1 | /* Vector API for GNU compiler. |
2 | Copyright (C) 2004-2022 Free Software Foundation, Inc. |
3 | Contributed by Nathan Sidwell <nathan@codesourcery.com> |
4 | Re-implemented in C++ by Diego Novillo <dnovillo@google.com> |
5 | |
6 | This file is part of GCC. |
7 | |
8 | GCC is free software; you can redistribute it and/or modify it under |
9 | the terms of the GNU General Public License as published by the Free |
10 | Software Foundation; either version 3, or (at your option) any later |
11 | version. |
12 | |
13 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
14 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
16 | for more details. |
17 | |
18 | You should have received a copy of the GNU General Public License |
19 | along with GCC; see the file COPYING3. If not see |
20 | <http://www.gnu.org/licenses/>. */ |
21 | |
22 | #ifndef GCC_VEC_H |
23 | #define GCC_VEC_H |
24 | |
25 | /* Some gen* file have no ggc support as the header file gtype-desc.h is |
26 | missing. Provide these definitions in case ggc.h has not been included. |
27 | This is not a problem because any code that runs before gengtype is built |
28 | will never need to use GC vectors.*/ |
29 | |
30 | extern void ggc_free (void *); |
31 | extern size_t ggc_round_alloc_size (size_t requested_size); |
32 | extern void *ggc_realloc (void *, size_t MEM_STAT_DECL); |
33 | |
34 | /* Templated vector type and associated interfaces. |
35 | |
36 | The interface functions are typesafe and use inline functions, |
37 | sometimes backed by out-of-line generic functions. The vectors are |
38 | designed to interoperate with the GTY machinery. |
39 | |
40 | There are both 'index' and 'iterate' accessors. The index accessor |
41 | is implemented by operator[]. The iterator returns a boolean |
42 | iteration condition and updates the iteration variable passed by |
43 | reference. Because the iterator will be inlined, the address-of |
44 | can be optimized away. |
45 | |
46 | Each operation that increases the number of active elements is |
47 | available in 'quick' and 'safe' variants. The former presumes that |
48 | there is sufficient allocated space for the operation to succeed |
49 | (it dies if there is not). The latter will reallocate the |
50 | vector, if needed. Reallocation causes an exponential increase in |
51 | vector size. If you know you will be adding N elements, it would |
52 | be more efficient to use the reserve operation before adding the |
53 | elements with the 'quick' operation. This will ensure there are at |
54 | least as many elements as you ask for, it will exponentially |
55 | increase if there are too few spare slots. If you want reserve a |
56 | specific number of slots, but do not want the exponential increase |
57 | (for instance, you know this is the last allocation), use the |
58 | reserve_exact operation. You can also create a vector of a |
59 | specific size from the get go. |
60 | |
61 | You should prefer the push and pop operations, as they append and |
62 | remove from the end of the vector. If you need to remove several |
63 | items in one go, use the truncate operation. The insert and remove |
64 | operations allow you to change elements in the middle of the |
65 | vector. There are two remove operations, one which preserves the |
66 | element ordering 'ordered_remove', and one which does not |
67 | 'unordered_remove'. The latter function copies the end element |
68 | into the removed slot, rather than invoke a memmove operation. The |
69 | 'lower_bound' function will determine where to place an item in the |
70 | array using insert that will maintain sorted order. |
71 | |
72 | Vectors are template types with three arguments: the type of the |
73 | elements in the vector, the allocation strategy, and the physical |
74 | layout to use |
75 | |
76 | Four allocation strategies are supported: |
77 | |
78 | - Heap: allocation is done using malloc/free. This is the |
79 | default allocation strategy. |
80 | |
81 | - GC: allocation is done using ggc_alloc/ggc_free. |
82 | |
83 | - GC atomic: same as GC with the exception that the elements |
84 | themselves are assumed to be of an atomic type that does |
85 | not need to be garbage collected. This means that marking |
86 | routines do not need to traverse the array marking the |
87 | individual elements. This increases the performance of |
88 | GC activities. |
89 | |
90 | Two physical layouts are supported: |
91 | |
92 | - Embedded: The vector is structured using the trailing array |
93 | idiom. The last member of the structure is an array of size |
94 | 1. When the vector is initially allocated, a single memory |
95 | block is created to hold the vector's control data and the |
96 | array of elements. These vectors cannot grow without |
97 | reallocation (see discussion on embeddable vectors below). |
98 | |
99 | - Space efficient: The vector is structured as a pointer to an |
100 | embedded vector. This is the default layout. It means that |
101 | vectors occupy a single word of storage before initial |
102 | allocation. Vectors are allowed to grow (the internal |
103 | pointer is reallocated but the main vector instance does not |
104 | need to relocate). |
105 | |
106 | The type, allocation and layout are specified when the vector is |
107 | declared. |
108 | |
109 | If you need to directly manipulate a vector, then the 'address' |
110 | accessor will return the address of the start of the vector. Also |
111 | the 'space' predicate will tell you whether there is spare capacity |
112 | in the vector. You will not normally need to use these two functions. |
113 | |
114 | Notes on the different layout strategies |
115 | |
116 | * Embeddable vectors (vec<T, A, vl_embed>) |
117 | |
118 | These vectors are suitable to be embedded in other data |
119 | structures so that they can be pre-allocated in a contiguous |
120 | memory block. |
121 | |
122 | Embeddable vectors are implemented using the trailing array |
123 | idiom, thus they are not resizeable without changing the address |
124 | of the vector object itself. This means you cannot have |
125 | variables or fields of embeddable vector type -- always use a |
126 | pointer to a vector. The one exception is the final field of a |
127 | structure, which could be a vector type. |
128 | |
129 | You will have to use the embedded_size & embedded_init calls to |
130 | create such objects, and they will not be resizeable (so the |
131 | 'safe' allocation variants are not available). |
132 | |
133 | Properties of embeddable vectors: |
134 | |
135 | - The whole vector and control data are allocated in a single |
136 | contiguous block. It uses the trailing-vector idiom, so |
137 | allocation must reserve enough space for all the elements |
138 | in the vector plus its control data. |
139 | - The vector cannot be re-allocated. |
140 | - The vector cannot grow nor shrink. |
141 | - No indirections needed for access/manipulation. |
142 | - It requires 2 words of storage (prior to vector allocation). |
143 | |
144 | |
145 | * Space efficient vector (vec<T, A, vl_ptr>) |
146 | |
147 | These vectors can grow dynamically and are allocated together |
148 | with their control data. They are suited to be included in data |
149 | structures. Prior to initial allocation, they only take a single |
150 | word of storage. |
151 | |
152 | These vectors are implemented as a pointer to embeddable vectors. |
153 | The semantics allow for this pointer to be NULL to represent |
154 | empty vectors. This way, empty vectors occupy minimal space in |
155 | the structure containing them. |
156 | |
157 | Properties: |
158 | |
159 | - The whole vector and control data are allocated in a single |
160 | contiguous block. |
161 | - The whole vector may be re-allocated. |
162 | - Vector data may grow and shrink. |
163 | - Access and manipulation requires a pointer test and |
164 | indirection. |
165 | - It requires 1 word of storage (prior to vector allocation). |
166 | |
167 | An example of their use would be, |
168 | |
169 | struct my_struct { |
170 | // A space-efficient vector of tree pointers in GC memory. |
171 | vec<tree, va_gc, vl_ptr> v; |
172 | }; |
173 | |
174 | struct my_struct *s; |
175 | |
176 | if (s->v.length ()) { we have some contents } |
177 | s->v.safe_push (decl); // append some decl onto the end |
178 | for (ix = 0; s->v.iterate (ix, &elt); ix++) |
179 | { do something with elt } |
180 | */ |
181 | |
182 | /* Support function for statistics. */ |
183 | extern void dump_vec_loc_statistics (void); |
184 | |
185 | /* Hashtable mapping vec addresses to descriptors. */ |
186 | extern htab_t vec_mem_usage_hash; |
187 | |
188 | /* Control data for vectors. This contains the number of allocated |
189 | and used slots inside a vector. */ |
190 | |
191 | struct vec_prefix |
192 | { |
193 | /* FIXME - These fields should be private, but we need to cater to |
194 | compilers that have stricter notions of PODness for types. */ |
195 | |
196 | /* Memory allocation support routines in vec.cc. */ |
197 | void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO); |
198 | void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO); |
199 | static unsigned calculate_allocation (vec_prefix *, unsigned, bool); |
200 | static unsigned calculate_allocation_1 (unsigned, unsigned); |
201 | |
202 | /* Note that vec_prefix should be a base class for vec, but we use |
203 | offsetof() on vector fields of tree structures (e.g., |
204 | tree_binfo::base_binfos), and offsetof only supports base types. |
205 | |
206 | To compensate, we make vec_prefix a field inside vec and make |
207 | vec a friend class of vec_prefix so it can access its fields. */ |
208 | template <typename, typename, typename> friend struct vec; |
209 | |
210 | /* The allocator types also need access to our internals. */ |
211 | friend struct va_gc; |
212 | friend struct va_gc_atomic; |
213 | friend struct va_heap; |
214 | |
215 | unsigned m_alloc : 31; |
216 | unsigned m_using_auto_storage : 1; |
217 | unsigned m_num; |
218 | }; |
219 | |
220 | /* Calculate the number of slots to reserve a vector, making sure that |
221 | RESERVE slots are free. If EXACT grow exactly, otherwise grow |
222 | exponentially. PFX is the control data for the vector. */ |
223 | |
224 | inline unsigned |
225 | vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve, |
226 | bool exact) |
227 | { |
228 | if (exact) |
229 | return (pfx ? pfx->m_num : 0) + reserve; |
230 | else if (!pfx) |
231 | return MAX (4, reserve); |
232 | return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve); |
233 | } |
234 | |
235 | template<typename, typename, typename> struct vec; |
236 | |
237 | /* Valid vector layouts |
238 | |
239 | vl_embed - Embeddable vector that uses the trailing array idiom. |
240 | vl_ptr - Space efficient vector that uses a pointer to an |
241 | embeddable vector. */ |
242 | struct vl_embed { }; |
243 | struct vl_ptr { }; |
244 | |
245 | |
246 | /* Types of supported allocations |
247 | |
248 | va_heap - Allocation uses malloc/free. |
249 | va_gc - Allocation uses ggc_alloc. |
250 | va_gc_atomic - Same as GC, but individual elements of the array |
251 | do not need to be marked during collection. */ |
252 | |
253 | /* Allocator type for heap vectors. */ |
254 | struct va_heap |
255 | { |
256 | /* Heap vectors are frequently regular instances, so use the vl_ptr |
257 | layout for them. */ |
258 | typedef vl_ptr default_layout; |
259 | |
260 | template<typename T> |
261 | static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool |
262 | CXX_MEM_STAT_INFO); |
263 | |
264 | template<typename T> |
265 | static void release (vec<T, va_heap, vl_embed> *&); |
266 | }; |
267 | |
268 | |
269 | /* Allocator for heap memory. Ensure there are at least RESERVE free |
270 | slots in V. If EXACT is true, grow exactly, else grow |
271 | exponentially. As a special case, if the vector had not been |
272 | allocated and RESERVE is 0, no vector will be created. */ |
273 | |
274 | template<typename T> |
275 | inline void |
276 | va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact |
277 | MEM_STAT_DECL) |
278 | { |
279 | size_t elt_size = sizeof (T); |
280 | unsigned alloc |
281 | = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact); |
282 | gcc_checking_assert (alloc); |
283 | |
284 | if (GATHER_STATISTICS && v) |
285 | v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), |
286 | v->allocated (), false); |
287 | |
288 | size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc); |
289 | unsigned nelem = v ? v->length () : 0; |
290 | v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size)); |
291 | v->embedded_init (alloc, nelem); |
292 | |
293 | if (GATHER_STATISTICS) |
294 | v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT); |
295 | } |
296 | |
297 | |
298 | #if GCC_VERSION >= 4007 |
299 | #pragma GCC diagnostic push |
300 | #pragma GCC diagnostic ignored "-Wfree-nonheap-object" |
301 | #endif |
302 | |
303 | /* Free the heap space allocated for vector V. */ |
304 | |
305 | template<typename T> |
306 | void |
307 | va_heap::release (vec<T, va_heap, vl_embed> *&v) |
308 | { |
309 | size_t elt_size = sizeof (T); |
310 | if (v == NULL) |
311 | return; |
312 | |
313 | if (GATHER_STATISTICS) |
314 | v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), |
315 | v->allocated (), true); |
316 | ::free (v); |
317 | v = NULL; |
318 | } |
319 | |
320 | #if GCC_VERSION >= 4007 |
321 | #pragma GCC diagnostic pop |
322 | #endif |
323 | |
324 | /* Allocator type for GC vectors. Notice that we need the structure |
325 | declaration even if GC is not enabled. */ |
326 | |
327 | struct va_gc |
328 | { |
329 | /* Use vl_embed as the default layout for GC vectors. Due to GTY |
330 | limitations, GC vectors must always be pointers, so it is more |
331 | efficient to use a pointer to the vl_embed layout, rather than |
332 | using a pointer to a pointer as would be the case with vl_ptr. */ |
333 | typedef vl_embed default_layout; |
334 | |
335 | template<typename T, typename A> |
336 | static void reserve (vec<T, A, vl_embed> *&, unsigned, bool |
337 | CXX_MEM_STAT_INFO); |
338 | |
339 | template<typename T, typename A> |
340 | static void release (vec<T, A, vl_embed> *&v); |
341 | }; |
342 | |
343 | |
344 | /* Free GC memory used by V and reset V to NULL. */ |
345 | |
346 | template<typename T, typename A> |
347 | inline void |
348 | va_gc::release (vec<T, A, vl_embed> *&v) |
349 | { |
350 | if (v) |
351 | ::ggc_free (v); |
352 | v = NULL; |
353 | } |
354 | |
355 | |
356 | /* Allocator for GC memory. Ensure there are at least RESERVE free |
357 | slots in V. If EXACT is true, grow exactly, else grow |
358 | exponentially. As a special case, if the vector had not been |
359 | allocated and RESERVE is 0, no vector will be created. */ |
360 | |
361 | template<typename T, typename A> |
362 | void |
363 | va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact |
364 | MEM_STAT_DECL) |
365 | { |
366 | unsigned alloc |
367 | = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact); |
368 | if (!alloc) |
369 | { |
370 | ::ggc_free (v); |
371 | v = NULL; |
372 | return; |
373 | } |
374 | |
375 | /* Calculate the amount of space we want. */ |
376 | size_t size = vec<T, A, vl_embed>::embedded_size (alloc); |
377 | |
378 | /* Ask the allocator how much space it will really give us. */ |
379 | size = ::ggc_round_alloc_size (size); |
380 | |
381 | /* Adjust the number of slots accordingly. */ |
382 | size_t vec_offset = sizeof (vec_prefix); |
383 | size_t elt_size = sizeof (T); |
384 | alloc = (size - vec_offset) / elt_size; |
385 | |
386 | /* And finally, recalculate the amount of space we ask for. */ |
387 | size = vec_offset + alloc * elt_size; |
388 | |
389 | unsigned nelem = v ? v->length () : 0; |
390 | v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size |
391 | PASS_MEM_STAT)); |
392 | v->embedded_init (alloc, nelem); |
393 | } |
394 | |
395 | |
396 | /* Allocator type for GC vectors. This is for vectors of types |
397 | atomics w.r.t. collection, so allocation and deallocation is |
398 | completely inherited from va_gc. */ |
399 | struct va_gc_atomic : va_gc |
400 | { |
401 | }; |
402 | |
403 | |
404 | /* Generic vector template. Default values for A and L indicate the |
405 | most commonly used strategies. |
406 | |
407 | FIXME - Ideally, they would all be vl_ptr to encourage using regular |
408 | instances for vectors, but the existing GTY machinery is limited |
409 | in that it can only deal with GC objects that are pointers |
410 | themselves. |
411 | |
412 | This means that vector operations that need to deal with |
413 | potentially NULL pointers, must be provided as free |
414 | functions (see the vec_safe_* functions above). */ |
415 | template<typename T, |
416 | typename A = va_heap, |
417 | typename L = typename A::default_layout> |
418 | struct GTY((user)) vec |
419 | { |
420 | }; |
421 | |
422 | /* Allow C++11 range-based 'for' to work directly on vec<T>*. */ |
423 | template<typename T, typename A, typename L> |
424 | T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; } |
425 | template<typename T, typename A, typename L> |
426 | T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; } |
427 | template<typename T, typename A, typename L> |
428 | const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; } |
429 | template<typename T, typename A, typename L> |
430 | const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; } |
431 | |
432 | /* Generic vec<> debug helpers. |
433 | |
434 | These need to be instantiated for each vec<TYPE> used throughout |
435 | the compiler like this: |
436 | |
437 | DEFINE_DEBUG_VEC (TYPE) |
438 | |
439 | The reason we have a debug_helper() is because GDB can't |
440 | disambiguate a plain call to debug(some_vec), and it must be called |
441 | like debug<TYPE>(some_vec). */ |
442 | |
443 | template<typename T> |
444 | void |
445 | debug_helper (vec<T> &ref) |
446 | { |
447 | unsigned i; |
448 | for (i = 0; i < ref.length (); ++i) |
449 | { |
450 | fprintf (stderr, "[%d] = " , i); |
451 | debug_slim (ref[i]); |
452 | fputc ('\n', stderr); |
453 | } |
454 | } |
455 | |
456 | /* We need a separate va_gc variant here because default template |
457 | argument for functions cannot be used in c++-98. Once this |
458 | restriction is removed, those variant should be folded with the |
459 | above debug_helper. */ |
460 | |
461 | template<typename T> |
462 | void |
463 | debug_helper (vec<T, va_gc> &ref) |
464 | { |
465 | unsigned i; |
466 | for (i = 0; i < ref.length (); ++i) |
467 | { |
468 | fprintf (stderr, "[%d] = " , i); |
469 | debug_slim (ref[i]); |
470 | fputc ('\n', stderr); |
471 | } |
472 | } |
473 | |
474 | /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper |
475 | functions for a type T. */ |
476 | |
477 | #define DEFINE_DEBUG_VEC(T) \ |
478 | template void debug_helper (vec<T> &); \ |
479 | template void debug_helper (vec<T, va_gc> &); \ |
480 | /* Define the vec<T> debug functions. */ \ |
481 | DEBUG_FUNCTION void \ |
482 | debug (vec<T> &ref) \ |
483 | { \ |
484 | debug_helper <T> (ref); \ |
485 | } \ |
486 | DEBUG_FUNCTION void \ |
487 | debug (vec<T> *ptr) \ |
488 | { \ |
489 | if (ptr) \ |
490 | debug (*ptr); \ |
491 | else \ |
492 | fprintf (stderr, "<nil>\n"); \ |
493 | } \ |
494 | /* Define the vec<T, va_gc> debug functions. */ \ |
495 | DEBUG_FUNCTION void \ |
496 | debug (vec<T, va_gc> &ref) \ |
497 | { \ |
498 | debug_helper <T> (ref); \ |
499 | } \ |
500 | DEBUG_FUNCTION void \ |
501 | debug (vec<T, va_gc> *ptr) \ |
502 | { \ |
503 | if (ptr) \ |
504 | debug (*ptr); \ |
505 | else \ |
506 | fprintf (stderr, "<nil>\n"); \ |
507 | } |
508 | |
509 | /* Default-construct N elements in DST. */ |
510 | |
511 | template <typename T> |
512 | inline void |
513 | vec_default_construct (T *dst, unsigned n) |
514 | { |
515 | #ifdef BROKEN_VALUE_INITIALIZATION |
516 | /* Versions of GCC before 4.4 sometimes leave certain objects |
517 | uninitialized when value initialized, though if the type has |
518 | user defined default ctor, that ctor is invoked. As a workaround |
519 | perform clearing first and then the value initialization, which |
520 | fixes the case when value initialization doesn't initialize due to |
521 | the bugs and should initialize to all zeros, but still allows |
522 | vectors for types with user defined default ctor that initializes |
523 | some or all elements to non-zero. If T has no user defined |
524 | default ctor and some non-static data members have user defined |
525 | default ctors that initialize to non-zero the workaround will |
526 | still not work properly; in that case we just need to provide |
527 | user defined default ctor. */ |
528 | memset (dst, '\0', sizeof (T) * n); |
529 | #endif |
530 | for ( ; n; ++dst, --n) |
531 | ::new (static_cast<void*>(dst)) T (); |
532 | } |
533 | |
534 | /* Copy-construct N elements in DST from *SRC. */ |
535 | |
536 | template <typename T> |
537 | inline void |
538 | vec_copy_construct (T *dst, const T *src, unsigned n) |
539 | { |
540 | for ( ; n; ++dst, ++src, --n) |
541 | ::new (static_cast<void*>(dst)) T (*src); |
542 | } |
543 | |
544 | /* Type to provide zero-initialized values for vec<T, A, L>. This is |
545 | used to provide nil initializers for vec instances. Since vec must |
546 | be a trivially copyable type that can be copied by memcpy and zeroed |
547 | out by memset, it must have defaulted default and copy ctor and copy |
548 | assignment. To initialize a vec either use value initialization |
549 | (e.g., vec() or vec v{ };) or assign it the value vNULL. This isn't |
550 | needed for file-scope and function-local static vectors, which are |
551 | zero-initialized by default. */ |
552 | struct vnull { }; |
553 | constexpr vnull vNULL{ }; |
554 | |
555 | |
556 | /* Embeddable vector. These vectors are suitable to be embedded |
557 | in other data structures so that they can be pre-allocated in a |
558 | contiguous memory block. |
559 | |
560 | Embeddable vectors are implemented using the trailing array idiom, |
561 | thus they are not resizeable without changing the address of the |
562 | vector object itself. This means you cannot have variables or |
563 | fields of embeddable vector type -- always use a pointer to a |
564 | vector. The one exception is the final field of a structure, which |
565 | could be a vector type. |
566 | |
567 | You will have to use the embedded_size & embedded_init calls to |
568 | create such objects, and they will not be resizeable (so the 'safe' |
569 | allocation variants are not available). |
570 | |
571 | Properties: |
572 | |
573 | - The whole vector and control data are allocated in a single |
574 | contiguous block. It uses the trailing-vector idiom, so |
575 | allocation must reserve enough space for all the elements |
576 | in the vector plus its control data. |
577 | - The vector cannot be re-allocated. |
578 | - The vector cannot grow nor shrink. |
579 | - No indirections needed for access/manipulation. |
580 | - It requires 2 words of storage (prior to vector allocation). */ |
581 | |
582 | template<typename T, typename A> |
583 | struct GTY((user)) vec<T, A, vl_embed> |
584 | { |
585 | public: |
586 | unsigned allocated (void) const { return m_vecpfx.m_alloc; } |
587 | unsigned length (void) const { return m_vecpfx.m_num; } |
588 | bool is_empty (void) const { return m_vecpfx.m_num == 0; } |
589 | T *address (void) { return m_vecdata; } |
590 | const T *address (void) const { return m_vecdata; } |
591 | T *begin () { return address (); } |
592 | const T *begin () const { return address (); } |
593 | T *end () { return address () + length (); } |
594 | const T *end () const { return address () + length (); } |
595 | const T &operator[] (unsigned) const; |
596 | T &operator[] (unsigned); |
597 | T &last (void); |
598 | bool space (unsigned) const; |
599 | bool iterate (unsigned, T *) const; |
600 | bool iterate (unsigned, T **) const; |
601 | vec *copy (ALONE_CXX_MEM_STAT_INFO) const; |
602 | void splice (const vec &); |
603 | void splice (const vec *src); |
604 | T *quick_push (const T &); |
605 | T &pop (void); |
606 | void truncate (unsigned); |
607 | void quick_insert (unsigned, const T &); |
608 | void ordered_remove (unsigned); |
609 | void unordered_remove (unsigned); |
610 | void block_remove (unsigned, unsigned); |
611 | void qsort (int (*) (const void *, const void *)); |
612 | void sort (int (*) (const void *, const void *, void *), void *); |
613 | void stablesort (int (*) (const void *, const void *, void *), void *); |
614 | T *bsearch (const void *key, int (*compar)(const void *, const void *)); |
615 | T *bsearch (const void *key, |
616 | int (*compar)(const void *, const void *, void *), void *); |
617 | unsigned lower_bound (T, bool (*)(const T &, const T &)) const; |
618 | bool contains (const T &search) const; |
619 | static size_t embedded_size (unsigned); |
620 | void embedded_init (unsigned, unsigned = 0, unsigned = 0); |
621 | void quick_grow (unsigned len); |
622 | void quick_grow_cleared (unsigned len); |
623 | |
624 | /* vec class can access our internal data and functions. */ |
625 | template <typename, typename, typename> friend struct vec; |
626 | |
627 | /* The allocator types also need access to our internals. */ |
628 | friend struct va_gc; |
629 | friend struct va_gc_atomic; |
630 | friend struct va_heap; |
631 | |
632 | /* FIXME - These fields should be private, but we need to cater to |
633 | compilers that have stricter notions of PODness for types. */ |
634 | vec_prefix m_vecpfx; |
635 | T m_vecdata[1]; |
636 | }; |
637 | |
638 | |
639 | /* Convenience wrapper functions to use when dealing with pointers to |
640 | embedded vectors. Some functionality for these vectors must be |
641 | provided via free functions for these reasons: |
642 | |
643 | 1- The pointer may be NULL (e.g., before initial allocation). |
644 | |
645 | 2- When the vector needs to grow, it must be reallocated, so |
646 | the pointer will change its value. |
647 | |
648 | Because of limitations with the current GC machinery, all vectors |
649 | in GC memory *must* be pointers. */ |
650 | |
651 | |
652 | /* If V contains no room for NELEMS elements, return false. Otherwise, |
653 | return true. */ |
654 | template<typename T, typename A> |
655 | inline bool |
656 | vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems) |
657 | { |
658 | return v ? v->space (nelems) : nelems == 0; |
659 | } |
660 | |
661 | |
662 | /* If V is NULL, return 0. Otherwise, return V->length(). */ |
663 | template<typename T, typename A> |
664 | inline unsigned |
665 | vec_safe_length (const vec<T, A, vl_embed> *v) |
666 | { |
667 | return v ? v->length () : 0; |
668 | } |
669 | |
670 | |
671 | /* If V is NULL, return NULL. Otherwise, return V->address(). */ |
672 | template<typename T, typename A> |
673 | inline T * |
674 | vec_safe_address (vec<T, A, vl_embed> *v) |
675 | { |
676 | return v ? v->address () : NULL; |
677 | } |
678 | |
679 | |
680 | /* If V is NULL, return true. Otherwise, return V->is_empty(). */ |
681 | template<typename T, typename A> |
682 | inline bool |
683 | vec_safe_is_empty (vec<T, A, vl_embed> *v) |
684 | { |
685 | return v ? v->is_empty () : true; |
686 | } |
687 | |
688 | /* If V does not have space for NELEMS elements, call |
689 | V->reserve(NELEMS, EXACT). */ |
690 | template<typename T, typename A> |
691 | inline bool |
692 | vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false |
693 | CXX_MEM_STAT_INFO) |
694 | { |
695 | bool extend = nelems ? !vec_safe_space (v, nelems) : false; |
696 | if (extend) |
697 | A::reserve (v, nelems, exact PASS_MEM_STAT); |
698 | return extend; |
699 | } |
700 | |
701 | template<typename T, typename A> |
702 | inline bool |
703 | vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems |
704 | CXX_MEM_STAT_INFO) |
705 | { |
706 | return vec_safe_reserve (v, nelems, true PASS_MEM_STAT); |
707 | } |
708 | |
709 | |
710 | /* Allocate GC memory for V with space for NELEMS slots. If NELEMS |
711 | is 0, V is initialized to NULL. */ |
712 | |
713 | template<typename T, typename A> |
714 | inline void |
715 | vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO) |
716 | { |
717 | v = NULL; |
718 | vec_safe_reserve (v, nelems, false PASS_MEM_STAT); |
719 | } |
720 | |
721 | |
722 | /* Free the GC memory allocated by vector V and set it to NULL. */ |
723 | |
724 | template<typename T, typename A> |
725 | inline void |
726 | vec_free (vec<T, A, vl_embed> *&v) |
727 | { |
728 | A::release (v); |
729 | } |
730 | |
731 | |
732 | /* Grow V to length LEN. Allocate it, if necessary. */ |
733 | template<typename T, typename A> |
734 | inline void |
735 | vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len, |
736 | bool exact = false CXX_MEM_STAT_INFO) |
737 | { |
738 | unsigned oldlen = vec_safe_length (v); |
739 | gcc_checking_assert (len >= oldlen); |
740 | vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT); |
741 | v->quick_grow (len); |
742 | } |
743 | |
744 | |
745 | /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */ |
746 | template<typename T, typename A> |
747 | inline void |
748 | vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len, |
749 | bool exact = false CXX_MEM_STAT_INFO) |
750 | { |
751 | unsigned oldlen = vec_safe_length (v); |
752 | vec_safe_grow (v, len, exact PASS_MEM_STAT); |
753 | vec_default_construct (v->address () + oldlen, len - oldlen); |
754 | } |
755 | |
756 | |
757 | /* Assume V is not NULL. */ |
758 | |
759 | template<typename T> |
760 | inline void |
761 | vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v, |
762 | unsigned len, bool exact = false CXX_MEM_STAT_INFO) |
763 | { |
764 | v->safe_grow_cleared (len, exact PASS_MEM_STAT); |
765 | } |
766 | |
767 | /* If V does not have space for NELEMS elements, call |
768 | V->reserve(NELEMS, EXACT). */ |
769 | |
770 | template<typename T> |
771 | inline bool |
772 | vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false |
773 | CXX_MEM_STAT_INFO) |
774 | { |
775 | return v->reserve (nelems, exact); |
776 | } |
777 | |
778 | |
779 | /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */ |
780 | template<typename T, typename A> |
781 | inline bool |
782 | vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr) |
783 | { |
784 | if (v) |
785 | return v->iterate (ix, ptr); |
786 | else |
787 | { |
788 | *ptr = 0; |
789 | return false; |
790 | } |
791 | } |
792 | |
793 | template<typename T, typename A> |
794 | inline bool |
795 | vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr) |
796 | { |
797 | if (v) |
798 | return v->iterate (ix, ptr); |
799 | else |
800 | { |
801 | *ptr = 0; |
802 | return false; |
803 | } |
804 | } |
805 | |
806 | |
807 | /* If V has no room for one more element, reallocate it. Then call |
808 | V->quick_push(OBJ). */ |
809 | template<typename T, typename A> |
810 | inline T * |
811 | vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO) |
812 | { |
813 | vec_safe_reserve (v, 1, false PASS_MEM_STAT); |
814 | return v->quick_push (obj); |
815 | } |
816 | |
817 | |
818 | /* if V has no room for one more element, reallocate it. Then call |
819 | V->quick_insert(IX, OBJ). */ |
820 | template<typename T, typename A> |
821 | inline void |
822 | vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj |
823 | CXX_MEM_STAT_INFO) |
824 | { |
825 | vec_safe_reserve (v, 1, false PASS_MEM_STAT); |
826 | v->quick_insert (ix, obj); |
827 | } |
828 | |
829 | |
830 | /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */ |
831 | template<typename T, typename A> |
832 | inline void |
833 | vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size) |
834 | { |
835 | if (v) |
836 | v->truncate (size); |
837 | } |
838 | |
839 | |
840 | /* If SRC is not NULL, return a pointer to a copy of it. */ |
841 | template<typename T, typename A> |
842 | inline vec<T, A, vl_embed> * |
843 | vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO) |
844 | { |
845 | return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL; |
846 | } |
847 | |
848 | /* Copy the elements from SRC to the end of DST as if by memcpy. |
849 | Reallocate DST, if necessary. */ |
850 | template<typename T, typename A> |
851 | inline void |
852 | vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src |
853 | CXX_MEM_STAT_INFO) |
854 | { |
855 | unsigned src_len = vec_safe_length (src); |
856 | if (src_len) |
857 | { |
858 | vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len |
859 | PASS_MEM_STAT); |
860 | dst->splice (*src); |
861 | } |
862 | } |
863 | |
864 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the |
865 | size of the vector and so should be used with care. */ |
866 | |
867 | template<typename T, typename A> |
868 | inline bool |
869 | vec_safe_contains (vec<T, A, vl_embed> *v, const T &search) |
870 | { |
871 | return v ? v->contains (search) : false; |
872 | } |
873 | |
874 | /* Index into vector. Return the IX'th element. IX must be in the |
875 | domain of the vector. */ |
876 | |
877 | template<typename T, typename A> |
878 | inline const T & |
879 | vec<T, A, vl_embed>::operator[] (unsigned ix) const |
880 | { |
881 | gcc_checking_assert (ix < m_vecpfx.m_num); |
882 | return m_vecdata[ix]; |
883 | } |
884 | |
885 | template<typename T, typename A> |
886 | inline T & |
887 | vec<T, A, vl_embed>::operator[] (unsigned ix) |
888 | { |
889 | gcc_checking_assert (ix < m_vecpfx.m_num); |
890 | return m_vecdata[ix]; |
891 | } |
892 | |
893 | |
894 | /* Get the final element of the vector, which must not be empty. */ |
895 | |
896 | template<typename T, typename A> |
897 | inline T & |
898 | vec<T, A, vl_embed>::last (void) |
899 | { |
900 | gcc_checking_assert (m_vecpfx.m_num > 0); |
901 | return (*this)[m_vecpfx.m_num - 1]; |
902 | } |
903 | |
904 | |
905 | /* If this vector has space for NELEMS additional entries, return |
906 | true. You usually only need to use this if you are doing your |
907 | own vector reallocation, for instance on an embedded vector. This |
908 | returns true in exactly the same circumstances that vec::reserve |
909 | will. */ |
910 | |
911 | template<typename T, typename A> |
912 | inline bool |
913 | vec<T, A, vl_embed>::space (unsigned nelems) const |
914 | { |
915 | return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems; |
916 | } |
917 | |
918 | |
919 | /* Return iteration condition and update *PTR to (a copy of) the IX'th |
920 | element of this vector. Use this to iterate over the elements of a |
921 | vector as follows, |
922 | |
923 | for (ix = 0; v->iterate (ix, &val); ix++) |
924 | continue; */ |
925 | |
926 | template<typename T, typename A> |
927 | inline bool |
928 | vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const |
929 | { |
930 | if (ix < m_vecpfx.m_num) |
931 | { |
932 | *ptr = m_vecdata[ix]; |
933 | return true; |
934 | } |
935 | else |
936 | { |
937 | *ptr = 0; |
938 | return false; |
939 | } |
940 | } |
941 | |
942 | |
943 | /* Return iteration condition and update *PTR to point to the |
944 | IX'th element of this vector. Use this to iterate over the |
945 | elements of a vector as follows, |
946 | |
947 | for (ix = 0; v->iterate (ix, &ptr); ix++) |
948 | continue; |
949 | |
950 | This variant is for vectors of objects. */ |
951 | |
952 | template<typename T, typename A> |
953 | inline bool |
954 | vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const |
955 | { |
956 | if (ix < m_vecpfx.m_num) |
957 | { |
958 | *ptr = CONST_CAST (T *, &m_vecdata[ix]); |
959 | return true; |
960 | } |
961 | else |
962 | { |
963 | *ptr = 0; |
964 | return false; |
965 | } |
966 | } |
967 | |
968 | |
969 | /* Return a pointer to a copy of this vector. */ |
970 | |
971 | template<typename T, typename A> |
972 | inline vec<T, A, vl_embed> * |
973 | vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const |
974 | { |
975 | vec<T, A, vl_embed> *new_vec = NULL; |
976 | unsigned len = length (); |
977 | if (len) |
978 | { |
979 | vec_alloc (new_vec, len PASS_MEM_STAT); |
980 | new_vec->embedded_init (len, len); |
981 | vec_copy_construct (new_vec->address (), m_vecdata, len); |
982 | } |
983 | return new_vec; |
984 | } |
985 | |
986 | |
987 | /* Copy the elements from SRC to the end of this vector as if by memcpy. |
988 | The vector must have sufficient headroom available. */ |
989 | |
990 | template<typename T, typename A> |
991 | inline void |
992 | vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src) |
993 | { |
994 | unsigned len = src.length (); |
995 | if (len) |
996 | { |
997 | gcc_checking_assert (space (len)); |
998 | vec_copy_construct (end (), src.address (), len); |
999 | m_vecpfx.m_num += len; |
1000 | } |
1001 | } |
1002 | |
1003 | template<typename T, typename A> |
1004 | inline void |
1005 | vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src) |
1006 | { |
1007 | if (src) |
1008 | splice (*src); |
1009 | } |
1010 | |
1011 | |
1012 | /* Push OBJ (a new element) onto the end of the vector. There must be |
1013 | sufficient space in the vector. Return a pointer to the slot |
1014 | where OBJ was inserted. */ |
1015 | |
1016 | template<typename T, typename A> |
1017 | inline T * |
1018 | vec<T, A, vl_embed>::quick_push (const T &obj) |
1019 | { |
1020 | gcc_checking_assert (space (1)); |
1021 | T *slot = &m_vecdata[m_vecpfx.m_num++]; |
1022 | *slot = obj; |
1023 | return slot; |
1024 | } |
1025 | |
1026 | |
1027 | /* Pop and return the last element off the end of the vector. */ |
1028 | |
1029 | template<typename T, typename A> |
1030 | inline T & |
1031 | vec<T, A, vl_embed>::pop (void) |
1032 | { |
1033 | gcc_checking_assert (length () > 0); |
1034 | return m_vecdata[--m_vecpfx.m_num]; |
1035 | } |
1036 | |
1037 | |
1038 | /* Set the length of the vector to SIZE. The new length must be less |
1039 | than or equal to the current length. This is an O(1) operation. */ |
1040 | |
1041 | template<typename T, typename A> |
1042 | inline void |
1043 | vec<T, A, vl_embed>::truncate (unsigned size) |
1044 | { |
1045 | gcc_checking_assert (length () >= size); |
1046 | m_vecpfx.m_num = size; |
1047 | } |
1048 | |
1049 | |
1050 | /* Insert an element, OBJ, at the IXth position of this vector. There |
1051 | must be sufficient space. */ |
1052 | |
1053 | template<typename T, typename A> |
1054 | inline void |
1055 | vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj) |
1056 | { |
1057 | gcc_checking_assert (length () < allocated ()); |
1058 | gcc_checking_assert (ix <= length ()); |
1059 | T *slot = &m_vecdata[ix]; |
1060 | memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T)); |
1061 | *slot = obj; |
1062 | } |
1063 | |
1064 | |
1065 | /* Remove an element from the IXth position of this vector. Ordering of |
1066 | remaining elements is preserved. This is an O(N) operation due to |
1067 | memmove. */ |
1068 | |
1069 | template<typename T, typename A> |
1070 | inline void |
1071 | vec<T, A, vl_embed>::ordered_remove (unsigned ix) |
1072 | { |
1073 | gcc_checking_assert (ix < length ()); |
1074 | T *slot = &m_vecdata[ix]; |
1075 | memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T)); |
1076 | } |
1077 | |
1078 | |
1079 | /* Remove elements in [START, END) from VEC for which COND holds. Ordering of |
1080 | remaining elements is preserved. This is an O(N) operation. */ |
1081 | |
1082 | #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \ |
1083 | elem_ptr, start, end, cond) \ |
1084 | { \ |
1085 | gcc_assert ((end) <= (vec).length ()); \ |
1086 | for (read_index = write_index = (start); read_index < (end); \ |
1087 | ++read_index) \ |
1088 | { \ |
1089 | elem_ptr = &(vec)[read_index]; \ |
1090 | bool remove_p = (cond); \ |
1091 | if (remove_p) \ |
1092 | continue; \ |
1093 | \ |
1094 | if (read_index != write_index) \ |
1095 | (vec)[write_index] = (vec)[read_index]; \ |
1096 | \ |
1097 | write_index++; \ |
1098 | } \ |
1099 | \ |
1100 | if (read_index - write_index > 0) \ |
1101 | (vec).block_remove (write_index, read_index - write_index); \ |
1102 | } |
1103 | |
1104 | |
1105 | /* Remove elements from VEC for which COND holds. Ordering of remaining |
1106 | elements is preserved. This is an O(N) operation. */ |
1107 | |
1108 | #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \ |
1109 | cond) \ |
1110 | VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \ |
1111 | elem_ptr, 0, (vec).length (), (cond)) |
1112 | |
1113 | /* Remove an element from the IXth position of this vector. Ordering of |
1114 | remaining elements is destroyed. This is an O(1) operation. */ |
1115 | |
1116 | template<typename T, typename A> |
1117 | inline void |
1118 | vec<T, A, vl_embed>::unordered_remove (unsigned ix) |
1119 | { |
1120 | gcc_checking_assert (ix < length ()); |
1121 | m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num]; |
1122 | } |
1123 | |
1124 | |
1125 | /* Remove LEN elements starting at the IXth. Ordering is retained. |
1126 | This is an O(N) operation due to memmove. */ |
1127 | |
1128 | template<typename T, typename A> |
1129 | inline void |
1130 | vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len) |
1131 | { |
1132 | gcc_checking_assert (ix + len <= length ()); |
1133 | T *slot = &m_vecdata[ix]; |
1134 | m_vecpfx.m_num -= len; |
1135 | memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T)); |
1136 | } |
1137 | |
1138 | |
1139 | /* Sort the contents of this vector with qsort. CMP is the comparison |
1140 | function to pass to qsort. */ |
1141 | |
1142 | template<typename T, typename A> |
1143 | inline void |
1144 | vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *)) |
1145 | { |
1146 | if (length () > 1) |
1147 | gcc_qsort (address (), length (), sizeof (T), cmp); |
1148 | } |
1149 | |
1150 | /* Sort the contents of this vector with qsort. CMP is the comparison |
1151 | function to pass to qsort. */ |
1152 | |
1153 | template<typename T, typename A> |
1154 | inline void |
1155 | vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *), |
1156 | void *data) |
1157 | { |
1158 | if (length () > 1) |
1159 | gcc_sort_r (address (), length (), sizeof (T), cmp, data); |
1160 | } |
1161 | |
1162 | /* Sort the contents of this vector with gcc_stablesort_r. CMP is the |
1163 | comparison function to pass to qsort. */ |
1164 | |
1165 | template<typename T, typename A> |
1166 | inline void |
1167 | vec<T, A, vl_embed>::stablesort (int (*cmp) (const void *, const void *, |
1168 | void *), void *data) |
1169 | { |
1170 | if (length () > 1) |
1171 | gcc_stablesort_r (address (), length (), sizeof (T), cmp, data); |
1172 | } |
1173 | |
1174 | /* Search the contents of the sorted vector with a binary search. |
1175 | CMP is the comparison function to pass to bsearch. */ |
1176 | |
1177 | template<typename T, typename A> |
1178 | inline T * |
1179 | vec<T, A, vl_embed>::bsearch (const void *key, |
1180 | int (*compar) (const void *, const void *)) |
1181 | { |
1182 | const void *base = this->address (); |
1183 | size_t nmemb = this->length (); |
1184 | size_t size = sizeof (T); |
1185 | /* The following is a copy of glibc stdlib-bsearch.h. */ |
1186 | size_t l, u, idx; |
1187 | const void *p; |
1188 | int comparison; |
1189 | |
1190 | l = 0; |
1191 | u = nmemb; |
1192 | while (l < u) |
1193 | { |
1194 | idx = (l + u) / 2; |
1195 | p = (const void *) (((const char *) base) + (idx * size)); |
1196 | comparison = (*compar) (key, p); |
1197 | if (comparison < 0) |
1198 | u = idx; |
1199 | else if (comparison > 0) |
1200 | l = idx + 1; |
1201 | else |
1202 | return (T *)const_cast<void *>(p); |
1203 | } |
1204 | |
1205 | return NULL; |
1206 | } |
1207 | |
1208 | /* Search the contents of the sorted vector with a binary search. |
1209 | CMP is the comparison function to pass to bsearch. */ |
1210 | |
1211 | template<typename T, typename A> |
1212 | inline T * |
1213 | vec<T, A, vl_embed>::bsearch (const void *key, |
1214 | int (*compar) (const void *, const void *, |
1215 | void *), void *data) |
1216 | { |
1217 | const void *base = this->address (); |
1218 | size_t nmemb = this->length (); |
1219 | size_t size = sizeof (T); |
1220 | /* The following is a copy of glibc stdlib-bsearch.h. */ |
1221 | size_t l, u, idx; |
1222 | const void *p; |
1223 | int comparison; |
1224 | |
1225 | l = 0; |
1226 | u = nmemb; |
1227 | while (l < u) |
1228 | { |
1229 | idx = (l + u) / 2; |
1230 | p = (const void *) (((const char *) base) + (idx * size)); |
1231 | comparison = (*compar) (key, p, data); |
1232 | if (comparison < 0) |
1233 | u = idx; |
1234 | else if (comparison > 0) |
1235 | l = idx + 1; |
1236 | else |
1237 | return (T *)const_cast<void *>(p); |
1238 | } |
1239 | |
1240 | return NULL; |
1241 | } |
1242 | |
1243 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the |
1244 | size of the vector and so should be used with care. */ |
1245 | |
1246 | template<typename T, typename A> |
1247 | inline bool |
1248 | vec<T, A, vl_embed>::contains (const T &search) const |
1249 | { |
1250 | unsigned int len = length (); |
1251 | for (unsigned int i = 0; i < len; i++) |
1252 | if ((*this)[i] == search) |
1253 | return true; |
1254 | |
1255 | return false; |
1256 | } |
1257 | |
1258 | /* Find and return the first position in which OBJ could be inserted |
1259 | without changing the ordering of this vector. LESSTHAN is a |
1260 | function that returns true if the first argument is strictly less |
1261 | than the second. */ |
1262 | |
1263 | template<typename T, typename A> |
1264 | unsigned |
1265 | vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &)) |
1266 | const |
1267 | { |
1268 | unsigned int len = length (); |
1269 | unsigned int half, middle; |
1270 | unsigned int first = 0; |
1271 | while (len > 0) |
1272 | { |
1273 | half = len / 2; |
1274 | middle = first; |
1275 | middle += half; |
1276 | T middle_elem = (*this)[middle]; |
1277 | if (lessthan (middle_elem, obj)) |
1278 | { |
1279 | first = middle; |
1280 | ++first; |
1281 | len = len - half - 1; |
1282 | } |
1283 | else |
1284 | len = half; |
1285 | } |
1286 | return first; |
1287 | } |
1288 | |
1289 | |
1290 | /* Return the number of bytes needed to embed an instance of an |
1291 | embeddable vec inside another data structure. |
1292 | |
1293 | Use these methods to determine the required size and initialization |
1294 | of a vector V of type T embedded within another structure (as the |
1295 | final member): |
1296 | |
1297 | size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc); |
1298 | void v->embedded_init (unsigned alloc, unsigned num); |
1299 | |
1300 | These allow the caller to perform the memory allocation. */ |
1301 | |
1302 | template<typename T, typename A> |
1303 | inline size_t |
1304 | vec<T, A, vl_embed>::embedded_size (unsigned alloc) |
1305 | { |
1306 | struct alignas (T) U { char data[sizeof (T)]; }; |
1307 | typedef vec<U, A, vl_embed> vec_embedded; |
1308 | typedef typename std::conditional<std::is_standard_layout<T>::value, |
1309 | vec, vec_embedded>::type vec_stdlayout; |
1310 | static_assert (sizeof (vec_stdlayout) == sizeof (vec), "" ); |
1311 | static_assert (alignof (vec_stdlayout) == alignof (vec), "" ); |
1312 | return offsetof (vec_stdlayout, m_vecdata) + alloc * sizeof (T); |
1313 | } |
1314 | |
1315 | |
1316 | /* Initialize the vector to contain room for ALLOC elements and |
1317 | NUM active elements. */ |
1318 | |
1319 | template<typename T, typename A> |
1320 | inline void |
1321 | vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut) |
1322 | { |
1323 | m_vecpfx.m_alloc = alloc; |
1324 | m_vecpfx.m_using_auto_storage = aut; |
1325 | m_vecpfx.m_num = num; |
1326 | } |
1327 | |
1328 | |
1329 | /* Grow the vector to a specific length. LEN must be as long or longer than |
1330 | the current length. The new elements are uninitialized. */ |
1331 | |
1332 | template<typename T, typename A> |
1333 | inline void |
1334 | vec<T, A, vl_embed>::quick_grow (unsigned len) |
1335 | { |
1336 | gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc); |
1337 | m_vecpfx.m_num = len; |
1338 | } |
1339 | |
1340 | |
1341 | /* Grow the vector to a specific length. LEN must be as long or longer than |
1342 | the current length. The new elements are initialized to zero. */ |
1343 | |
1344 | template<typename T, typename A> |
1345 | inline void |
1346 | vec<T, A, vl_embed>::quick_grow_cleared (unsigned len) |
1347 | { |
1348 | unsigned oldlen = length (); |
1349 | size_t growby = len - oldlen; |
1350 | quick_grow (len); |
1351 | if (growby != 0) |
1352 | vec_default_construct (address () + oldlen, growby); |
1353 | } |
1354 | |
1355 | /* Garbage collection support for vec<T, A, vl_embed>. */ |
1356 | |
1357 | template<typename T> |
1358 | void |
1359 | gt_ggc_mx (vec<T, va_gc> *v) |
1360 | { |
1361 | extern void gt_ggc_mx (T &); |
1362 | for (unsigned i = 0; i < v->length (); i++) |
1363 | gt_ggc_mx ((*v)[i]); |
1364 | } |
1365 | |
1366 | template<typename T> |
1367 | void |
1368 | gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED) |
1369 | { |
1370 | /* Nothing to do. Vectors of atomic types wrt GC do not need to |
1371 | be traversed. */ |
1372 | } |
1373 | |
1374 | |
1375 | /* PCH support for vec<T, A, vl_embed>. */ |
1376 | |
1377 | template<typename T, typename A> |
1378 | void |
1379 | gt_pch_nx (vec<T, A, vl_embed> *v) |
1380 | { |
1381 | extern void gt_pch_nx (T &); |
1382 | for (unsigned i = 0; i < v->length (); i++) |
1383 | gt_pch_nx ((*v)[i]); |
1384 | } |
1385 | |
1386 | template<typename T, typename A> |
1387 | void |
1388 | gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie) |
1389 | { |
1390 | for (unsigned i = 0; i < v->length (); i++) |
1391 | op (&((*v)[i]), NULL, cookie); |
1392 | } |
1393 | |
1394 | template<typename T, typename A> |
1395 | void |
1396 | gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie) |
1397 | { |
1398 | extern void gt_pch_nx (T *, gt_pointer_operator, void *); |
1399 | for (unsigned i = 0; i < v->length (); i++) |
1400 | gt_pch_nx (&((*v)[i]), op, cookie); |
1401 | } |
1402 | |
1403 | |
1404 | /* Space efficient vector. These vectors can grow dynamically and are |
1405 | allocated together with their control data. They are suited to be |
1406 | included in data structures. Prior to initial allocation, they |
1407 | only take a single word of storage. |
1408 | |
1409 | These vectors are implemented as a pointer to an embeddable vector. |
1410 | The semantics allow for this pointer to be NULL to represent empty |
1411 | vectors. This way, empty vectors occupy minimal space in the |
1412 | structure containing them. |
1413 | |
1414 | Properties: |
1415 | |
1416 | - The whole vector and control data are allocated in a single |
1417 | contiguous block. |
1418 | - The whole vector may be re-allocated. |
1419 | - Vector data may grow and shrink. |
1420 | - Access and manipulation requires a pointer test and |
1421 | indirection. |
1422 | - It requires 1 word of storage (prior to vector allocation). |
1423 | |
1424 | |
1425 | Limitations: |
1426 | |
1427 | These vectors must be PODs because they are stored in unions. |
1428 | (http://en.wikipedia.org/wiki/Plain_old_data_structures). |
1429 | As long as we use C++03, we cannot have constructors nor |
1430 | destructors in classes that are stored in unions. */ |
1431 | |
1432 | template<typename T, size_t N = 0> |
1433 | class auto_vec; |
1434 | |
1435 | template<typename T> |
1436 | struct vec<T, va_heap, vl_ptr> |
1437 | { |
1438 | public: |
1439 | /* Default ctors to ensure triviality. Use value-initialization |
1440 | (e.g., vec() or vec v{ };) or vNULL to create a zero-initialized |
1441 | instance. */ |
1442 | vec () = default; |
1443 | vec (const vec &) = default; |
1444 | /* Initialization from the generic vNULL. */ |
1445 | vec (vnull): m_vec () { } |
1446 | /* Same as default ctor: vec storage must be released manually. */ |
1447 | ~vec () = default; |
1448 | |
1449 | /* Defaulted same as copy ctor. */ |
1450 | vec& operator= (const vec &) = default; |
1451 | |
1452 | /* Prevent implicit conversion from auto_vec. Use auto_vec::to_vec() |
1453 | instead. */ |
1454 | template <size_t N> |
1455 | vec (auto_vec<T, N> &) = delete; |
1456 | |
1457 | template <size_t N> |
1458 | void operator= (auto_vec<T, N> &) = delete; |
1459 | |
1460 | /* Memory allocation and deallocation for the embedded vector. |
1461 | Needed because we cannot have proper ctors/dtors defined. */ |
1462 | void create (unsigned nelems CXX_MEM_STAT_INFO); |
1463 | void release (void); |
1464 | |
1465 | /* Vector operations. */ |
1466 | bool exists (void) const |
1467 | { return m_vec != NULL; } |
1468 | |
1469 | bool is_empty (void) const |
1470 | { return m_vec ? m_vec->is_empty () : true; } |
1471 | |
1472 | unsigned length (void) const |
1473 | { return m_vec ? m_vec->length () : 0; } |
1474 | |
1475 | T *address (void) |
1476 | { return m_vec ? m_vec->m_vecdata : NULL; } |
1477 | |
1478 | const T *address (void) const |
1479 | { return m_vec ? m_vec->m_vecdata : NULL; } |
1480 | |
1481 | T *begin () { return address (); } |
1482 | const T *begin () const { return address (); } |
1483 | T *end () { return begin () + length (); } |
1484 | const T *end () const { return begin () + length (); } |
1485 | const T &operator[] (unsigned ix) const |
1486 | { return (*m_vec)[ix]; } |
1487 | |
1488 | bool operator!=(const vec &other) const |
1489 | { return !(*this == other); } |
1490 | |
1491 | bool operator==(const vec &other) const |
1492 | { return address () == other.address (); } |
1493 | |
1494 | T &operator[] (unsigned ix) |
1495 | { return (*m_vec)[ix]; } |
1496 | |
1497 | T &last (void) |
1498 | { return m_vec->last (); } |
1499 | |
1500 | bool space (int nelems) const |
1501 | { return m_vec ? m_vec->space (nelems) : nelems == 0; } |
1502 | |
1503 | bool iterate (unsigned ix, T *p) const; |
1504 | bool iterate (unsigned ix, T **p) const; |
1505 | vec copy (ALONE_CXX_MEM_STAT_INFO) const; |
1506 | bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO); |
1507 | bool reserve_exact (unsigned CXX_MEM_STAT_INFO); |
1508 | void splice (const vec &); |
1509 | void safe_splice (const vec & CXX_MEM_STAT_INFO); |
1510 | T *quick_push (const T &); |
1511 | T *safe_push (const T &CXX_MEM_STAT_INFO); |
1512 | T &pop (void); |
1513 | void truncate (unsigned); |
1514 | void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO); |
1515 | void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO); |
1516 | void quick_grow (unsigned); |
1517 | void quick_grow_cleared (unsigned); |
1518 | void quick_insert (unsigned, const T &); |
1519 | void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO); |
1520 | void ordered_remove (unsigned); |
1521 | void unordered_remove (unsigned); |
1522 | void block_remove (unsigned, unsigned); |
1523 | void qsort (int (*) (const void *, const void *)); |
1524 | void sort (int (*) (const void *, const void *, void *), void *); |
1525 | void stablesort (int (*) (const void *, const void *, void *), void *); |
1526 | T *bsearch (const void *key, int (*compar)(const void *, const void *)); |
1527 | T *bsearch (const void *key, |
1528 | int (*compar)(const void *, const void *, void *), void *); |
1529 | unsigned lower_bound (T, bool (*)(const T &, const T &)) const; |
1530 | bool contains (const T &search) const; |
1531 | void reverse (void); |
1532 | |
1533 | bool using_auto_storage () const; |
1534 | |
1535 | /* FIXME - This field should be private, but we need to cater to |
1536 | compilers that have stricter notions of PODness for types. */ |
1537 | vec<T, va_heap, vl_embed> *m_vec; |
1538 | }; |
1539 | |
1540 | |
1541 | /* auto_vec is a subclass of vec that automatically manages creating and |
1542 | releasing the internal vector. If N is non zero then it has N elements of |
1543 | internal storage. The default is no internal storage, and you probably only |
1544 | want to ask for internal storage for vectors on the stack because if the |
1545 | size of the vector is larger than the internal storage that space is wasted. |
1546 | */ |
1547 | template<typename T, size_t N /* = 0 */> |
1548 | class auto_vec : public vec<T, va_heap> |
1549 | { |
1550 | public: |
1551 | auto_vec () |
1552 | { |
1553 | m_auto.embedded_init (MAX (N, 2), 0, 1); |
1554 | this->m_vec = &m_auto; |
1555 | } |
1556 | |
1557 | auto_vec (size_t s CXX_MEM_STAT_INFO) |
1558 | { |
1559 | if (s > N) |
1560 | { |
1561 | this->create (s PASS_MEM_STAT); |
1562 | return; |
1563 | } |
1564 | |
1565 | m_auto.embedded_init (MAX (N, 2), 0, 1); |
1566 | this->m_vec = &m_auto; |
1567 | } |
1568 | |
1569 | ~auto_vec () |
1570 | { |
1571 | this->release (); |
1572 | } |
1573 | |
1574 | /* Explicitly convert to the base class. There is no conversion |
1575 | from a const auto_vec because a copy of the returned vec can |
1576 | be used to modify *THIS. |
1577 | This is a legacy function not to be used in new code. */ |
1578 | vec<T, va_heap> to_vec_legacy () { |
1579 | return *static_cast<vec<T, va_heap> *>(this); |
1580 | } |
1581 | |
1582 | private: |
1583 | vec<T, va_heap, vl_embed> m_auto; |
1584 | T m_data[MAX (N - 1, 1)]; |
1585 | }; |
1586 | |
1587 | /* auto_vec is a sub class of vec whose storage is released when it is |
1588 | destroyed. */ |
1589 | template<typename T> |
1590 | class auto_vec<T, 0> : public vec<T, va_heap> |
1591 | { |
1592 | public: |
1593 | auto_vec () { this->m_vec = NULL; } |
1594 | auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); } |
1595 | ~auto_vec () { this->release (); } |
1596 | |
1597 | auto_vec (vec<T, va_heap>&& r) |
1598 | { |
1599 | gcc_assert (!r.using_auto_storage ()); |
1600 | this->m_vec = r.m_vec; |
1601 | r.m_vec = NULL; |
1602 | } |
1603 | |
1604 | auto_vec (auto_vec<T> &&r) |
1605 | { |
1606 | gcc_assert (!r.using_auto_storage ()); |
1607 | this->m_vec = r.m_vec; |
1608 | r.m_vec = NULL; |
1609 | } |
1610 | |
1611 | auto_vec& operator= (vec<T, va_heap>&& r) |
1612 | { |
1613 | if (this == &r) |
1614 | return *this; |
1615 | |
1616 | gcc_assert (!r.using_auto_storage ()); |
1617 | this->release (); |
1618 | this->m_vec = r.m_vec; |
1619 | r.m_vec = NULL; |
1620 | return *this; |
1621 | } |
1622 | |
1623 | auto_vec& operator= (auto_vec<T> &&r) |
1624 | { |
1625 | if (this == &r) |
1626 | return *this; |
1627 | |
1628 | gcc_assert (!r.using_auto_storage ()); |
1629 | this->release (); |
1630 | this->m_vec = r.m_vec; |
1631 | r.m_vec = NULL; |
1632 | return *this; |
1633 | } |
1634 | |
1635 | /* Explicitly convert to the base class. There is no conversion |
1636 | from a const auto_vec because a copy of the returned vec can |
1637 | be used to modify *THIS. |
1638 | This is a legacy function not to be used in new code. */ |
1639 | vec<T, va_heap> to_vec_legacy () { |
1640 | return *static_cast<vec<T, va_heap> *>(this); |
1641 | } |
1642 | |
1643 | // You probably don't want to copy a vector, so these are deleted to prevent |
1644 | // unintentional use. If you really need a copy of the vectors contents you |
1645 | // can use copy (). |
1646 | auto_vec(const auto_vec &) = delete; |
1647 | auto_vec &operator= (const auto_vec &) = delete; |
1648 | }; |
1649 | |
1650 | |
1651 | /* Allocate heap memory for pointer V and create the internal vector |
1652 | with space for NELEMS elements. If NELEMS is 0, the internal |
1653 | vector is initialized to empty. */ |
1654 | |
1655 | template<typename T> |
1656 | inline void |
1657 | vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO) |
1658 | { |
1659 | v = new vec<T>; |
1660 | v->create (nelems PASS_MEM_STAT); |
1661 | } |
1662 | |
1663 | |
1664 | /* A subclass of auto_vec <char *> that frees all of its elements on |
1665 | deletion. */ |
1666 | |
1667 | class auto_string_vec : public auto_vec <char *> |
1668 | { |
1669 | public: |
1670 | ~auto_string_vec (); |
1671 | }; |
1672 | |
1673 | /* A subclass of auto_vec <T *> that deletes all of its elements on |
1674 | destruction. |
1675 | |
1676 | This is a crude way for a vec to "own" the objects it points to |
1677 | and clean up automatically. |
1678 | |
1679 | For example, no attempt is made to delete elements when an item |
1680 | within the vec is overwritten. |
1681 | |
1682 | We can't rely on gnu::unique_ptr within a container, |
1683 | since we can't rely on move semantics in C++98. */ |
1684 | |
1685 | template <typename T> |
1686 | class auto_delete_vec : public auto_vec <T *> |
1687 | { |
1688 | public: |
1689 | auto_delete_vec () {} |
1690 | auto_delete_vec (size_t s) : auto_vec <T *> (s) {} |
1691 | |
1692 | ~auto_delete_vec (); |
1693 | |
1694 | private: |
1695 | DISABLE_COPY_AND_ASSIGN(auto_delete_vec); |
1696 | }; |
1697 | |
1698 | /* Conditionally allocate heap memory for VEC and its internal vector. */ |
1699 | |
1700 | template<typename T> |
1701 | inline void |
1702 | vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO) |
1703 | { |
1704 | if (!vec) |
1705 | vec_alloc (vec, nelems PASS_MEM_STAT); |
1706 | } |
1707 | |
1708 | |
1709 | /* Free the heap memory allocated by vector V and set it to NULL. */ |
1710 | |
1711 | template<typename T> |
1712 | inline void |
1713 | vec_free (vec<T> *&v) |
1714 | { |
1715 | if (v == NULL) |
1716 | return; |
1717 | |
1718 | v->release (); |
1719 | delete v; |
1720 | v = NULL; |
1721 | } |
1722 | |
1723 | |
1724 | /* Return iteration condition and update PTR to point to the IX'th |
1725 | element of this vector. Use this to iterate over the elements of a |
1726 | vector as follows, |
1727 | |
1728 | for (ix = 0; v.iterate (ix, &ptr); ix++) |
1729 | continue; */ |
1730 | |
1731 | template<typename T> |
1732 | inline bool |
1733 | vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const |
1734 | { |
1735 | if (m_vec) |
1736 | return m_vec->iterate (ix, ptr); |
1737 | else |
1738 | { |
1739 | *ptr = 0; |
1740 | return false; |
1741 | } |
1742 | } |
1743 | |
1744 | |
1745 | /* Return iteration condition and update *PTR to point to the |
1746 | IX'th element of this vector. Use this to iterate over the |
1747 | elements of a vector as follows, |
1748 | |
1749 | for (ix = 0; v->iterate (ix, &ptr); ix++) |
1750 | continue; |
1751 | |
1752 | This variant is for vectors of objects. */ |
1753 | |
1754 | template<typename T> |
1755 | inline bool |
1756 | vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const |
1757 | { |
1758 | if (m_vec) |
1759 | return m_vec->iterate (ix, ptr); |
1760 | else |
1761 | { |
1762 | *ptr = 0; |
1763 | return false; |
1764 | } |
1765 | } |
1766 | |
1767 | |
1768 | /* Convenience macro for forward iteration. */ |
1769 | #define FOR_EACH_VEC_ELT(V, I, P) \ |
1770 | for (I = 0; (V).iterate ((I), &(P)); ++(I)) |
1771 | |
1772 | #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \ |
1773 | for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) |
1774 | |
1775 | /* Likewise, but start from FROM rather than 0. */ |
1776 | #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \ |
1777 | for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) |
1778 | |
1779 | /* Convenience macro for reverse iteration. */ |
1780 | #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \ |
1781 | for (I = (V).length () - 1; \ |
1782 | (V).iterate ((I), &(P)); \ |
1783 | (I)--) |
1784 | |
1785 | #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \ |
1786 | for (I = vec_safe_length (V) - 1; \ |
1787 | vec_safe_iterate ((V), (I), &(P)); \ |
1788 | (I)--) |
1789 | |
1790 | /* auto_string_vec's dtor, freeing all contained strings, automatically |
1791 | chaining up to ~auto_vec <char *>, which frees the internal buffer. */ |
1792 | |
1793 | inline |
1794 | auto_string_vec::~auto_string_vec () |
1795 | { |
1796 | int i; |
1797 | char *str; |
1798 | FOR_EACH_VEC_ELT (*this, i, str) |
1799 | free (str); |
1800 | } |
1801 | |
1802 | /* auto_delete_vec's dtor, deleting all contained items, automatically |
1803 | chaining up to ~auto_vec <T*>, which frees the internal buffer. */ |
1804 | |
1805 | template <typename T> |
1806 | inline |
1807 | auto_delete_vec<T>::~auto_delete_vec () |
1808 | { |
1809 | int i; |
1810 | T *item; |
1811 | FOR_EACH_VEC_ELT (*this, i, item) |
1812 | delete item; |
1813 | } |
1814 | |
1815 | |
1816 | /* Return a copy of this vector. */ |
1817 | |
1818 | template<typename T> |
1819 | inline vec<T, va_heap, vl_ptr> |
1820 | vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const |
1821 | { |
1822 | vec<T, va_heap, vl_ptr> new_vec{ }; |
1823 | if (length ()) |
1824 | new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT); |
1825 | return new_vec; |
1826 | } |
1827 | |
1828 | |
1829 | /* Ensure that the vector has at least RESERVE slots available (if |
1830 | EXACT is false), or exactly RESERVE slots available (if EXACT is |
1831 | true). |
1832 | |
1833 | This may create additional headroom if EXACT is false. |
1834 | |
1835 | Note that this can cause the embedded vector to be reallocated. |
1836 | Returns true iff reallocation actually occurred. */ |
1837 | |
1838 | template<typename T> |
1839 | inline bool |
1840 | vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL) |
1841 | { |
1842 | if (space (nelems)) |
1843 | return false; |
1844 | |
1845 | /* For now play a game with va_heap::reserve to hide our auto storage if any, |
1846 | this is necessary because it doesn't have enough information to know the |
1847 | embedded vector is in auto storage, and so should not be freed. */ |
1848 | vec<T, va_heap, vl_embed> *oldvec = m_vec; |
1849 | unsigned int oldsize = 0; |
1850 | bool handle_auto_vec = m_vec && using_auto_storage (); |
1851 | if (handle_auto_vec) |
1852 | { |
1853 | m_vec = NULL; |
1854 | oldsize = oldvec->length (); |
1855 | nelems += oldsize; |
1856 | } |
1857 | |
1858 | va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT); |
1859 | if (handle_auto_vec) |
1860 | { |
1861 | vec_copy_construct (m_vec->address (), oldvec->address (), oldsize); |
1862 | m_vec->m_vecpfx.m_num = oldsize; |
1863 | } |
1864 | |
1865 | return true; |
1866 | } |
1867 | |
1868 | |
1869 | /* Ensure that this vector has exactly NELEMS slots available. This |
1870 | will not create additional headroom. Note this can cause the |
1871 | embedded vector to be reallocated. Returns true iff reallocation |
1872 | actually occurred. */ |
1873 | |
1874 | template<typename T> |
1875 | inline bool |
1876 | vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL) |
1877 | { |
1878 | return reserve (nelems, true PASS_MEM_STAT); |
1879 | } |
1880 | |
1881 | |
1882 | /* Create the internal vector and reserve NELEMS for it. This is |
1883 | exactly like vec::reserve, but the internal vector is |
1884 | unconditionally allocated from scratch. The old one, if it |
1885 | existed, is lost. */ |
1886 | |
1887 | template<typename T> |
1888 | inline void |
1889 | vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL) |
1890 | { |
1891 | m_vec = NULL; |
1892 | if (nelems > 0) |
1893 | reserve_exact (nelems PASS_MEM_STAT); |
1894 | } |
1895 | |
1896 | |
1897 | /* Free the memory occupied by the embedded vector. */ |
1898 | |
1899 | template<typename T> |
1900 | inline void |
1901 | vec<T, va_heap, vl_ptr>::release (void) |
1902 | { |
1903 | if (!m_vec) |
1904 | return; |
1905 | |
1906 | if (using_auto_storage ()) |
1907 | { |
1908 | m_vec->m_vecpfx.m_num = 0; |
1909 | return; |
1910 | } |
1911 | |
1912 | va_heap::release (m_vec); |
1913 | } |
1914 | |
1915 | /* Copy the elements from SRC to the end of this vector as if by memcpy. |
1916 | SRC and this vector must be allocated with the same memory |
1917 | allocation mechanism. This vector is assumed to have sufficient |
1918 | headroom available. */ |
1919 | |
1920 | template<typename T> |
1921 | inline void |
1922 | vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src) |
1923 | { |
1924 | if (src.length ()) |
1925 | m_vec->splice (*(src.m_vec)); |
1926 | } |
1927 | |
1928 | |
1929 | /* Copy the elements in SRC to the end of this vector as if by memcpy. |
1930 | SRC and this vector must be allocated with the same mechanism. |
1931 | If there is not enough headroom in this vector, it will be reallocated |
1932 | as needed. */ |
1933 | |
1934 | template<typename T> |
1935 | inline void |
1936 | vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src |
1937 | MEM_STAT_DECL) |
1938 | { |
1939 | if (src.length ()) |
1940 | { |
1941 | reserve_exact (src.length ()); |
1942 | splice (src); |
1943 | } |
1944 | } |
1945 | |
1946 | |
1947 | /* Push OBJ (a new element) onto the end of the vector. There must be |
1948 | sufficient space in the vector. Return a pointer to the slot |
1949 | where OBJ was inserted. */ |
1950 | |
1951 | template<typename T> |
1952 | inline T * |
1953 | vec<T, va_heap, vl_ptr>::quick_push (const T &obj) |
1954 | { |
1955 | return m_vec->quick_push (obj); |
1956 | } |
1957 | |
1958 | |
1959 | /* Push a new element OBJ onto the end of this vector. Reallocates |
1960 | the embedded vector, if needed. Return a pointer to the slot where |
1961 | OBJ was inserted. */ |
1962 | |
1963 | template<typename T> |
1964 | inline T * |
1965 | vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL) |
1966 | { |
1967 | reserve (1, false PASS_MEM_STAT); |
1968 | return quick_push (obj); |
1969 | } |
1970 | |
1971 | |
1972 | /* Pop and return the last element off the end of the vector. */ |
1973 | |
1974 | template<typename T> |
1975 | inline T & |
1976 | vec<T, va_heap, vl_ptr>::pop (void) |
1977 | { |
1978 | return m_vec->pop (); |
1979 | } |
1980 | |
1981 | |
1982 | /* Set the length of the vector to LEN. The new length must be less |
1983 | than or equal to the current length. This is an O(1) operation. */ |
1984 | |
1985 | template<typename T> |
1986 | inline void |
1987 | vec<T, va_heap, vl_ptr>::truncate (unsigned size) |
1988 | { |
1989 | if (m_vec) |
1990 | m_vec->truncate (size); |
1991 | else |
1992 | gcc_checking_assert (size == 0); |
1993 | } |
1994 | |
1995 | |
1996 | /* Grow the vector to a specific length. LEN must be as long or |
1997 | longer than the current length. The new elements are |
1998 | uninitialized. Reallocate the internal vector, if needed. */ |
1999 | |
2000 | template<typename T> |
2001 | inline void |
2002 | vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL) |
2003 | { |
2004 | unsigned oldlen = length (); |
2005 | gcc_checking_assert (oldlen <= len); |
2006 | reserve (len - oldlen, exact PASS_MEM_STAT); |
2007 | if (m_vec) |
2008 | m_vec->quick_grow (len); |
2009 | else |
2010 | gcc_checking_assert (len == 0); |
2011 | } |
2012 | |
2013 | |
2014 | /* Grow the embedded vector to a specific length. LEN must be as |
2015 | long or longer than the current length. The new elements are |
2016 | initialized to zero. Reallocate the internal vector, if needed. */ |
2017 | |
2018 | template<typename T> |
2019 | inline void |
2020 | vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact |
2021 | MEM_STAT_DECL) |
2022 | { |
2023 | unsigned oldlen = length (); |
2024 | size_t growby = len - oldlen; |
2025 | safe_grow (len, exact PASS_MEM_STAT); |
2026 | if (growby != 0) |
2027 | vec_default_construct (address () + oldlen, growby); |
2028 | } |
2029 | |
2030 | |
2031 | /* Same as vec::safe_grow but without reallocation of the internal vector. |
2032 | If the vector cannot be extended, a runtime assertion will be triggered. */ |
2033 | |
2034 | template<typename T> |
2035 | inline void |
2036 | vec<T, va_heap, vl_ptr>::quick_grow (unsigned len) |
2037 | { |
2038 | gcc_checking_assert (m_vec); |
2039 | m_vec->quick_grow (len); |
2040 | } |
2041 | |
2042 | |
2043 | /* Same as vec::quick_grow_cleared but without reallocation of the |
2044 | internal vector. If the vector cannot be extended, a runtime |
2045 | assertion will be triggered. */ |
2046 | |
2047 | template<typename T> |
2048 | inline void |
2049 | vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len) |
2050 | { |
2051 | gcc_checking_assert (m_vec); |
2052 | m_vec->quick_grow_cleared (len); |
2053 | } |
2054 | |
2055 | |
2056 | /* Insert an element, OBJ, at the IXth position of this vector. There |
2057 | must be sufficient space. */ |
2058 | |
2059 | template<typename T> |
2060 | inline void |
2061 | vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj) |
2062 | { |
2063 | m_vec->quick_insert (ix, obj); |
2064 | } |
2065 | |
2066 | |
2067 | /* Insert an element, OBJ, at the IXth position of the vector. |
2068 | Reallocate the embedded vector, if necessary. */ |
2069 | |
2070 | template<typename T> |
2071 | inline void |
2072 | vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL) |
2073 | { |
2074 | reserve (1, false PASS_MEM_STAT); |
2075 | quick_insert (ix, obj); |
2076 | } |
2077 | |
2078 | |
2079 | /* Remove an element from the IXth position of this vector. Ordering of |
2080 | remaining elements is preserved. This is an O(N) operation due to |
2081 | a memmove. */ |
2082 | |
2083 | template<typename T> |
2084 | inline void |
2085 | vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix) |
2086 | { |
2087 | m_vec->ordered_remove (ix); |
2088 | } |
2089 | |
2090 | |
2091 | /* Remove an element from the IXth position of this vector. Ordering |
2092 | of remaining elements is destroyed. This is an O(1) operation. */ |
2093 | |
2094 | template<typename T> |
2095 | inline void |
2096 | vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix) |
2097 | { |
2098 | m_vec->unordered_remove (ix); |
2099 | } |
2100 | |
2101 | |
2102 | /* Remove LEN elements starting at the IXth. Ordering is retained. |
2103 | This is an O(N) operation due to memmove. */ |
2104 | |
2105 | template<typename T> |
2106 | inline void |
2107 | vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len) |
2108 | { |
2109 | m_vec->block_remove (ix, len); |
2110 | } |
2111 | |
2112 | |
2113 | /* Sort the contents of this vector with qsort. CMP is the comparison |
2114 | function to pass to qsort. */ |
2115 | |
2116 | template<typename T> |
2117 | inline void |
2118 | vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *)) |
2119 | { |
2120 | if (m_vec) |
2121 | m_vec->qsort (cmp); |
2122 | } |
2123 | |
2124 | /* Sort the contents of this vector with qsort. CMP is the comparison |
2125 | function to pass to qsort. */ |
2126 | |
2127 | template<typename T> |
2128 | inline void |
2129 | vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *, |
2130 | void *), void *data) |
2131 | { |
2132 | if (m_vec) |
2133 | m_vec->sort (cmp, data); |
2134 | } |
2135 | |
2136 | /* Sort the contents of this vector with gcc_stablesort_r. CMP is the |
2137 | comparison function to pass to qsort. */ |
2138 | |
2139 | template<typename T> |
2140 | inline void |
2141 | vec<T, va_heap, vl_ptr>::stablesort (int (*cmp) (const void *, const void *, |
2142 | void *), void *data) |
2143 | { |
2144 | if (m_vec) |
2145 | m_vec->stablesort (cmp, data); |
2146 | } |
2147 | |
2148 | /* Search the contents of the sorted vector with a binary search. |
2149 | CMP is the comparison function to pass to bsearch. */ |
2150 | |
2151 | template<typename T> |
2152 | inline T * |
2153 | vec<T, va_heap, vl_ptr>::bsearch (const void *key, |
2154 | int (*cmp) (const void *, const void *)) |
2155 | { |
2156 | if (m_vec) |
2157 | return m_vec->bsearch (key, cmp); |
2158 | return NULL; |
2159 | } |
2160 | |
2161 | /* Search the contents of the sorted vector with a binary search. |
2162 | CMP is the comparison function to pass to bsearch. */ |
2163 | |
2164 | template<typename T> |
2165 | inline T * |
2166 | vec<T, va_heap, vl_ptr>::bsearch (const void *key, |
2167 | int (*cmp) (const void *, const void *, |
2168 | void *), void *data) |
2169 | { |
2170 | if (m_vec) |
2171 | return m_vec->bsearch (key, cmp, data); |
2172 | return NULL; |
2173 | } |
2174 | |
2175 | |
2176 | /* Find and return the first position in which OBJ could be inserted |
2177 | without changing the ordering of this vector. LESSTHAN is a |
2178 | function that returns true if the first argument is strictly less |
2179 | than the second. */ |
2180 | |
2181 | template<typename T> |
2182 | inline unsigned |
2183 | vec<T, va_heap, vl_ptr>::lower_bound (T obj, |
2184 | bool (*lessthan)(const T &, const T &)) |
2185 | const |
2186 | { |
2187 | return m_vec ? m_vec->lower_bound (obj, lessthan) : 0; |
2188 | } |
2189 | |
2190 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the |
2191 | size of the vector and so should be used with care. */ |
2192 | |
2193 | template<typename T> |
2194 | inline bool |
2195 | vec<T, va_heap, vl_ptr>::contains (const T &search) const |
2196 | { |
2197 | return m_vec ? m_vec->contains (search) : false; |
2198 | } |
2199 | |
2200 | /* Reverse content of the vector. */ |
2201 | |
2202 | template<typename T> |
2203 | inline void |
2204 | vec<T, va_heap, vl_ptr>::reverse (void) |
2205 | { |
2206 | unsigned l = length (); |
2207 | T *ptr = address (); |
2208 | |
2209 | for (unsigned i = 0; i < l / 2; i++) |
2210 | std::swap (ptr[i], ptr[l - i - 1]); |
2211 | } |
2212 | |
2213 | template<typename T> |
2214 | inline bool |
2215 | vec<T, va_heap, vl_ptr>::using_auto_storage () const |
2216 | { |
2217 | return m_vec ? m_vec->m_vecpfx.m_using_auto_storage : false; |
2218 | } |
2219 | |
2220 | /* Release VEC and call release of all element vectors. */ |
2221 | |
2222 | template<typename T> |
2223 | inline void |
2224 | release_vec_vec (vec<vec<T> > &vec) |
2225 | { |
2226 | for (unsigned i = 0; i < vec.length (); i++) |
2227 | vec[i].release (); |
2228 | |
2229 | vec.release (); |
2230 | } |
2231 | |
2232 | // Provide a subset of the std::span functionality. (We can't use std::span |
2233 | // itself because it's a C++20 feature.) |
2234 | // |
2235 | // In addition, provide an invalid value that is distinct from all valid |
2236 | // sequences (including the empty sequence). This can be used to return |
2237 | // failure without having to use std::optional. |
2238 | // |
2239 | // There is no operator bool because it would be ambiguous whether it is |
2240 | // testing for a valid value or an empty sequence. |
2241 | template<typename T> |
2242 | class array_slice |
2243 | { |
2244 | template<typename OtherT> friend class array_slice; |
2245 | |
2246 | public: |
2247 | using value_type = T; |
2248 | using iterator = T *; |
2249 | using const_iterator = const T *; |
2250 | |
2251 | array_slice () : m_base (nullptr), m_size (0) {} |
2252 | |
2253 | template<typename OtherT> |
2254 | array_slice (array_slice<OtherT> other) |
2255 | : m_base (other.m_base), m_size (other.m_size) {} |
2256 | |
2257 | array_slice (iterator base, unsigned int size) |
2258 | : m_base (base), m_size (size) {} |
2259 | |
2260 | template<size_t N> |
2261 | array_slice (T (&array)[N]) : m_base (array), m_size (N) {} |
2262 | |
2263 | template<typename OtherT> |
2264 | array_slice (const vec<OtherT> &v) |
2265 | : m_base (v.address ()), m_size (v.length ()) {} |
2266 | |
2267 | iterator begin () { return m_base; } |
2268 | iterator end () { return m_base + m_size; } |
2269 | |
2270 | const_iterator begin () const { return m_base; } |
2271 | const_iterator end () const { return m_base + m_size; } |
2272 | |
2273 | value_type &front (); |
2274 | value_type &back (); |
2275 | value_type &operator[] (unsigned int i); |
2276 | |
2277 | const value_type &front () const; |
2278 | const value_type &back () const; |
2279 | const value_type &operator[] (unsigned int i) const; |
2280 | |
2281 | size_t size () const { return m_size; } |
2282 | size_t size_bytes () const { return m_size * sizeof (T); } |
2283 | bool empty () const { return m_size == 0; } |
2284 | |
2285 | // An invalid array_slice that represents a failed operation. This is |
2286 | // distinct from an empty slice, which is a valid result in some contexts. |
2287 | static array_slice invalid () { return { nullptr, ~0U }; } |
2288 | |
2289 | // True if the array is valid, false if it is an array like INVALID. |
2290 | bool is_valid () const { return m_base || m_size == 0; } |
2291 | |
2292 | private: |
2293 | iterator m_base; |
2294 | unsigned int m_size; |
2295 | }; |
2296 | |
2297 | template<typename T> |
2298 | inline typename array_slice<T>::value_type & |
2299 | array_slice<T>::front () |
2300 | { |
2301 | gcc_checking_assert (m_size); |
2302 | return m_base[0]; |
2303 | } |
2304 | |
2305 | template<typename T> |
2306 | inline const typename array_slice<T>::value_type & |
2307 | array_slice<T>::front () const |
2308 | { |
2309 | gcc_checking_assert (m_size); |
2310 | return m_base[0]; |
2311 | } |
2312 | |
2313 | template<typename T> |
2314 | inline typename array_slice<T>::value_type & |
2315 | array_slice<T>::back () |
2316 | { |
2317 | gcc_checking_assert (m_size); |
2318 | return m_base[m_size - 1]; |
2319 | } |
2320 | |
2321 | template<typename T> |
2322 | inline const typename array_slice<T>::value_type & |
2323 | array_slice<T>::back () const |
2324 | { |
2325 | gcc_checking_assert (m_size); |
2326 | return m_base[m_size - 1]; |
2327 | } |
2328 | |
2329 | template<typename T> |
2330 | inline typename array_slice<T>::value_type & |
2331 | array_slice<T>::operator[] (unsigned int i) |
2332 | { |
2333 | gcc_checking_assert (i < m_size); |
2334 | return m_base[i]; |
2335 | } |
2336 | |
2337 | template<typename T> |
2338 | inline const typename array_slice<T>::value_type & |
2339 | array_slice<T>::operator[] (unsigned int i) const |
2340 | { |
2341 | gcc_checking_assert (i < m_size); |
2342 | return m_base[i]; |
2343 | } |
2344 | |
2345 | template<typename T> |
2346 | array_slice<T> |
2347 | make_array_slice (T *base, unsigned int size) |
2348 | { |
2349 | return array_slice<T> (base, size); |
2350 | } |
2351 | |
2352 | #if (GCC_VERSION >= 3000) |
2353 | # pragma GCC poison m_vec m_vecpfx m_vecdata |
2354 | #endif |
2355 | |
2356 | #endif // GCC_VEC_H |
2357 | |