| 1 | //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// |
| 10 | /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms |
| 11 | /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but |
| 12 | /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the |
| 13 | /// allocator. |
| 14 | /// |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef LLVM_SUPPORT_ALLOCATOR_H |
| 18 | #define LLVM_SUPPORT_ALLOCATOR_H |
| 19 | |
| 20 | #include "llvm/ADT/SmallVector.h" |
| 21 | #include "llvm/Support/Alignment.h" |
| 22 | #include "llvm/Support/AllocatorBase.h" |
| 23 | #include "llvm/Support/Compiler.h" |
| 24 | #include "llvm/Support/MathExtras.h" |
| 25 | #include <algorithm> |
| 26 | #include <cassert> |
| 27 | #include <cstddef> |
| 28 | #include <cstdint> |
| 29 | #include <iterator> |
| 30 | #include <optional> |
| 31 | #include <utility> |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | namespace detail { |
| 36 | |
| 37 | // We call out to an external function to actually print the message as the |
| 38 | // printing code uses Allocator.h in its implementation. |
| 39 | void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated, |
| 40 | size_t TotalMemory); |
| 41 | |
| 42 | } // end namespace detail |
| 43 | |
| 44 | /// Allocate memory in an ever growing pool, as if by bump-pointer. |
| 45 | /// |
| 46 | /// This isn't strictly a bump-pointer allocator as it uses backing slabs of |
| 47 | /// memory rather than relying on a boundless contiguous heap. However, it has |
| 48 | /// bump-pointer semantics in that it is a monotonically growing pool of memory |
| 49 | /// where every allocation is found by merely allocating the next N bytes in |
| 50 | /// the slab, or the next N bytes in the next slab. |
| 51 | /// |
| 52 | /// Note that this also has a threshold for forcing allocations above a certain |
| 53 | /// size into their own slab. |
| 54 | /// |
| 55 | /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator |
| 56 | /// object, which wraps malloc, to allocate memory, but it can be changed to |
| 57 | /// use a custom allocator. |
| 58 | /// |
| 59 | /// The GrowthDelay specifies after how many allocated slabs the allocator |
| 60 | /// increases the size of the slabs. |
| 61 | template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096, |
| 62 | size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128> |
| 63 | class BumpPtrAllocatorImpl |
| 64 | : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize, |
| 65 | SizeThreshold, GrowthDelay>>, |
| 66 | private detail::AllocatorHolder<AllocatorT> { |
| 67 | using AllocTy = detail::AllocatorHolder<AllocatorT>; |
| 68 | |
| 69 | public: |
| 70 | static_assert(SizeThreshold <= SlabSize, |
| 71 | "The SizeThreshold must be at most the SlabSize to ensure " |
| 72 | "that objects larger than a slab go into their own memory " |
| 73 | "allocation." ); |
| 74 | static_assert(GrowthDelay > 0, |
| 75 | "GrowthDelay must be at least 1 which already increases the" |
| 76 | "slab size after each allocated slab." ); |
| 77 | |
| 78 | BumpPtrAllocatorImpl() = default; |
| 79 | |
| 80 | template <typename T> |
| 81 | BumpPtrAllocatorImpl(T &&Allocator) |
| 82 | : AllocTy(std::forward<T &&>(Allocator)) {} |
| 83 | |
| 84 | // Manually implement a move constructor as we must clear the old allocator's |
| 85 | // slabs as a matter of correctness. |
| 86 | BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old) |
| 87 | : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr), |
| 88 | End(Old.End), Slabs(std::move(Old.Slabs)), |
| 89 | CustomSizedSlabs(std::move(Old.CustomSizedSlabs)), |
| 90 | BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) { |
| 91 | Old.CurPtr = Old.End = nullptr; |
| 92 | Old.BytesAllocated = 0; |
| 93 | Old.Slabs.clear(); |
| 94 | Old.CustomSizedSlabs.clear(); |
| 95 | } |
| 96 | |
| 97 | ~BumpPtrAllocatorImpl() { |
| 98 | DeallocateSlabs(I: Slabs.begin(), E: Slabs.end()); |
| 99 | DeallocateCustomSizedSlabs(); |
| 100 | } |
| 101 | |
| 102 | BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) { |
| 103 | DeallocateSlabs(I: Slabs.begin(), E: Slabs.end()); |
| 104 | DeallocateCustomSizedSlabs(); |
| 105 | |
| 106 | CurPtr = RHS.CurPtr; |
| 107 | End = RHS.End; |
| 108 | BytesAllocated = RHS.BytesAllocated; |
| 109 | RedZoneSize = RHS.RedZoneSize; |
| 110 | Slabs = std::move(RHS.Slabs); |
| 111 | CustomSizedSlabs = std::move(RHS.CustomSizedSlabs); |
| 112 | AllocTy::operator=(std::move(RHS.getAllocator())); |
| 113 | |
| 114 | RHS.CurPtr = RHS.End = nullptr; |
| 115 | RHS.BytesAllocated = 0; |
| 116 | RHS.Slabs.clear(); |
| 117 | RHS.CustomSizedSlabs.clear(); |
| 118 | return *this; |
| 119 | } |
| 120 | |
| 121 | /// Deallocate all but the current slab and reset the current pointer |
| 122 | /// to the beginning of it, freeing all memory allocated so far. |
| 123 | void Reset() { |
| 124 | // Deallocate all but the first slab, and deallocate all custom-sized slabs. |
| 125 | DeallocateCustomSizedSlabs(); |
| 126 | CustomSizedSlabs.clear(); |
| 127 | |
| 128 | if (Slabs.empty()) |
| 129 | return; |
| 130 | |
| 131 | // Reset the state. |
| 132 | BytesAllocated = 0; |
| 133 | CurPtr = (char *)Slabs.front(); |
| 134 | End = CurPtr + SlabSize; |
| 135 | |
| 136 | __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0)); |
| 137 | DeallocateSlabs(I: std::next(x: Slabs.begin()), E: Slabs.end()); |
| 138 | Slabs.erase(CS: std::next(x: Slabs.begin()), CE: Slabs.end()); |
| 139 | } |
| 140 | |
| 141 | /// Allocate space at the specified alignment. |
| 142 | // This method is *not* marked noalias, because |
| 143 | // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and |
| 144 | // that loop is not based on the Allocate() return value. |
| 145 | // |
| 146 | // Allocate(0, N) is valid, it returns a non-null pointer (which should not |
| 147 | // be dereferenced). |
| 148 | LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) { |
| 149 | // Keep track of how many bytes we've allocated. |
| 150 | BytesAllocated += Size; |
| 151 | |
| 152 | size_t Adjustment = offsetToAlignedAddr(Addr: CurPtr, Alignment); |
| 153 | assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow" ); |
| 154 | |
| 155 | size_t SizeToAllocate = Size; |
| 156 | #if LLVM_ADDRESS_SANITIZER_BUILD |
| 157 | // Add trailing bytes as a "red zone" under ASan. |
| 158 | SizeToAllocate += RedZoneSize; |
| 159 | #endif |
| 160 | |
| 161 | // Check if we have enough space. |
| 162 | if (Adjustment + SizeToAllocate <= size_t(End - CurPtr) |
| 163 | // We can't return nullptr even for a zero-sized allocation! |
| 164 | && CurPtr != nullptr) { |
| 165 | char *AlignedPtr = CurPtr + Adjustment; |
| 166 | CurPtr = AlignedPtr + SizeToAllocate; |
| 167 | // Update the allocation point of this memory block in MemorySanitizer. |
| 168 | // Without this, MemorySanitizer messages for values originated from here |
| 169 | // will point to the allocation of the entire slab. |
| 170 | __msan_allocated_memory(AlignedPtr, Size); |
| 171 | // Similarly, tell ASan about this space. |
| 172 | __asan_unpoison_memory_region(AlignedPtr, Size); |
| 173 | return AlignedPtr; |
| 174 | } |
| 175 | |
| 176 | // If Size is really big, allocate a separate slab for it. |
| 177 | size_t PaddedSize = SizeToAllocate + Alignment.value() - 1; |
| 178 | if (PaddedSize > SizeThreshold) { |
| 179 | void *NewSlab = |
| 180 | this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t)); |
| 181 | // We own the new slab and don't want anyone reading anyting other than |
| 182 | // pieces returned from this method. So poison the whole slab. |
| 183 | __asan_poison_memory_region(NewSlab, PaddedSize); |
| 184 | CustomSizedSlabs.push_back(Elt: std::make_pair(x&: NewSlab, y&: PaddedSize)); |
| 185 | |
| 186 | uintptr_t AlignedAddr = alignAddr(Addr: NewSlab, Alignment); |
| 187 | assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize); |
| 188 | char *AlignedPtr = (char*)AlignedAddr; |
| 189 | __msan_allocated_memory(AlignedPtr, Size); |
| 190 | __asan_unpoison_memory_region(AlignedPtr, Size); |
| 191 | return AlignedPtr; |
| 192 | } |
| 193 | |
| 194 | // Otherwise, start a new slab and try again. |
| 195 | StartNewSlab(); |
| 196 | uintptr_t AlignedAddr = alignAddr(Addr: CurPtr, Alignment); |
| 197 | assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End && |
| 198 | "Unable to allocate memory!" ); |
| 199 | char *AlignedPtr = (char*)AlignedAddr; |
| 200 | CurPtr = AlignedPtr + SizeToAllocate; |
| 201 | __msan_allocated_memory(AlignedPtr, Size); |
| 202 | __asan_unpoison_memory_region(AlignedPtr, Size); |
| 203 | return AlignedPtr; |
| 204 | } |
| 205 | |
| 206 | inline LLVM_ATTRIBUTE_RETURNS_NONNULL void * |
| 207 | Allocate(size_t Size, size_t Alignment) { |
| 208 | assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead." ); |
| 209 | return Allocate(Size, Align(Alignment)); |
| 210 | } |
| 211 | |
| 212 | // Pull in base class overloads. |
| 213 | using AllocatorBase<BumpPtrAllocatorImpl>::Allocate; |
| 214 | |
| 215 | // Bump pointer allocators are expected to never free their storage; and |
| 216 | // clients expect pointers to remain valid for non-dereferencing uses even |
| 217 | // after deallocation. |
| 218 | void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) { |
| 219 | __asan_poison_memory_region(Ptr, Size); |
| 220 | } |
| 221 | |
| 222 | // Pull in base class overloads. |
| 223 | using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate; |
| 224 | |
| 225 | size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); } |
| 226 | |
| 227 | /// \return An index uniquely and reproducibly identifying |
| 228 | /// an input pointer \p Ptr in the given allocator. |
| 229 | /// The returned value is negative iff the object is inside a custom-size |
| 230 | /// slab. |
| 231 | /// Returns an empty optional if the pointer is not found in the allocator. |
| 232 | std::optional<int64_t> identifyObject(const void *Ptr) { |
| 233 | const char *P = static_cast<const char *>(Ptr); |
| 234 | int64_t InSlabIdx = 0; |
| 235 | for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) { |
| 236 | const char *S = static_cast<const char *>(Slabs[Idx]); |
| 237 | if (P >= S && P < S + computeSlabSize(SlabIdx: Idx)) |
| 238 | return InSlabIdx + static_cast<int64_t>(P - S); |
| 239 | InSlabIdx += static_cast<int64_t>(computeSlabSize(SlabIdx: Idx)); |
| 240 | } |
| 241 | |
| 242 | // Use negative index to denote custom sized slabs. |
| 243 | int64_t InCustomSizedSlabIdx = -1; |
| 244 | for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) { |
| 245 | const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first); |
| 246 | size_t Size = CustomSizedSlabs[Idx].second; |
| 247 | if (P >= S && P < S + Size) |
| 248 | return InCustomSizedSlabIdx - static_cast<int64_t>(P - S); |
| 249 | InCustomSizedSlabIdx -= static_cast<int64_t>(Size); |
| 250 | } |
| 251 | return std::nullopt; |
| 252 | } |
| 253 | |
| 254 | /// A wrapper around identifyObject that additionally asserts that |
| 255 | /// the object is indeed within the allocator. |
| 256 | /// \return An index uniquely and reproducibly identifying |
| 257 | /// an input pointer \p Ptr in the given allocator. |
| 258 | int64_t identifyKnownObject(const void *Ptr) { |
| 259 | std::optional<int64_t> Out = identifyObject(Ptr); |
| 260 | assert(Out && "Wrong allocator used" ); |
| 261 | return *Out; |
| 262 | } |
| 263 | |
| 264 | /// A wrapper around identifyKnownObject. Accepts type information |
| 265 | /// about the object and produces a smaller identifier by relying on |
| 266 | /// the alignment information. Note that sub-classes may have different |
| 267 | /// alignment, so the most base class should be passed as template parameter |
| 268 | /// in order to obtain correct results. For that reason automatic template |
| 269 | /// parameter deduction is disabled. |
| 270 | /// \return An index uniquely and reproducibly identifying |
| 271 | /// an input pointer \p Ptr in the given allocator. This identifier is |
| 272 | /// different from the ones produced by identifyObject and |
| 273 | /// identifyAlignedObject. |
| 274 | template <typename T> |
| 275 | int64_t identifyKnownAlignedObject(const void *Ptr) { |
| 276 | int64_t Out = identifyKnownObject(Ptr); |
| 277 | assert(Out % alignof(T) == 0 && "Wrong alignment information" ); |
| 278 | return Out / alignof(T); |
| 279 | } |
| 280 | |
| 281 | size_t getTotalMemory() const { |
| 282 | size_t TotalMemory = 0; |
| 283 | for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I) |
| 284 | TotalMemory += computeSlabSize(SlabIdx: std::distance(first: Slabs.begin(), last: I)); |
| 285 | for (const auto &PtrAndSize : CustomSizedSlabs) |
| 286 | TotalMemory += PtrAndSize.second; |
| 287 | return TotalMemory; |
| 288 | } |
| 289 | |
| 290 | size_t getBytesAllocated() const { return BytesAllocated; } |
| 291 | |
| 292 | void setRedZoneSize(size_t NewSize) { |
| 293 | RedZoneSize = NewSize; |
| 294 | } |
| 295 | |
| 296 | void PrintStats() const { |
| 297 | detail::printBumpPtrAllocatorStats(NumSlabs: Slabs.size(), BytesAllocated, |
| 298 | TotalMemory: getTotalMemory()); |
| 299 | } |
| 300 | |
| 301 | private: |
| 302 | /// The current pointer into the current slab. |
| 303 | /// |
| 304 | /// This points to the next free byte in the slab. |
| 305 | char *CurPtr = nullptr; |
| 306 | |
| 307 | /// The end of the current slab. |
| 308 | char *End = nullptr; |
| 309 | |
| 310 | /// The slabs allocated so far. |
| 311 | SmallVector<void *, 4> Slabs; |
| 312 | |
| 313 | /// Custom-sized slabs allocated for too-large allocation requests. |
| 314 | SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs; |
| 315 | |
| 316 | /// How many bytes we've allocated. |
| 317 | /// |
| 318 | /// Used so that we can compute how much space was wasted. |
| 319 | size_t BytesAllocated = 0; |
| 320 | |
| 321 | /// The number of bytes to put between allocations when running under |
| 322 | /// a sanitizer. |
| 323 | size_t RedZoneSize = 1; |
| 324 | |
| 325 | static size_t computeSlabSize(unsigned SlabIdx) { |
| 326 | // Scale the actual allocated slab size based on the number of slabs |
| 327 | // allocated. Every GrowthDelay slabs allocated, we double |
| 328 | // the allocated size to reduce allocation frequency, but saturate at |
| 329 | // multiplying the slab size by 2^30. |
| 330 | return SlabSize * |
| 331 | ((size_t)1 << std::min<size_t>(a: 30, b: SlabIdx / GrowthDelay)); |
| 332 | } |
| 333 | |
| 334 | /// Allocate a new slab and move the bump pointers over into the new |
| 335 | /// slab, modifying CurPtr and End. |
| 336 | void StartNewSlab() { |
| 337 | size_t AllocatedSlabSize = computeSlabSize(SlabIdx: Slabs.size()); |
| 338 | |
| 339 | void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize, |
| 340 | alignof(std::max_align_t)); |
| 341 | // We own the new slab and don't want anyone reading anything other than |
| 342 | // pieces returned from this method. So poison the whole slab. |
| 343 | __asan_poison_memory_region(NewSlab, AllocatedSlabSize); |
| 344 | |
| 345 | Slabs.push_back(Elt: NewSlab); |
| 346 | CurPtr = (char *)(NewSlab); |
| 347 | End = ((char *)NewSlab) + AllocatedSlabSize; |
| 348 | } |
| 349 | |
| 350 | /// Deallocate a sequence of slabs. |
| 351 | void DeallocateSlabs(SmallVectorImpl<void *>::iterator I, |
| 352 | SmallVectorImpl<void *>::iterator E) { |
| 353 | for (; I != E; ++I) { |
| 354 | size_t AllocatedSlabSize = |
| 355 | computeSlabSize(SlabIdx: std::distance(first: Slabs.begin(), last: I)); |
| 356 | this->getAllocator().Deallocate(*I, AllocatedSlabSize, |
| 357 | alignof(std::max_align_t)); |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | /// Deallocate all memory for custom sized slabs. |
| 362 | void DeallocateCustomSizedSlabs() { |
| 363 | for (auto &PtrAndSize : CustomSizedSlabs) { |
| 364 | void *Ptr = PtrAndSize.first; |
| 365 | size_t Size = PtrAndSize.second; |
| 366 | this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t)); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | template <typename T> friend class SpecificBumpPtrAllocator; |
| 371 | }; |
| 372 | |
| 373 | /// The standard BumpPtrAllocator which just uses the default template |
| 374 | /// parameters. |
| 375 | typedef BumpPtrAllocatorImpl<> BumpPtrAllocator; |
| 376 | |
| 377 | /// A BumpPtrAllocator that allows only elements of a specific type to be |
| 378 | /// allocated. |
| 379 | /// |
| 380 | /// This allows calling the destructor in DestroyAll() and when the allocator is |
| 381 | /// destroyed. |
| 382 | template <typename T> class SpecificBumpPtrAllocator { |
| 383 | BumpPtrAllocator Allocator; |
| 384 | |
| 385 | public: |
| 386 | SpecificBumpPtrAllocator() { |
| 387 | // Because SpecificBumpPtrAllocator walks the memory to call destructors, |
| 388 | // it can't have red zones between allocations. |
| 389 | Allocator.setRedZoneSize(0); |
| 390 | } |
| 391 | SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old) |
| 392 | : Allocator(std::move(Old.Allocator)) {} |
| 393 | ~SpecificBumpPtrAllocator() { DestroyAll(); } |
| 394 | |
| 395 | SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) { |
| 396 | Allocator = std::move(RHS.Allocator); |
| 397 | return *this; |
| 398 | } |
| 399 | |
| 400 | /// Call the destructor of each allocated object and deallocate all but the |
| 401 | /// current slab and reset the current pointer to the beginning of it, freeing |
| 402 | /// all memory allocated so far. |
| 403 | void DestroyAll() { |
| 404 | auto DestroyElements = [](char *Begin, char *End) { |
| 405 | assert(Begin == (char *)alignAddr(Begin, Align::Of<T>())); |
| 406 | for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T)) |
| 407 | reinterpret_cast<T *>(Ptr)->~T(); |
| 408 | }; |
| 409 | |
| 410 | for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E; |
| 411 | ++I) { |
| 412 | size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize( |
| 413 | SlabIdx: std::distance(first: Allocator.Slabs.begin(), last: I)); |
| 414 | char *Begin = (char *)alignAddr(*I, Align::Of<T>()); |
| 415 | char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr |
| 416 | : (char *)*I + AllocatedSlabSize; |
| 417 | |
| 418 | DestroyElements(Begin, End); |
| 419 | } |
| 420 | |
| 421 | for (auto &PtrAndSize : Allocator.CustomSizedSlabs) { |
| 422 | void *Ptr = PtrAndSize.first; |
| 423 | size_t Size = PtrAndSize.second; |
| 424 | DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()), |
| 425 | (char *)Ptr + Size); |
| 426 | } |
| 427 | |
| 428 | Allocator.Reset(); |
| 429 | } |
| 430 | |
| 431 | /// Allocate space for an array of objects without constructing them. |
| 432 | T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); } |
| 433 | }; |
| 434 | |
| 435 | } // end namespace llvm |
| 436 | |
| 437 | template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, |
| 438 | size_t GrowthDelay> |
| 439 | void * |
| 440 | operator new(size_t Size, |
| 441 | llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold, |
| 442 | GrowthDelay> &Allocator) { |
| 443 | return Allocator.Allocate(Size, std::min(a: (size_t)llvm::NextPowerOf2(A: Size), |
| 444 | b: alignof(std::max_align_t))); |
| 445 | } |
| 446 | |
| 447 | template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, |
| 448 | size_t GrowthDelay> |
| 449 | void operator delete(void *, |
| 450 | llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, |
| 451 | SizeThreshold, GrowthDelay> &) { |
| 452 | } |
| 453 | |
| 454 | #endif // LLVM_SUPPORT_ALLOCATOR_H |
| 455 | |