } |
| 1103 | |
| 1104 | public: |
| 1105 | /// Constructs an iterator from a sequence of ranges. |
| 1106 | /// |
| 1107 | /// We need the full range to know how to switch between each of the |
| 1108 | /// iterators. |
| 1109 | template <typename... RangeTs> |
| 1110 | explicit concat_iterator(RangeTs &&... Ranges) |
| 1111 | : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} |
| 1112 | |
| 1113 | using BaseT::operator++; |
| 1114 | |
| 1115 | concat_iterator &operator++() { |
| 1116 | increment(std::index_sequence_for<IterTs...>()); |
| 1117 | return *this; |
| 1118 | } |
| 1119 | |
| 1120 | ValueT &operator*() const { |
| 1121 | return get(std::index_sequence_for<IterTs...>()); |
| 1122 | } |
| 1123 | |
| 1124 | bool operator==(const concat_iterator &RHS) const { |
| 1125 | return Begins == RHS.Begins && Ends == RHS.Ends; |
| 1126 | } |
| 1127 | }; |
| 1128 | |
| 1129 | namespace detail { |
| 1130 | |
| 1131 | /// Helper to store a sequence of ranges being concatenated and access them. |
| 1132 | /// |
| 1133 | /// This is designed to facilitate providing actual storage when temporaries |
| 1134 | /// are passed into the constructor such that we can use it as part of range |
| 1135 | /// based for loops. |
| 1136 | template <typename ValueT, typename... RangeTs> class concat_range { |
| 1137 | public: |
| 1138 | using iterator = |
| 1139 | concat_iterator<ValueT, |
| 1140 | decltype(std::begin(std::declval<RangeTs &>()))...>; |
| 1141 | |
| 1142 | private: |
| 1143 | std::tuple<RangeTs...> Ranges; |
| 1144 | |
| 1145 | template <size_t... Ns> |
| 1146 | iterator begin_impl(std::index_sequence<Ns...>) { |
| 1147 | return iterator(std::get<Ns>(Ranges)...); |
| 1148 | } |
| 1149 | template <size_t... Ns> |
| 1150 | iterator begin_impl(std::index_sequence<Ns...>) const { |
| 1151 | return iterator(std::get<Ns>(Ranges)...); |
| 1152 | } |
| 1153 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { |
| 1154 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
| 1155 | std::end(std::get<Ns>(Ranges)))...); |
| 1156 | } |
| 1157 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
| 1158 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
| 1159 | std::end(std::get<Ns>(Ranges)))...); |
| 1160 | } |
| 1161 | |
| 1162 | public: |
| 1163 | concat_range(RangeTs &&... Ranges) |
| 1164 | : Ranges(std::forward<RangeTs>(Ranges)...) {} |
| 1165 | |
| 1166 | iterator begin() { |
| 1167 | return begin_impl(std::index_sequence_for<RangeTs...>{}); |
| 1168 | } |
| 1169 | iterator begin() const { |
| 1170 | return begin_impl(std::index_sequence_for<RangeTs...>{}); |
| 1171 | } |
| 1172 | iterator end() { |
| 1173 | return end_impl(std::index_sequence_for<RangeTs...>{}); |
| 1174 | } |
| 1175 | iterator end() const { |
| 1176 | return end_impl(std::index_sequence_for<RangeTs...>{}); |
| 1177 | } |
| 1178 | }; |
| 1179 | |
| 1180 | } // end namespace detail |
| 1181 | |
| 1182 | /// Concatenated range across two or more ranges. |
| 1183 | /// |
| 1184 | /// The desired value type must be explicitly specified. |
| 1185 | template <typename ValueT, typename... RangeTs> |
| 1186 | detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { |
| 1187 | static_assert(sizeof...(RangeTs) > 1, |
| 1188 | "Need more than one range to concatenate!" ); |
| 1189 | return detail::concat_range<ValueT, RangeTs...>( |
| 1190 | std::forward<RangeTs>(Ranges)...); |
| 1191 | } |
| 1192 | |
| 1193 | /// A utility class used to implement an iterator that contains some base object |
| 1194 | /// and an index. The iterator moves the index but keeps the base constant. |
| 1195 | template <typename DerivedT, typename BaseT, typename T, |
| 1196 | typename PointerT = T *, typename ReferenceT = T &> |
| 1197 | class indexed_accessor_iterator |
| 1198 | : public llvm::iterator_facade_base<DerivedT, |
| 1199 | std::random_access_iterator_tag, T, |
| 1200 | std::ptrdiff_t, PointerT, ReferenceT> { |
| 1201 | public: |
| 1202 | ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { |
| 1203 | assert(base == rhs.base && "incompatible iterators" ); |
| 1204 | return index - rhs.index; |
| 1205 | } |
| 1206 | bool operator==(const indexed_accessor_iterator &rhs) const { |
| 1207 | return base == rhs.base && index == rhs.index; |
| 1208 | } |
| 1209 | bool operator<(const indexed_accessor_iterator &rhs) const { |
| 1210 | assert(base == rhs.base && "incompatible iterators" ); |
| 1211 | return index < rhs.index; |
| 1212 | } |
| 1213 | |
| 1214 | DerivedT &operator+=(ptrdiff_t offset) { |
| 1215 | this->index += offset; |
| 1216 | return static_cast<DerivedT &>(*this); |
| 1217 | } |
| 1218 | DerivedT &operator-=(ptrdiff_t offset) { |
| 1219 | this->index -= offset; |
| 1220 | return static_cast<DerivedT &>(*this); |
| 1221 | } |
| 1222 | |
| 1223 | /// Returns the current index of the iterator. |
| 1224 | ptrdiff_t getIndex() const { return index; } |
| 1225 | |
| 1226 | /// Returns the current base of the iterator. |
| 1227 | const BaseT &getBase() const { return base; } |
| 1228 | |
| 1229 | protected: |
| 1230 | indexed_accessor_iterator(BaseT base, ptrdiff_t index) |
| 1231 | : base(base), index(index) {} |
| 1232 | BaseT base; |
| 1233 | ptrdiff_t index; |
| 1234 | }; |
| 1235 | |
| 1236 | namespace detail { |
| 1237 | /// The class represents the base of a range of indexed_accessor_iterators. It |
| 1238 | /// provides support for many different range functionalities, e.g. |
| 1239 | /// drop_front/slice/etc.. Derived range classes must implement the following |
| 1240 | /// static methods: |
| 1241 | /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) |
| 1242 | /// - Dereference an iterator pointing to the base object at the given |
| 1243 | /// index. |
| 1244 | /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) |
| 1245 | /// - Return a new base that is offset from the provide base by 'index' |
| 1246 | /// elements. |
| 1247 | template <typename DerivedT, typename BaseT, typename T, |
| 1248 | typename PointerT = T *, typename ReferenceT = T &> |
| 1249 | class indexed_accessor_range_base { |
| 1250 | public: |
| 1251 | using RangeBaseT = indexed_accessor_range_base; |
| 1252 | |
| 1253 | /// An iterator element of this range. |
| 1254 | class iterator : public indexed_accessor_iterator<iterator, BaseT, T, |
| 1255 | PointerT, ReferenceT> { |
| 1256 | public: |
| 1257 | // Index into this iterator, invoking a static method on the derived type. |
| 1258 | ReferenceT operator*() const { |
| 1259 | return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); |
| 1260 | } |
| 1261 | |
| 1262 | private: |
| 1263 | iterator(BaseT owner, ptrdiff_t curIndex) |
| 1264 | : iterator::indexed_accessor_iterator(owner, curIndex) {} |
| 1265 | |
| 1266 | /// Allow access to the constructor. |
| 1267 | friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, |
| 1268 | ReferenceT>; |
| 1269 | }; |
| 1270 | |
| 1271 | indexed_accessor_range_base(iterator begin, iterator end) |
| 1272 | : base(offset_base(base: begin.getBase(), n: begin.getIndex())), |
| 1273 | count(end.getIndex() - begin.getIndex()) {} |
| 1274 | indexed_accessor_range_base(const iterator_range<iterator> &range) |
| 1275 | : indexed_accessor_range_base(range.begin(), range.end()) {} |
| 1276 | indexed_accessor_range_base(BaseT base, ptrdiff_t count) |
| 1277 | : base(base), count(count) {} |
| 1278 | |
| 1279 | iterator begin() const { return iterator(base, 0); } |
| 1280 | iterator end() const { return iterator(base, count); } |
| 1281 | ReferenceT operator[](size_t Index) const { |
| 1282 | assert(Index < size() && "invalid index for value range" ); |
| 1283 | return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); |
| 1284 | } |
| 1285 | ReferenceT front() const { |
| 1286 | assert(!empty() && "expected non-empty range" ); |
| 1287 | return (*this)[0]; |
| 1288 | } |
| 1289 | ReferenceT back() const { |
| 1290 | assert(!empty() && "expected non-empty range" ); |
| 1291 | return (*this)[size() - 1]; |
| 1292 | } |
| 1293 | |
| 1294 | /// Compare this range with another. |
| 1295 | template <typename OtherT> |
| 1296 | friend bool operator==(const indexed_accessor_range_base &lhs, |
| 1297 | const OtherT &rhs) { |
| 1298 | return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
| 1299 | } |
| 1300 | template <typename OtherT> |
| 1301 | friend bool operator!=(const indexed_accessor_range_base &lhs, |
| 1302 | const OtherT &rhs) { |
| 1303 | return !(lhs == rhs); |
| 1304 | } |
| 1305 | |
| 1306 | /// Return the size of this range. |
| 1307 | size_t size() const { return count; } |
| 1308 | |
| 1309 | /// Return if the range is empty. |
| 1310 | bool empty() const { return size() == 0; } |
| 1311 | |
| 1312 | /// Drop the first N elements, and keep M elements. |
| 1313 | DerivedT slice(size_t n, size_t m) const { |
| 1314 | assert(n + m <= size() && "invalid size specifiers" ); |
| 1315 | return DerivedT(offset_base(base, n), m); |
| 1316 | } |
| 1317 | |
| 1318 | /// Drop the first n elements. |
| 1319 | DerivedT drop_front(size_t n = 1) const { |
| 1320 | assert(size() >= n && "Dropping more elements than exist" ); |
| 1321 | return slice(n, m: size() - n); |
| 1322 | } |
| 1323 | /// Drop the last n elements. |
| 1324 | DerivedT drop_back(size_t n = 1) const { |
| 1325 | assert(size() >= n && "Dropping more elements than exist" ); |
| 1326 | return DerivedT(base, size() - n); |
| 1327 | } |
| 1328 | |
| 1329 | /// Take the first n elements. |
| 1330 | DerivedT take_front(size_t n = 1) const { |
| 1331 | return n < size() ? drop_back(n: size() - n) |
| 1332 | : static_cast<const DerivedT &>(*this); |
| 1333 | } |
| 1334 | |
| 1335 | /// Take the last n elements. |
| 1336 | DerivedT take_back(size_t n = 1) const { |
| 1337 | return n < size() ? drop_front(n: size() - n) |
| 1338 | : static_cast<const DerivedT &>(*this); |
| 1339 | } |
| 1340 | |
| 1341 | /// Allow conversion to any type accepting an iterator_range. |
| 1342 | template <typename RangeT, typename = std::enable_if_t<std::is_constructible< |
| 1343 | RangeT, iterator_range<iterator>>::value>> |
| 1344 | operator RangeT() const { |
| 1345 | return RangeT(iterator_range<iterator>(*this)); |
| 1346 | } |
| 1347 | |
| 1348 | /// Returns the base of this range. |
| 1349 | const BaseT &getBase() const { return base; } |
| 1350 | |
| 1351 | private: |
| 1352 | /// Offset the given base by the given amount. |
| 1353 | static BaseT offset_base(const BaseT &base, size_t n) { |
| 1354 | return n == 0 ? base : DerivedT::offset_base(base, n); |
| 1355 | } |
| 1356 | |
| 1357 | protected: |
| 1358 | indexed_accessor_range_base(const indexed_accessor_range_base &) = default; |
| 1359 | indexed_accessor_range_base(indexed_accessor_range_base &&) = default; |
| 1360 | indexed_accessor_range_base & |
| 1361 | operator=(const indexed_accessor_range_base &) = default; |
| 1362 | |
| 1363 | /// The base that owns the provided range of values. |
| 1364 | BaseT base; |
| 1365 | /// The size from the owning range. |
| 1366 | ptrdiff_t count; |
| 1367 | }; |
| 1368 | } // end namespace detail |
| 1369 | |
| 1370 | /// This class provides an implementation of a range of |
| 1371 | /// indexed_accessor_iterators where the base is not indexable. Ranges with |
| 1372 | /// bases that are offsetable should derive from indexed_accessor_range_base |
| 1373 | /// instead. Derived range classes are expected to implement the following |
| 1374 | /// static method: |
| 1375 | /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) |
| 1376 | /// - Dereference an iterator pointing to a parent base at the given index. |
| 1377 | template <typename DerivedT, typename BaseT, typename T, |
| 1378 | typename PointerT = T *, typename ReferenceT = T &> |
| 1379 | class indexed_accessor_range |
| 1380 | : public detail::indexed_accessor_range_base< |
| 1381 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { |
| 1382 | public: |
| 1383 | indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) |
| 1384 | : detail::indexed_accessor_range_base< |
| 1385 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( |
| 1386 | std::make_pair(base, startIndex), count) {} |
| 1387 | using detail::indexed_accessor_range_base< |
| 1388 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, |
| 1389 | ReferenceT>::indexed_accessor_range_base; |
| 1390 | |
| 1391 | /// Returns the current base of the range. |
| 1392 | const BaseT &getBase() const { return this->base.first; } |
| 1393 | |
| 1394 | /// Returns the current start index of the range. |
| 1395 | ptrdiff_t getStartIndex() const { return this->base.second; } |
| 1396 | |
| 1397 | /// See `detail::indexed_accessor_range_base` for details. |
| 1398 | static std::pair<BaseT, ptrdiff_t> |
| 1399 | offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { |
| 1400 | // We encode the internal base as a pair of the derived base and a start |
| 1401 | // index into the derived base. |
| 1402 | return std::make_pair(base.first, base.second + index); |
| 1403 | } |
| 1404 | /// See `detail::indexed_accessor_range_base` for details. |
| 1405 | static ReferenceT |
| 1406 | dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, |
| 1407 | ptrdiff_t index) { |
| 1408 | return DerivedT::dereference(base.first, base.second + index); |
| 1409 | } |
| 1410 | }; |
| 1411 | |
| 1412 | namespace detail { |
| 1413 | /// Return a reference to the first or second member of a reference. Otherwise, |
| 1414 | /// return a copy of the member of a temporary. |
| 1415 | /// |
| 1416 | /// When passing a range whose iterators return values instead of references, |
| 1417 | /// the reference must be dropped from `decltype((elt.first))`, which will |
| 1418 | /// always be a reference, to avoid returning a reference to a temporary. |
| 1419 | template <typename EltTy, typename FirstTy> class first_or_second_type { |
| 1420 | public: |
| 1421 | using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy, |
| 1422 | std::remove_reference_t<FirstTy>>; |
| 1423 | }; |
| 1424 | } // end namespace detail |
| 1425 | |
| 1426 | /// Given a container of pairs, return a range over the first elements. |
| 1427 | template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { |
| 1428 | using EltTy = decltype((*std::begin(c))); |
| 1429 | return llvm::map_range(std::forward<ContainerTy>(c), |
| 1430 | [](EltTy elt) -> typename detail::first_or_second_type< |
| 1431 | EltTy, decltype((elt.first))>::type { |
| 1432 | return elt.first; |
| 1433 | }); |
| 1434 | } |
| 1435 | |
| 1436 | /// Given a container of pairs, return a range over the second elements. |
| 1437 | template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { |
| 1438 | using EltTy = decltype((*std::begin(c))); |
| 1439 | return llvm::map_range( |
| 1440 | std::forward<ContainerTy>(c), |
| 1441 | [](EltTy elt) -> |
| 1442 | typename detail::first_or_second_type<EltTy, |
| 1443 | decltype((elt.second))>::type { |
| 1444 | return elt.second; |
| 1445 | }); |
| 1446 | } |
| 1447 | |
| 1448 | //===----------------------------------------------------------------------===// |
| 1449 | // Extra additions to <utility> |
| 1450 | //===----------------------------------------------------------------------===// |
| 1451 | |
| 1452 | /// Function object to check whether the first component of a container |
| 1453 | /// supported by std::get (like std::pair and std::tuple) compares less than the |
| 1454 | /// first component of another container. |
| 1455 | struct less_first { |
| 1456 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
| 1457 | return std::less<>()(std::get<0>(lhs), std::get<0>(rhs)); |
| 1458 | } |
| 1459 | }; |
| 1460 | |
| 1461 | /// Function object to check whether the second component of a container |
| 1462 | /// supported by std::get (like std::pair and std::tuple) compares less than the |
| 1463 | /// second component of another container. |
| 1464 | struct less_second { |
| 1465 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
| 1466 | return std::less<>()(std::get<1>(lhs), std::get<1>(rhs)); |
| 1467 | } |
| 1468 | }; |
| 1469 | |
| 1470 | /// \brief Function object to apply a binary function to the first component of |
| 1471 | /// a std::pair. |
| 1472 | template<typename FuncTy> |
| 1473 | struct on_first { |
| 1474 | FuncTy func; |
| 1475 | |
| 1476 | template <typename T> |
| 1477 | decltype(auto) operator()(const T &lhs, const T &rhs) const { |
| 1478 | return func(lhs.first, rhs.first); |
| 1479 | } |
| 1480 | }; |
| 1481 | |
| 1482 | /// Utility type to build an inheritance chain that makes it easy to rank |
| 1483 | /// overload candidates. |
| 1484 | template <int N> struct rank : rank<N - 1> {}; |
| 1485 | template <> struct rank<0> {}; |
| 1486 | |
| 1487 | /// traits class for checking whether type T is one of any of the given |
| 1488 | /// types in the variadic list. |
| 1489 | template <typename T, typename... Ts> |
| 1490 | using is_one_of = std::disjunction<std::is_same<T, Ts>...>; |
| 1491 | |
| 1492 | /// traits class for checking whether type T is a base class for all |
| 1493 | /// the given types in the variadic list. |
| 1494 | template <typename T, typename... Ts> |
| 1495 | using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; |
| 1496 | |
| 1497 | namespace detail { |
| 1498 | template <typename... Ts> struct Visitor; |
| 1499 | |
| 1500 | template <typename HeadT, typename... TailTs> |
| 1501 | struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { |
| 1502 | explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) |
| 1503 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), |
| 1504 | Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} |
| 1505 | using remove_cvref_t<HeadT>::operator(); |
| 1506 | using Visitor<TailTs...>::operator(); |
| 1507 | }; |
| 1508 | |
| 1509 | template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { |
| 1510 | explicit constexpr Visitor(HeadT &&Head) |
| 1511 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} |
| 1512 | using remove_cvref_t<HeadT>::operator(); |
| 1513 | }; |
| 1514 | } // namespace detail |
| 1515 | |
| 1516 | /// Returns an opaquely-typed Callable object whose operator() overload set is |
| 1517 | /// the sum of the operator() overload sets of each CallableT in CallableTs. |
| 1518 | /// |
| 1519 | /// The type of the returned object derives from each CallableT in CallableTs. |
| 1520 | /// The returned object is constructed by invoking the appropriate copy or move |
| 1521 | /// constructor of each CallableT, as selected by overload resolution on the |
| 1522 | /// corresponding argument to makeVisitor. |
| 1523 | /// |
| 1524 | /// Example: |
| 1525 | /// |
| 1526 | /// \code |
| 1527 | /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, |
| 1528 | /// [](int i) { return "int"; }, |
| 1529 | /// [](std::string s) { return "str"; }); |
| 1530 | /// auto a = visitor(42); // `a` is now "int". |
| 1531 | /// auto b = visitor("foo"); // `b` is now "str". |
| 1532 | /// auto c = visitor(3.14f); // `c` is now "unhandled type". |
| 1533 | /// \endcode |
| 1534 | /// |
| 1535 | /// Example of making a visitor with a lambda which captures a move-only type: |
| 1536 | /// |
| 1537 | /// \code |
| 1538 | /// std::unique_ptr<FooHandler> FH = /* ... */; |
| 1539 | /// auto visitor = makeVisitor( |
| 1540 | /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, |
| 1541 | /// [](int i) { return i; }, |
| 1542 | /// [](std::string s) { return atoi(s); }); |
| 1543 | /// \endcode |
| 1544 | template <typename... CallableTs> |
| 1545 | constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { |
| 1546 | return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); |
| 1547 | } |
| 1548 | |
| 1549 | //===----------------------------------------------------------------------===// |
| 1550 | // Extra additions to <algorithm> |
| 1551 | //===----------------------------------------------------------------------===// |
| 1552 | |
| 1553 | // We have a copy here so that LLVM behaves the same when using different |
| 1554 | // standard libraries. |
| 1555 | template <class Iterator, class RNG> |
| 1556 | void shuffle(Iterator first, Iterator last, RNG &&g) { |
| 1557 | // It would be better to use a std::uniform_int_distribution, |
| 1558 | // but that would be stdlib dependent. |
| 1559 | typedef |
| 1560 | typename std::iterator_traits<Iterator>::difference_type difference_type; |
| 1561 | for (auto size = last - first; size > 1; ++first, (void)--size) { |
| 1562 | difference_type offset = g() % size; |
| 1563 | // Avoid self-assignment due to incorrect assertions in libstdc++ |
| 1564 | // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). |
| 1565 | if (offset != difference_type(0)) |
| 1566 | std::iter_swap(first, first + offset); |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | /// Adapt std::less<T> for array_pod_sort. |
| 1571 | template<typename T> |
| 1572 | inline int array_pod_sort_comparator(const void *P1, const void *P2) { |
| 1573 | if (std::less<T>()(*reinterpret_cast<const T*>(P1), |
| 1574 | *reinterpret_cast<const T*>(P2))) |
| 1575 | return -1; |
| 1576 | if (std::less<T>()(*reinterpret_cast<const T*>(P2), |
| 1577 | *reinterpret_cast<const T*>(P1))) |
| 1578 | return 1; |
| 1579 | return 0; |
| 1580 | } |
| 1581 | |
| 1582 | /// get_array_pod_sort_comparator - This is an internal helper function used to |
| 1583 | /// get type deduction of T right. |
| 1584 | template<typename T> |
| 1585 | inline int (*get_array_pod_sort_comparator(const T &)) |
| 1586 | (const void*, const void*) { |
| 1587 | return array_pod_sort_comparator<T>; |
| 1588 | } |
| 1589 | |
| 1590 | #ifdef EXPENSIVE_CHECKS |
| 1591 | namespace detail { |
| 1592 | |
| 1593 | inline unsigned presortShuffleEntropy() { |
| 1594 | static unsigned Result(std::random_device{}()); |
| 1595 | return Result; |
| 1596 | } |
| 1597 | |
| 1598 | template <class IteratorTy> |
| 1599 | inline void presortShuffle(IteratorTy Start, IteratorTy End) { |
| 1600 | std::mt19937 Generator(presortShuffleEntropy()); |
| 1601 | llvm::shuffle(Start, End, Generator); |
| 1602 | } |
| 1603 | |
| 1604 | } // end namespace detail |
| 1605 | #endif |
| 1606 | |
| 1607 | /// array_pod_sort - This sorts an array with the specified start and end |
| 1608 | /// extent. This is just like std::sort, except that it calls qsort instead of |
| 1609 | /// using an inlined template. qsort is slightly slower than std::sort, but |
| 1610 | /// most sorts are not performance critical in LLVM and std::sort has to be |
| 1611 | /// template instantiated for each type, leading to significant measured code |
| 1612 | /// bloat. This function should generally be used instead of std::sort where |
| 1613 | /// possible. |
| 1614 | /// |
| 1615 | /// This function assumes that you have simple POD-like types that can be |
| 1616 | /// compared with std::less and can be moved with memcpy. If this isn't true, |
| 1617 | /// you should use std::sort. |
| 1618 | /// |
| 1619 | /// NOTE: If qsort_r were portable, we could allow a custom comparator and |
| 1620 | /// default to std::less. |
| 1621 | template<class IteratorTy> |
| 1622 | inline void array_pod_sort(IteratorTy Start, IteratorTy End) { |
| 1623 | // Don't inefficiently call qsort with one element or trigger undefined |
| 1624 | // behavior with an empty sequence. |
| 1625 | auto NElts = End - Start; |
| 1626 | if (NElts <= 1) return; |
| 1627 | #ifdef EXPENSIVE_CHECKS |
| 1628 | detail::presortShuffle<IteratorTy>(Start, End); |
| 1629 | #endif |
| 1630 | qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); |
| 1631 | } |
| 1632 | |
| 1633 | template <class IteratorTy> |
| 1634 | inline void array_pod_sort( |
| 1635 | IteratorTy Start, IteratorTy End, |
| 1636 | int (*Compare)( |
| 1637 | const typename std::iterator_traits<IteratorTy>::value_type *, |
| 1638 | const typename std::iterator_traits<IteratorTy>::value_type *)) { |
| 1639 | // Don't inefficiently call qsort with one element or trigger undefined |
| 1640 | // behavior with an empty sequence. |
| 1641 | auto NElts = End - Start; |
| 1642 | if (NElts <= 1) return; |
| 1643 | #ifdef EXPENSIVE_CHECKS |
| 1644 | detail::presortShuffle<IteratorTy>(Start, End); |
| 1645 | #endif |
| 1646 | qsort(&*Start, NElts, sizeof(*Start), |
| 1647 | reinterpret_cast<int (*)(const void *, const void *)>(Compare)); |
| 1648 | } |
| 1649 | |
| 1650 | namespace detail { |
| 1651 | template <typename T> |
| 1652 | // We can use qsort if the iterator type is a pointer and the underlying value |
| 1653 | // is trivially copyable. |
| 1654 | using sort_trivially_copyable = std::conjunction< |
| 1655 | std::is_pointer<T>, |
| 1656 | std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; |
| 1657 | } // namespace detail |
| 1658 | |
| 1659 | // Provide wrappers to std::sort which shuffle the elements before sorting |
| 1660 | // to help uncover non-deterministic behavior (PR35135). |
| 1661 | template <typename IteratorTy> |
| 1662 | inline void sort(IteratorTy Start, IteratorTy End) { |
| 1663 | if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) { |
| 1664 | // Forward trivially copyable types to array_pod_sort. This avoids a large |
| 1665 | // amount of code bloat for a minor performance hit. |
| 1666 | array_pod_sort(Start, End); |
| 1667 | } else { |
| 1668 | #ifdef EXPENSIVE_CHECKS |
| 1669 | detail::presortShuffle<IteratorTy>(Start, End); |
| 1670 | #endif |
| 1671 | std::sort(Start, End); |
| 1672 | } |
| 1673 | } |
| 1674 | |
| 1675 | template <typename Container> inline void sort(Container &&C) { |
| 1676 | llvm::sort(adl_begin(C), adl_end(C)); |
| 1677 | } |
| 1678 | |
| 1679 | template <typename IteratorTy, typename Compare> |
| 1680 | inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { |
| 1681 | #ifdef EXPENSIVE_CHECKS |
| 1682 | detail::presortShuffle<IteratorTy>(Start, End); |
| 1683 | #endif |
| 1684 | std::sort(Start, End, Comp); |
| 1685 | } |
| 1686 | |
| 1687 | template <typename Container, typename Compare> |
| 1688 | inline void sort(Container &&C, Compare Comp) { |
| 1689 | llvm::sort(adl_begin(C), adl_end(C), Comp); |
| 1690 | } |
| 1691 | |
| 1692 | /// Get the size of a range. This is a wrapper function around std::distance |
| 1693 | /// which is only enabled when the operation is O(1). |
| 1694 | template <typename R> |
| 1695 | auto size(R &&Range, |
| 1696 | std::enable_if_t< |
| 1697 | std::is_base_of<std::random_access_iterator_tag, |
| 1698 | typename std::iterator_traits<decltype( |
| 1699 | Range.begin())>::iterator_category>::value, |
| 1700 | void> * = nullptr) { |
| 1701 | return std::distance(Range.begin(), Range.end()); |
| 1702 | } |
| 1703 | |
| 1704 | namespace detail { |
| 1705 | template <typename Range> |
| 1706 | using check_has_free_function_size = |
| 1707 | decltype(adl_size(std::declval<Range &>())); |
| 1708 | |
| 1709 | template <typename Range> |
| 1710 | static constexpr bool HasFreeFunctionSize = |
| 1711 | is_detected<check_has_free_function_size, Range>::value; |
| 1712 | } // namespace detail |
| 1713 | |
| 1714 | /// Returns the size of the \p Range, i.e., the number of elements. This |
| 1715 | /// implementation takes inspiration from `std::ranges::size` from C++20 and |
| 1716 | /// delegates the size check to `adl_size` or `std::distance`, in this order of |
| 1717 | /// preference. Unlike `llvm::size`, this function does *not* guarantee O(1) |
| 1718 | /// running time, and is intended to be used in generic code that does not know |
| 1719 | /// the exact range type. |
| 1720 | template <typename R> constexpr size_t range_size(R &&Range) { |
| 1721 | if constexpr (detail::HasFreeFunctionSize<R>) |
| 1722 | return adl_size(Range); |
| 1723 | else |
| 1724 | return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range))); |
| 1725 | } |
| 1726 | |
| 1727 | /// Provide wrappers to std::for_each which take ranges instead of having to |
| 1728 | /// pass begin/end explicitly. |
| 1729 | template <typename R, typename UnaryFunction> |
| 1730 | UnaryFunction for_each(R &&Range, UnaryFunction F) { |
| 1731 | return std::for_each(adl_begin(Range), adl_end(Range), F); |
| 1732 | } |
| 1733 | |
| 1734 | /// Provide wrappers to std::all_of which take ranges instead of having to pass |
| 1735 | /// begin/end explicitly. |
| 1736 | template <typename R, typename UnaryPredicate> |
| 1737 | bool all_of(R &&Range, UnaryPredicate P) { |
| 1738 | return std::all_of(adl_begin(Range), adl_end(Range), P); |
| 1739 | } |
| 1740 | |
| 1741 | /// Provide wrappers to std::any_of which take ranges instead of having to pass |
| 1742 | /// begin/end explicitly. |
| 1743 | template <typename R, typename UnaryPredicate> |
| 1744 | bool any_of(R &&Range, UnaryPredicate P) { |
| 1745 | return std::any_of(adl_begin(Range), adl_end(Range), P); |
| 1746 | } |
| 1747 | |
| 1748 | /// Provide wrappers to std::none_of which take ranges instead of having to pass |
| 1749 | /// begin/end explicitly. |
| 1750 | template <typename R, typename UnaryPredicate> |
| 1751 | bool none_of(R &&Range, UnaryPredicate P) { |
| 1752 | return std::none_of(adl_begin(Range), adl_end(Range), P); |
| 1753 | } |
| 1754 | |
| 1755 | /// Provide wrappers to std::find which take ranges instead of having to pass |
| 1756 | /// begin/end explicitly. |
| 1757 | template <typename R, typename T> auto find(R &&Range, const T &Val) { |
| 1758 | return std::find(adl_begin(Range), adl_end(Range), Val); |
| 1759 | } |
| 1760 | |
| 1761 | /// Provide wrappers to std::find_if which take ranges instead of having to pass |
| 1762 | /// begin/end explicitly. |
| 1763 | template <typename R, typename UnaryPredicate> |
| 1764 | auto find_if(R &&Range, UnaryPredicate P) { |
| 1765 | return std::find_if(adl_begin(Range), adl_end(Range), P); |
| 1766 | } |
| 1767 | |
| 1768 | template <typename R, typename UnaryPredicate> |
| 1769 | auto find_if_not(R &&Range, UnaryPredicate P) { |
| 1770 | return std::find_if_not(adl_begin(Range), adl_end(Range), P); |
| 1771 | } |
| 1772 | |
| 1773 | /// Provide wrappers to std::remove_if which take ranges instead of having to |
| 1774 | /// pass begin/end explicitly. |
| 1775 | template <typename R, typename UnaryPredicate> |
| 1776 | auto remove_if(R &&Range, UnaryPredicate P) { |
| 1777 | return std::remove_if(adl_begin(Range), adl_end(Range), P); |
| 1778 | } |
| 1779 | |
| 1780 | /// Provide wrappers to std::copy_if which take ranges instead of having to |
| 1781 | /// pass begin/end explicitly. |
| 1782 | template <typename R, typename OutputIt, typename UnaryPredicate> |
| 1783 | OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { |
| 1784 | return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); |
| 1785 | } |
| 1786 | |
| 1787 | /// Return the single value in \p Range that satisfies |
| 1788 | /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr |
| 1789 | /// when no values or multiple values were found. |
| 1790 | /// When \p AllowRepeats is true, multiple values that compare equal |
| 1791 | /// are allowed. |
| 1792 | template <typename T, typename R, typename Predicate> |
| 1793 | T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) { |
| 1794 | T *RC = nullptr; |
| 1795 | for (auto *A : Range) { |
| 1796 | if (T *PRC = P(A, AllowRepeats)) { |
| 1797 | if (RC) { |
| 1798 | if (!AllowRepeats || PRC != RC) |
| 1799 | return nullptr; |
| 1800 | } else |
| 1801 | RC = PRC; |
| 1802 | } |
| 1803 | } |
| 1804 | return RC; |
| 1805 | } |
| 1806 | |
| 1807 | /// Return a pair consisting of the single value in \p Range that satisfies |
| 1808 | /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning |
| 1809 | /// nullptr when no values or multiple values were found, and a bool indicating |
| 1810 | /// whether multiple values were found to cause the nullptr. |
| 1811 | /// When \p AllowRepeats is true, multiple values that compare equal are |
| 1812 | /// allowed. The predicate \p P returns a pair<T *, bool> where T is the |
| 1813 | /// singleton while the bool indicates whether multiples have already been |
| 1814 | /// found. It is expected that first will be nullptr when second is true. |
| 1815 | /// This allows using find_singleton_nested within the predicate \P. |
| 1816 | template <typename T, typename R, typename Predicate> |
| 1817 | std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P, |
| 1818 | bool AllowRepeats = false) { |
| 1819 | T *RC = nullptr; |
| 1820 | for (auto *A : Range) { |
| 1821 | std::pair<T *, bool> PRC = P(A, AllowRepeats); |
| 1822 | if (PRC.second) { |
| 1823 | assert(PRC.first == nullptr && |
| 1824 | "Inconsistent return values in find_singleton_nested." ); |
| 1825 | return PRC; |
| 1826 | } |
| 1827 | if (PRC.first) { |
| 1828 | if (RC) { |
| 1829 | if (!AllowRepeats || PRC.first != RC) |
| 1830 | return {nullptr, true}; |
| 1831 | } else |
| 1832 | RC = PRC.first; |
| 1833 | } |
| 1834 | } |
| 1835 | return {RC, false}; |
| 1836 | } |
| 1837 | |
| 1838 | template <typename R, typename OutputIt> |
| 1839 | OutputIt copy(R &&Range, OutputIt Out) { |
| 1840 | return std::copy(adl_begin(Range), adl_end(Range), Out); |
| 1841 | } |
| 1842 | |
| 1843 | /// Provide wrappers to std::replace_copy_if which take ranges instead of having |
| 1844 | /// to pass begin/end explicitly. |
| 1845 | template <typename R, typename OutputIt, typename UnaryPredicate, typename T> |
| 1846 | OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P, |
| 1847 | const T &NewValue) { |
| 1848 | return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P, |
| 1849 | NewValue); |
| 1850 | } |
| 1851 | |
| 1852 | /// Provide wrappers to std::replace_copy which take ranges instead of having to |
| 1853 | /// pass begin/end explicitly. |
| 1854 | template <typename R, typename OutputIt, typename T> |
| 1855 | OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue, |
| 1856 | const T &NewValue) { |
| 1857 | return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue, |
| 1858 | NewValue); |
| 1859 | } |
| 1860 | |
| 1861 | /// Provide wrappers to std::move which take ranges instead of having to |
| 1862 | /// pass begin/end explicitly. |
| 1863 | template <typename R, typename OutputIt> |
| 1864 | OutputIt move(R &&Range, OutputIt Out) { |
| 1865 | return std::move(adl_begin(Range), adl_end(Range), Out); |
| 1866 | } |
| 1867 | |
| 1868 | namespace detail { |
| 1869 | template <typename Range, typename Element> |
| 1870 | using check_has_member_contains_t = |
| 1871 | decltype(std::declval<Range &>().contains(std::declval<const Element &>())); |
| 1872 | |
| 1873 | template <typename Range, typename Element> |
| 1874 | static constexpr bool HasMemberContains = |
| 1875 | is_detected<check_has_member_contains_t, Range, Element>::value; |
| 1876 | |
| 1877 | template <typename Range, typename Element> |
| 1878 | using check_has_member_find_t = |
| 1879 | decltype(std::declval<Range &>().find(std::declval<const Element &>()) != |
| 1880 | std::declval<Range &>().end()); |
| 1881 | |
| 1882 | template <typename Range, typename Element> |
| 1883 | static constexpr bool HasMemberFind = |
| 1884 | is_detected<check_has_member_find_t, Range, Element>::value; |
| 1885 | |
| 1886 | } // namespace detail |
| 1887 | |
| 1888 | /// Returns true if \p Element is found in \p Range. Delegates the check to |
| 1889 | /// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this |
| 1890 | /// order of preference. This is intended as the canonical way to check if an |
| 1891 | /// element exists in a range in generic code or range type that does not |
| 1892 | /// expose a `.contains(Element)` member. |
| 1893 | template <typename R, typename E> |
| 1894 | bool is_contained(R &&Range, const E &Element) { |
| 1895 | if constexpr (detail::HasMemberContains<R, E>) |
| 1896 | return Range.contains(Element); |
| 1897 | else if constexpr (detail::HasMemberFind<R, E>) |
| 1898 | return Range.find(Element) != Range.end(); |
| 1899 | else |
| 1900 | return std::find(adl_begin(Range), adl_end(Range), Element) != |
| 1901 | adl_end(Range); |
| 1902 | } |
| 1903 | |
| 1904 | /// Returns true iff \p Element exists in \p Set. This overload takes \p Set as |
| 1905 | /// an initializer list and is `constexpr`-friendly. |
| 1906 | template <typename T, typename E> |
| 1907 | constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) { |
| 1908 | // TODO: Use std::find when we switch to C++20. |
| 1909 | for (const T &V : Set) |
| 1910 | if (V == Element) |
| 1911 | return true; |
| 1912 | return false; |
| 1913 | } |
| 1914 | |
| 1915 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
| 1916 | /// are sorted with respect to a comparator \p C. |
| 1917 | template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { |
| 1918 | return std::is_sorted(adl_begin(Range), adl_end(Range), C); |
| 1919 | } |
| 1920 | |
| 1921 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
| 1922 | /// are sorted in non-descending order. |
| 1923 | template <typename R> bool is_sorted(R &&Range) { |
| 1924 | return std::is_sorted(adl_begin(Range), adl_end(Range)); |
| 1925 | } |
| 1926 | |
| 1927 | /// Wrapper function around std::count to count the number of times an element |
| 1928 | /// \p Element occurs in the given range \p Range. |
| 1929 | template <typename R, typename E> auto count(R &&Range, const E &Element) { |
| 1930 | return std::count(adl_begin(Range), adl_end(Range), Element); |
| 1931 | } |
| 1932 | |
| 1933 | /// Wrapper function around std::count_if to count the number of times an |
| 1934 | /// element satisfying a given predicate occurs in a range. |
| 1935 | template <typename R, typename UnaryPredicate> |
| 1936 | auto count_if(R &&Range, UnaryPredicate P) { |
| 1937 | return std::count_if(adl_begin(Range), adl_end(Range), P); |
| 1938 | } |
| 1939 | |
| 1940 | /// Wrapper function around std::transform to apply a function to a range and |
| 1941 | /// store the result elsewhere. |
| 1942 | template <typename R, typename OutputIt, typename UnaryFunction> |
| 1943 | OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { |
| 1944 | return std::transform(adl_begin(Range), adl_end(Range), d_first, F); |
| 1945 | } |
| 1946 | |
| 1947 | /// Provide wrappers to std::partition which take ranges instead of having to |
| 1948 | /// pass begin/end explicitly. |
| 1949 | template <typename R, typename UnaryPredicate> |
| 1950 | auto partition(R &&Range, UnaryPredicate P) { |
| 1951 | return std::partition(adl_begin(Range), adl_end(Range), P); |
| 1952 | } |
| 1953 | |
| 1954 | /// Provide wrappers to std::lower_bound which take ranges instead of having to |
| 1955 | /// pass begin/end explicitly. |
| 1956 | template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { |
| 1957 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
| 1958 | std::forward<T>(Value)); |
| 1959 | } |
| 1960 | |
| 1961 | template <typename R, typename T, typename Compare> |
| 1962 | auto lower_bound(R &&Range, T &&Value, Compare C) { |
| 1963 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
| 1964 | std::forward<T>(Value), C); |
| 1965 | } |
| 1966 | |
| 1967 | /// Provide wrappers to std::upper_bound which take ranges instead of having to |
| 1968 | /// pass begin/end explicitly. |
| 1969 | template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { |
| 1970 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
| 1971 | std::forward<T>(Value)); |
| 1972 | } |
| 1973 | |
| 1974 | template <typename R, typename T, typename Compare> |
| 1975 | auto upper_bound(R &&Range, T &&Value, Compare C) { |
| 1976 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
| 1977 | std::forward<T>(Value), C); |
| 1978 | } |
| 1979 | |
| 1980 | template <typename R> |
| 1981 | void stable_sort(R &&Range) { |
| 1982 | std::stable_sort(adl_begin(Range), adl_end(Range)); |
| 1983 | } |
| 1984 | |
| 1985 | template <typename R, typename Compare> |
| 1986 | void stable_sort(R &&Range, Compare C) { |
| 1987 | std::stable_sort(adl_begin(Range), adl_end(Range), C); |
| 1988 | } |
| 1989 | |
| 1990 | /// Binary search for the first iterator in a range where a predicate is false. |
| 1991 | /// Requires that C is always true below some limit, and always false above it. |
| 1992 | template <typename R, typename Predicate, |
| 1993 | typename Val = decltype(*adl_begin(std::declval<R>()))> |
| 1994 | auto partition_point(R &&Range, Predicate P) { |
| 1995 | return std::partition_point(adl_begin(Range), adl_end(Range), P); |
| 1996 | } |
| 1997 | |
| 1998 | template<typename Range, typename Predicate> |
| 1999 | auto unique(Range &&R, Predicate P) { |
| 2000 | return std::unique(adl_begin(R), adl_end(R), P); |
| 2001 | } |
| 2002 | |
| 2003 | /// Wrapper function around std::equal to detect if pair-wise elements between |
| 2004 | /// two ranges are the same. |
| 2005 | template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { |
| 2006 | return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), |
| 2007 | adl_end(RRange)); |
| 2008 | } |
| 2009 | |
| 2010 | /// Returns true if all elements in Range are equal or when the Range is empty. |
| 2011 | template <typename R> bool all_equal(R &&Range) { |
| 2012 | auto Begin = adl_begin(Range); |
| 2013 | auto End = adl_end(Range); |
| 2014 | return Begin == End || std::equal(Begin + 1, End, Begin); |
| 2015 | } |
| 2016 | |
| 2017 | /// Returns true if all Values in the initializer lists are equal or the list |
| 2018 | // is empty. |
| 2019 | template <typename T> bool all_equal(std::initializer_list<T> Values) { |
| 2020 | return all_equal<std::initializer_list<T>>(std::move(Values)); |
| 2021 | } |
| 2022 | |
| 2023 | /// Provide a container algorithm similar to C++ Library Fundamentals v2's |
| 2024 | /// `erase_if` which is equivalent to: |
| 2025 | /// |
| 2026 | /// C.erase(remove_if(C, pred), C.end()); |
| 2027 | /// |
| 2028 | /// This version works for any container with an erase method call accepting |
| 2029 | /// two iterators. |
| 2030 | template <typename Container, typename UnaryPredicate> |
| 2031 | void erase_if(Container &C, UnaryPredicate P) { |
| 2032 | C.erase(remove_if(C, P), C.end()); |
| 2033 | } |
| 2034 | |
| 2035 | /// Wrapper function to remove a value from a container: |
| 2036 | /// |
| 2037 | /// C.erase(remove(C.begin(), C.end(), V), C.end()); |
| 2038 | template <typename Container, typename ValueType> |
| 2039 | void erase_value(Container &C, ValueType V) { |
| 2040 | C.erase(std::remove(C.begin(), C.end(), V), C.end()); |
| 2041 | } |
| 2042 | |
| 2043 | /// Wrapper function to append a range to a container. |
| 2044 | /// |
| 2045 | /// C.insert(C.end(), R.begin(), R.end()); |
| 2046 | template <typename Container, typename Range> |
| 2047 | inline void append_range(Container &C, Range &&R) { |
| 2048 | C.insert(C.end(), adl_begin(R), adl_end(R)); |
| 2049 | } |
| 2050 | |
| 2051 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
| 2052 | /// the range [ValIt, ValEnd) (which is not from the same container). |
| 2053 | template<typename Container, typename RandomAccessIterator> |
| 2054 | void replace(Container &Cont, typename Container::iterator ContIt, |
| 2055 | typename Container::iterator ContEnd, RandomAccessIterator ValIt, |
| 2056 | RandomAccessIterator ValEnd) { |
| 2057 | while (true) { |
| 2058 | if (ValIt == ValEnd) { |
| 2059 | Cont.erase(ContIt, ContEnd); |
| 2060 | return; |
| 2061 | } else if (ContIt == ContEnd) { |
| 2062 | Cont.insert(ContIt, ValIt, ValEnd); |
| 2063 | return; |
| 2064 | } |
| 2065 | *ContIt++ = *ValIt++; |
| 2066 | } |
| 2067 | } |
| 2068 | |
| 2069 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
| 2070 | /// the range R. |
| 2071 | template<typename Container, typename Range = std::initializer_list< |
| 2072 | typename Container::value_type>> |
| 2073 | void replace(Container &Cont, typename Container::iterator ContIt, |
| 2074 | typename Container::iterator ContEnd, Range R) { |
| 2075 | replace(Cont, ContIt, ContEnd, R.begin(), R.end()); |
| 2076 | } |
| 2077 | |
| 2078 | /// An STL-style algorithm similar to std::for_each that applies a second |
| 2079 | /// functor between every pair of elements. |
| 2080 | /// |
| 2081 | /// This provides the control flow logic to, for example, print a |
| 2082 | /// comma-separated list: |
| 2083 | /// \code |
| 2084 | /// interleave(names.begin(), names.end(), |
| 2085 | /// [&](StringRef name) { os << name; }, |
| 2086 | /// [&] { os << ", "; }); |
| 2087 | /// \endcode |
| 2088 | template <typename ForwardIterator, typename UnaryFunctor, |
| 2089 | typename NullaryFunctor, |
| 2090 | typename = std::enable_if_t< |
| 2091 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
| 2092 | !std::is_constructible<StringRef, NullaryFunctor>::value>> |
| 2093 | inline void interleave(ForwardIterator begin, ForwardIterator end, |
| 2094 | UnaryFunctor each_fn, NullaryFunctor between_fn) { |
| 2095 | if (begin == end) |
| 2096 | return; |
| 2097 | each_fn(*begin); |
| 2098 | ++begin; |
| 2099 | for (; begin != end; ++begin) { |
| 2100 | between_fn(); |
| 2101 | each_fn(*begin); |
| 2102 | } |
| 2103 | } |
| 2104 | |
| 2105 | template <typename Container, typename UnaryFunctor, typename NullaryFunctor, |
| 2106 | typename = std::enable_if_t< |
| 2107 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
| 2108 | !std::is_constructible<StringRef, NullaryFunctor>::value>> |
| 2109 | inline void interleave(const Container &c, UnaryFunctor each_fn, |
| 2110 | NullaryFunctor between_fn) { |
| 2111 | interleave(c.begin(), c.end(), each_fn, between_fn); |
| 2112 | } |
| 2113 | |
| 2114 | /// Overload of interleave for the common case of string separator. |
| 2115 | template <typename Container, typename UnaryFunctor, typename StreamT, |
| 2116 | typename T = detail::ValueOfRange<Container>> |
| 2117 | inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, |
| 2118 | const StringRef &separator) { |
| 2119 | interleave(c.begin(), c.end(), each_fn, [&] { os << separator; }); |
| 2120 | } |
| 2121 | template <typename Container, typename StreamT, |
| 2122 | typename T = detail::ValueOfRange<Container>> |
| 2123 | inline void interleave(const Container &c, StreamT &os, |
| 2124 | const StringRef &separator) { |
| 2125 | interleave( |
| 2126 | c, os, [&](const T &a) { os << a; }, separator); |
| 2127 | } |
| 2128 | |
| 2129 | template <typename Container, typename UnaryFunctor, typename StreamT, |
| 2130 | typename T = detail::ValueOfRange<Container>> |
| 2131 | inline void interleaveComma(const Container &c, StreamT &os, |
| 2132 | UnaryFunctor each_fn) { |
| 2133 | interleave(c, os, each_fn, ", " ); |
| 2134 | } |
| 2135 | template <typename Container, typename StreamT, |
| 2136 | typename T = detail::ValueOfRange<Container>> |
| 2137 | inline void interleaveComma(const Container &c, StreamT &os) { |
| 2138 | interleaveComma(c, os, [&](const T &a) { os << a; }); |
| 2139 | } |
| 2140 | |
| 2141 | //===----------------------------------------------------------------------===// |
| 2142 | // Extra additions to <memory> |
| 2143 | //===----------------------------------------------------------------------===// |
| 2144 | |
| 2145 | struct FreeDeleter { |
| 2146 | void operator()(void* v) { |
| 2147 | ::free(ptr: v); |
| 2148 | } |
| 2149 | }; |
| 2150 | |
| 2151 | template<typename First, typename Second> |
| 2152 | struct pair_hash { |
| 2153 | size_t operator()(const std::pair<First, Second> &P) const { |
| 2154 | return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); |
| 2155 | } |
| 2156 | }; |
| 2157 | |
| 2158 | /// Binary functor that adapts to any other binary functor after dereferencing |
| 2159 | /// operands. |
| 2160 | template <typename T> struct deref { |
| 2161 | T func; |
| 2162 | |
| 2163 | // Could be further improved to cope with non-derivable functors and |
| 2164 | // non-binary functors (should be a variadic template member function |
| 2165 | // operator()). |
| 2166 | template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { |
| 2167 | assert(lhs); |
| 2168 | assert(rhs); |
| 2169 | return func(*lhs, *rhs); |
| 2170 | } |
| 2171 | }; |
| 2172 | |
| 2173 | namespace detail { |
| 2174 | |
| 2175 | /// Tuple-like type for `zip_enumerator` dereference. |
| 2176 | template <typename... Refs> struct enumerator_result; |
| 2177 | |
| 2178 | template <typename... Iters> |
| 2179 | using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>; |
| 2180 | |
| 2181 | /// Zippy iterator that uses the second iterator for comparisons. For the |
| 2182 | /// increment to be safe, the second range has to be the shortest. |
| 2183 | /// Returns `enumerator_result` on dereference to provide `.index()` and |
| 2184 | /// `.value()` member functions. |
| 2185 | /// Note: Because the dereference operator returns `enumerator_result` as a |
| 2186 | /// value instead of a reference and does not strictly conform to the C++17's |
| 2187 | /// definition of forward iterator. However, it satisfies all the |
| 2188 | /// forward_iterator requirements that the `zip_common` and `zippy` depend on |
| 2189 | /// and fully conforms to the C++20 definition of forward iterator. |
| 2190 | /// This is similar to `std::vector<bool>::iterator` that returns bit reference |
| 2191 | /// wrappers on dereference. |
| 2192 | template <typename... Iters> |
| 2193 | struct zip_enumerator : zip_common<zip_enumerator<Iters...>, |
| 2194 | EnumeratorTupleType<Iters...>, Iters...> { |
| 2195 | static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees" ); |
| 2196 | using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>, |
| 2197 | Iters...>::zip_common; |
| 2198 | |
| 2199 | bool operator==(const zip_enumerator &Other) const { |
| 2200 | return std::get<1>(this->iterators) == std::get<1>(Other.iterators); |
| 2201 | } |
| 2202 | }; |
| 2203 | |
| 2204 | template <typename... Refs> struct enumerator_result<std::size_t, Refs...> { |
| 2205 | static constexpr std::size_t NumRefs = sizeof...(Refs); |
| 2206 | static_assert(NumRefs != 0); |
| 2207 | // `NumValues` includes the index. |
| 2208 | static constexpr std::size_t NumValues = NumRefs + 1; |
| 2209 | |
| 2210 | // Tuple type whose element types are references for each `Ref`. |
| 2211 | using range_reference_tuple = std::tuple<Refs...>; |
| 2212 | // Tuple type who elements are references to all values, including both |
| 2213 | // the index and `Refs` reference types. |
| 2214 | using value_reference_tuple = std::tuple<std::size_t, Refs...>; |
| 2215 | |
| 2216 | enumerator_result(std::size_t Index, Refs &&...Rs) |
| 2217 | : Idx(Index), Storage(std::forward<Refs>(Rs)...) {} |
| 2218 | |
| 2219 | /// Returns the 0-based index of the current position within the original |
| 2220 | /// input range(s). |
| 2221 | std::size_t index() const { return Idx; } |
| 2222 | |
| 2223 | /// Returns the value(s) for the current iterator. This does not include the |
| 2224 | /// index. |
| 2225 | decltype(auto) value() const { |
| 2226 | if constexpr (NumRefs == 1) |
| 2227 | return std::get<0>(Storage); |
| 2228 | else |
| 2229 | return Storage; |
| 2230 | } |
| 2231 | |
| 2232 | /// Returns the value at index `I`. This case covers the index. |
| 2233 | template <std::size_t I, typename = std::enable_if_t<I == 0>> |
| 2234 | friend std::size_t get(const enumerator_result &Result) { |
| 2235 | return Result.Idx; |
| 2236 | } |
| 2237 | |
| 2238 | /// Returns the value at index `I`. This case covers references to the |
| 2239 | /// iteratees. |
| 2240 | template <std::size_t I, typename = std::enable_if_t<I != 0>> |
| 2241 | friend decltype(auto) get(const enumerator_result &Result) { |
| 2242 | // Note: This is a separate function from the other `get`, instead of an |
| 2243 | // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler |
| 2244 | // (Visual Studio 2022 17.1) return type deduction bug. |
| 2245 | return std::get<I - 1>(Result.Storage); |
| 2246 | } |
| 2247 | |
| 2248 | template <typename... Ts> |
| 2249 | friend bool operator==(const enumerator_result &Result, |
| 2250 | const std::tuple<std::size_t, Ts...> &Other) { |
| 2251 | static_assert(NumRefs == sizeof...(Ts), "Size mismatch" ); |
| 2252 | if (Result.Idx != std::get<0>(Other)) |
| 2253 | return false; |
| 2254 | return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{}); |
| 2255 | } |
| 2256 | |
| 2257 | private: |
| 2258 | template <typename Tuple, std::size_t... Idx> |
| 2259 | bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const { |
| 2260 | return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...); |
| 2261 | } |
| 2262 | |
| 2263 | std::size_t Idx; |
| 2264 | // Make this tuple mutable to avoid casts that obfuscate const-correctness |
| 2265 | // issues. Const-correctness of references is taken care of by `zippy` that |
| 2266 | // defines const-non and const iterator types that will propagate down to |
| 2267 | // `enumerator_result`'s `Refs`. |
| 2268 | // Note that unlike the results of `zip*` functions, `enumerate`'s result are |
| 2269 | // supposed to be modifiable even when defined as |
| 2270 | // `const`. |
| 2271 | mutable range_reference_tuple Storage; |
| 2272 | }; |
| 2273 | |
| 2274 | /// Infinite stream of increasing 0-based `size_t` indices. |
| 2275 | struct index_stream { |
| 2276 | struct iterator : iterator_facade_base<iterator, std::forward_iterator_tag, |
| 2277 | const iterator> { |
| 2278 | iterator &operator++() { |
| 2279 | assert(Index != std::numeric_limits<std::size_t>::max() && |
| 2280 | "Attempting to increment end iterator" ); |
| 2281 | ++Index; |
| 2282 | return *this; |
| 2283 | } |
| 2284 | |
| 2285 | // Note: This dereference operator returns a value instead of a reference |
| 2286 | // and does not strictly conform to the C++17's definition of forward |
| 2287 | // iterator. However, it satisfies all the forward_iterator requirements |
| 2288 | // that the `zip_common` depends on and fully conforms to the C++20 |
| 2289 | // definition of forward iterator. |
| 2290 | std::size_t operator*() const { return Index; } |
| 2291 | |
| 2292 | friend bool operator==(const iterator &Lhs, const iterator &Rhs) { |
| 2293 | return Lhs.Index == Rhs.Index; |
| 2294 | } |
| 2295 | |
| 2296 | std::size_t Index = 0; |
| 2297 | }; |
| 2298 | |
| 2299 | iterator begin() const { return {}; } |
| 2300 | iterator end() const { |
| 2301 | // We approximate 'infinity' with the max size_t value, which should be good |
| 2302 | // enough to index over any container. |
| 2303 | iterator It; |
| 2304 | It.Index = std::numeric_limits<std::size_t>::max(); |
| 2305 | return It; |
| 2306 | } |
| 2307 | }; |
| 2308 | |
| 2309 | } // end namespace detail |
| 2310 | |
| 2311 | /// Given two or more input ranges, returns a new range whose values are are |
| 2312 | /// tuples (A, B, C, ...), such that A is the 0-based index of the item in the |
| 2313 | /// sequence, and B, C, ..., are the values from the original input ranges. All |
| 2314 | /// input ranges are required to have equal lengths. Note that the returned |
| 2315 | /// iterator allows for the values (B, C, ...) to be modified. Example: |
| 2316 | /// |
| 2317 | /// ```c++ |
| 2318 | /// std::vector<char> Letters = {'A', 'B', 'C', 'D'}; |
| 2319 | /// std::vector<int> Vals = {10, 11, 12, 13}; |
| 2320 | /// |
| 2321 | /// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) { |
| 2322 | /// printf("Item %zu - %c: %d\n", Index, Letter, Value); |
| 2323 | /// Value -= 10; |
| 2324 | /// } |
| 2325 | /// ``` |
| 2326 | /// |
| 2327 | /// Output: |
| 2328 | /// Item 0 - A: 10 |
| 2329 | /// Item 1 - B: 11 |
| 2330 | /// Item 2 - C: 12 |
| 2331 | /// Item 3 - D: 13 |
| 2332 | /// |
| 2333 | /// or using an iterator: |
| 2334 | /// ```c++ |
| 2335 | /// for (auto it : enumerate(Vals)) { |
| 2336 | /// it.value() += 10; |
| 2337 | /// printf("Item %zu: %d\n", it.index(), it.value()); |
| 2338 | /// } |
| 2339 | /// ``` |
| 2340 | /// |
| 2341 | /// Output: |
| 2342 | /// Item 0: 20 |
| 2343 | /// Item 1: 21 |
| 2344 | /// Item 2: 22 |
| 2345 | /// Item 3: 23 |
| 2346 | /// |
| 2347 | template <typename FirstRange, typename... RestRanges> |
| 2348 | auto enumerate(FirstRange &&First, RestRanges &&...Rest) { |
| 2349 | if constexpr (sizeof...(Rest) != 0) { |
| 2350 | #ifndef NDEBUG |
| 2351 | // Note: Create an array instead of an initializer list to work around an |
| 2352 | // Apple clang 14 compiler bug. |
| 2353 | size_t sizes[] = {range_size(First), range_size(Rest)...}; |
| 2354 | assert(all_equal(sizes) && "Ranges have different length" ); |
| 2355 | #endif |
| 2356 | } |
| 2357 | using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream, |
| 2358 | FirstRange, RestRanges...>; |
| 2359 | return enumerator(detail::index_stream{}, std::forward<FirstRange>(First), |
| 2360 | std::forward<RestRanges>(Rest)...); |
| 2361 | } |
| 2362 | |
| 2363 | namespace detail { |
| 2364 | |
| 2365 | template <typename Predicate, typename... Args> |
| 2366 | bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) { |
| 2367 | auto z = zip(args...); |
| 2368 | auto it = z.begin(); |
| 2369 | auto end = z.end(); |
| 2370 | while (it != end) { |
| 2371 | if (!std::apply([&](auto &&...args) { return P(args...); }, *it)) |
| 2372 | return false; |
| 2373 | ++it; |
| 2374 | } |
| 2375 | return it.all_equals(end); |
| 2376 | } |
| 2377 | |
| 2378 | // Just an adaptor to switch the order of argument and have the predicate before |
| 2379 | // the zipped inputs. |
| 2380 | template <typename... ArgsThenPredicate, size_t... InputIndexes> |
| 2381 | bool all_of_zip_predicate_last( |
| 2382 | std::tuple<ArgsThenPredicate...> argsThenPredicate, |
| 2383 | std::index_sequence<InputIndexes...>) { |
| 2384 | auto constexpr OutputIndex = |
| 2385 | std::tuple_size<decltype(argsThenPredicate)>::value - 1; |
| 2386 | return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate), |
| 2387 | std::get<InputIndexes>(argsThenPredicate)...); |
| 2388 | } |
| 2389 | |
| 2390 | } // end namespace detail |
| 2391 | |
| 2392 | /// Compare two zipped ranges using the provided predicate (as last argument). |
| 2393 | /// Return true if all elements satisfy the predicate and false otherwise. |
| 2394 | // Return false if the zipped iterator aren't all at end (size mismatch). |
| 2395 | template <typename... ArgsAndPredicate> |
| 2396 | bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) { |
| 2397 | return detail::all_of_zip_predicate_last( |
| 2398 | std::forward_as_tuple(argsAndPredicate...), |
| 2399 | std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{}); |
| 2400 | } |
| 2401 | |
| 2402 | /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) |
| 2403 | /// time. Not meant for use with random-access iterators. |
| 2404 | /// Can optionally take a predicate to filter lazily some items. |
| 2405 | template <typename IterTy, |
| 2406 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
| 2407 | bool hasNItems( |
| 2408 | IterTy &&Begin, IterTy &&End, unsigned N, |
| 2409 | Pred &&ShouldBeCounted = |
| 2410 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
| 2411 | std::enable_if_t< |
| 2412 | !std::is_base_of<std::random_access_iterator_tag, |
| 2413 | typename std::iterator_traits<std::remove_reference_t< |
| 2414 | decltype(Begin)>>::iterator_category>::value, |
| 2415 | void> * = nullptr) { |
| 2416 | for (; N; ++Begin) { |
| 2417 | if (Begin == End) |
| 2418 | return false; // Too few. |
| 2419 | N -= ShouldBeCounted(*Begin); |
| 2420 | } |
| 2421 | for (; Begin != End; ++Begin) |
| 2422 | if (ShouldBeCounted(*Begin)) |
| 2423 | return false; // Too many. |
| 2424 | return true; |
| 2425 | } |
| 2426 | |
| 2427 | /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) |
| 2428 | /// time. Not meant for use with random-access iterators. |
| 2429 | /// Can optionally take a predicate to lazily filter some items. |
| 2430 | template <typename IterTy, |
| 2431 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
| 2432 | bool hasNItemsOrMore( |
| 2433 | IterTy &&Begin, IterTy &&End, unsigned N, |
| 2434 | Pred &&ShouldBeCounted = |
| 2435 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
| 2436 | std::enable_if_t< |
| 2437 | !std::is_base_of<std::random_access_iterator_tag, |
| 2438 | typename std::iterator_traits<std::remove_reference_t< |
| 2439 | decltype(Begin)>>::iterator_category>::value, |
| 2440 | void> * = nullptr) { |
| 2441 | for (; N; ++Begin) { |
| 2442 | if (Begin == End) |
| 2443 | return false; // Too few. |
| 2444 | N -= ShouldBeCounted(*Begin); |
| 2445 | } |
| 2446 | return true; |
| 2447 | } |
| 2448 | |
| 2449 | /// Returns true if the sequence [Begin, End) has N or less items. Can |
| 2450 | /// optionally take a predicate to lazily filter some items. |
| 2451 | template <typename IterTy, |
| 2452 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
| 2453 | bool hasNItemsOrLess( |
| 2454 | IterTy &&Begin, IterTy &&End, unsigned N, |
| 2455 | Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { |
| 2456 | return true; |
| 2457 | }) { |
| 2458 | assert(N != std::numeric_limits<unsigned>::max()); |
| 2459 | return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); |
| 2460 | } |
| 2461 | |
| 2462 | /// Returns true if the given container has exactly N items |
| 2463 | template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { |
| 2464 | return hasNItems(std::begin(C), std::end(C), N); |
| 2465 | } |
| 2466 | |
| 2467 | /// Returns true if the given container has N or more items |
| 2468 | template <typename ContainerTy> |
| 2469 | bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { |
| 2470 | return hasNItemsOrMore(std::begin(C), std::end(C), N); |
| 2471 | } |
| 2472 | |
| 2473 | /// Returns true if the given container has N or less items |
| 2474 | template <typename ContainerTy> |
| 2475 | bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { |
| 2476 | return hasNItemsOrLess(std::begin(C), std::end(C), N); |
| 2477 | } |
| 2478 | |
| 2479 | /// Returns a raw pointer that represents the same address as the argument. |
| 2480 | /// |
| 2481 | /// This implementation can be removed once we move to C++20 where it's defined |
| 2482 | /// as std::to_address(). |
| 2483 | /// |
| 2484 | /// The std::pointer_traits<>::to_address(p) variations of these overloads has |
| 2485 | /// not been implemented. |
| 2486 | template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } |
| 2487 | template <class T> constexpr T *to_address(T *P) { return P; } |
| 2488 | |
| 2489 | } // end namespace llvm |
| 2490 | |
| 2491 | namespace std { |
| 2492 | template <typename... Refs> |
| 2493 | struct tuple_size<llvm::detail::enumerator_result<Refs...>> |
| 2494 | : std::integral_constant<std::size_t, sizeof...(Refs)> {}; |
| 2495 | |
| 2496 | template <std::size_t I, typename... Refs> |
| 2497 | struct tuple_element<I, llvm::detail::enumerator_result<Refs...>> |
| 2498 | : std::tuple_element<I, std::tuple<Refs...>> {}; |
| 2499 | |
| 2500 | template <std::size_t I, typename... Refs> |
| 2501 | struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>> |
| 2502 | : std::tuple_element<I, std::tuple<Refs...>> {}; |
| 2503 | |
| 2504 | } // namespace std |
| 2505 | |
| 2506 | #endif // LLVM_ADT_STLEXTRAS_H |
| 2507 | |