| 1 | /* Vector API for GNU compiler. |
| 2 | Copyright (C) 2004-2025 Free Software Foundation, Inc. |
| 3 | Contributed by Nathan Sidwell <nathan@codesourcery.com> |
| 4 | Re-implemented in C++ by Diego Novillo <dnovillo@google.com> |
| 5 | |
| 6 | This file is part of GCC. |
| 7 | |
| 8 | GCC is free software; you can redistribute it and/or modify it under |
| 9 | the terms of the GNU General Public License as published by the Free |
| 10 | Software Foundation; either version 3, or (at your option) any later |
| 11 | version. |
| 12 | |
| 13 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 14 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 16 | for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with GCC; see the file COPYING3. If not see |
| 20 | <http://www.gnu.org/licenses/>. */ |
| 21 | |
| 22 | #ifndef GCC_VEC_H |
| 23 | #define GCC_VEC_H |
| 24 | |
| 25 | /* Some gen* file have no ggc support as the header file gtype-desc.h is |
| 26 | missing. Provide these definitions in case ggc.h has not been included. |
| 27 | This is not a problem because any code that runs before gengtype is built |
| 28 | will never need to use GC vectors.*/ |
| 29 | |
| 30 | extern void ggc_free (void *); |
| 31 | extern size_t ggc_round_alloc_size (size_t requested_size); |
| 32 | extern void *ggc_realloc (void *, size_t MEM_STAT_DECL); |
| 33 | |
| 34 | /* Templated vector type and associated interfaces. |
| 35 | |
| 36 | The interface functions are typesafe and use inline functions, |
| 37 | sometimes backed by out-of-line generic functions. The vectors are |
| 38 | designed to interoperate with the GTY machinery. |
| 39 | |
| 40 | There are both 'index' and 'iterate' accessors. The index accessor |
| 41 | is implemented by operator[]. The iterator returns a boolean |
| 42 | iteration condition and updates the iteration variable passed by |
| 43 | reference. Because the iterator will be inlined, the address-of |
| 44 | can be optimized away. |
| 45 | |
| 46 | Each operation that increases the number of active elements is |
| 47 | available in 'quick' and 'safe' variants. The former presumes that |
| 48 | there is sufficient allocated space for the operation to succeed |
| 49 | (it dies if there is not). The latter will reallocate the |
| 50 | vector, if needed. Reallocation causes an exponential increase in |
| 51 | vector size. If you know you will be adding N elements, it would |
| 52 | be more efficient to use the reserve operation before adding the |
| 53 | elements with the 'quick' operation. This will ensure there are at |
| 54 | least as many elements as you ask for, it will exponentially |
| 55 | increase if there are too few spare slots. If you want reserve a |
| 56 | specific number of slots, but do not want the exponential increase |
| 57 | (for instance, you know this is the last allocation), use the |
| 58 | reserve_exact operation. You can also create a vector of a |
| 59 | specific size from the get go. |
| 60 | |
| 61 | You should prefer the push and pop operations, as they append and |
| 62 | remove from the end of the vector. If you need to remove several |
| 63 | items in one go, use the truncate operation. The insert and remove |
| 64 | operations allow you to change elements in the middle of the |
| 65 | vector. There are two remove operations, one which preserves the |
| 66 | element ordering 'ordered_remove', and one which does not |
| 67 | 'unordered_remove'. The latter function copies the end element |
| 68 | into the removed slot, rather than invoke a memmove operation. The |
| 69 | 'lower_bound' function will determine where to place an item in the |
| 70 | array using insert that will maintain sorted order. |
| 71 | |
| 72 | Vectors are template types with three arguments: the type of the |
| 73 | elements in the vector, the allocation strategy, and the physical |
| 74 | layout to use |
| 75 | |
| 76 | Four allocation strategies are supported: |
| 77 | |
| 78 | - Heap: allocation is done using malloc/free. This is the |
| 79 | default allocation strategy. |
| 80 | |
| 81 | - GC: allocation is done using ggc_alloc/ggc_free. |
| 82 | |
| 83 | - GC atomic: same as GC with the exception that the elements |
| 84 | themselves are assumed to be of an atomic type that does |
| 85 | not need to be garbage collected. This means that marking |
| 86 | routines do not need to traverse the array marking the |
| 87 | individual elements. This increases the performance of |
| 88 | GC activities. |
| 89 | |
| 90 | Two physical layouts are supported: |
| 91 | |
| 92 | - Embedded: The vector is structured using the trailing array |
| 93 | idiom. The last member of the structure is an array of size |
| 94 | 1. When the vector is initially allocated, a single memory |
| 95 | block is created to hold the vector's control data and the |
| 96 | array of elements. These vectors cannot grow without |
| 97 | reallocation (see discussion on embeddable vectors below). |
| 98 | |
| 99 | - Space efficient: The vector is structured as a pointer to an |
| 100 | embedded vector. This is the default layout. It means that |
| 101 | vectors occupy a single word of storage before initial |
| 102 | allocation. Vectors are allowed to grow (the internal |
| 103 | pointer is reallocated but the main vector instance does not |
| 104 | need to relocate). |
| 105 | |
| 106 | The type, allocation and layout are specified when the vector is |
| 107 | declared. |
| 108 | |
| 109 | If you need to directly manipulate a vector, then the 'address' |
| 110 | accessor will return the address of the start of the vector. Also |
| 111 | the 'space' predicate will tell you whether there is spare capacity |
| 112 | in the vector. You will not normally need to use these two functions. |
| 113 | |
| 114 | Not all vector operations support non-POD types and such restrictions |
| 115 | are enforced through static assertions. Some operations which often use |
| 116 | memmove to move elements around like quick_insert, safe_insert, |
| 117 | ordered_remove, unordered_remove, block_remove etc. require trivially |
| 118 | copyable types. Sorting operations, qsort, sort and stablesort, require |
| 119 | those too but as an extension allow also std::pair of 2 trivially copyable |
| 120 | types which happens to work even when std::pair itself isn't trivially |
| 121 | copyable. The quick_grow and safe_grow operations require trivially |
| 122 | default constructible types. One can use quick_grow_cleared or |
| 123 | safe_grow_cleared for non-trivially default constructible types if needed |
| 124 | (but of course such operation is more expensive then). The pop operation |
| 125 | returns reference to the last element only for trivially destructible |
| 126 | types, for non-trivially destructible types one should use last operation |
| 127 | followed by pop which in that case returns void. |
| 128 | And finally, the GC and GC atomic vectors should always be used with |
| 129 | trivially destructible types, as nothing will invoke destructors when they |
| 130 | are freed during GC. |
| 131 | |
| 132 | Notes on the different layout strategies |
| 133 | |
| 134 | * Embeddable vectors (vec<T, A, vl_embed>) |
| 135 | |
| 136 | These vectors are suitable to be embedded in other data |
| 137 | structures so that they can be pre-allocated in a contiguous |
| 138 | memory block. |
| 139 | |
| 140 | Embeddable vectors are implemented using the trailing array |
| 141 | idiom, thus they are not resizeable without changing the address |
| 142 | of the vector object itself. This means you cannot have |
| 143 | variables or fields of embeddable vector type -- always use a |
| 144 | pointer to a vector. The one exception is the final field of a |
| 145 | structure, which could be a vector type. |
| 146 | |
| 147 | You will have to use the embedded_size & embedded_init calls to |
| 148 | create such objects, and they will not be resizeable (so the |
| 149 | 'safe' allocation variants are not available). |
| 150 | |
| 151 | Properties of embeddable vectors: |
| 152 | |
| 153 | - The whole vector and control data are allocated in a single |
| 154 | contiguous block. It uses the trailing-vector idiom, so |
| 155 | allocation must reserve enough space for all the elements |
| 156 | in the vector plus its control data. |
| 157 | - The vector cannot be re-allocated. |
| 158 | - The vector cannot grow nor shrink. |
| 159 | - No indirections needed for access/manipulation. |
| 160 | - It requires 2 words of storage (prior to vector allocation). |
| 161 | |
| 162 | |
| 163 | * Space efficient vector (vec<T, A, vl_ptr>) |
| 164 | |
| 165 | These vectors can grow dynamically and are allocated together |
| 166 | with their control data. They are suited to be included in data |
| 167 | structures. Prior to initial allocation, they only take a single |
| 168 | word of storage. |
| 169 | |
| 170 | These vectors are implemented as a pointer to embeddable vectors. |
| 171 | The semantics allow for this pointer to be NULL to represent |
| 172 | empty vectors. This way, empty vectors occupy minimal space in |
| 173 | the structure containing them. |
| 174 | |
| 175 | Properties: |
| 176 | |
| 177 | - The whole vector and control data are allocated in a single |
| 178 | contiguous block. |
| 179 | - The whole vector may be re-allocated. |
| 180 | - Vector data may grow and shrink. |
| 181 | - Access and manipulation requires a pointer test and |
| 182 | indirection. |
| 183 | - It requires 1 word of storage (prior to vector allocation). |
| 184 | |
| 185 | An example of their use would be, |
| 186 | |
| 187 | struct my_struct { |
| 188 | // A space-efficient vector of tree pointers in GC memory. |
| 189 | vec<tree, va_gc, vl_ptr> v; |
| 190 | }; |
| 191 | |
| 192 | struct my_struct *s; |
| 193 | |
| 194 | if (s->v.length ()) { we have some contents } |
| 195 | s->v.safe_push (decl); // append some decl onto the end |
| 196 | for (ix = 0; s->v.iterate (ix, &elt); ix++) |
| 197 | { do something with elt } |
| 198 | */ |
| 199 | |
| 200 | /* Support function for statistics. */ |
| 201 | extern void dump_vec_loc_statistics (void); |
| 202 | |
| 203 | /* Hashtable mapping vec addresses to descriptors. */ |
| 204 | extern htab_t vec_mem_usage_hash; |
| 205 | |
| 206 | /* Destruct N elements in DST. */ |
| 207 | |
| 208 | template <typename T> |
| 209 | inline void |
| 210 | vec_destruct (T *dst, unsigned n) |
| 211 | { |
| 212 | for ( ; n; ++dst, --n) |
| 213 | dst->~T (); |
| 214 | } |
| 215 | |
| 216 | /* Control data for vectors. This contains the number of allocated |
| 217 | and used slots inside a vector. */ |
| 218 | |
| 219 | struct vec_prefix |
| 220 | { |
| 221 | /* FIXME - These fields should be private, but we need to cater to |
| 222 | compilers that have stricter notions of PODness for types. */ |
| 223 | |
| 224 | /* Memory allocation support routines in vec.cc. */ |
| 225 | void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO); |
| 226 | void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO); |
| 227 | static unsigned calculate_allocation (vec_prefix *, unsigned, bool); |
| 228 | static unsigned calculate_allocation_1 (unsigned, unsigned); |
| 229 | |
| 230 | /* Note that vec_prefix should be a base class for vec, but we use |
| 231 | offsetof() on vector fields of tree structures (e.g., |
| 232 | tree_binfo::base_binfos), and offsetof only supports base types. |
| 233 | |
| 234 | To compensate, we make vec_prefix a field inside vec and make |
| 235 | vec a friend class of vec_prefix so it can access its fields. */ |
| 236 | template <typename, typename, typename> friend struct vec; |
| 237 | |
| 238 | /* The allocator types also need access to our internals. */ |
| 239 | friend struct va_gc; |
| 240 | friend struct va_gc_atomic; |
| 241 | friend struct va_heap; |
| 242 | |
| 243 | unsigned m_alloc : 31; |
| 244 | unsigned m_using_auto_storage : 1; |
| 245 | unsigned m_num; |
| 246 | }; |
| 247 | |
| 248 | /* Calculate the number of slots to reserve a vector, making sure that |
| 249 | RESERVE slots are free. If EXACT grow exactly, otherwise grow |
| 250 | exponentially. PFX is the control data for the vector. */ |
| 251 | |
| 252 | inline unsigned |
| 253 | vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve, |
| 254 | bool exact) |
| 255 | { |
| 256 | if (exact) |
| 257 | return (pfx ? pfx->m_num : 0) + reserve; |
| 258 | else if (!pfx) |
| 259 | return MAX (4, reserve); |
| 260 | return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve); |
| 261 | } |
| 262 | |
| 263 | template<typename, typename, typename> struct vec; |
| 264 | |
| 265 | /* Valid vector layouts |
| 266 | |
| 267 | vl_embed - Embeddable vector that uses the trailing array idiom. |
| 268 | vl_ptr - Space efficient vector that uses a pointer to an |
| 269 | embeddable vector. */ |
| 270 | struct vl_embed { }; |
| 271 | struct vl_ptr { }; |
| 272 | |
| 273 | |
| 274 | /* Types of supported allocations |
| 275 | |
| 276 | va_heap - Allocation uses malloc/free. |
| 277 | va_gc - Allocation uses ggc_alloc. |
| 278 | va_gc_atomic - Same as GC, but individual elements of the array |
| 279 | do not need to be marked during collection. */ |
| 280 | |
| 281 | /* Allocator type for heap vectors. */ |
| 282 | struct va_heap |
| 283 | { |
| 284 | /* Heap vectors are frequently regular instances, so use the vl_ptr |
| 285 | layout for them. */ |
| 286 | typedef vl_ptr default_layout; |
| 287 | |
| 288 | template<typename T> |
| 289 | static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool |
| 290 | CXX_MEM_STAT_INFO); |
| 291 | |
| 292 | template<typename T> |
| 293 | static void release (vec<T, va_heap, vl_embed> *&); |
| 294 | }; |
| 295 | |
| 296 | |
| 297 | /* Allocator for heap memory. Ensure there are at least RESERVE free |
| 298 | slots in V. If EXACT is true, grow exactly, else grow |
| 299 | exponentially. As a special case, if the vector had not been |
| 300 | allocated and RESERVE is 0, no vector will be created. */ |
| 301 | |
| 302 | template<typename T> |
| 303 | inline void |
| 304 | va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact |
| 305 | MEM_STAT_DECL) |
| 306 | { |
| 307 | size_t elt_size = sizeof (T); |
| 308 | unsigned alloc |
| 309 | = vec_prefix::calculate_allocation (pfx: v ? &v->m_vecpfx : 0, reserve, exact); |
| 310 | gcc_checking_assert (alloc); |
| 311 | |
| 312 | if (GATHER_STATISTICS && v) |
| 313 | v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), |
| 314 | v->allocated (), false); |
| 315 | |
| 316 | size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc); |
| 317 | unsigned nelem = v ? v->length () : 0; |
| 318 | v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size)); |
| 319 | v->embedded_init (alloc, nelem); |
| 320 | |
| 321 | if (GATHER_STATISTICS) |
| 322 | v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT); |
| 323 | } |
| 324 | |
| 325 | |
| 326 | #if GCC_VERSION >= 4007 |
| 327 | #pragma GCC diagnostic push |
| 328 | #pragma GCC diagnostic ignored "-Wfree-nonheap-object" |
| 329 | #endif |
| 330 | |
| 331 | /* Free the heap space allocated for vector V. */ |
| 332 | |
| 333 | template<typename T> |
| 334 | void |
| 335 | va_heap::release (vec<T, va_heap, vl_embed> *&v) |
| 336 | { |
| 337 | size_t elt_size = sizeof (T); |
| 338 | if (v == NULL) |
| 339 | return; |
| 340 | |
| 341 | if (!std::is_trivially_destructible <T>::value) |
| 342 | vec_destruct (v->address (), v->length ()); |
| 343 | |
| 344 | if (GATHER_STATISTICS) |
| 345 | v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), |
| 346 | v->allocated (), true); |
| 347 | ::free (ptr: v); |
| 348 | v = NULL; |
| 349 | } |
| 350 | |
| 351 | #if GCC_VERSION >= 4007 |
| 352 | #pragma GCC diagnostic pop |
| 353 | #endif |
| 354 | |
| 355 | /* Allocator type for GC vectors. Notice that we need the structure |
| 356 | declaration even if GC is not enabled. */ |
| 357 | |
| 358 | struct va_gc |
| 359 | { |
| 360 | /* Use vl_embed as the default layout for GC vectors. Due to GTY |
| 361 | limitations, GC vectors must always be pointers, so it is more |
| 362 | efficient to use a pointer to the vl_embed layout, rather than |
| 363 | using a pointer to a pointer as would be the case with vl_ptr. */ |
| 364 | typedef vl_embed default_layout; |
| 365 | |
| 366 | template<typename T, typename A> |
| 367 | static void reserve (vec<T, A, vl_embed> *&, unsigned, bool |
| 368 | CXX_MEM_STAT_INFO); |
| 369 | |
| 370 | template<typename T, typename A> |
| 371 | static void release (vec<T, A, vl_embed> *&v); |
| 372 | }; |
| 373 | |
| 374 | |
| 375 | /* Free GC memory used by V and reset V to NULL. */ |
| 376 | |
| 377 | template<typename T, typename A> |
| 378 | inline void |
| 379 | va_gc::release (vec<T, A, vl_embed> *&v) |
| 380 | { |
| 381 | if (v) |
| 382 | ::ggc_free (v); |
| 383 | v = NULL; |
| 384 | } |
| 385 | |
| 386 | |
| 387 | /* Allocator for GC memory. Ensure there are at least RESERVE free |
| 388 | slots in V. If EXACT is true, grow exactly, else grow |
| 389 | exponentially. As a special case, if the vector had not been |
| 390 | allocated and RESERVE is 0, no vector will be created. */ |
| 391 | |
| 392 | template<typename T, typename A> |
| 393 | void |
| 394 | va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact |
| 395 | MEM_STAT_DECL) |
| 396 | { |
| 397 | unsigned alloc |
| 398 | = vec_prefix::calculate_allocation (pfx: v ? &v->m_vecpfx : 0, reserve, exact); |
| 399 | if (!alloc) |
| 400 | { |
| 401 | ::ggc_free (v); |
| 402 | v = NULL; |
| 403 | return; |
| 404 | } |
| 405 | |
| 406 | /* Calculate the amount of space we want. */ |
| 407 | size_t size = vec<T, A, vl_embed>::embedded_size (alloc); |
| 408 | |
| 409 | /* Ask the allocator how much space it will really give us. */ |
| 410 | size = ::ggc_round_alloc_size (requested_size: size); |
| 411 | |
| 412 | /* Adjust the number of slots accordingly. */ |
| 413 | size_t vec_offset = sizeof (vec_prefix); |
| 414 | size_t elt_size = sizeof (T); |
| 415 | alloc = (size - vec_offset) / elt_size; |
| 416 | |
| 417 | /* And finally, recalculate the amount of space we ask for. */ |
| 418 | size = vec_offset + alloc * elt_size; |
| 419 | |
| 420 | unsigned nelem = v ? v->length () : 0; |
| 421 | v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size |
| 422 | PASS_MEM_STAT)); |
| 423 | v->embedded_init (alloc, nelem); |
| 424 | } |
| 425 | |
| 426 | |
| 427 | /* Allocator type for GC vectors. This is for vectors of types |
| 428 | atomics w.r.t. collection, so allocation and deallocation is |
| 429 | completely inherited from va_gc. */ |
| 430 | struct va_gc_atomic : va_gc |
| 431 | { |
| 432 | }; |
| 433 | |
| 434 | |
| 435 | /* Generic vector template. Default values for A and L indicate the |
| 436 | most commonly used strategies. |
| 437 | |
| 438 | FIXME - Ideally, they would all be vl_ptr to encourage using regular |
| 439 | instances for vectors, but the existing GTY machinery is limited |
| 440 | in that it can only deal with GC objects that are pointers |
| 441 | themselves. |
| 442 | |
| 443 | This means that vector operations that need to deal with |
| 444 | potentially NULL pointers, must be provided as free |
| 445 | functions (see the vec_safe_* functions above). */ |
| 446 | template<typename T, |
| 447 | typename A = va_heap, |
| 448 | typename L = typename A::default_layout> |
| 449 | struct GTY((user)) vec |
| 450 | { |
| 451 | }; |
| 452 | |
| 453 | /* Allow C++11 range-based 'for' to work directly on vec<T>*. */ |
| 454 | template<typename T, typename A, typename L> |
| 455 | T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; } |
| 456 | template<typename T, typename A, typename L> |
| 457 | T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; } |
| 458 | template<typename T, typename A, typename L> |
| 459 | const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; } |
| 460 | template<typename T, typename A, typename L> |
| 461 | const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; } |
| 462 | |
| 463 | /* Generic vec<> debug helpers. |
| 464 | |
| 465 | These need to be instantiated for each vec<TYPE> used throughout |
| 466 | the compiler like this: |
| 467 | |
| 468 | DEFINE_DEBUG_VEC (TYPE) |
| 469 | |
| 470 | The reason we have a debug_helper() is because GDB can't |
| 471 | disambiguate a plain call to debug(some_vec), and it must be called |
| 472 | like debug<TYPE>(some_vec). */ |
| 473 | |
| 474 | template<typename T> |
| 475 | void |
| 476 | debug_helper (vec<T> &ref) |
| 477 | { |
| 478 | unsigned i; |
| 479 | for (i = 0; i < ref.length (); ++i) |
| 480 | { |
| 481 | fprintf (stderr, format: "[%d] = " , i); |
| 482 | debug_slim (ref[i]); |
| 483 | fputc (c: '\n', stderr); |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | /* We need a separate va_gc variant here because default template |
| 488 | argument for functions cannot be used in c++-98. Once this |
| 489 | restriction is removed, those variant should be folded with the |
| 490 | above debug_helper. */ |
| 491 | |
| 492 | template<typename T> |
| 493 | void |
| 494 | debug_helper (vec<T, va_gc> &ref) |
| 495 | { |
| 496 | unsigned i; |
| 497 | for (i = 0; i < ref.length (); ++i) |
| 498 | { |
| 499 | fprintf (stderr, format: "[%d] = " , i); |
| 500 | debug_slim (ref[i]); |
| 501 | fputc (c: '\n', stderr); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper |
| 506 | functions for a type T. */ |
| 507 | |
| 508 | #define DEFINE_DEBUG_VEC(T) \ |
| 509 | template void debug_helper (vec<T> &); \ |
| 510 | template void debug_helper (vec<T, va_gc> &); \ |
| 511 | /* Define the vec<T> debug functions. */ \ |
| 512 | DEBUG_FUNCTION void \ |
| 513 | debug (vec<T> &ref) \ |
| 514 | { \ |
| 515 | debug_helper <T> (ref); \ |
| 516 | } \ |
| 517 | DEBUG_FUNCTION void \ |
| 518 | debug (vec<T> *ptr) \ |
| 519 | { \ |
| 520 | if (ptr) \ |
| 521 | debug (*ptr); \ |
| 522 | else \ |
| 523 | fprintf (stderr, "<nil>\n"); \ |
| 524 | } \ |
| 525 | /* Define the vec<T, va_gc> debug functions. */ \ |
| 526 | DEBUG_FUNCTION void \ |
| 527 | debug (vec<T, va_gc> &ref) \ |
| 528 | { \ |
| 529 | debug_helper <T> (ref); \ |
| 530 | } \ |
| 531 | DEBUG_FUNCTION void \ |
| 532 | debug (vec<T, va_gc> *ptr) \ |
| 533 | { \ |
| 534 | if (ptr) \ |
| 535 | debug (*ptr); \ |
| 536 | else \ |
| 537 | fprintf (stderr, "<nil>\n"); \ |
| 538 | } |
| 539 | |
| 540 | /* Default-construct N elements in DST. */ |
| 541 | |
| 542 | template <typename T> |
| 543 | inline void |
| 544 | vec_default_construct (T *dst, unsigned n) |
| 545 | { |
| 546 | for ( ; n; ++dst, --n) |
| 547 | ::new (static_cast<void*>(dst)) T (); |
| 548 | } |
| 549 | |
| 550 | /* Copy-construct N elements in DST from *SRC. */ |
| 551 | |
| 552 | template <typename T> |
| 553 | inline void |
| 554 | vec_copy_construct (T *dst, const T *src, unsigned n) |
| 555 | { |
| 556 | for ( ; n; ++dst, ++src, --n) |
| 557 | ::new (static_cast<void*>(dst)) T (*src); |
| 558 | } |
| 559 | |
| 560 | /* Type to provide zero-initialized values for vec<T, A, L>. This is |
| 561 | used to provide nil initializers for vec instances. Since vec must |
| 562 | be a trivially copyable type that can be copied by memcpy and zeroed |
| 563 | out by memset, it must have defaulted default and copy ctor and copy |
| 564 | assignment. To initialize a vec either use value initialization |
| 565 | (e.g., vec() or vec v{ };) or assign it the value vNULL. This isn't |
| 566 | needed for file-scope and function-local static vectors, which are |
| 567 | zero-initialized by default. */ |
| 568 | struct vnull { }; |
| 569 | constexpr vnull vNULL{ }; |
| 570 | |
| 571 | |
| 572 | /* Embeddable vector. These vectors are suitable to be embedded |
| 573 | in other data structures so that they can be pre-allocated in a |
| 574 | contiguous memory block. |
| 575 | |
| 576 | Embeddable vectors are implemented using the trailing array idiom, |
| 577 | thus they are not resizeable without changing the address of the |
| 578 | vector object itself. This means you cannot have variables or |
| 579 | fields of embeddable vector type -- always use a pointer to a |
| 580 | vector. The one exception is the final field of a structure, which |
| 581 | could be a vector type. |
| 582 | |
| 583 | You will have to use the embedded_size & embedded_init calls to |
| 584 | create such objects, and they will not be resizeable (so the 'safe' |
| 585 | allocation variants are not available). |
| 586 | |
| 587 | Properties: |
| 588 | |
| 589 | - The whole vector and control data are allocated in a single |
| 590 | contiguous block. It uses the trailing-vector idiom, so |
| 591 | allocation must reserve enough space for all the elements |
| 592 | in the vector plus its control data. |
| 593 | - The vector cannot be re-allocated. |
| 594 | - The vector cannot grow nor shrink. |
| 595 | - No indirections needed for access/manipulation. |
| 596 | - It requires 2 words of storage (prior to vector allocation). */ |
| 597 | |
| 598 | template<typename T, typename A> |
| 599 | struct GTY((user)) vec<T, A, vl_embed> |
| 600 | { |
| 601 | public: |
| 602 | unsigned allocated (void) const { return m_vecpfx.m_alloc; } |
| 603 | unsigned length (void) const { return m_vecpfx.m_num; } |
| 604 | bool is_empty (void) const { return m_vecpfx.m_num == 0; } |
| 605 | T *address (void) { return reinterpret_cast <T *> (this + 1); } |
| 606 | const T *address (void) const |
| 607 | { return reinterpret_cast <const T *> (this + 1); } |
| 608 | T *begin () { return address (); } |
| 609 | const T *begin () const { return address (); } |
| 610 | T *end () { return address () + length (); } |
| 611 | const T *end () const { return address () + length (); } |
| 612 | const T &operator[] (unsigned) const; |
| 613 | T &operator[] (unsigned); |
| 614 | const T &last (void) const; |
| 615 | T &last (void); |
| 616 | bool space (unsigned) const; |
| 617 | bool iterate (unsigned, T *) const; |
| 618 | bool iterate (unsigned, T **) const; |
| 619 | vec *copy (ALONE_CXX_MEM_STAT_INFO) const; |
| 620 | void splice (const vec &); |
| 621 | void splice (const vec *src); |
| 622 | T *quick_push (const T &); |
| 623 | using pop_ret_type |
| 624 | = typename std::conditional <std::is_trivially_destructible <T>::value, |
| 625 | T &, void>::type; |
| 626 | pop_ret_type pop (void); |
| 627 | void truncate (unsigned); |
| 628 | void quick_insert (unsigned, const T &); |
| 629 | void ordered_remove (unsigned); |
| 630 | void unordered_remove (unsigned); |
| 631 | void block_remove (unsigned, unsigned); |
| 632 | void qsort (int (*) (const void *, const void *)); |
| 633 | void sort (int (*) (const void *, const void *, void *), void *); |
| 634 | void stablesort (int (*) (const void *, const void *, void *), void *); |
| 635 | T *bsearch (const void *key, int (*compar) (const void *, const void *)); |
| 636 | T *bsearch (const void *key, |
| 637 | int (*compar)(const void *, const void *, void *), void *); |
| 638 | unsigned lower_bound (const T &, bool (*) (const T &, const T &)) const; |
| 639 | bool contains (const T &search) const; |
| 640 | static size_t embedded_size (unsigned); |
| 641 | void embedded_init (unsigned, unsigned = 0, unsigned = 0); |
| 642 | void quick_grow (unsigned len); |
| 643 | void quick_grow_cleared (unsigned len); |
| 644 | |
| 645 | /* vec class can access our internal data and functions. */ |
| 646 | template <typename, typename, typename> friend struct vec; |
| 647 | |
| 648 | /* The allocator types also need access to our internals. */ |
| 649 | friend struct va_gc; |
| 650 | friend struct va_gc_atomic; |
| 651 | friend struct va_heap; |
| 652 | |
| 653 | /* FIXME - This field should be private, but we need to cater to |
| 654 | compilers that have stricter notions of PODness for types. */ |
| 655 | /* Align m_vecpfx to simplify address (). */ |
| 656 | alignas (T) alignas (vec_prefix) vec_prefix m_vecpfx; |
| 657 | }; |
| 658 | |
| 659 | |
| 660 | /* Convenience wrapper functions to use when dealing with pointers to |
| 661 | embedded vectors. Some functionality for these vectors must be |
| 662 | provided via free functions for these reasons: |
| 663 | |
| 664 | 1- The pointer may be NULL (e.g., before initial allocation). |
| 665 | |
| 666 | 2- When the vector needs to grow, it must be reallocated, so |
| 667 | the pointer will change its value. |
| 668 | |
| 669 | Because of limitations with the current GC machinery, all vectors |
| 670 | in GC memory *must* be pointers. */ |
| 671 | |
| 672 | |
| 673 | /* If V contains no room for NELEMS elements, return false. Otherwise, |
| 674 | return true. */ |
| 675 | template<typename T, typename A> |
| 676 | inline bool |
| 677 | vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems) |
| 678 | { |
| 679 | return v ? v->space (nelems) : nelems == 0; |
| 680 | } |
| 681 | |
| 682 | |
| 683 | /* If V is NULL, return 0. Otherwise, return V->length(). */ |
| 684 | template<typename T, typename A> |
| 685 | inline unsigned |
| 686 | vec_safe_length (const vec<T, A, vl_embed> *v) |
| 687 | { |
| 688 | return v ? v->length () : 0; |
| 689 | } |
| 690 | |
| 691 | |
| 692 | /* If V is NULL, return NULL. Otherwise, return V->address(). */ |
| 693 | template<typename T, typename A> |
| 694 | inline T * |
| 695 | vec_safe_address (vec<T, A, vl_embed> *v) |
| 696 | { |
| 697 | return v ? v->address () : NULL; |
| 698 | } |
| 699 | |
| 700 | |
| 701 | /* If V is NULL, return true. Otherwise, return V->is_empty(). */ |
| 702 | template<typename T, typename A> |
| 703 | inline bool |
| 704 | vec_safe_is_empty (vec<T, A, vl_embed> *v) |
| 705 | { |
| 706 | return v ? v->is_empty () : true; |
| 707 | } |
| 708 | |
| 709 | /* If V does not have space for NELEMS elements, call |
| 710 | V->reserve(NELEMS, EXACT). */ |
| 711 | template<typename T, typename A> |
| 712 | inline bool |
| 713 | vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false |
| 714 | CXX_MEM_STAT_INFO) |
| 715 | { |
| 716 | bool extend = nelems ? !vec_safe_space (v, nelems) : false; |
| 717 | if (extend) |
| 718 | A::reserve (v, nelems, exact PASS_MEM_STAT); |
| 719 | return extend; |
| 720 | } |
| 721 | |
| 722 | template<typename T, typename A> |
| 723 | inline bool |
| 724 | vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems |
| 725 | CXX_MEM_STAT_INFO) |
| 726 | { |
| 727 | return vec_safe_reserve (v, nelems, true PASS_MEM_STAT); |
| 728 | } |
| 729 | |
| 730 | |
| 731 | /* Allocate GC memory for V with space for NELEMS slots. If NELEMS |
| 732 | is 0, V is initialized to NULL. */ |
| 733 | |
| 734 | template<typename T, typename A> |
| 735 | inline void |
| 736 | vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO) |
| 737 | { |
| 738 | v = NULL; |
| 739 | vec_safe_reserve (v, nelems, false PASS_MEM_STAT); |
| 740 | } |
| 741 | |
| 742 | |
| 743 | /* Free the GC memory allocated by vector V and set it to NULL. */ |
| 744 | |
| 745 | template<typename T, typename A> |
| 746 | inline void |
| 747 | vec_free (vec<T, A, vl_embed> *&v) |
| 748 | { |
| 749 | A::release (v); |
| 750 | } |
| 751 | |
| 752 | |
| 753 | /* Grow V to length LEN. Allocate it, if necessary. */ |
| 754 | template<typename T, typename A> |
| 755 | inline void |
| 756 | vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len, |
| 757 | bool exact = false CXX_MEM_STAT_INFO) |
| 758 | { |
| 759 | unsigned oldlen = vec_safe_length (v); |
| 760 | gcc_checking_assert (len >= oldlen); |
| 761 | vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT); |
| 762 | v->quick_grow (len); |
| 763 | } |
| 764 | |
| 765 | |
| 766 | /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */ |
| 767 | template<typename T, typename A> |
| 768 | inline void |
| 769 | vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len, |
| 770 | bool exact = false CXX_MEM_STAT_INFO) |
| 771 | { |
| 772 | unsigned oldlen = vec_safe_length (v); |
| 773 | gcc_checking_assert (len >= oldlen); |
| 774 | vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT); |
| 775 | v->quick_grow_cleared (len); |
| 776 | } |
| 777 | |
| 778 | |
| 779 | /* Assume V is not NULL. */ |
| 780 | |
| 781 | template<typename T> |
| 782 | inline void |
| 783 | vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v, |
| 784 | unsigned len, bool exact = false CXX_MEM_STAT_INFO) |
| 785 | { |
| 786 | v->safe_grow_cleared (len, exact PASS_MEM_STAT); |
| 787 | } |
| 788 | |
| 789 | /* If V does not have space for NELEMS elements, call |
| 790 | V->reserve(NELEMS, EXACT). */ |
| 791 | |
| 792 | template<typename T> |
| 793 | inline bool |
| 794 | vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false |
| 795 | CXX_MEM_STAT_INFO) |
| 796 | { |
| 797 | return v->reserve (nelems, exact); |
| 798 | } |
| 799 | |
| 800 | |
| 801 | /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */ |
| 802 | template<typename T, typename A> |
| 803 | inline bool |
| 804 | vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr) |
| 805 | { |
| 806 | if (v) |
| 807 | return v->iterate (ix, ptr); |
| 808 | else |
| 809 | { |
| 810 | *ptr = 0; |
| 811 | return false; |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | template<typename T, typename A> |
| 816 | inline bool |
| 817 | vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr) |
| 818 | { |
| 819 | if (v) |
| 820 | return v->iterate (ix, ptr); |
| 821 | else |
| 822 | { |
| 823 | *ptr = 0; |
| 824 | return false; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | |
| 829 | /* If V has no room for one more element, reallocate it. Then call |
| 830 | V->quick_push(OBJ). */ |
| 831 | template<typename T, typename A> |
| 832 | inline T * |
| 833 | vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO) |
| 834 | { |
| 835 | vec_safe_reserve (v, 1, false PASS_MEM_STAT); |
| 836 | return v->quick_push (obj); |
| 837 | } |
| 838 | |
| 839 | |
| 840 | /* if V has no room for one more element, reallocate it. Then call |
| 841 | V->quick_insert(IX, OBJ). */ |
| 842 | template<typename T, typename A> |
| 843 | inline void |
| 844 | vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj |
| 845 | CXX_MEM_STAT_INFO) |
| 846 | { |
| 847 | vec_safe_reserve (v, 1, false PASS_MEM_STAT); |
| 848 | v->quick_insert (ix, obj); |
| 849 | } |
| 850 | |
| 851 | |
| 852 | /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */ |
| 853 | template<typename T, typename A> |
| 854 | inline void |
| 855 | vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size) |
| 856 | { |
| 857 | if (v) |
| 858 | v->truncate (size); |
| 859 | } |
| 860 | |
| 861 | |
| 862 | /* If SRC is not NULL, return a pointer to a copy of it. */ |
| 863 | template<typename T, typename A> |
| 864 | inline vec<T, A, vl_embed> * |
| 865 | vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO) |
| 866 | { |
| 867 | return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL; |
| 868 | } |
| 869 | |
| 870 | /* Copy the elements from SRC to the end of DST as if by memcpy. |
| 871 | Reallocate DST, if necessary. */ |
| 872 | template<typename T, typename A> |
| 873 | inline void |
| 874 | vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src |
| 875 | CXX_MEM_STAT_INFO) |
| 876 | { |
| 877 | unsigned src_len = vec_safe_length (src); |
| 878 | if (src_len) |
| 879 | { |
| 880 | vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len |
| 881 | PASS_MEM_STAT); |
| 882 | dst->splice (*src); |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the |
| 887 | size of the vector and so should be used with care. */ |
| 888 | |
| 889 | template<typename T, typename A> |
| 890 | inline bool |
| 891 | vec_safe_contains (vec<T, A, vl_embed> *v, const T &search) |
| 892 | { |
| 893 | return v ? v->contains (search) : false; |
| 894 | } |
| 895 | |
| 896 | /* Index into vector. Return the IX'th element. IX must be in the |
| 897 | domain of the vector. */ |
| 898 | |
| 899 | template<typename T, typename A> |
| 900 | inline const T & |
| 901 | vec<T, A, vl_embed>::operator[] (unsigned ix) const |
| 902 | { |
| 903 | gcc_checking_assert (ix < m_vecpfx.m_num); |
| 904 | return address ()[ix]; |
| 905 | } |
| 906 | |
| 907 | template<typename T, typename A> |
| 908 | inline T & |
| 909 | vec<T, A, vl_embed>::operator[] (unsigned ix) |
| 910 | { |
| 911 | gcc_checking_assert (ix < m_vecpfx.m_num); |
| 912 | return address ()[ix]; |
| 913 | } |
| 914 | |
| 915 | |
| 916 | /* Get the final element of the vector, which must not be empty. */ |
| 917 | |
| 918 | template<typename T, typename A> |
| 919 | inline const T & |
| 920 | vec<T, A, vl_embed>::last (void) const |
| 921 | { |
| 922 | gcc_checking_assert (m_vecpfx.m_num > 0); |
| 923 | return (*this)[m_vecpfx.m_num - 1]; |
| 924 | } |
| 925 | |
| 926 | template<typename T, typename A> |
| 927 | inline T & |
| 928 | vec<T, A, vl_embed>::last (void) |
| 929 | { |
| 930 | gcc_checking_assert (m_vecpfx.m_num > 0); |
| 931 | return (*this)[m_vecpfx.m_num - 1]; |
| 932 | } |
| 933 | |
| 934 | |
| 935 | /* If this vector has space for NELEMS additional entries, return |
| 936 | true. You usually only need to use this if you are doing your |
| 937 | own vector reallocation, for instance on an embedded vector. This |
| 938 | returns true in exactly the same circumstances that vec::reserve |
| 939 | will. */ |
| 940 | |
| 941 | template<typename T, typename A> |
| 942 | inline bool |
| 943 | vec<T, A, vl_embed>::space (unsigned nelems) const |
| 944 | { |
| 945 | return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems; |
| 946 | } |
| 947 | |
| 948 | |
| 949 | /* Return iteration condition and update *PTR to (a copy of) the IX'th |
| 950 | element of this vector. Use this to iterate over the elements of a |
| 951 | vector as follows, |
| 952 | |
| 953 | for (ix = 0; v->iterate (ix, &val); ix++) |
| 954 | continue; */ |
| 955 | |
| 956 | template<typename T, typename A> |
| 957 | inline bool |
| 958 | vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const |
| 959 | { |
| 960 | if (ix < m_vecpfx.m_num) |
| 961 | { |
| 962 | *ptr = address ()[ix]; |
| 963 | return true; |
| 964 | } |
| 965 | else |
| 966 | { |
| 967 | *ptr = 0; |
| 968 | return false; |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | |
| 973 | /* Return iteration condition and update *PTR to point to the |
| 974 | IX'th element of this vector. Use this to iterate over the |
| 975 | elements of a vector as follows, |
| 976 | |
| 977 | for (ix = 0; v->iterate (ix, &ptr); ix++) |
| 978 | continue; |
| 979 | |
| 980 | This variant is for vectors of objects. */ |
| 981 | |
| 982 | template<typename T, typename A> |
| 983 | inline bool |
| 984 | vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const |
| 985 | { |
| 986 | if (ix < m_vecpfx.m_num) |
| 987 | { |
| 988 | *ptr = CONST_CAST (T *, &address ()[ix]); |
| 989 | return true; |
| 990 | } |
| 991 | else |
| 992 | { |
| 993 | *ptr = 0; |
| 994 | return false; |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | |
| 999 | /* Return a pointer to a copy of this vector. */ |
| 1000 | |
| 1001 | template<typename T, typename A> |
| 1002 | inline vec<T, A, vl_embed> * |
| 1003 | vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const |
| 1004 | { |
| 1005 | vec<T, A, vl_embed> *new_vec = NULL; |
| 1006 | unsigned len = length (); |
| 1007 | if (len) |
| 1008 | { |
| 1009 | vec_alloc (new_vec, len PASS_MEM_STAT); |
| 1010 | new_vec->embedded_init (len, len); |
| 1011 | vec_copy_construct (new_vec->address (), address (), len); |
| 1012 | } |
| 1013 | return new_vec; |
| 1014 | } |
| 1015 | |
| 1016 | |
| 1017 | /* Copy the elements from SRC to the end of this vector as if by memcpy. |
| 1018 | The vector must have sufficient headroom available. */ |
| 1019 | |
| 1020 | template<typename T, typename A> |
| 1021 | inline void |
| 1022 | vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src) |
| 1023 | { |
| 1024 | unsigned len = src.length (); |
| 1025 | if (len) |
| 1026 | { |
| 1027 | gcc_checking_assert (space (len)); |
| 1028 | vec_copy_construct (end (), src.address (), len); |
| 1029 | m_vecpfx.m_num += len; |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | template<typename T, typename A> |
| 1034 | inline void |
| 1035 | vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src) |
| 1036 | { |
| 1037 | if (src) |
| 1038 | splice (*src); |
| 1039 | } |
| 1040 | |
| 1041 | |
| 1042 | /* Push OBJ (a new element) onto the end of the vector. There must be |
| 1043 | sufficient space in the vector. Return a pointer to the slot |
| 1044 | where OBJ was inserted. */ |
| 1045 | |
| 1046 | template<typename T, typename A> |
| 1047 | inline T * |
| 1048 | vec<T, A, vl_embed>::quick_push (const T &obj) |
| 1049 | { |
| 1050 | gcc_checking_assert (space (1)); |
| 1051 | T *slot = &address ()[m_vecpfx.m_num++]; |
| 1052 | ::new (static_cast<void*>(slot)) T (obj); |
| 1053 | return slot; |
| 1054 | } |
| 1055 | |
| 1056 | |
| 1057 | /* Pop and return a reference to the last element off the end of the |
| 1058 | vector. If T has non-trivial destructor, this method just pops |
| 1059 | the element and returns void type. */ |
| 1060 | |
| 1061 | template<typename T, typename A> |
| 1062 | inline typename vec<T, A, vl_embed>::pop_ret_type |
| 1063 | vec<T, A, vl_embed>::pop (void) |
| 1064 | { |
| 1065 | gcc_checking_assert (length () > 0); |
| 1066 | T &last = address ()[--m_vecpfx.m_num]; |
| 1067 | if (!std::is_trivially_destructible <T>::value) |
| 1068 | last.~T (); |
| 1069 | return static_cast <pop_ret_type> (last); |
| 1070 | } |
| 1071 | |
| 1072 | |
| 1073 | /* Set the length of the vector to SIZE. The new length must be less |
| 1074 | than or equal to the current length. This is an O(1) operation. */ |
| 1075 | |
| 1076 | template<typename T, typename A> |
| 1077 | inline void |
| 1078 | vec<T, A, vl_embed>::truncate (unsigned size) |
| 1079 | { |
| 1080 | unsigned l = length (); |
| 1081 | gcc_checking_assert (l >= size); |
| 1082 | if (!std::is_trivially_destructible <T>::value) |
| 1083 | vec_destruct (address () + size, l - size); |
| 1084 | m_vecpfx.m_num = size; |
| 1085 | } |
| 1086 | |
| 1087 | |
| 1088 | /* Insert an element, OBJ, at the IXth position of this vector. There |
| 1089 | must be sufficient space. This operation is not suitable for non-trivially |
| 1090 | copyable types. */ |
| 1091 | |
| 1092 | template<typename T, typename A> |
| 1093 | inline void |
| 1094 | vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj) |
| 1095 | { |
| 1096 | gcc_checking_assert (length () < allocated ()); |
| 1097 | gcc_checking_assert (ix <= length ()); |
| 1098 | #if GCC_VERSION >= 5000 |
| 1099 | /* GCC 4.8 and 4.9 only implement std::is_trivially_destructible, |
| 1100 | but not std::is_trivially_copyable nor |
| 1101 | std::is_trivially_default_constructible. */ |
| 1102 | static_assert (std::is_trivially_copyable <T>::value, "" ); |
| 1103 | #endif |
| 1104 | T *slot = &address ()[ix]; |
| 1105 | memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T)); |
| 1106 | *slot = obj; |
| 1107 | } |
| 1108 | |
| 1109 | |
| 1110 | /* Remove an element from the IXth position of this vector. Ordering of |
| 1111 | remaining elements is preserved. This is an O(N) operation due to |
| 1112 | memmove. Not suitable for non-trivially copyable types. */ |
| 1113 | |
| 1114 | template<typename T, typename A> |
| 1115 | inline void |
| 1116 | vec<T, A, vl_embed>::ordered_remove (unsigned ix) |
| 1117 | { |
| 1118 | gcc_checking_assert (ix < length ()); |
| 1119 | #if GCC_VERSION >= 5000 |
| 1120 | static_assert (std::is_trivially_copyable <T>::value, "" ); |
| 1121 | #endif |
| 1122 | T *slot = &address ()[ix]; |
| 1123 | memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T)); |
| 1124 | } |
| 1125 | |
| 1126 | |
| 1127 | /* Remove elements in [START, END) from VEC for which COND holds. Ordering of |
| 1128 | remaining elements is preserved. This is an O(N) operation. */ |
| 1129 | |
| 1130 | #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \ |
| 1131 | elem_ptr, start, end, cond) \ |
| 1132 | { \ |
| 1133 | gcc_assert ((end) <= (vec).length ()); \ |
| 1134 | for (read_index = write_index = (start); read_index < (end); \ |
| 1135 | ++read_index) \ |
| 1136 | { \ |
| 1137 | elem_ptr = &(vec)[read_index]; \ |
| 1138 | bool remove_p = (cond); \ |
| 1139 | if (remove_p) \ |
| 1140 | continue; \ |
| 1141 | \ |
| 1142 | if (read_index != write_index) \ |
| 1143 | (vec)[write_index] = (vec)[read_index]; \ |
| 1144 | \ |
| 1145 | write_index++; \ |
| 1146 | } \ |
| 1147 | \ |
| 1148 | if (read_index - write_index > 0) \ |
| 1149 | (vec).block_remove (write_index, read_index - write_index); \ |
| 1150 | } |
| 1151 | |
| 1152 | |
| 1153 | /* Remove elements from VEC for which COND holds. Ordering of remaining |
| 1154 | elements is preserved. This is an O(N) operation. */ |
| 1155 | |
| 1156 | #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \ |
| 1157 | cond) \ |
| 1158 | VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \ |
| 1159 | elem_ptr, 0, (vec).length (), (cond)) |
| 1160 | |
| 1161 | /* Remove an element from the IXth position of this vector. Ordering of |
| 1162 | remaining elements is destroyed. This is an O(1) operation. */ |
| 1163 | |
| 1164 | template<typename T, typename A> |
| 1165 | inline void |
| 1166 | vec<T, A, vl_embed>::unordered_remove (unsigned ix) |
| 1167 | { |
| 1168 | gcc_checking_assert (ix < length ()); |
| 1169 | #if GCC_VERSION >= 5000 |
| 1170 | static_assert (std::is_trivially_copyable <T>::value, "" ); |
| 1171 | #endif |
| 1172 | T *p = address (); |
| 1173 | p[ix] = p[--m_vecpfx.m_num]; |
| 1174 | } |
| 1175 | |
| 1176 | |
| 1177 | /* Remove LEN elements starting at the IXth. Ordering is retained. |
| 1178 | This is an O(N) operation due to memmove. */ |
| 1179 | |
| 1180 | template<typename T, typename A> |
| 1181 | inline void |
| 1182 | vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len) |
| 1183 | { |
| 1184 | gcc_checking_assert (ix + len <= length ()); |
| 1185 | #if GCC_VERSION >= 5000 |
| 1186 | static_assert (std::is_trivially_copyable <T>::value, "" ); |
| 1187 | #endif |
| 1188 | T *slot = &address ()[ix]; |
| 1189 | m_vecpfx.m_num -= len; |
| 1190 | memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T)); |
| 1191 | } |
| 1192 | |
| 1193 | |
| 1194 | #if GCC_VERSION >= 5000 |
| 1195 | namespace vec_detail |
| 1196 | { |
| 1197 | /* gcc_{qsort,qsort_r,stablesort_r} implementation under the hood |
| 1198 | uses memcpy/memmove to reorder the array elements. |
| 1199 | We want to assert these methods aren't used on types for which |
| 1200 | that isn't appropriate, but unfortunately std::pair of 2 trivially |
| 1201 | copyable types isn't trivially copyable and we use qsort on many |
| 1202 | such std::pair instantiations. Let's allow both trivially |
| 1203 | copyable types and std::pair of 2 trivially copyable types as |
| 1204 | exception for qsort/sort/stablesort. */ |
| 1205 | template<typename T> |
| 1206 | struct is_trivially_copyable_or_pair : std::is_trivially_copyable<T> { }; |
| 1207 | |
| 1208 | template<typename T, typename U> |
| 1209 | struct is_trivially_copyable_or_pair<std::pair<T, U> > |
| 1210 | : std::integral_constant<bool, std::is_trivially_copyable<T>::value |
| 1211 | && std::is_trivially_copyable<U>::value> { }; |
| 1212 | } |
| 1213 | #endif |
| 1214 | |
| 1215 | /* Sort the contents of this vector with qsort. CMP is the comparison |
| 1216 | function to pass to qsort. */ |
| 1217 | |
| 1218 | template<typename T, typename A> |
| 1219 | inline void |
| 1220 | vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *)) |
| 1221 | { |
| 1222 | #if GCC_VERSION >= 5000 |
| 1223 | static_assert (vec_detail::is_trivially_copyable_or_pair <T>::value, "" ); |
| 1224 | #endif |
| 1225 | if (length () > 1) |
| 1226 | gcc_qsort (address (), length (), sizeof (T), cmp); |
| 1227 | } |
| 1228 | |
| 1229 | /* Sort the contents of this vector with qsort. CMP is the comparison |
| 1230 | function to pass to qsort. */ |
| 1231 | |
| 1232 | template<typename T, typename A> |
| 1233 | inline void |
| 1234 | vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *), |
| 1235 | void *data) |
| 1236 | { |
| 1237 | #if GCC_VERSION >= 5000 |
| 1238 | static_assert (vec_detail::is_trivially_copyable_or_pair <T>::value, "" ); |
| 1239 | #endif |
| 1240 | if (length () > 1) |
| 1241 | gcc_sort_r (address (), length (), sizeof (T), cmp, data); |
| 1242 | } |
| 1243 | |
| 1244 | /* Sort the contents of this vector with gcc_stablesort_r. CMP is the |
| 1245 | comparison function to pass to qsort. */ |
| 1246 | |
| 1247 | template<typename T, typename A> |
| 1248 | inline void |
| 1249 | vec<T, A, vl_embed>::stablesort (int (*cmp) (const void *, const void *, |
| 1250 | void *), void *data) |
| 1251 | { |
| 1252 | #if GCC_VERSION >= 5000 |
| 1253 | static_assert (vec_detail::is_trivially_copyable_or_pair <T>::value, "" ); |
| 1254 | #endif |
| 1255 | if (length () > 1) |
| 1256 | gcc_stablesort_r (address (), length (), sizeof (T), cmp, data); |
| 1257 | } |
| 1258 | |
| 1259 | /* Search the contents of the sorted vector with a binary search. |
| 1260 | CMP is the comparison function to pass to bsearch. */ |
| 1261 | |
| 1262 | template<typename T, typename A> |
| 1263 | inline T * |
| 1264 | vec<T, A, vl_embed>::bsearch (const void *key, |
| 1265 | int (*compar) (const void *, const void *)) |
| 1266 | { |
| 1267 | const void *base = this->address (); |
| 1268 | size_t nmemb = this->length (); |
| 1269 | size_t size = sizeof (T); |
| 1270 | /* The following is a copy of glibc stdlib-bsearch.h. */ |
| 1271 | size_t l, u, idx; |
| 1272 | const void *p; |
| 1273 | int comparison; |
| 1274 | |
| 1275 | l = 0; |
| 1276 | u = nmemb; |
| 1277 | while (l < u) |
| 1278 | { |
| 1279 | idx = (l + u) / 2; |
| 1280 | p = (const void *) (((const char *) base) + (idx * size)); |
| 1281 | comparison = (*compar) (key, p); |
| 1282 | if (comparison < 0) |
| 1283 | u = idx; |
| 1284 | else if (comparison > 0) |
| 1285 | l = idx + 1; |
| 1286 | else |
| 1287 | return (T *)const_cast<void *>(p); |
| 1288 | } |
| 1289 | |
| 1290 | return NULL; |
| 1291 | } |
| 1292 | |
| 1293 | /* Search the contents of the sorted vector with a binary search. |
| 1294 | CMP is the comparison function to pass to bsearch. */ |
| 1295 | |
| 1296 | template<typename T, typename A> |
| 1297 | inline T * |
| 1298 | vec<T, A, vl_embed>::bsearch (const void *key, |
| 1299 | int (*compar) (const void *, const void *, |
| 1300 | void *), void *data) |
| 1301 | { |
| 1302 | const void *base = this->address (); |
| 1303 | size_t nmemb = this->length (); |
| 1304 | size_t size = sizeof (T); |
| 1305 | /* The following is a copy of glibc stdlib-bsearch.h. */ |
| 1306 | size_t l, u, idx; |
| 1307 | const void *p; |
| 1308 | int comparison; |
| 1309 | |
| 1310 | l = 0; |
| 1311 | u = nmemb; |
| 1312 | while (l < u) |
| 1313 | { |
| 1314 | idx = (l + u) / 2; |
| 1315 | p = (const void *) (((const char *) base) + (idx * size)); |
| 1316 | comparison = (*compar) (key, p, data); |
| 1317 | if (comparison < 0) |
| 1318 | u = idx; |
| 1319 | else if (comparison > 0) |
| 1320 | l = idx + 1; |
| 1321 | else |
| 1322 | return (T *)const_cast<void *>(p); |
| 1323 | } |
| 1324 | |
| 1325 | return NULL; |
| 1326 | } |
| 1327 | |
| 1328 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the |
| 1329 | size of the vector and so should be used with care. */ |
| 1330 | |
| 1331 | template<typename T, typename A> |
| 1332 | inline bool |
| 1333 | vec<T, A, vl_embed>::contains (const T &search) const |
| 1334 | { |
| 1335 | unsigned int len = length (); |
| 1336 | const T *p = address (); |
| 1337 | for (unsigned int i = 0; i < len; i++) |
| 1338 | { |
| 1339 | const T *slot = &p[i]; |
| 1340 | if (*slot == search) |
| 1341 | return true; |
| 1342 | } |
| 1343 | |
| 1344 | return false; |
| 1345 | } |
| 1346 | |
| 1347 | /* Find and return the first position in which OBJ could be inserted |
| 1348 | without changing the ordering of this vector. LESSTHAN is a |
| 1349 | function that returns true if the first argument is strictly less |
| 1350 | than the second. */ |
| 1351 | |
| 1352 | template<typename T, typename A> |
| 1353 | unsigned |
| 1354 | vec<T, A, vl_embed>::lower_bound (const T &obj, |
| 1355 | bool (*lessthan)(const T &, const T &)) |
| 1356 | const |
| 1357 | { |
| 1358 | unsigned int len = length (); |
| 1359 | unsigned int half, middle; |
| 1360 | unsigned int first = 0; |
| 1361 | while (len > 0) |
| 1362 | { |
| 1363 | half = len / 2; |
| 1364 | middle = first; |
| 1365 | middle += half; |
| 1366 | const T &middle_elem = address ()[middle]; |
| 1367 | if (lessthan (middle_elem, obj)) |
| 1368 | { |
| 1369 | first = middle; |
| 1370 | ++first; |
| 1371 | len = len - half - 1; |
| 1372 | } |
| 1373 | else |
| 1374 | len = half; |
| 1375 | } |
| 1376 | return first; |
| 1377 | } |
| 1378 | |
| 1379 | |
| 1380 | /* Return the number of bytes needed to embed an instance of an |
| 1381 | embeddable vec inside another data structure. |
| 1382 | |
| 1383 | Use these methods to determine the required size and initialization |
| 1384 | of a vector V of type T embedded within another structure (as the |
| 1385 | final member): |
| 1386 | |
| 1387 | size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc); |
| 1388 | void v->embedded_init (unsigned alloc, unsigned num); |
| 1389 | |
| 1390 | These allow the caller to perform the memory allocation. */ |
| 1391 | |
| 1392 | template<typename T, typename A> |
| 1393 | inline size_t |
| 1394 | vec<T, A, vl_embed>::embedded_size (unsigned alloc) |
| 1395 | { |
| 1396 | struct alignas (T) U { char data[sizeof (T)]; }; |
| 1397 | typedef vec<U, A, vl_embed> vec_embedded; |
| 1398 | typedef typename std::conditional<std::is_standard_layout<T>::value, |
| 1399 | vec, vec_embedded>::type vec_stdlayout; |
| 1400 | static_assert (sizeof (vec_stdlayout) == sizeof (vec), "" ); |
| 1401 | static_assert (alignof (vec_stdlayout) == alignof (vec), "" ); |
| 1402 | return sizeof (vec_stdlayout) + alloc * sizeof (T); |
| 1403 | } |
| 1404 | |
| 1405 | |
| 1406 | /* Initialize the vector to contain room for ALLOC elements and |
| 1407 | NUM active elements. */ |
| 1408 | |
| 1409 | template<typename T, typename A> |
| 1410 | inline void |
| 1411 | vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut) |
| 1412 | { |
| 1413 | m_vecpfx.m_alloc = alloc; |
| 1414 | m_vecpfx.m_using_auto_storage = aut; |
| 1415 | m_vecpfx.m_num = num; |
| 1416 | } |
| 1417 | |
| 1418 | |
| 1419 | /* Grow the vector to a specific length. LEN must be as long or longer than |
| 1420 | the current length. The new elements are uninitialized. */ |
| 1421 | |
| 1422 | template<typename T, typename A> |
| 1423 | inline void |
| 1424 | vec<T, A, vl_embed>::quick_grow (unsigned len) |
| 1425 | { |
| 1426 | gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc); |
| 1427 | #if GCC_VERSION >= 5000 |
| 1428 | static_assert (std::is_trivially_default_constructible <T>::value, "" ); |
| 1429 | #endif |
| 1430 | m_vecpfx.m_num = len; |
| 1431 | } |
| 1432 | |
| 1433 | |
| 1434 | /* Grow the vector to a specific length. LEN must be as long or longer than |
| 1435 | the current length. The new elements are initialized to zero. */ |
| 1436 | |
| 1437 | template<typename T, typename A> |
| 1438 | inline void |
| 1439 | vec<T, A, vl_embed>::quick_grow_cleared (unsigned len) |
| 1440 | { |
| 1441 | unsigned oldlen = length (); |
| 1442 | size_t growby = len - oldlen; |
| 1443 | gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc); |
| 1444 | m_vecpfx.m_num = len; |
| 1445 | if (growby != 0) |
| 1446 | vec_default_construct (address () + oldlen, growby); |
| 1447 | } |
| 1448 | |
| 1449 | /* Garbage collection support for vec<T, A, vl_embed>. */ |
| 1450 | |
| 1451 | template<typename T> |
| 1452 | void |
| 1453 | gt_ggc_mx (vec<T, va_gc> *v) |
| 1454 | { |
| 1455 | static_assert (std::is_trivially_destructible <T>::value, "" ); |
| 1456 | extern void gt_ggc_mx (T &); |
| 1457 | for (unsigned i = 0; i < v->length (); i++) |
| 1458 | gt_ggc_mx ((*v)[i]); |
| 1459 | } |
| 1460 | |
| 1461 | template<typename T> |
| 1462 | void |
| 1463 | gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED) |
| 1464 | { |
| 1465 | static_assert (std::is_trivially_destructible <T>::value, "" ); |
| 1466 | /* Nothing to do. Vectors of atomic types wrt GC do not need to |
| 1467 | be traversed. */ |
| 1468 | } |
| 1469 | |
| 1470 | |
| 1471 | /* PCH support for vec<T, A, vl_embed>. */ |
| 1472 | |
| 1473 | template<typename T, typename A> |
| 1474 | void |
| 1475 | gt_pch_nx (vec<T, A, vl_embed> *v) |
| 1476 | { |
| 1477 | extern void gt_pch_nx (T &); |
| 1478 | for (unsigned i = 0; i < v->length (); i++) |
| 1479 | gt_pch_nx ((*v)[i]); |
| 1480 | } |
| 1481 | |
| 1482 | template<typename T> |
| 1483 | void |
| 1484 | gt_pch_nx (vec<T, va_gc_atomic, vl_embed> *) |
| 1485 | { |
| 1486 | /* No pointers to note. */ |
| 1487 | } |
| 1488 | |
| 1489 | template<typename T, typename A> |
| 1490 | void |
| 1491 | gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie) |
| 1492 | { |
| 1493 | for (unsigned i = 0; i < v->length (); i++) |
| 1494 | op (&((*v)[i]), NULL, cookie); |
| 1495 | } |
| 1496 | |
| 1497 | template<typename T, typename A> |
| 1498 | void |
| 1499 | gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie) |
| 1500 | { |
| 1501 | extern void gt_pch_nx (T *, gt_pointer_operator, void *); |
| 1502 | for (unsigned i = 0; i < v->length (); i++) |
| 1503 | gt_pch_nx (&((*v)[i]), op, cookie); |
| 1504 | } |
| 1505 | |
| 1506 | template<typename T> |
| 1507 | void |
| 1508 | gt_pch_nx (vec<T, va_gc_atomic, vl_embed> *, gt_pointer_operator, void *) |
| 1509 | { |
| 1510 | /* No pointers to note. */ |
| 1511 | } |
| 1512 | |
| 1513 | |
| 1514 | /* Space efficient vector. These vectors can grow dynamically and are |
| 1515 | allocated together with their control data. They are suited to be |
| 1516 | included in data structures. Prior to initial allocation, they |
| 1517 | only take a single word of storage. |
| 1518 | |
| 1519 | These vectors are implemented as a pointer to an embeddable vector. |
| 1520 | The semantics allow for this pointer to be NULL to represent empty |
| 1521 | vectors. This way, empty vectors occupy minimal space in the |
| 1522 | structure containing them. |
| 1523 | |
| 1524 | Properties: |
| 1525 | |
| 1526 | - The whole vector and control data are allocated in a single |
| 1527 | contiguous block. |
| 1528 | - The whole vector may be re-allocated. |
| 1529 | - Vector data may grow and shrink. |
| 1530 | - Access and manipulation requires a pointer test and |
| 1531 | indirection. |
| 1532 | - It requires 1 word of storage (prior to vector allocation). |
| 1533 | |
| 1534 | |
| 1535 | Limitations: |
| 1536 | |
| 1537 | These vectors must be PODs because they are stored in unions. |
| 1538 | (http://en.wikipedia.org/wiki/Plain_old_data_structures). |
| 1539 | As long as we use C++03, we cannot have constructors nor |
| 1540 | destructors in classes that are stored in unions. */ |
| 1541 | |
| 1542 | template<typename T, size_t N = 0> |
| 1543 | class auto_vec; |
| 1544 | |
| 1545 | template<typename T> |
| 1546 | struct vec<T, va_heap, vl_ptr> |
| 1547 | { |
| 1548 | public: |
| 1549 | /* Default ctors to ensure triviality. Use value-initialization |
| 1550 | (e.g., vec() or vec v{ };) or vNULL to create a zero-initialized |
| 1551 | instance. */ |
| 1552 | vec () = default; |
| 1553 | vec (const vec &) = default; |
| 1554 | /* Initialization from the generic vNULL. */ |
| 1555 | vec (vnull): m_vec () { } |
| 1556 | /* Same as default ctor: vec storage must be released manually. */ |
| 1557 | ~vec () = default; |
| 1558 | |
| 1559 | /* Defaulted same as copy ctor. */ |
| 1560 | vec& operator= (const vec &) = default; |
| 1561 | |
| 1562 | /* Prevent implicit conversion from auto_vec. Use auto_vec::to_vec() |
| 1563 | instead. */ |
| 1564 | template <size_t N> |
| 1565 | vec (auto_vec<T, N> &) = delete; |
| 1566 | |
| 1567 | template <size_t N> |
| 1568 | void operator= (auto_vec<T, N> &) = delete; |
| 1569 | |
| 1570 | /* Memory allocation and deallocation for the embedded vector. |
| 1571 | Needed because we cannot have proper ctors/dtors defined. */ |
| 1572 | void create (unsigned nelems CXX_MEM_STAT_INFO); |
| 1573 | void release (void); |
| 1574 | |
| 1575 | /* Vector operations. */ |
| 1576 | bool exists (void) const |
| 1577 | { return m_vec != NULL; } |
| 1578 | |
| 1579 | bool is_empty (void) const |
| 1580 | { return m_vec ? m_vec->is_empty () : true; } |
| 1581 | |
| 1582 | unsigned allocated (void) const |
| 1583 | { return m_vec ? m_vec->allocated () : 0; } |
| 1584 | |
| 1585 | unsigned length (void) const |
| 1586 | { return m_vec ? m_vec->length () : 0; } |
| 1587 | |
| 1588 | T *address (void) |
| 1589 | { return m_vec ? m_vec->address () : NULL; } |
| 1590 | |
| 1591 | const T *address (void) const |
| 1592 | { return m_vec ? m_vec->address () : NULL; } |
| 1593 | |
| 1594 | T *begin () { return address (); } |
| 1595 | const T *begin () const { return address (); } |
| 1596 | T *end () { return begin () + length (); } |
| 1597 | const T *end () const { return begin () + length (); } |
| 1598 | const T &operator[] (unsigned ix) const |
| 1599 | { return (*m_vec)[ix]; } |
| 1600 | const T &last (void) const |
| 1601 | { return m_vec->last (); } |
| 1602 | |
| 1603 | bool operator!=(const vec &other) const |
| 1604 | { return !(*this == other); } |
| 1605 | |
| 1606 | bool operator==(const vec &other) const |
| 1607 | { return address () == other.address (); } |
| 1608 | |
| 1609 | T &operator[] (unsigned ix) |
| 1610 | { return (*m_vec)[ix]; } |
| 1611 | |
| 1612 | T &last (void) |
| 1613 | { return m_vec->last (); } |
| 1614 | |
| 1615 | bool space (int nelems) const |
| 1616 | { return m_vec ? m_vec->space (nelems) : nelems == 0; } |
| 1617 | |
| 1618 | bool iterate (unsigned ix, T *p) const; |
| 1619 | bool iterate (unsigned ix, T **p) const; |
| 1620 | vec copy (ALONE_CXX_MEM_STAT_INFO) const; |
| 1621 | bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO); |
| 1622 | bool reserve_exact (unsigned CXX_MEM_STAT_INFO); |
| 1623 | void splice (const vec &); |
| 1624 | void safe_splice (const vec & CXX_MEM_STAT_INFO); |
| 1625 | T *quick_push (const T &); |
| 1626 | T *safe_push (const T &CXX_MEM_STAT_INFO); |
| 1627 | using pop_ret_type |
| 1628 | = typename std::conditional <std::is_trivially_destructible <T>::value, |
| 1629 | T &, void>::type; |
| 1630 | pop_ret_type pop (void); |
| 1631 | void truncate (unsigned); |
| 1632 | void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO); |
| 1633 | void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO); |
| 1634 | void quick_grow (unsigned); |
| 1635 | void quick_grow_cleared (unsigned); |
| 1636 | void quick_insert (unsigned, const T &); |
| 1637 | void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO); |
| 1638 | void ordered_remove (unsigned); |
| 1639 | void unordered_remove (unsigned); |
| 1640 | void block_remove (unsigned, unsigned); |
| 1641 | void qsort (int (*) (const void *, const void *)); |
| 1642 | void sort (int (*) (const void *, const void *, void *), void *); |
| 1643 | void stablesort (int (*) (const void *, const void *, void *), void *); |
| 1644 | T *bsearch (const void *key, int (*compar)(const void *, const void *)); |
| 1645 | T *bsearch (const void *key, |
| 1646 | int (*compar)(const void *, const void *, void *), void *); |
| 1647 | unsigned lower_bound (T, bool (*)(const T &, const T &)) const; |
| 1648 | bool contains (const T &search) const; |
| 1649 | void reverse (void); |
| 1650 | |
| 1651 | bool using_auto_storage () const; |
| 1652 | |
| 1653 | /* FIXME - This field should be private, but we need to cater to |
| 1654 | compilers that have stricter notions of PODness for types. */ |
| 1655 | vec<T, va_heap, vl_embed> *m_vec; |
| 1656 | }; |
| 1657 | |
| 1658 | |
| 1659 | /* auto_vec is a subclass of vec that automatically manages creating and |
| 1660 | releasing the internal vector. If N is non zero then it has N elements of |
| 1661 | internal storage. The default is no internal storage, and you probably only |
| 1662 | want to ask for internal storage for vectors on the stack because if the |
| 1663 | size of the vector is larger than the internal storage that space is wasted. |
| 1664 | */ |
| 1665 | template<typename T, size_t N /* = 0 */> |
| 1666 | class auto_vec : public vec<T, va_heap> |
| 1667 | { |
| 1668 | public: |
| 1669 | auto_vec () |
| 1670 | { |
| 1671 | m_auto.embedded_init (N, 0, 1); |
| 1672 | /* ??? Instead of initializing m_vec from &m_auto directly use an |
| 1673 | expression that avoids refering to a specific member of 'this' |
| 1674 | to derail the -Wstringop-overflow diagnostic code, avoiding |
| 1675 | the impression that data accesses are supposed to be to the |
| 1676 | m_auto member storage. */ |
| 1677 | size_t off = (char *) &m_auto - (char *) this; |
| 1678 | this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off); |
| 1679 | } |
| 1680 | |
| 1681 | auto_vec (size_t s CXX_MEM_STAT_INFO) |
| 1682 | { |
| 1683 | if (s > N) |
| 1684 | { |
| 1685 | this->create (s PASS_MEM_STAT); |
| 1686 | return; |
| 1687 | } |
| 1688 | |
| 1689 | m_auto.embedded_init (N, 0, 1); |
| 1690 | /* ??? See above. */ |
| 1691 | size_t off = (char *) &m_auto - (char *) this; |
| 1692 | this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off); |
| 1693 | } |
| 1694 | |
| 1695 | ~auto_vec () |
| 1696 | { |
| 1697 | this->release (); |
| 1698 | } |
| 1699 | |
| 1700 | /* Explicitly convert to the base class. There is no conversion |
| 1701 | from a const auto_vec because a copy of the returned vec can |
| 1702 | be used to modify *THIS. |
| 1703 | This is a legacy function not to be used in new code. */ |
| 1704 | vec<T, va_heap> to_vec_legacy () { |
| 1705 | return *static_cast<vec<T, va_heap> *>(this); |
| 1706 | } |
| 1707 | |
| 1708 | private: |
| 1709 | vec<T, va_heap, vl_embed> m_auto; |
| 1710 | unsigned char m_data[sizeof (T) * N]; |
| 1711 | }; |
| 1712 | |
| 1713 | /* auto_vec is a sub class of vec whose storage is released when it is |
| 1714 | destroyed. */ |
| 1715 | template<typename T> |
| 1716 | class auto_vec<T, 0> : public vec<T, va_heap> |
| 1717 | { |
| 1718 | public: |
| 1719 | auto_vec () { this->m_vec = NULL; } |
| 1720 | auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); } |
| 1721 | ~auto_vec () { this->release (); } |
| 1722 | |
| 1723 | auto_vec (vec<T, va_heap>&& r) |
| 1724 | { |
| 1725 | gcc_assert (!r.using_auto_storage ()); |
| 1726 | this->m_vec = r.m_vec; |
| 1727 | r.m_vec = NULL; |
| 1728 | } |
| 1729 | |
| 1730 | auto_vec (auto_vec<T> &&r) |
| 1731 | { |
| 1732 | gcc_assert (!r.using_auto_storage ()); |
| 1733 | this->m_vec = r.m_vec; |
| 1734 | r.m_vec = NULL; |
| 1735 | } |
| 1736 | |
| 1737 | auto_vec& operator= (vec<T, va_heap>&& r) |
| 1738 | { |
| 1739 | if (this == &r) |
| 1740 | return *this; |
| 1741 | |
| 1742 | gcc_assert (!r.using_auto_storage ()); |
| 1743 | this->release (); |
| 1744 | this->m_vec = r.m_vec; |
| 1745 | r.m_vec = NULL; |
| 1746 | return *this; |
| 1747 | } |
| 1748 | |
| 1749 | auto_vec& operator= (auto_vec<T> &&r) |
| 1750 | { |
| 1751 | if (this == &r) |
| 1752 | return *this; |
| 1753 | |
| 1754 | gcc_assert (!r.using_auto_storage ()); |
| 1755 | this->release (); |
| 1756 | this->m_vec = r.m_vec; |
| 1757 | r.m_vec = NULL; |
| 1758 | return *this; |
| 1759 | } |
| 1760 | |
| 1761 | /* Explicitly convert to the base class. There is no conversion |
| 1762 | from a const auto_vec because a copy of the returned vec can |
| 1763 | be used to modify *THIS. |
| 1764 | This is a legacy function not to be used in new code. */ |
| 1765 | vec<T, va_heap> to_vec_legacy () { |
| 1766 | return *static_cast<vec<T, va_heap> *>(this); |
| 1767 | } |
| 1768 | |
| 1769 | // You probably don't want to copy a vector, so these are deleted to prevent |
| 1770 | // unintentional use. If you really need a copy of the vectors contents you |
| 1771 | // can use copy (). |
| 1772 | auto_vec (const auto_vec &) = delete; |
| 1773 | auto_vec &operator= (const auto_vec &) = delete; |
| 1774 | }; |
| 1775 | |
| 1776 | |
| 1777 | /* Allocate heap memory for pointer V and create the internal vector |
| 1778 | with space for NELEMS elements. If NELEMS is 0, the internal |
| 1779 | vector is initialized to empty. */ |
| 1780 | |
| 1781 | template<typename T> |
| 1782 | inline void |
| 1783 | vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO) |
| 1784 | { |
| 1785 | v = new vec<T>; |
| 1786 | v->create (nelems PASS_MEM_STAT); |
| 1787 | } |
| 1788 | |
| 1789 | |
| 1790 | /* A subclass of auto_vec <char *> that frees all of its elements on |
| 1791 | deletion. */ |
| 1792 | |
| 1793 | class auto_string_vec : public auto_vec <char *> |
| 1794 | { |
| 1795 | public: |
| 1796 | ~auto_string_vec (); |
| 1797 | }; |
| 1798 | |
| 1799 | /* A subclass of auto_vec <T *> that deletes all of its elements on |
| 1800 | destruction. |
| 1801 | |
| 1802 | This is a crude way for a vec to "own" the objects it points to |
| 1803 | and clean up automatically. |
| 1804 | |
| 1805 | For example, no attempt is made to delete elements when an item |
| 1806 | within the vec is overwritten. |
| 1807 | |
| 1808 | We can't rely on gnu::unique_ptr within a container, |
| 1809 | since we can't rely on move semantics in C++98. */ |
| 1810 | |
| 1811 | template <typename T> |
| 1812 | class auto_delete_vec : public auto_vec <T *> |
| 1813 | { |
| 1814 | public: |
| 1815 | auto_delete_vec () {} |
| 1816 | auto_delete_vec (size_t s) : auto_vec <T *> (s) {} |
| 1817 | |
| 1818 | ~auto_delete_vec (); |
| 1819 | |
| 1820 | private: |
| 1821 | DISABLE_COPY_AND_ASSIGN(auto_delete_vec); |
| 1822 | }; |
| 1823 | |
| 1824 | /* Conditionally allocate heap memory for VEC and its internal vector. */ |
| 1825 | |
| 1826 | template<typename T> |
| 1827 | inline void |
| 1828 | vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO) |
| 1829 | { |
| 1830 | if (!vec) |
| 1831 | vec_alloc (vec, nelems PASS_MEM_STAT); |
| 1832 | } |
| 1833 | |
| 1834 | |
| 1835 | /* Free the heap memory allocated by vector V and set it to NULL. */ |
| 1836 | |
| 1837 | template<typename T> |
| 1838 | inline void |
| 1839 | vec_free (vec<T> *&v) |
| 1840 | { |
| 1841 | if (v == NULL) |
| 1842 | return; |
| 1843 | |
| 1844 | v->release (); |
| 1845 | delete v; |
| 1846 | v = NULL; |
| 1847 | } |
| 1848 | |
| 1849 | |
| 1850 | /* Return iteration condition and update PTR to point to the IX'th |
| 1851 | element of this vector. Use this to iterate over the elements of a |
| 1852 | vector as follows, |
| 1853 | |
| 1854 | for (ix = 0; v.iterate (ix, &ptr); ix++) |
| 1855 | continue; */ |
| 1856 | |
| 1857 | template<typename T> |
| 1858 | inline bool |
| 1859 | vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const |
| 1860 | { |
| 1861 | if (m_vec) |
| 1862 | return m_vec->iterate (ix, ptr); |
| 1863 | else |
| 1864 | { |
| 1865 | *ptr = 0; |
| 1866 | return false; |
| 1867 | } |
| 1868 | } |
| 1869 | |
| 1870 | |
| 1871 | /* Return iteration condition and update *PTR to point to the |
| 1872 | IX'th element of this vector. Use this to iterate over the |
| 1873 | elements of a vector as follows, |
| 1874 | |
| 1875 | for (ix = 0; v->iterate (ix, &ptr); ix++) |
| 1876 | continue; |
| 1877 | |
| 1878 | This variant is for vectors of objects. */ |
| 1879 | |
| 1880 | template<typename T> |
| 1881 | inline bool |
| 1882 | vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const |
| 1883 | { |
| 1884 | if (m_vec) |
| 1885 | return m_vec->iterate (ix, ptr); |
| 1886 | else |
| 1887 | { |
| 1888 | *ptr = 0; |
| 1889 | return false; |
| 1890 | } |
| 1891 | } |
| 1892 | |
| 1893 | |
| 1894 | /* Convenience macro for forward iteration. */ |
| 1895 | #define FOR_EACH_VEC_ELT(V, I, P) \ |
| 1896 | for (I = 0; (V).iterate ((I), &(P)); ++(I)) |
| 1897 | |
| 1898 | #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \ |
| 1899 | for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) |
| 1900 | |
| 1901 | /* Likewise, but start from FROM rather than 0. */ |
| 1902 | #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \ |
| 1903 | for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) |
| 1904 | |
| 1905 | /* Convenience macro for reverse iteration. */ |
| 1906 | #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \ |
| 1907 | for (I = (V).length () - 1; \ |
| 1908 | (V).iterate ((I), &(P)); \ |
| 1909 | (I)--) |
| 1910 | |
| 1911 | #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \ |
| 1912 | for (I = vec_safe_length (V) - 1; \ |
| 1913 | vec_safe_iterate ((V), (I), &(P)); \ |
| 1914 | (I)--) |
| 1915 | |
| 1916 | /* auto_string_vec's dtor, freeing all contained strings, automatically |
| 1917 | chaining up to ~auto_vec <char *>, which frees the internal buffer. */ |
| 1918 | |
| 1919 | inline |
| 1920 | auto_string_vec::~auto_string_vec () |
| 1921 | { |
| 1922 | int i; |
| 1923 | char *str; |
| 1924 | FOR_EACH_VEC_ELT (*this, i, str) |
| 1925 | free (ptr: str); |
| 1926 | } |
| 1927 | |
| 1928 | /* auto_delete_vec's dtor, deleting all contained items, automatically |
| 1929 | chaining up to ~auto_vec <T*>, which frees the internal buffer. */ |
| 1930 | |
| 1931 | template <typename T> |
| 1932 | inline |
| 1933 | auto_delete_vec<T>::~auto_delete_vec () |
| 1934 | { |
| 1935 | int i; |
| 1936 | T *item; |
| 1937 | FOR_EACH_VEC_ELT (*this, i, item) |
| 1938 | delete item; |
| 1939 | } |
| 1940 | |
| 1941 | |
| 1942 | /* Return a copy of this vector. */ |
| 1943 | |
| 1944 | template<typename T> |
| 1945 | inline vec<T, va_heap, vl_ptr> |
| 1946 | vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const |
| 1947 | { |
| 1948 | vec<T, va_heap, vl_ptr> new_vec{ }; |
| 1949 | if (length ()) |
| 1950 | new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT); |
| 1951 | return new_vec; |
| 1952 | } |
| 1953 | |
| 1954 | |
| 1955 | /* Ensure that the vector has at least RESERVE slots available (if |
| 1956 | EXACT is false), or exactly RESERVE slots available (if EXACT is |
| 1957 | true). |
| 1958 | |
| 1959 | This may create additional headroom if EXACT is false. |
| 1960 | |
| 1961 | Note that this can cause the embedded vector to be reallocated. |
| 1962 | Returns true iff reallocation actually occurred. */ |
| 1963 | |
| 1964 | template<typename T> |
| 1965 | inline bool |
| 1966 | vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL) |
| 1967 | { |
| 1968 | if (space (nelems)) |
| 1969 | return false; |
| 1970 | |
| 1971 | /* For now play a game with va_heap::reserve to hide our auto storage if any, |
| 1972 | this is necessary because it doesn't have enough information to know the |
| 1973 | embedded vector is in auto storage, and so should not be freed. */ |
| 1974 | vec<T, va_heap, vl_embed> *oldvec = m_vec; |
| 1975 | unsigned int oldsize = 0; |
| 1976 | bool handle_auto_vec = m_vec && using_auto_storage (); |
| 1977 | if (handle_auto_vec) |
| 1978 | { |
| 1979 | m_vec = NULL; |
| 1980 | oldsize = oldvec->length (); |
| 1981 | nelems += oldsize; |
| 1982 | } |
| 1983 | |
| 1984 | va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT); |
| 1985 | if (handle_auto_vec) |
| 1986 | { |
| 1987 | vec_copy_construct (m_vec->address (), oldvec->address (), oldsize); |
| 1988 | m_vec->m_vecpfx.m_num = oldsize; |
| 1989 | } |
| 1990 | |
| 1991 | return true; |
| 1992 | } |
| 1993 | |
| 1994 | |
| 1995 | /* Ensure that this vector has exactly NELEMS slots available. This |
| 1996 | will not create additional headroom. Note this can cause the |
| 1997 | embedded vector to be reallocated. Returns true iff reallocation |
| 1998 | actually occurred. */ |
| 1999 | |
| 2000 | template<typename T> |
| 2001 | inline bool |
| 2002 | vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL) |
| 2003 | { |
| 2004 | return reserve (nelems, exact: true PASS_MEM_STAT); |
| 2005 | } |
| 2006 | |
| 2007 | |
| 2008 | /* Create the internal vector and reserve NELEMS for it. This is |
| 2009 | exactly like vec::reserve, but the internal vector is |
| 2010 | unconditionally allocated from scratch. The old one, if it |
| 2011 | existed, is lost. */ |
| 2012 | |
| 2013 | template<typename T> |
| 2014 | inline void |
| 2015 | vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL) |
| 2016 | { |
| 2017 | m_vec = NULL; |
| 2018 | if (nelems > 0) |
| 2019 | reserve_exact (nelems PASS_MEM_STAT); |
| 2020 | } |
| 2021 | |
| 2022 | |
| 2023 | /* Free the memory occupied by the embedded vector. */ |
| 2024 | |
| 2025 | template<typename T> |
| 2026 | inline void |
| 2027 | vec<T, va_heap, vl_ptr>::release (void) |
| 2028 | { |
| 2029 | if (!m_vec) |
| 2030 | return; |
| 2031 | |
| 2032 | if (using_auto_storage ()) |
| 2033 | { |
| 2034 | m_vec->truncate (0); |
| 2035 | return; |
| 2036 | } |
| 2037 | |
| 2038 | va_heap::release (m_vec); |
| 2039 | } |
| 2040 | |
| 2041 | /* Copy the elements from SRC to the end of this vector as if by memcpy. |
| 2042 | SRC and this vector must be allocated with the same memory |
| 2043 | allocation mechanism. This vector is assumed to have sufficient |
| 2044 | headroom available. */ |
| 2045 | |
| 2046 | template<typename T> |
| 2047 | inline void |
| 2048 | vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src) |
| 2049 | { |
| 2050 | if (src.length ()) |
| 2051 | m_vec->splice (*(src.m_vec)); |
| 2052 | } |
| 2053 | |
| 2054 | |
| 2055 | /* Copy the elements in SRC to the end of this vector as if by memcpy. |
| 2056 | SRC and this vector must be allocated with the same mechanism. |
| 2057 | If there is not enough headroom in this vector, it will be reallocated |
| 2058 | as needed. */ |
| 2059 | |
| 2060 | template<typename T> |
| 2061 | inline void |
| 2062 | vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src |
| 2063 | MEM_STAT_DECL) |
| 2064 | { |
| 2065 | if (src.length ()) |
| 2066 | { |
| 2067 | reserve_exact (nelems: src.length ()); |
| 2068 | splice (src); |
| 2069 | } |
| 2070 | } |
| 2071 | |
| 2072 | |
| 2073 | /* Push OBJ (a new element) onto the end of the vector. There must be |
| 2074 | sufficient space in the vector. Return a pointer to the slot |
| 2075 | where OBJ was inserted. */ |
| 2076 | |
| 2077 | template<typename T> |
| 2078 | inline T * |
| 2079 | vec<T, va_heap, vl_ptr>::quick_push (const T &obj) |
| 2080 | { |
| 2081 | return m_vec->quick_push (obj); |
| 2082 | } |
| 2083 | |
| 2084 | |
| 2085 | /* Push a new element OBJ onto the end of this vector. Reallocates |
| 2086 | the embedded vector, if needed. Return a pointer to the slot where |
| 2087 | OBJ was inserted. */ |
| 2088 | |
| 2089 | template<typename T> |
| 2090 | inline T * |
| 2091 | vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL) |
| 2092 | { |
| 2093 | reserve (nelems: 1, exact: false PASS_MEM_STAT); |
| 2094 | return quick_push (obj); |
| 2095 | } |
| 2096 | |
| 2097 | |
| 2098 | /* Pop and return a reference to the last element off the end of the |
| 2099 | vector. If T has non-trivial destructor, this method just pops |
| 2100 | last element and returns void. */ |
| 2101 | |
| 2102 | template<typename T> |
| 2103 | inline typename vec<T, va_heap, vl_ptr>::pop_ret_type |
| 2104 | vec<T, va_heap, vl_ptr>::pop (void) |
| 2105 | { |
| 2106 | return m_vec->pop (); |
| 2107 | } |
| 2108 | |
| 2109 | |
| 2110 | /* Set the length of the vector to LEN. The new length must be less |
| 2111 | than or equal to the current length. This is an O(1) operation. */ |
| 2112 | |
| 2113 | template<typename T> |
| 2114 | inline void |
| 2115 | vec<T, va_heap, vl_ptr>::truncate (unsigned size) |
| 2116 | { |
| 2117 | if (m_vec) |
| 2118 | m_vec->truncate (size); |
| 2119 | else |
| 2120 | gcc_checking_assert (size == 0); |
| 2121 | } |
| 2122 | |
| 2123 | |
| 2124 | /* Grow the vector to a specific length. LEN must be as long or |
| 2125 | longer than the current length. The new elements are |
| 2126 | uninitialized. Reallocate the internal vector, if needed. */ |
| 2127 | |
| 2128 | template<typename T> |
| 2129 | inline void |
| 2130 | vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL) |
| 2131 | { |
| 2132 | unsigned oldlen = length (); |
| 2133 | gcc_checking_assert (oldlen <= len); |
| 2134 | reserve (nelems: len - oldlen, exact PASS_MEM_STAT); |
| 2135 | if (m_vec) |
| 2136 | m_vec->quick_grow (len); |
| 2137 | else |
| 2138 | gcc_checking_assert (len == 0); |
| 2139 | } |
| 2140 | |
| 2141 | |
| 2142 | /* Grow the embedded vector to a specific length. LEN must be as |
| 2143 | long or longer than the current length. The new elements are |
| 2144 | initialized to zero. Reallocate the internal vector, if needed. */ |
| 2145 | |
| 2146 | template<typename T> |
| 2147 | inline void |
| 2148 | vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact |
| 2149 | MEM_STAT_DECL) |
| 2150 | { |
| 2151 | unsigned oldlen = length (); |
| 2152 | gcc_checking_assert (oldlen <= len); |
| 2153 | reserve (nelems: len - oldlen, exact PASS_MEM_STAT); |
| 2154 | if (m_vec) |
| 2155 | m_vec->quick_grow_cleared (len); |
| 2156 | else |
| 2157 | gcc_checking_assert (len == 0); |
| 2158 | } |
| 2159 | |
| 2160 | |
| 2161 | /* Same as vec::safe_grow but without reallocation of the internal vector. |
| 2162 | If the vector cannot be extended, a runtime assertion will be triggered. */ |
| 2163 | |
| 2164 | template<typename T> |
| 2165 | inline void |
| 2166 | vec<T, va_heap, vl_ptr>::quick_grow (unsigned len) |
| 2167 | { |
| 2168 | gcc_checking_assert (m_vec); |
| 2169 | m_vec->quick_grow (len); |
| 2170 | } |
| 2171 | |
| 2172 | |
| 2173 | /* Same as vec::quick_grow_cleared but without reallocation of the |
| 2174 | internal vector. If the vector cannot be extended, a runtime |
| 2175 | assertion will be triggered. */ |
| 2176 | |
| 2177 | template<typename T> |
| 2178 | inline void |
| 2179 | vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len) |
| 2180 | { |
| 2181 | gcc_checking_assert (m_vec); |
| 2182 | m_vec->quick_grow_cleared (len); |
| 2183 | } |
| 2184 | |
| 2185 | |
| 2186 | /* Insert an element, OBJ, at the IXth position of this vector. There |
| 2187 | must be sufficient space. */ |
| 2188 | |
| 2189 | template<typename T> |
| 2190 | inline void |
| 2191 | vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj) |
| 2192 | { |
| 2193 | m_vec->quick_insert (ix, obj); |
| 2194 | } |
| 2195 | |
| 2196 | |
| 2197 | /* Insert an element, OBJ, at the IXth position of the vector. |
| 2198 | Reallocate the embedded vector, if necessary. */ |
| 2199 | |
| 2200 | template<typename T> |
| 2201 | inline void |
| 2202 | vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL) |
| 2203 | { |
| 2204 | reserve (nelems: 1, exact: false PASS_MEM_STAT); |
| 2205 | quick_insert (ix, obj); |
| 2206 | } |
| 2207 | |
| 2208 | |
| 2209 | /* Remove an element from the IXth position of this vector. Ordering of |
| 2210 | remaining elements is preserved. This is an O(N) operation due to |
| 2211 | a memmove. */ |
| 2212 | |
| 2213 | template<typename T> |
| 2214 | inline void |
| 2215 | vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix) |
| 2216 | { |
| 2217 | m_vec->ordered_remove (ix); |
| 2218 | } |
| 2219 | |
| 2220 | |
| 2221 | /* Remove an element from the IXth position of this vector. Ordering |
| 2222 | of remaining elements is destroyed. This is an O(1) operation. */ |
| 2223 | |
| 2224 | template<typename T> |
| 2225 | inline void |
| 2226 | vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix) |
| 2227 | { |
| 2228 | m_vec->unordered_remove (ix); |
| 2229 | } |
| 2230 | |
| 2231 | |
| 2232 | /* Remove LEN elements starting at the IXth. Ordering is retained. |
| 2233 | This is an O(N) operation due to memmove. */ |
| 2234 | |
| 2235 | template<typename T> |
| 2236 | inline void |
| 2237 | vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len) |
| 2238 | { |
| 2239 | m_vec->block_remove (ix, len); |
| 2240 | } |
| 2241 | |
| 2242 | |
| 2243 | /* Sort the contents of this vector with qsort. CMP is the comparison |
| 2244 | function to pass to qsort. */ |
| 2245 | |
| 2246 | template<typename T> |
| 2247 | inline void |
| 2248 | vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *)) |
| 2249 | { |
| 2250 | if (m_vec) |
| 2251 | m_vec->qsort (cmp); |
| 2252 | } |
| 2253 | |
| 2254 | /* Sort the contents of this vector with qsort. CMP is the comparison |
| 2255 | function to pass to qsort. */ |
| 2256 | |
| 2257 | template<typename T> |
| 2258 | inline void |
| 2259 | vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *, |
| 2260 | void *), void *data) |
| 2261 | { |
| 2262 | if (m_vec) |
| 2263 | m_vec->sort (cmp, data); |
| 2264 | } |
| 2265 | |
| 2266 | /* Sort the contents of this vector with gcc_stablesort_r. CMP is the |
| 2267 | comparison function to pass to qsort. */ |
| 2268 | |
| 2269 | template<typename T> |
| 2270 | inline void |
| 2271 | vec<T, va_heap, vl_ptr>::stablesort (int (*cmp) (const void *, const void *, |
| 2272 | void *), void *data) |
| 2273 | { |
| 2274 | if (m_vec) |
| 2275 | m_vec->stablesort (cmp, data); |
| 2276 | } |
| 2277 | |
| 2278 | /* Search the contents of the sorted vector with a binary search. |
| 2279 | CMP is the comparison function to pass to bsearch. */ |
| 2280 | |
| 2281 | template<typename T> |
| 2282 | inline T * |
| 2283 | vec<T, va_heap, vl_ptr>::bsearch (const void *key, |
| 2284 | int (*cmp) (const void *, const void *)) |
| 2285 | { |
| 2286 | if (m_vec) |
| 2287 | return m_vec->bsearch (key, cmp); |
| 2288 | return NULL; |
| 2289 | } |
| 2290 | |
| 2291 | /* Search the contents of the sorted vector with a binary search. |
| 2292 | CMP is the comparison function to pass to bsearch. */ |
| 2293 | |
| 2294 | template<typename T> |
| 2295 | inline T * |
| 2296 | vec<T, va_heap, vl_ptr>::bsearch (const void *key, |
| 2297 | int (*cmp) (const void *, const void *, |
| 2298 | void *), void *data) |
| 2299 | { |
| 2300 | if (m_vec) |
| 2301 | return m_vec->bsearch (key, cmp, data); |
| 2302 | return NULL; |
| 2303 | } |
| 2304 | |
| 2305 | |
| 2306 | /* Find and return the first position in which OBJ could be inserted |
| 2307 | without changing the ordering of this vector. LESSTHAN is a |
| 2308 | function that returns true if the first argument is strictly less |
| 2309 | than the second. */ |
| 2310 | |
| 2311 | template<typename T> |
| 2312 | inline unsigned |
| 2313 | vec<T, va_heap, vl_ptr>::lower_bound (T obj, |
| 2314 | bool (*lessthan)(const T &, const T &)) |
| 2315 | const |
| 2316 | { |
| 2317 | return m_vec ? m_vec->lower_bound (obj, lessthan) : 0; |
| 2318 | } |
| 2319 | |
| 2320 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the |
| 2321 | size of the vector and so should be used with care. */ |
| 2322 | |
| 2323 | template<typename T> |
| 2324 | inline bool |
| 2325 | vec<T, va_heap, vl_ptr>::contains (const T &search) const |
| 2326 | { |
| 2327 | return m_vec ? m_vec->contains (search) : false; |
| 2328 | } |
| 2329 | |
| 2330 | /* Reverse content of the vector. */ |
| 2331 | |
| 2332 | template<typename T> |
| 2333 | inline void |
| 2334 | vec<T, va_heap, vl_ptr>::reverse (void) |
| 2335 | { |
| 2336 | unsigned l = length (); |
| 2337 | T *ptr = address (); |
| 2338 | |
| 2339 | for (unsigned i = 0; i < l / 2; i++) |
| 2340 | std::swap (ptr[i], ptr[l - i - 1]); |
| 2341 | } |
| 2342 | |
| 2343 | template<typename T> |
| 2344 | inline bool |
| 2345 | vec<T, va_heap, vl_ptr>::using_auto_storage () const |
| 2346 | { |
| 2347 | return m_vec ? m_vec->m_vecpfx.m_using_auto_storage : false; |
| 2348 | } |
| 2349 | |
| 2350 | /* Release VEC and call release of all element vectors. */ |
| 2351 | |
| 2352 | template<typename T> |
| 2353 | inline void |
| 2354 | release_vec_vec (vec<vec<T> > &vec) |
| 2355 | { |
| 2356 | for (unsigned i = 0; i < vec.length (); i++) |
| 2357 | vec[i].release (); |
| 2358 | |
| 2359 | vec.release (); |
| 2360 | } |
| 2361 | |
| 2362 | // Provide a subset of the std::span functionality. (We can't use std::span |
| 2363 | // itself because it's a C++20 feature.) |
| 2364 | // |
| 2365 | // In addition, provide an invalid value that is distinct from all valid |
| 2366 | // sequences (including the empty sequence). This can be used to return |
| 2367 | // failure without having to use std::optional. |
| 2368 | // |
| 2369 | // There is no operator bool because it would be ambiguous whether it is |
| 2370 | // testing for a valid value or an empty sequence. |
| 2371 | template<typename T> |
| 2372 | class array_slice |
| 2373 | { |
| 2374 | template<typename OtherT> friend class array_slice; |
| 2375 | |
| 2376 | public: |
| 2377 | using value_type = T; |
| 2378 | using iterator = T *; |
| 2379 | using const_iterator = const T *; |
| 2380 | |
| 2381 | array_slice () : m_base (nullptr), m_size (0) {} |
| 2382 | |
| 2383 | template<typename OtherT> |
| 2384 | array_slice (array_slice<OtherT> other) |
| 2385 | : m_base (other.m_base), m_size (other.m_size) {} |
| 2386 | |
| 2387 | array_slice (iterator base, unsigned int size) |
| 2388 | : m_base (base), m_size (size) {} |
| 2389 | |
| 2390 | template<size_t N> |
| 2391 | array_slice (T (&array)[N]) : m_base (array), m_size (N) {} |
| 2392 | |
| 2393 | template<typename OtherT> |
| 2394 | array_slice (const vec<OtherT> &v) |
| 2395 | : m_base (v.address ()), m_size (v.length ()) {} |
| 2396 | |
| 2397 | template<typename OtherT> |
| 2398 | array_slice (vec<OtherT> &v) |
| 2399 | : m_base (v.address ()), m_size (v.length ()) {} |
| 2400 | |
| 2401 | template<typename OtherT, typename A> |
| 2402 | array_slice (const vec<OtherT, A, vl_embed> *v) |
| 2403 | : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {} |
| 2404 | |
| 2405 | template<typename OtherT, typename A> |
| 2406 | array_slice (vec<OtherT, A, vl_embed> *v) |
| 2407 | : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {} |
| 2408 | |
| 2409 | iterator begin () { gcc_checking_assert (is_valid ()); return m_base; } |
| 2410 | iterator end () { gcc_checking_assert (is_valid ()); return m_base + m_size; } |
| 2411 | |
| 2412 | const_iterator begin () const { gcc_checking_assert (is_valid ()); return m_base; } |
| 2413 | const_iterator end () const { gcc_checking_assert (is_valid ()); return m_base + m_size; } |
| 2414 | |
| 2415 | value_type &front (); |
| 2416 | value_type &back (); |
| 2417 | value_type &operator[] (unsigned int i); |
| 2418 | |
| 2419 | const value_type &front () const; |
| 2420 | const value_type &back () const; |
| 2421 | const value_type &operator[] (unsigned int i) const; |
| 2422 | |
| 2423 | unsigned size () const { return m_size; } |
| 2424 | size_t size_bytes () const { return m_size * sizeof (T); } |
| 2425 | bool empty () const { return m_size == 0; } |
| 2426 | |
| 2427 | // An invalid array_slice that represents a failed operation. This is |
| 2428 | // distinct from an empty slice, which is a valid result in some contexts. |
| 2429 | static array_slice invalid () { return { nullptr, ~0U }; } |
| 2430 | |
| 2431 | // True if the array is valid, false if it is an array like INVALID. |
| 2432 | bool is_valid () const { return m_base || m_size == 0; } |
| 2433 | |
| 2434 | private: |
| 2435 | iterator m_base; |
| 2436 | unsigned int m_size; |
| 2437 | }; |
| 2438 | |
| 2439 | template<typename T> |
| 2440 | inline typename array_slice<T>::value_type & |
| 2441 | array_slice<T>::front () |
| 2442 | { |
| 2443 | gcc_checking_assert (m_size); |
| 2444 | return m_base[0]; |
| 2445 | } |
| 2446 | |
| 2447 | template<typename T> |
| 2448 | inline const typename array_slice<T>::value_type & |
| 2449 | array_slice<T>::front () const |
| 2450 | { |
| 2451 | gcc_checking_assert (m_size); |
| 2452 | return m_base[0]; |
| 2453 | } |
| 2454 | |
| 2455 | template<typename T> |
| 2456 | inline typename array_slice<T>::value_type & |
| 2457 | array_slice<T>::back () |
| 2458 | { |
| 2459 | gcc_checking_assert (m_size); |
| 2460 | return m_base[m_size - 1]; |
| 2461 | } |
| 2462 | |
| 2463 | template<typename T> |
| 2464 | inline const typename array_slice<T>::value_type & |
| 2465 | array_slice<T>::back () const |
| 2466 | { |
| 2467 | gcc_checking_assert (m_size); |
| 2468 | return m_base[m_size - 1]; |
| 2469 | } |
| 2470 | |
| 2471 | template<typename T> |
| 2472 | inline typename array_slice<T>::value_type & |
| 2473 | array_slice<T>::operator[] (unsigned int i) |
| 2474 | { |
| 2475 | gcc_checking_assert (i < m_size); |
| 2476 | return m_base[i]; |
| 2477 | } |
| 2478 | |
| 2479 | template<typename T> |
| 2480 | inline const typename array_slice<T>::value_type & |
| 2481 | array_slice<T>::operator[] (unsigned int i) const |
| 2482 | { |
| 2483 | gcc_checking_assert (i < m_size); |
| 2484 | return m_base[i]; |
| 2485 | } |
| 2486 | |
| 2487 | template<typename T> |
| 2488 | array_slice<T> |
| 2489 | make_array_slice (T *base, unsigned int size) |
| 2490 | { |
| 2491 | return array_slice<T> (base, size); |
| 2492 | } |
| 2493 | |
| 2494 | #if (GCC_VERSION >= 3000) |
| 2495 | # pragma GCC poison m_vec m_vecpfx m_vecdata |
| 2496 | #endif |
| 2497 | |
| 2498 | #endif // GCC_VEC_H |
| 2499 | |