1 | /* Vector API for GNU compiler. |
2 | Copyright (C) 2004-2024 Free Software Foundation, Inc. |
3 | Contributed by Nathan Sidwell <nathan@codesourcery.com> |
4 | Re-implemented in C++ by Diego Novillo <dnovillo@google.com> |
5 | |
6 | This file is part of GCC. |
7 | |
8 | GCC is free software; you can redistribute it and/or modify it under |
9 | the terms of the GNU General Public License as published by the Free |
10 | Software Foundation; either version 3, or (at your option) any later |
11 | version. |
12 | |
13 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
14 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
16 | for more details. |
17 | |
18 | You should have received a copy of the GNU General Public License |
19 | along with GCC; see the file COPYING3. If not see |
20 | <http://www.gnu.org/licenses/>. */ |
21 | |
22 | #ifndef GCC_VEC_H |
23 | #define GCC_VEC_H |
24 | |
25 | /* Some gen* file have no ggc support as the header file gtype-desc.h is |
26 | missing. Provide these definitions in case ggc.h has not been included. |
27 | This is not a problem because any code that runs before gengtype is built |
28 | will never need to use GC vectors.*/ |
29 | |
30 | extern void ggc_free (void *); |
31 | extern size_t ggc_round_alloc_size (size_t requested_size); |
32 | extern void *ggc_realloc (void *, size_t MEM_STAT_DECL); |
33 | |
34 | /* Templated vector type and associated interfaces. |
35 | |
36 | The interface functions are typesafe and use inline functions, |
37 | sometimes backed by out-of-line generic functions. The vectors are |
38 | designed to interoperate with the GTY machinery. |
39 | |
40 | There are both 'index' and 'iterate' accessors. The index accessor |
41 | is implemented by operator[]. The iterator returns a boolean |
42 | iteration condition and updates the iteration variable passed by |
43 | reference. Because the iterator will be inlined, the address-of |
44 | can be optimized away. |
45 | |
46 | Each operation that increases the number of active elements is |
47 | available in 'quick' and 'safe' variants. The former presumes that |
48 | there is sufficient allocated space for the operation to succeed |
49 | (it dies if there is not). The latter will reallocate the |
50 | vector, if needed. Reallocation causes an exponential increase in |
51 | vector size. If you know you will be adding N elements, it would |
52 | be more efficient to use the reserve operation before adding the |
53 | elements with the 'quick' operation. This will ensure there are at |
54 | least as many elements as you ask for, it will exponentially |
55 | increase if there are too few spare slots. If you want reserve a |
56 | specific number of slots, but do not want the exponential increase |
57 | (for instance, you know this is the last allocation), use the |
58 | reserve_exact operation. You can also create a vector of a |
59 | specific size from the get go. |
60 | |
61 | You should prefer the push and pop operations, as they append and |
62 | remove from the end of the vector. If you need to remove several |
63 | items in one go, use the truncate operation. The insert and remove |
64 | operations allow you to change elements in the middle of the |
65 | vector. There are two remove operations, one which preserves the |
66 | element ordering 'ordered_remove', and one which does not |
67 | 'unordered_remove'. The latter function copies the end element |
68 | into the removed slot, rather than invoke a memmove operation. The |
69 | 'lower_bound' function will determine where to place an item in the |
70 | array using insert that will maintain sorted order. |
71 | |
72 | Vectors are template types with three arguments: the type of the |
73 | elements in the vector, the allocation strategy, and the physical |
74 | layout to use |
75 | |
76 | Four allocation strategies are supported: |
77 | |
78 | - Heap: allocation is done using malloc/free. This is the |
79 | default allocation strategy. |
80 | |
81 | - GC: allocation is done using ggc_alloc/ggc_free. |
82 | |
83 | - GC atomic: same as GC with the exception that the elements |
84 | themselves are assumed to be of an atomic type that does |
85 | not need to be garbage collected. This means that marking |
86 | routines do not need to traverse the array marking the |
87 | individual elements. This increases the performance of |
88 | GC activities. |
89 | |
90 | Two physical layouts are supported: |
91 | |
92 | - Embedded: The vector is structured using the trailing array |
93 | idiom. The last member of the structure is an array of size |
94 | 1. When the vector is initially allocated, a single memory |
95 | block is created to hold the vector's control data and the |
96 | array of elements. These vectors cannot grow without |
97 | reallocation (see discussion on embeddable vectors below). |
98 | |
99 | - Space efficient: The vector is structured as a pointer to an |
100 | embedded vector. This is the default layout. It means that |
101 | vectors occupy a single word of storage before initial |
102 | allocation. Vectors are allowed to grow (the internal |
103 | pointer is reallocated but the main vector instance does not |
104 | need to relocate). |
105 | |
106 | The type, allocation and layout are specified when the vector is |
107 | declared. |
108 | |
109 | If you need to directly manipulate a vector, then the 'address' |
110 | accessor will return the address of the start of the vector. Also |
111 | the 'space' predicate will tell you whether there is spare capacity |
112 | in the vector. You will not normally need to use these two functions. |
113 | |
114 | Not all vector operations support non-POD types and such restrictions |
115 | are enforced through static assertions. Some operations which often use |
116 | memmove to move elements around like quick_insert, safe_insert, |
117 | ordered_remove, unordered_remove, block_remove etc. require trivially |
118 | copyable types. Sorting operations, qsort, sort and stablesort, require |
119 | those too but as an extension allow also std::pair of 2 trivially copyable |
120 | types which happens to work even when std::pair itself isn't trivially |
121 | copyable. The quick_grow and safe_grow operations require trivially |
122 | default constructible types. One can use quick_grow_cleared or |
123 | safe_grow_cleared for non-trivially default constructible types if needed |
124 | (but of course such operation is more expensive then). The pop operation |
125 | returns reference to the last element only for trivially destructible |
126 | types, for non-trivially destructible types one should use last operation |
127 | followed by pop which in that case returns void. |
128 | And finally, the GC and GC atomic vectors should always be used with |
129 | trivially destructible types, as nothing will invoke destructors when they |
130 | are freed during GC. |
131 | |
132 | Notes on the different layout strategies |
133 | |
134 | * Embeddable vectors (vec<T, A, vl_embed>) |
135 | |
136 | These vectors are suitable to be embedded in other data |
137 | structures so that they can be pre-allocated in a contiguous |
138 | memory block. |
139 | |
140 | Embeddable vectors are implemented using the trailing array |
141 | idiom, thus they are not resizeable without changing the address |
142 | of the vector object itself. This means you cannot have |
143 | variables or fields of embeddable vector type -- always use a |
144 | pointer to a vector. The one exception is the final field of a |
145 | structure, which could be a vector type. |
146 | |
147 | You will have to use the embedded_size & embedded_init calls to |
148 | create such objects, and they will not be resizeable (so the |
149 | 'safe' allocation variants are not available). |
150 | |
151 | Properties of embeddable vectors: |
152 | |
153 | - The whole vector and control data are allocated in a single |
154 | contiguous block. It uses the trailing-vector idiom, so |
155 | allocation must reserve enough space for all the elements |
156 | in the vector plus its control data. |
157 | - The vector cannot be re-allocated. |
158 | - The vector cannot grow nor shrink. |
159 | - No indirections needed for access/manipulation. |
160 | - It requires 2 words of storage (prior to vector allocation). |
161 | |
162 | |
163 | * Space efficient vector (vec<T, A, vl_ptr>) |
164 | |
165 | These vectors can grow dynamically and are allocated together |
166 | with their control data. They are suited to be included in data |
167 | structures. Prior to initial allocation, they only take a single |
168 | word of storage. |
169 | |
170 | These vectors are implemented as a pointer to embeddable vectors. |
171 | The semantics allow for this pointer to be NULL to represent |
172 | empty vectors. This way, empty vectors occupy minimal space in |
173 | the structure containing them. |
174 | |
175 | Properties: |
176 | |
177 | - The whole vector and control data are allocated in a single |
178 | contiguous block. |
179 | - The whole vector may be re-allocated. |
180 | - Vector data may grow and shrink. |
181 | - Access and manipulation requires a pointer test and |
182 | indirection. |
183 | - It requires 1 word of storage (prior to vector allocation). |
184 | |
185 | An example of their use would be, |
186 | |
187 | struct my_struct { |
188 | // A space-efficient vector of tree pointers in GC memory. |
189 | vec<tree, va_gc, vl_ptr> v; |
190 | }; |
191 | |
192 | struct my_struct *s; |
193 | |
194 | if (s->v.length ()) { we have some contents } |
195 | s->v.safe_push (decl); // append some decl onto the end |
196 | for (ix = 0; s->v.iterate (ix, &elt); ix++) |
197 | { do something with elt } |
198 | */ |
199 | |
200 | /* Support function for statistics. */ |
201 | extern void dump_vec_loc_statistics (void); |
202 | |
203 | /* Hashtable mapping vec addresses to descriptors. */ |
204 | extern htab_t vec_mem_usage_hash; |
205 | |
206 | /* Destruct N elements in DST. */ |
207 | |
208 | template <typename T> |
209 | inline void |
210 | vec_destruct (T *dst, unsigned n) |
211 | { |
212 | for ( ; n; ++dst, --n) |
213 | dst->~T (); |
214 | } |
215 | |
216 | /* Control data for vectors. This contains the number of allocated |
217 | and used slots inside a vector. */ |
218 | |
219 | struct vec_prefix |
220 | { |
221 | /* FIXME - These fields should be private, but we need to cater to |
222 | compilers that have stricter notions of PODness for types. */ |
223 | |
224 | /* Memory allocation support routines in vec.cc. */ |
225 | void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO); |
226 | void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO); |
227 | static unsigned calculate_allocation (vec_prefix *, unsigned, bool); |
228 | static unsigned calculate_allocation_1 (unsigned, unsigned); |
229 | |
230 | /* Note that vec_prefix should be a base class for vec, but we use |
231 | offsetof() on vector fields of tree structures (e.g., |
232 | tree_binfo::base_binfos), and offsetof only supports base types. |
233 | |
234 | To compensate, we make vec_prefix a field inside vec and make |
235 | vec a friend class of vec_prefix so it can access its fields. */ |
236 | template <typename, typename, typename> friend struct vec; |
237 | |
238 | /* The allocator types also need access to our internals. */ |
239 | friend struct va_gc; |
240 | friend struct va_gc_atomic; |
241 | friend struct va_heap; |
242 | |
243 | unsigned m_alloc : 31; |
244 | unsigned m_using_auto_storage : 1; |
245 | unsigned m_num; |
246 | }; |
247 | |
248 | /* Calculate the number of slots to reserve a vector, making sure that |
249 | RESERVE slots are free. If EXACT grow exactly, otherwise grow |
250 | exponentially. PFX is the control data for the vector. */ |
251 | |
252 | inline unsigned |
253 | vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve, |
254 | bool exact) |
255 | { |
256 | if (exact) |
257 | return (pfx ? pfx->m_num : 0) + reserve; |
258 | else if (!pfx) |
259 | return MAX (4, reserve); |
260 | return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve); |
261 | } |
262 | |
263 | template<typename, typename, typename> struct vec; |
264 | |
265 | /* Valid vector layouts |
266 | |
267 | vl_embed - Embeddable vector that uses the trailing array idiom. |
268 | vl_ptr - Space efficient vector that uses a pointer to an |
269 | embeddable vector. */ |
270 | struct vl_embed { }; |
271 | struct vl_ptr { }; |
272 | |
273 | |
274 | /* Types of supported allocations |
275 | |
276 | va_heap - Allocation uses malloc/free. |
277 | va_gc - Allocation uses ggc_alloc. |
278 | va_gc_atomic - Same as GC, but individual elements of the array |
279 | do not need to be marked during collection. */ |
280 | |
281 | /* Allocator type for heap vectors. */ |
282 | struct va_heap |
283 | { |
284 | /* Heap vectors are frequently regular instances, so use the vl_ptr |
285 | layout for them. */ |
286 | typedef vl_ptr default_layout; |
287 | |
288 | template<typename T> |
289 | static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool |
290 | CXX_MEM_STAT_INFO); |
291 | |
292 | template<typename T> |
293 | static void release (vec<T, va_heap, vl_embed> *&); |
294 | }; |
295 | |
296 | |
297 | /* Allocator for heap memory. Ensure there are at least RESERVE free |
298 | slots in V. If EXACT is true, grow exactly, else grow |
299 | exponentially. As a special case, if the vector had not been |
300 | allocated and RESERVE is 0, no vector will be created. */ |
301 | |
302 | template<typename T> |
303 | inline void |
304 | va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact |
305 | MEM_STAT_DECL) |
306 | { |
307 | size_t elt_size = sizeof (T); |
308 | unsigned alloc |
309 | = vec_prefix::calculate_allocation (pfx: v ? &v->m_vecpfx : 0, reserve, exact); |
310 | gcc_checking_assert (alloc); |
311 | |
312 | if (GATHER_STATISTICS && v) |
313 | v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), |
314 | v->allocated (), false); |
315 | |
316 | size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc); |
317 | unsigned nelem = v ? v->length () : 0; |
318 | v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size)); |
319 | v->embedded_init (alloc, nelem); |
320 | |
321 | if (GATHER_STATISTICS) |
322 | v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT); |
323 | } |
324 | |
325 | |
326 | #if GCC_VERSION >= 4007 |
327 | #pragma GCC diagnostic push |
328 | #pragma GCC diagnostic ignored "-Wfree-nonheap-object" |
329 | #endif |
330 | |
331 | /* Free the heap space allocated for vector V. */ |
332 | |
333 | template<typename T> |
334 | void |
335 | va_heap::release (vec<T, va_heap, vl_embed> *&v) |
336 | { |
337 | size_t elt_size = sizeof (T); |
338 | if (v == NULL) |
339 | return; |
340 | |
341 | if (!std::is_trivially_destructible <T>::value) |
342 | vec_destruct (v->address (), v->length ()); |
343 | |
344 | if (GATHER_STATISTICS) |
345 | v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), |
346 | v->allocated (), true); |
347 | ::free (ptr: v); |
348 | v = NULL; |
349 | } |
350 | |
351 | #if GCC_VERSION >= 4007 |
352 | #pragma GCC diagnostic pop |
353 | #endif |
354 | |
355 | /* Allocator type for GC vectors. Notice that we need the structure |
356 | declaration even if GC is not enabled. */ |
357 | |
358 | struct va_gc |
359 | { |
360 | /* Use vl_embed as the default layout for GC vectors. Due to GTY |
361 | limitations, GC vectors must always be pointers, so it is more |
362 | efficient to use a pointer to the vl_embed layout, rather than |
363 | using a pointer to a pointer as would be the case with vl_ptr. */ |
364 | typedef vl_embed default_layout; |
365 | |
366 | template<typename T, typename A> |
367 | static void reserve (vec<T, A, vl_embed> *&, unsigned, bool |
368 | CXX_MEM_STAT_INFO); |
369 | |
370 | template<typename T, typename A> |
371 | static void release (vec<T, A, vl_embed> *&v); |
372 | }; |
373 | |
374 | |
375 | /* Free GC memory used by V and reset V to NULL. */ |
376 | |
377 | template<typename T, typename A> |
378 | inline void |
379 | va_gc::release (vec<T, A, vl_embed> *&v) |
380 | { |
381 | if (v) |
382 | ::ggc_free (v); |
383 | v = NULL; |
384 | } |
385 | |
386 | |
387 | /* Allocator for GC memory. Ensure there are at least RESERVE free |
388 | slots in V. If EXACT is true, grow exactly, else grow |
389 | exponentially. As a special case, if the vector had not been |
390 | allocated and RESERVE is 0, no vector will be created. */ |
391 | |
392 | template<typename T, typename A> |
393 | void |
394 | va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact |
395 | MEM_STAT_DECL) |
396 | { |
397 | unsigned alloc |
398 | = vec_prefix::calculate_allocation (pfx: v ? &v->m_vecpfx : 0, reserve, exact); |
399 | if (!alloc) |
400 | { |
401 | ::ggc_free (v); |
402 | v = NULL; |
403 | return; |
404 | } |
405 | |
406 | /* Calculate the amount of space we want. */ |
407 | size_t size = vec<T, A, vl_embed>::embedded_size (alloc); |
408 | |
409 | /* Ask the allocator how much space it will really give us. */ |
410 | size = ::ggc_round_alloc_size (requested_size: size); |
411 | |
412 | /* Adjust the number of slots accordingly. */ |
413 | size_t vec_offset = sizeof (vec_prefix); |
414 | size_t elt_size = sizeof (T); |
415 | alloc = (size - vec_offset) / elt_size; |
416 | |
417 | /* And finally, recalculate the amount of space we ask for. */ |
418 | size = vec_offset + alloc * elt_size; |
419 | |
420 | unsigned nelem = v ? v->length () : 0; |
421 | v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size |
422 | PASS_MEM_STAT)); |
423 | v->embedded_init (alloc, nelem); |
424 | } |
425 | |
426 | |
427 | /* Allocator type for GC vectors. This is for vectors of types |
428 | atomics w.r.t. collection, so allocation and deallocation is |
429 | completely inherited from va_gc. */ |
430 | struct va_gc_atomic : va_gc |
431 | { |
432 | }; |
433 | |
434 | |
435 | /* Generic vector template. Default values for A and L indicate the |
436 | most commonly used strategies. |
437 | |
438 | FIXME - Ideally, they would all be vl_ptr to encourage using regular |
439 | instances for vectors, but the existing GTY machinery is limited |
440 | in that it can only deal with GC objects that are pointers |
441 | themselves. |
442 | |
443 | This means that vector operations that need to deal with |
444 | potentially NULL pointers, must be provided as free |
445 | functions (see the vec_safe_* functions above). */ |
446 | template<typename T, |
447 | typename A = va_heap, |
448 | typename L = typename A::default_layout> |
449 | struct GTY((user)) vec |
450 | { |
451 | }; |
452 | |
453 | /* Allow C++11 range-based 'for' to work directly on vec<T>*. */ |
454 | template<typename T, typename A, typename L> |
455 | T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; } |
456 | template<typename T, typename A, typename L> |
457 | T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; } |
458 | template<typename T, typename A, typename L> |
459 | const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; } |
460 | template<typename T, typename A, typename L> |
461 | const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; } |
462 | |
463 | /* Generic vec<> debug helpers. |
464 | |
465 | These need to be instantiated for each vec<TYPE> used throughout |
466 | the compiler like this: |
467 | |
468 | DEFINE_DEBUG_VEC (TYPE) |
469 | |
470 | The reason we have a debug_helper() is because GDB can't |
471 | disambiguate a plain call to debug(some_vec), and it must be called |
472 | like debug<TYPE>(some_vec). */ |
473 | |
474 | template<typename T> |
475 | void |
476 | debug_helper (vec<T> &ref) |
477 | { |
478 | unsigned i; |
479 | for (i = 0; i < ref.length (); ++i) |
480 | { |
481 | fprintf (stderr, format: "[%d] = " , i); |
482 | debug_slim (ref[i]); |
483 | fputc (c: '\n', stderr); |
484 | } |
485 | } |
486 | |
487 | /* We need a separate va_gc variant here because default template |
488 | argument for functions cannot be used in c++-98. Once this |
489 | restriction is removed, those variant should be folded with the |
490 | above debug_helper. */ |
491 | |
492 | template<typename T> |
493 | void |
494 | debug_helper (vec<T, va_gc> &ref) |
495 | { |
496 | unsigned i; |
497 | for (i = 0; i < ref.length (); ++i) |
498 | { |
499 | fprintf (stderr, format: "[%d] = " , i); |
500 | debug_slim (ref[i]); |
501 | fputc (c: '\n', stderr); |
502 | } |
503 | } |
504 | |
505 | /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper |
506 | functions for a type T. */ |
507 | |
508 | #define DEFINE_DEBUG_VEC(T) \ |
509 | template void debug_helper (vec<T> &); \ |
510 | template void debug_helper (vec<T, va_gc> &); \ |
511 | /* Define the vec<T> debug functions. */ \ |
512 | DEBUG_FUNCTION void \ |
513 | debug (vec<T> &ref) \ |
514 | { \ |
515 | debug_helper <T> (ref); \ |
516 | } \ |
517 | DEBUG_FUNCTION void \ |
518 | debug (vec<T> *ptr) \ |
519 | { \ |
520 | if (ptr) \ |
521 | debug (*ptr); \ |
522 | else \ |
523 | fprintf (stderr, "<nil>\n"); \ |
524 | } \ |
525 | /* Define the vec<T, va_gc> debug functions. */ \ |
526 | DEBUG_FUNCTION void \ |
527 | debug (vec<T, va_gc> &ref) \ |
528 | { \ |
529 | debug_helper <T> (ref); \ |
530 | } \ |
531 | DEBUG_FUNCTION void \ |
532 | debug (vec<T, va_gc> *ptr) \ |
533 | { \ |
534 | if (ptr) \ |
535 | debug (*ptr); \ |
536 | else \ |
537 | fprintf (stderr, "<nil>\n"); \ |
538 | } |
539 | |
540 | /* Default-construct N elements in DST. */ |
541 | |
542 | template <typename T> |
543 | inline void |
544 | vec_default_construct (T *dst, unsigned n) |
545 | { |
546 | for ( ; n; ++dst, --n) |
547 | ::new (static_cast<void*>(dst)) T (); |
548 | } |
549 | |
550 | /* Copy-construct N elements in DST from *SRC. */ |
551 | |
552 | template <typename T> |
553 | inline void |
554 | vec_copy_construct (T *dst, const T *src, unsigned n) |
555 | { |
556 | for ( ; n; ++dst, ++src, --n) |
557 | ::new (static_cast<void*>(dst)) T (*src); |
558 | } |
559 | |
560 | /* Type to provide zero-initialized values for vec<T, A, L>. This is |
561 | used to provide nil initializers for vec instances. Since vec must |
562 | be a trivially copyable type that can be copied by memcpy and zeroed |
563 | out by memset, it must have defaulted default and copy ctor and copy |
564 | assignment. To initialize a vec either use value initialization |
565 | (e.g., vec() or vec v{ };) or assign it the value vNULL. This isn't |
566 | needed for file-scope and function-local static vectors, which are |
567 | zero-initialized by default. */ |
568 | struct vnull { }; |
569 | constexpr vnull vNULL{ }; |
570 | |
571 | |
572 | /* Embeddable vector. These vectors are suitable to be embedded |
573 | in other data structures so that they can be pre-allocated in a |
574 | contiguous memory block. |
575 | |
576 | Embeddable vectors are implemented using the trailing array idiom, |
577 | thus they are not resizeable without changing the address of the |
578 | vector object itself. This means you cannot have variables or |
579 | fields of embeddable vector type -- always use a pointer to a |
580 | vector. The one exception is the final field of a structure, which |
581 | could be a vector type. |
582 | |
583 | You will have to use the embedded_size & embedded_init calls to |
584 | create such objects, and they will not be resizeable (so the 'safe' |
585 | allocation variants are not available). |
586 | |
587 | Properties: |
588 | |
589 | - The whole vector and control data are allocated in a single |
590 | contiguous block. It uses the trailing-vector idiom, so |
591 | allocation must reserve enough space for all the elements |
592 | in the vector plus its control data. |
593 | - The vector cannot be re-allocated. |
594 | - The vector cannot grow nor shrink. |
595 | - No indirections needed for access/manipulation. |
596 | - It requires 2 words of storage (prior to vector allocation). */ |
597 | |
598 | template<typename T, typename A> |
599 | struct GTY((user)) vec<T, A, vl_embed> |
600 | { |
601 | public: |
602 | unsigned allocated (void) const { return m_vecpfx.m_alloc; } |
603 | unsigned length (void) const { return m_vecpfx.m_num; } |
604 | bool is_empty (void) const { return m_vecpfx.m_num == 0; } |
605 | T *address (void) { return reinterpret_cast <T *> (this + 1); } |
606 | const T *address (void) const |
607 | { return reinterpret_cast <const T *> (this + 1); } |
608 | T *begin () { return address (); } |
609 | const T *begin () const { return address (); } |
610 | T *end () { return address () + length (); } |
611 | const T *end () const { return address () + length (); } |
612 | const T &operator[] (unsigned) const; |
613 | T &operator[] (unsigned); |
614 | T &last (void); |
615 | bool space (unsigned) const; |
616 | bool iterate (unsigned, T *) const; |
617 | bool iterate (unsigned, T **) const; |
618 | vec *copy (ALONE_CXX_MEM_STAT_INFO) const; |
619 | void splice (const vec &); |
620 | void splice (const vec *src); |
621 | T *quick_push (const T &); |
622 | using pop_ret_type |
623 | = typename std::conditional <std::is_trivially_destructible <T>::value, |
624 | T &, void>::type; |
625 | pop_ret_type pop (void); |
626 | void truncate (unsigned); |
627 | void quick_insert (unsigned, const T &); |
628 | void ordered_remove (unsigned); |
629 | void unordered_remove (unsigned); |
630 | void block_remove (unsigned, unsigned); |
631 | void qsort (int (*) (const void *, const void *)); |
632 | void sort (int (*) (const void *, const void *, void *), void *); |
633 | void stablesort (int (*) (const void *, const void *, void *), void *); |
634 | T *bsearch (const void *key, int (*compar) (const void *, const void *)); |
635 | T *bsearch (const void *key, |
636 | int (*compar)(const void *, const void *, void *), void *); |
637 | unsigned lower_bound (const T &, bool (*) (const T &, const T &)) const; |
638 | bool contains (const T &search) const; |
639 | static size_t embedded_size (unsigned); |
640 | void embedded_init (unsigned, unsigned = 0, unsigned = 0); |
641 | void quick_grow (unsigned len); |
642 | void quick_grow_cleared (unsigned len); |
643 | |
644 | /* vec class can access our internal data and functions. */ |
645 | template <typename, typename, typename> friend struct vec; |
646 | |
647 | /* The allocator types also need access to our internals. */ |
648 | friend struct va_gc; |
649 | friend struct va_gc_atomic; |
650 | friend struct va_heap; |
651 | |
652 | /* FIXME - This field should be private, but we need to cater to |
653 | compilers that have stricter notions of PODness for types. */ |
654 | /* Align m_vecpfx to simplify address (). */ |
655 | alignas (T) alignas (vec_prefix) vec_prefix m_vecpfx; |
656 | }; |
657 | |
658 | |
659 | /* Convenience wrapper functions to use when dealing with pointers to |
660 | embedded vectors. Some functionality for these vectors must be |
661 | provided via free functions for these reasons: |
662 | |
663 | 1- The pointer may be NULL (e.g., before initial allocation). |
664 | |
665 | 2- When the vector needs to grow, it must be reallocated, so |
666 | the pointer will change its value. |
667 | |
668 | Because of limitations with the current GC machinery, all vectors |
669 | in GC memory *must* be pointers. */ |
670 | |
671 | |
672 | /* If V contains no room for NELEMS elements, return false. Otherwise, |
673 | return true. */ |
674 | template<typename T, typename A> |
675 | inline bool |
676 | vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems) |
677 | { |
678 | return v ? v->space (nelems) : nelems == 0; |
679 | } |
680 | |
681 | |
682 | /* If V is NULL, return 0. Otherwise, return V->length(). */ |
683 | template<typename T, typename A> |
684 | inline unsigned |
685 | vec_safe_length (const vec<T, A, vl_embed> *v) |
686 | { |
687 | return v ? v->length () : 0; |
688 | } |
689 | |
690 | |
691 | /* If V is NULL, return NULL. Otherwise, return V->address(). */ |
692 | template<typename T, typename A> |
693 | inline T * |
694 | vec_safe_address (vec<T, A, vl_embed> *v) |
695 | { |
696 | return v ? v->address () : NULL; |
697 | } |
698 | |
699 | |
700 | /* If V is NULL, return true. Otherwise, return V->is_empty(). */ |
701 | template<typename T, typename A> |
702 | inline bool |
703 | vec_safe_is_empty (vec<T, A, vl_embed> *v) |
704 | { |
705 | return v ? v->is_empty () : true; |
706 | } |
707 | |
708 | /* If V does not have space for NELEMS elements, call |
709 | V->reserve(NELEMS, EXACT). */ |
710 | template<typename T, typename A> |
711 | inline bool |
712 | vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false |
713 | CXX_MEM_STAT_INFO) |
714 | { |
715 | bool extend = nelems ? !vec_safe_space (v, nelems) : false; |
716 | if (extend) |
717 | A::reserve (v, nelems, exact PASS_MEM_STAT); |
718 | return extend; |
719 | } |
720 | |
721 | template<typename T, typename A> |
722 | inline bool |
723 | vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems |
724 | CXX_MEM_STAT_INFO) |
725 | { |
726 | return vec_safe_reserve (v, nelems, true PASS_MEM_STAT); |
727 | } |
728 | |
729 | |
730 | /* Allocate GC memory for V with space for NELEMS slots. If NELEMS |
731 | is 0, V is initialized to NULL. */ |
732 | |
733 | template<typename T, typename A> |
734 | inline void |
735 | vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO) |
736 | { |
737 | v = NULL; |
738 | vec_safe_reserve (v, nelems, false PASS_MEM_STAT); |
739 | } |
740 | |
741 | |
742 | /* Free the GC memory allocated by vector V and set it to NULL. */ |
743 | |
744 | template<typename T, typename A> |
745 | inline void |
746 | vec_free (vec<T, A, vl_embed> *&v) |
747 | { |
748 | A::release (v); |
749 | } |
750 | |
751 | |
752 | /* Grow V to length LEN. Allocate it, if necessary. */ |
753 | template<typename T, typename A> |
754 | inline void |
755 | vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len, |
756 | bool exact = false CXX_MEM_STAT_INFO) |
757 | { |
758 | unsigned oldlen = vec_safe_length (v); |
759 | gcc_checking_assert (len >= oldlen); |
760 | vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT); |
761 | v->quick_grow (len); |
762 | } |
763 | |
764 | |
765 | /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */ |
766 | template<typename T, typename A> |
767 | inline void |
768 | vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len, |
769 | bool exact = false CXX_MEM_STAT_INFO) |
770 | { |
771 | unsigned oldlen = vec_safe_length (v); |
772 | gcc_checking_assert (len >= oldlen); |
773 | vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT); |
774 | v->quick_grow_cleared (len); |
775 | } |
776 | |
777 | |
778 | /* Assume V is not NULL. */ |
779 | |
780 | template<typename T> |
781 | inline void |
782 | vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v, |
783 | unsigned len, bool exact = false CXX_MEM_STAT_INFO) |
784 | { |
785 | v->safe_grow_cleared (len, exact PASS_MEM_STAT); |
786 | } |
787 | |
788 | /* If V does not have space for NELEMS elements, call |
789 | V->reserve(NELEMS, EXACT). */ |
790 | |
791 | template<typename T> |
792 | inline bool |
793 | vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false |
794 | CXX_MEM_STAT_INFO) |
795 | { |
796 | return v->reserve (nelems, exact); |
797 | } |
798 | |
799 | |
800 | /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */ |
801 | template<typename T, typename A> |
802 | inline bool |
803 | vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr) |
804 | { |
805 | if (v) |
806 | return v->iterate (ix, ptr); |
807 | else |
808 | { |
809 | *ptr = 0; |
810 | return false; |
811 | } |
812 | } |
813 | |
814 | template<typename T, typename A> |
815 | inline bool |
816 | vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr) |
817 | { |
818 | if (v) |
819 | return v->iterate (ix, ptr); |
820 | else |
821 | { |
822 | *ptr = 0; |
823 | return false; |
824 | } |
825 | } |
826 | |
827 | |
828 | /* If V has no room for one more element, reallocate it. Then call |
829 | V->quick_push(OBJ). */ |
830 | template<typename T, typename A> |
831 | inline T * |
832 | vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO) |
833 | { |
834 | vec_safe_reserve (v, 1, false PASS_MEM_STAT); |
835 | return v->quick_push (obj); |
836 | } |
837 | |
838 | |
839 | /* if V has no room for one more element, reallocate it. Then call |
840 | V->quick_insert(IX, OBJ). */ |
841 | template<typename T, typename A> |
842 | inline void |
843 | vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj |
844 | CXX_MEM_STAT_INFO) |
845 | { |
846 | vec_safe_reserve (v, 1, false PASS_MEM_STAT); |
847 | v->quick_insert (ix, obj); |
848 | } |
849 | |
850 | |
851 | /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */ |
852 | template<typename T, typename A> |
853 | inline void |
854 | vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size) |
855 | { |
856 | if (v) |
857 | v->truncate (size); |
858 | } |
859 | |
860 | |
861 | /* If SRC is not NULL, return a pointer to a copy of it. */ |
862 | template<typename T, typename A> |
863 | inline vec<T, A, vl_embed> * |
864 | vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO) |
865 | { |
866 | return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL; |
867 | } |
868 | |
869 | /* Copy the elements from SRC to the end of DST as if by memcpy. |
870 | Reallocate DST, if necessary. */ |
871 | template<typename T, typename A> |
872 | inline void |
873 | vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src |
874 | CXX_MEM_STAT_INFO) |
875 | { |
876 | unsigned src_len = vec_safe_length (src); |
877 | if (src_len) |
878 | { |
879 | vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len |
880 | PASS_MEM_STAT); |
881 | dst->splice (*src); |
882 | } |
883 | } |
884 | |
885 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the |
886 | size of the vector and so should be used with care. */ |
887 | |
888 | template<typename T, typename A> |
889 | inline bool |
890 | vec_safe_contains (vec<T, A, vl_embed> *v, const T &search) |
891 | { |
892 | return v ? v->contains (search) : false; |
893 | } |
894 | |
895 | /* Index into vector. Return the IX'th element. IX must be in the |
896 | domain of the vector. */ |
897 | |
898 | template<typename T, typename A> |
899 | inline const T & |
900 | vec<T, A, vl_embed>::operator[] (unsigned ix) const |
901 | { |
902 | gcc_checking_assert (ix < m_vecpfx.m_num); |
903 | return address ()[ix]; |
904 | } |
905 | |
906 | template<typename T, typename A> |
907 | inline T & |
908 | vec<T, A, vl_embed>::operator[] (unsigned ix) |
909 | { |
910 | gcc_checking_assert (ix < m_vecpfx.m_num); |
911 | return address ()[ix]; |
912 | } |
913 | |
914 | |
915 | /* Get the final element of the vector, which must not be empty. */ |
916 | |
917 | template<typename T, typename A> |
918 | inline T & |
919 | vec<T, A, vl_embed>::last (void) |
920 | { |
921 | gcc_checking_assert (m_vecpfx.m_num > 0); |
922 | return (*this)[m_vecpfx.m_num - 1]; |
923 | } |
924 | |
925 | |
926 | /* If this vector has space for NELEMS additional entries, return |
927 | true. You usually only need to use this if you are doing your |
928 | own vector reallocation, for instance on an embedded vector. This |
929 | returns true in exactly the same circumstances that vec::reserve |
930 | will. */ |
931 | |
932 | template<typename T, typename A> |
933 | inline bool |
934 | vec<T, A, vl_embed>::space (unsigned nelems) const |
935 | { |
936 | return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems; |
937 | } |
938 | |
939 | |
940 | /* Return iteration condition and update *PTR to (a copy of) the IX'th |
941 | element of this vector. Use this to iterate over the elements of a |
942 | vector as follows, |
943 | |
944 | for (ix = 0; v->iterate (ix, &val); ix++) |
945 | continue; */ |
946 | |
947 | template<typename T, typename A> |
948 | inline bool |
949 | vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const |
950 | { |
951 | if (ix < m_vecpfx.m_num) |
952 | { |
953 | *ptr = address ()[ix]; |
954 | return true; |
955 | } |
956 | else |
957 | { |
958 | *ptr = 0; |
959 | return false; |
960 | } |
961 | } |
962 | |
963 | |
964 | /* Return iteration condition and update *PTR to point to the |
965 | IX'th element of this vector. Use this to iterate over the |
966 | elements of a vector as follows, |
967 | |
968 | for (ix = 0; v->iterate (ix, &ptr); ix++) |
969 | continue; |
970 | |
971 | This variant is for vectors of objects. */ |
972 | |
973 | template<typename T, typename A> |
974 | inline bool |
975 | vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const |
976 | { |
977 | if (ix < m_vecpfx.m_num) |
978 | { |
979 | *ptr = CONST_CAST (T *, &address ()[ix]); |
980 | return true; |
981 | } |
982 | else |
983 | { |
984 | *ptr = 0; |
985 | return false; |
986 | } |
987 | } |
988 | |
989 | |
990 | /* Return a pointer to a copy of this vector. */ |
991 | |
992 | template<typename T, typename A> |
993 | inline vec<T, A, vl_embed> * |
994 | vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const |
995 | { |
996 | vec<T, A, vl_embed> *new_vec = NULL; |
997 | unsigned len = length (); |
998 | if (len) |
999 | { |
1000 | vec_alloc (new_vec, len PASS_MEM_STAT); |
1001 | new_vec->embedded_init (len, len); |
1002 | vec_copy_construct (new_vec->address (), address (), len); |
1003 | } |
1004 | return new_vec; |
1005 | } |
1006 | |
1007 | |
1008 | /* Copy the elements from SRC to the end of this vector as if by memcpy. |
1009 | The vector must have sufficient headroom available. */ |
1010 | |
1011 | template<typename T, typename A> |
1012 | inline void |
1013 | vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src) |
1014 | { |
1015 | unsigned len = src.length (); |
1016 | if (len) |
1017 | { |
1018 | gcc_checking_assert (space (len)); |
1019 | vec_copy_construct (end (), src.address (), len); |
1020 | m_vecpfx.m_num += len; |
1021 | } |
1022 | } |
1023 | |
1024 | template<typename T, typename A> |
1025 | inline void |
1026 | vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src) |
1027 | { |
1028 | if (src) |
1029 | splice (*src); |
1030 | } |
1031 | |
1032 | |
1033 | /* Push OBJ (a new element) onto the end of the vector. There must be |
1034 | sufficient space in the vector. Return a pointer to the slot |
1035 | where OBJ was inserted. */ |
1036 | |
1037 | template<typename T, typename A> |
1038 | inline T * |
1039 | vec<T, A, vl_embed>::quick_push (const T &obj) |
1040 | { |
1041 | gcc_checking_assert (space (1)); |
1042 | T *slot = &address ()[m_vecpfx.m_num++]; |
1043 | ::new (static_cast<void*>(slot)) T (obj); |
1044 | return slot; |
1045 | } |
1046 | |
1047 | |
1048 | /* Pop and return a reference to the last element off the end of the |
1049 | vector. If T has non-trivial destructor, this method just pops |
1050 | the element and returns void type. */ |
1051 | |
1052 | template<typename T, typename A> |
1053 | inline typename vec<T, A, vl_embed>::pop_ret_type |
1054 | vec<T, A, vl_embed>::pop (void) |
1055 | { |
1056 | gcc_checking_assert (length () > 0); |
1057 | T &last = address ()[--m_vecpfx.m_num]; |
1058 | if (!std::is_trivially_destructible <T>::value) |
1059 | last.~T (); |
1060 | return static_cast <pop_ret_type> (last); |
1061 | } |
1062 | |
1063 | |
1064 | /* Set the length of the vector to SIZE. The new length must be less |
1065 | than or equal to the current length. This is an O(1) operation. */ |
1066 | |
1067 | template<typename T, typename A> |
1068 | inline void |
1069 | vec<T, A, vl_embed>::truncate (unsigned size) |
1070 | { |
1071 | unsigned l = length (); |
1072 | gcc_checking_assert (l >= size); |
1073 | if (!std::is_trivially_destructible <T>::value) |
1074 | vec_destruct (address () + size, l - size); |
1075 | m_vecpfx.m_num = size; |
1076 | } |
1077 | |
1078 | |
1079 | /* Insert an element, OBJ, at the IXth position of this vector. There |
1080 | must be sufficient space. This operation is not suitable for non-trivially |
1081 | copyable types. */ |
1082 | |
1083 | template<typename T, typename A> |
1084 | inline void |
1085 | vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj) |
1086 | { |
1087 | gcc_checking_assert (length () < allocated ()); |
1088 | gcc_checking_assert (ix <= length ()); |
1089 | #if GCC_VERSION >= 5000 |
1090 | /* GCC 4.8 and 4.9 only implement std::is_trivially_destructible, |
1091 | but not std::is_trivially_copyable nor |
1092 | std::is_trivially_default_constructible. */ |
1093 | static_assert (std::is_trivially_copyable <T>::value, "" ); |
1094 | #endif |
1095 | T *slot = &address ()[ix]; |
1096 | memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T)); |
1097 | *slot = obj; |
1098 | } |
1099 | |
1100 | |
1101 | /* Remove an element from the IXth position of this vector. Ordering of |
1102 | remaining elements is preserved. This is an O(N) operation due to |
1103 | memmove. Not suitable for non-trivially copyable types. */ |
1104 | |
1105 | template<typename T, typename A> |
1106 | inline void |
1107 | vec<T, A, vl_embed>::ordered_remove (unsigned ix) |
1108 | { |
1109 | gcc_checking_assert (ix < length ()); |
1110 | #if GCC_VERSION >= 5000 |
1111 | static_assert (std::is_trivially_copyable <T>::value, "" ); |
1112 | #endif |
1113 | T *slot = &address ()[ix]; |
1114 | memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T)); |
1115 | } |
1116 | |
1117 | |
1118 | /* Remove elements in [START, END) from VEC for which COND holds. Ordering of |
1119 | remaining elements is preserved. This is an O(N) operation. */ |
1120 | |
1121 | #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \ |
1122 | elem_ptr, start, end, cond) \ |
1123 | { \ |
1124 | gcc_assert ((end) <= (vec).length ()); \ |
1125 | for (read_index = write_index = (start); read_index < (end); \ |
1126 | ++read_index) \ |
1127 | { \ |
1128 | elem_ptr = &(vec)[read_index]; \ |
1129 | bool remove_p = (cond); \ |
1130 | if (remove_p) \ |
1131 | continue; \ |
1132 | \ |
1133 | if (read_index != write_index) \ |
1134 | (vec)[write_index] = (vec)[read_index]; \ |
1135 | \ |
1136 | write_index++; \ |
1137 | } \ |
1138 | \ |
1139 | if (read_index - write_index > 0) \ |
1140 | (vec).block_remove (write_index, read_index - write_index); \ |
1141 | } |
1142 | |
1143 | |
1144 | /* Remove elements from VEC for which COND holds. Ordering of remaining |
1145 | elements is preserved. This is an O(N) operation. */ |
1146 | |
1147 | #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \ |
1148 | cond) \ |
1149 | VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \ |
1150 | elem_ptr, 0, (vec).length (), (cond)) |
1151 | |
1152 | /* Remove an element from the IXth position of this vector. Ordering of |
1153 | remaining elements is destroyed. This is an O(1) operation. */ |
1154 | |
1155 | template<typename T, typename A> |
1156 | inline void |
1157 | vec<T, A, vl_embed>::unordered_remove (unsigned ix) |
1158 | { |
1159 | gcc_checking_assert (ix < length ()); |
1160 | #if GCC_VERSION >= 5000 |
1161 | static_assert (std::is_trivially_copyable <T>::value, "" ); |
1162 | #endif |
1163 | T *p = address (); |
1164 | p[ix] = p[--m_vecpfx.m_num]; |
1165 | } |
1166 | |
1167 | |
1168 | /* Remove LEN elements starting at the IXth. Ordering is retained. |
1169 | This is an O(N) operation due to memmove. */ |
1170 | |
1171 | template<typename T, typename A> |
1172 | inline void |
1173 | vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len) |
1174 | { |
1175 | gcc_checking_assert (ix + len <= length ()); |
1176 | #if GCC_VERSION >= 5000 |
1177 | static_assert (std::is_trivially_copyable <T>::value, "" ); |
1178 | #endif |
1179 | T *slot = &address ()[ix]; |
1180 | m_vecpfx.m_num -= len; |
1181 | memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T)); |
1182 | } |
1183 | |
1184 | |
1185 | #if GCC_VERSION >= 5000 |
1186 | namespace vec_detail |
1187 | { |
1188 | /* gcc_{qsort,qsort_r,stablesort_r} implementation under the hood |
1189 | uses memcpy/memmove to reorder the array elements. |
1190 | We want to assert these methods aren't used on types for which |
1191 | that isn't appropriate, but unfortunately std::pair of 2 trivially |
1192 | copyable types isn't trivially copyable and we use qsort on many |
1193 | such std::pair instantiations. Let's allow both trivially |
1194 | copyable types and std::pair of 2 trivially copyable types as |
1195 | exception for qsort/sort/stablesort. */ |
1196 | template<typename T> |
1197 | struct is_trivially_copyable_or_pair : std::is_trivially_copyable<T> { }; |
1198 | |
1199 | template<typename T, typename U> |
1200 | struct is_trivially_copyable_or_pair<std::pair<T, U> > |
1201 | : std::integral_constant<bool, std::is_trivially_copyable<T>::value |
1202 | && std::is_trivially_copyable<U>::value> { }; |
1203 | } |
1204 | #endif |
1205 | |
1206 | /* Sort the contents of this vector with qsort. CMP is the comparison |
1207 | function to pass to qsort. */ |
1208 | |
1209 | template<typename T, typename A> |
1210 | inline void |
1211 | vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *)) |
1212 | { |
1213 | #if GCC_VERSION >= 5000 |
1214 | static_assert (vec_detail::is_trivially_copyable_or_pair <T>::value, "" ); |
1215 | #endif |
1216 | if (length () > 1) |
1217 | gcc_qsort (address (), length (), sizeof (T), cmp); |
1218 | } |
1219 | |
1220 | /* Sort the contents of this vector with qsort. CMP is the comparison |
1221 | function to pass to qsort. */ |
1222 | |
1223 | template<typename T, typename A> |
1224 | inline void |
1225 | vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *), |
1226 | void *data) |
1227 | { |
1228 | #if GCC_VERSION >= 5000 |
1229 | static_assert (vec_detail::is_trivially_copyable_or_pair <T>::value, "" ); |
1230 | #endif |
1231 | if (length () > 1) |
1232 | gcc_sort_r (address (), length (), sizeof (T), cmp, data); |
1233 | } |
1234 | |
1235 | /* Sort the contents of this vector with gcc_stablesort_r. CMP is the |
1236 | comparison function to pass to qsort. */ |
1237 | |
1238 | template<typename T, typename A> |
1239 | inline void |
1240 | vec<T, A, vl_embed>::stablesort (int (*cmp) (const void *, const void *, |
1241 | void *), void *data) |
1242 | { |
1243 | #if GCC_VERSION >= 5000 |
1244 | static_assert (vec_detail::is_trivially_copyable_or_pair <T>::value, "" ); |
1245 | #endif |
1246 | if (length () > 1) |
1247 | gcc_stablesort_r (address (), length (), sizeof (T), cmp, data); |
1248 | } |
1249 | |
1250 | /* Search the contents of the sorted vector with a binary search. |
1251 | CMP is the comparison function to pass to bsearch. */ |
1252 | |
1253 | template<typename T, typename A> |
1254 | inline T * |
1255 | vec<T, A, vl_embed>::bsearch (const void *key, |
1256 | int (*compar) (const void *, const void *)) |
1257 | { |
1258 | const void *base = this->address (); |
1259 | size_t nmemb = this->length (); |
1260 | size_t size = sizeof (T); |
1261 | /* The following is a copy of glibc stdlib-bsearch.h. */ |
1262 | size_t l, u, idx; |
1263 | const void *p; |
1264 | int comparison; |
1265 | |
1266 | l = 0; |
1267 | u = nmemb; |
1268 | while (l < u) |
1269 | { |
1270 | idx = (l + u) / 2; |
1271 | p = (const void *) (((const char *) base) + (idx * size)); |
1272 | comparison = (*compar) (key, p); |
1273 | if (comparison < 0) |
1274 | u = idx; |
1275 | else if (comparison > 0) |
1276 | l = idx + 1; |
1277 | else |
1278 | return (T *)const_cast<void *>(p); |
1279 | } |
1280 | |
1281 | return NULL; |
1282 | } |
1283 | |
1284 | /* Search the contents of the sorted vector with a binary search. |
1285 | CMP is the comparison function to pass to bsearch. */ |
1286 | |
1287 | template<typename T, typename A> |
1288 | inline T * |
1289 | vec<T, A, vl_embed>::bsearch (const void *key, |
1290 | int (*compar) (const void *, const void *, |
1291 | void *), void *data) |
1292 | { |
1293 | const void *base = this->address (); |
1294 | size_t nmemb = this->length (); |
1295 | size_t size = sizeof (T); |
1296 | /* The following is a copy of glibc stdlib-bsearch.h. */ |
1297 | size_t l, u, idx; |
1298 | const void *p; |
1299 | int comparison; |
1300 | |
1301 | l = 0; |
1302 | u = nmemb; |
1303 | while (l < u) |
1304 | { |
1305 | idx = (l + u) / 2; |
1306 | p = (const void *) (((const char *) base) + (idx * size)); |
1307 | comparison = (*compar) (key, p, data); |
1308 | if (comparison < 0) |
1309 | u = idx; |
1310 | else if (comparison > 0) |
1311 | l = idx + 1; |
1312 | else |
1313 | return (T *)const_cast<void *>(p); |
1314 | } |
1315 | |
1316 | return NULL; |
1317 | } |
1318 | |
1319 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the |
1320 | size of the vector and so should be used with care. */ |
1321 | |
1322 | template<typename T, typename A> |
1323 | inline bool |
1324 | vec<T, A, vl_embed>::contains (const T &search) const |
1325 | { |
1326 | unsigned int len = length (); |
1327 | const T *p = address (); |
1328 | for (unsigned int i = 0; i < len; i++) |
1329 | { |
1330 | const T *slot = &p[i]; |
1331 | if (*slot == search) |
1332 | return true; |
1333 | } |
1334 | |
1335 | return false; |
1336 | } |
1337 | |
1338 | /* Find and return the first position in which OBJ could be inserted |
1339 | without changing the ordering of this vector. LESSTHAN is a |
1340 | function that returns true if the first argument is strictly less |
1341 | than the second. */ |
1342 | |
1343 | template<typename T, typename A> |
1344 | unsigned |
1345 | vec<T, A, vl_embed>::lower_bound (const T &obj, |
1346 | bool (*lessthan)(const T &, const T &)) |
1347 | const |
1348 | { |
1349 | unsigned int len = length (); |
1350 | unsigned int half, middle; |
1351 | unsigned int first = 0; |
1352 | while (len > 0) |
1353 | { |
1354 | half = len / 2; |
1355 | middle = first; |
1356 | middle += half; |
1357 | const T &middle_elem = address ()[middle]; |
1358 | if (lessthan (middle_elem, obj)) |
1359 | { |
1360 | first = middle; |
1361 | ++first; |
1362 | len = len - half - 1; |
1363 | } |
1364 | else |
1365 | len = half; |
1366 | } |
1367 | return first; |
1368 | } |
1369 | |
1370 | |
1371 | /* Return the number of bytes needed to embed an instance of an |
1372 | embeddable vec inside another data structure. |
1373 | |
1374 | Use these methods to determine the required size and initialization |
1375 | of a vector V of type T embedded within another structure (as the |
1376 | final member): |
1377 | |
1378 | size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc); |
1379 | void v->embedded_init (unsigned alloc, unsigned num); |
1380 | |
1381 | These allow the caller to perform the memory allocation. */ |
1382 | |
1383 | template<typename T, typename A> |
1384 | inline size_t |
1385 | vec<T, A, vl_embed>::embedded_size (unsigned alloc) |
1386 | { |
1387 | struct alignas (T) U { char data[sizeof (T)]; }; |
1388 | typedef vec<U, A, vl_embed> vec_embedded; |
1389 | typedef typename std::conditional<std::is_standard_layout<T>::value, |
1390 | vec, vec_embedded>::type vec_stdlayout; |
1391 | static_assert (sizeof (vec_stdlayout) == sizeof (vec), "" ); |
1392 | static_assert (alignof (vec_stdlayout) == alignof (vec), "" ); |
1393 | return sizeof (vec_stdlayout) + alloc * sizeof (T); |
1394 | } |
1395 | |
1396 | |
1397 | /* Initialize the vector to contain room for ALLOC elements and |
1398 | NUM active elements. */ |
1399 | |
1400 | template<typename T, typename A> |
1401 | inline void |
1402 | vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut) |
1403 | { |
1404 | m_vecpfx.m_alloc = alloc; |
1405 | m_vecpfx.m_using_auto_storage = aut; |
1406 | m_vecpfx.m_num = num; |
1407 | } |
1408 | |
1409 | |
1410 | /* Grow the vector to a specific length. LEN must be as long or longer than |
1411 | the current length. The new elements are uninitialized. */ |
1412 | |
1413 | template<typename T, typename A> |
1414 | inline void |
1415 | vec<T, A, vl_embed>::quick_grow (unsigned len) |
1416 | { |
1417 | gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc); |
1418 | #if GCC_VERSION >= 5000 |
1419 | static_assert (std::is_trivially_default_constructible <T>::value, "" ); |
1420 | #endif |
1421 | m_vecpfx.m_num = len; |
1422 | } |
1423 | |
1424 | |
1425 | /* Grow the vector to a specific length. LEN must be as long or longer than |
1426 | the current length. The new elements are initialized to zero. */ |
1427 | |
1428 | template<typename T, typename A> |
1429 | inline void |
1430 | vec<T, A, vl_embed>::quick_grow_cleared (unsigned len) |
1431 | { |
1432 | unsigned oldlen = length (); |
1433 | size_t growby = len - oldlen; |
1434 | gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc); |
1435 | m_vecpfx.m_num = len; |
1436 | if (growby != 0) |
1437 | vec_default_construct (address () + oldlen, growby); |
1438 | } |
1439 | |
1440 | /* Garbage collection support for vec<T, A, vl_embed>. */ |
1441 | |
1442 | template<typename T> |
1443 | void |
1444 | gt_ggc_mx (vec<T, va_gc> *v) |
1445 | { |
1446 | static_assert (std::is_trivially_destructible <T>::value, "" ); |
1447 | extern void gt_ggc_mx (T &); |
1448 | for (unsigned i = 0; i < v->length (); i++) |
1449 | gt_ggc_mx ((*v)[i]); |
1450 | } |
1451 | |
1452 | template<typename T> |
1453 | void |
1454 | gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED) |
1455 | { |
1456 | static_assert (std::is_trivially_destructible <T>::value, "" ); |
1457 | /* Nothing to do. Vectors of atomic types wrt GC do not need to |
1458 | be traversed. */ |
1459 | } |
1460 | |
1461 | |
1462 | /* PCH support for vec<T, A, vl_embed>. */ |
1463 | |
1464 | template<typename T, typename A> |
1465 | void |
1466 | gt_pch_nx (vec<T, A, vl_embed> *v) |
1467 | { |
1468 | extern void gt_pch_nx (T &); |
1469 | for (unsigned i = 0; i < v->length (); i++) |
1470 | gt_pch_nx ((*v)[i]); |
1471 | } |
1472 | |
1473 | template<typename T> |
1474 | void |
1475 | gt_pch_nx (vec<T, va_gc_atomic, vl_embed> *) |
1476 | { |
1477 | /* No pointers to note. */ |
1478 | } |
1479 | |
1480 | template<typename T, typename A> |
1481 | void |
1482 | gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie) |
1483 | { |
1484 | for (unsigned i = 0; i < v->length (); i++) |
1485 | op (&((*v)[i]), NULL, cookie); |
1486 | } |
1487 | |
1488 | template<typename T, typename A> |
1489 | void |
1490 | gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie) |
1491 | { |
1492 | extern void gt_pch_nx (T *, gt_pointer_operator, void *); |
1493 | for (unsigned i = 0; i < v->length (); i++) |
1494 | gt_pch_nx (&((*v)[i]), op, cookie); |
1495 | } |
1496 | |
1497 | template<typename T> |
1498 | void |
1499 | gt_pch_nx (vec<T, va_gc_atomic, vl_embed> *, gt_pointer_operator, void *) |
1500 | { |
1501 | /* No pointers to note. */ |
1502 | } |
1503 | |
1504 | |
1505 | /* Space efficient vector. These vectors can grow dynamically and are |
1506 | allocated together with their control data. They are suited to be |
1507 | included in data structures. Prior to initial allocation, they |
1508 | only take a single word of storage. |
1509 | |
1510 | These vectors are implemented as a pointer to an embeddable vector. |
1511 | The semantics allow for this pointer to be NULL to represent empty |
1512 | vectors. This way, empty vectors occupy minimal space in the |
1513 | structure containing them. |
1514 | |
1515 | Properties: |
1516 | |
1517 | - The whole vector and control data are allocated in a single |
1518 | contiguous block. |
1519 | - The whole vector may be re-allocated. |
1520 | - Vector data may grow and shrink. |
1521 | - Access and manipulation requires a pointer test and |
1522 | indirection. |
1523 | - It requires 1 word of storage (prior to vector allocation). |
1524 | |
1525 | |
1526 | Limitations: |
1527 | |
1528 | These vectors must be PODs because they are stored in unions. |
1529 | (http://en.wikipedia.org/wiki/Plain_old_data_structures). |
1530 | As long as we use C++03, we cannot have constructors nor |
1531 | destructors in classes that are stored in unions. */ |
1532 | |
1533 | template<typename T, size_t N = 0> |
1534 | class auto_vec; |
1535 | |
1536 | template<typename T> |
1537 | struct vec<T, va_heap, vl_ptr> |
1538 | { |
1539 | public: |
1540 | /* Default ctors to ensure triviality. Use value-initialization |
1541 | (e.g., vec() or vec v{ };) or vNULL to create a zero-initialized |
1542 | instance. */ |
1543 | vec () = default; |
1544 | vec (const vec &) = default; |
1545 | /* Initialization from the generic vNULL. */ |
1546 | vec (vnull): m_vec () { } |
1547 | /* Same as default ctor: vec storage must be released manually. */ |
1548 | ~vec () = default; |
1549 | |
1550 | /* Defaulted same as copy ctor. */ |
1551 | vec& operator= (const vec &) = default; |
1552 | |
1553 | /* Prevent implicit conversion from auto_vec. Use auto_vec::to_vec() |
1554 | instead. */ |
1555 | template <size_t N> |
1556 | vec (auto_vec<T, N> &) = delete; |
1557 | |
1558 | template <size_t N> |
1559 | void operator= (auto_vec<T, N> &) = delete; |
1560 | |
1561 | /* Memory allocation and deallocation for the embedded vector. |
1562 | Needed because we cannot have proper ctors/dtors defined. */ |
1563 | void create (unsigned nelems CXX_MEM_STAT_INFO); |
1564 | void release (void); |
1565 | |
1566 | /* Vector operations. */ |
1567 | bool exists (void) const |
1568 | { return m_vec != NULL; } |
1569 | |
1570 | bool is_empty (void) const |
1571 | { return m_vec ? m_vec->is_empty () : true; } |
1572 | |
1573 | unsigned allocated (void) const |
1574 | { return m_vec ? m_vec->allocated () : 0; } |
1575 | |
1576 | unsigned length (void) const |
1577 | { return m_vec ? m_vec->length () : 0; } |
1578 | |
1579 | T *address (void) |
1580 | { return m_vec ? m_vec->address () : NULL; } |
1581 | |
1582 | const T *address (void) const |
1583 | { return m_vec ? m_vec->address () : NULL; } |
1584 | |
1585 | T *begin () { return address (); } |
1586 | const T *begin () const { return address (); } |
1587 | T *end () { return begin () + length (); } |
1588 | const T *end () const { return begin () + length (); } |
1589 | const T &operator[] (unsigned ix) const |
1590 | { return (*m_vec)[ix]; } |
1591 | |
1592 | bool operator!=(const vec &other) const |
1593 | { return !(*this == other); } |
1594 | |
1595 | bool operator==(const vec &other) const |
1596 | { return address () == other.address (); } |
1597 | |
1598 | T &operator[] (unsigned ix) |
1599 | { return (*m_vec)[ix]; } |
1600 | |
1601 | T &last (void) |
1602 | { return m_vec->last (); } |
1603 | |
1604 | bool space (int nelems) const |
1605 | { return m_vec ? m_vec->space (nelems) : nelems == 0; } |
1606 | |
1607 | bool iterate (unsigned ix, T *p) const; |
1608 | bool iterate (unsigned ix, T **p) const; |
1609 | vec copy (ALONE_CXX_MEM_STAT_INFO) const; |
1610 | bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO); |
1611 | bool reserve_exact (unsigned CXX_MEM_STAT_INFO); |
1612 | void splice (const vec &); |
1613 | void safe_splice (const vec & CXX_MEM_STAT_INFO); |
1614 | T *quick_push (const T &); |
1615 | T *safe_push (const T &CXX_MEM_STAT_INFO); |
1616 | using pop_ret_type |
1617 | = typename std::conditional <std::is_trivially_destructible <T>::value, |
1618 | T &, void>::type; |
1619 | pop_ret_type pop (void); |
1620 | void truncate (unsigned); |
1621 | void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO); |
1622 | void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO); |
1623 | void quick_grow (unsigned); |
1624 | void quick_grow_cleared (unsigned); |
1625 | void quick_insert (unsigned, const T &); |
1626 | void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO); |
1627 | void ordered_remove (unsigned); |
1628 | void unordered_remove (unsigned); |
1629 | void block_remove (unsigned, unsigned); |
1630 | void qsort (int (*) (const void *, const void *)); |
1631 | void sort (int (*) (const void *, const void *, void *), void *); |
1632 | void stablesort (int (*) (const void *, const void *, void *), void *); |
1633 | T *bsearch (const void *key, int (*compar)(const void *, const void *)); |
1634 | T *bsearch (const void *key, |
1635 | int (*compar)(const void *, const void *, void *), void *); |
1636 | unsigned lower_bound (T, bool (*)(const T &, const T &)) const; |
1637 | bool contains (const T &search) const; |
1638 | void reverse (void); |
1639 | |
1640 | bool using_auto_storage () const; |
1641 | |
1642 | /* FIXME - This field should be private, but we need to cater to |
1643 | compilers that have stricter notions of PODness for types. */ |
1644 | vec<T, va_heap, vl_embed> *m_vec; |
1645 | }; |
1646 | |
1647 | |
1648 | /* auto_vec is a subclass of vec that automatically manages creating and |
1649 | releasing the internal vector. If N is non zero then it has N elements of |
1650 | internal storage. The default is no internal storage, and you probably only |
1651 | want to ask for internal storage for vectors on the stack because if the |
1652 | size of the vector is larger than the internal storage that space is wasted. |
1653 | */ |
1654 | template<typename T, size_t N /* = 0 */> |
1655 | class auto_vec : public vec<T, va_heap> |
1656 | { |
1657 | public: |
1658 | auto_vec () |
1659 | { |
1660 | m_auto.embedded_init (N, 0, 1); |
1661 | /* ??? Instead of initializing m_vec from &m_auto directly use an |
1662 | expression that avoids refering to a specific member of 'this' |
1663 | to derail the -Wstringop-overflow diagnostic code, avoiding |
1664 | the impression that data accesses are supposed to be to the |
1665 | m_auto member storage. */ |
1666 | size_t off = (char *) &m_auto - (char *) this; |
1667 | this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off); |
1668 | } |
1669 | |
1670 | auto_vec (size_t s CXX_MEM_STAT_INFO) |
1671 | { |
1672 | if (s > N) |
1673 | { |
1674 | this->create (s PASS_MEM_STAT); |
1675 | return; |
1676 | } |
1677 | |
1678 | m_auto.embedded_init (N, 0, 1); |
1679 | /* ??? See above. */ |
1680 | size_t off = (char *) &m_auto - (char *) this; |
1681 | this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off); |
1682 | } |
1683 | |
1684 | ~auto_vec () |
1685 | { |
1686 | this->release (); |
1687 | } |
1688 | |
1689 | /* Explicitly convert to the base class. There is no conversion |
1690 | from a const auto_vec because a copy of the returned vec can |
1691 | be used to modify *THIS. |
1692 | This is a legacy function not to be used in new code. */ |
1693 | vec<T, va_heap> to_vec_legacy () { |
1694 | return *static_cast<vec<T, va_heap> *>(this); |
1695 | } |
1696 | |
1697 | private: |
1698 | vec<T, va_heap, vl_embed> m_auto; |
1699 | unsigned char m_data[sizeof (T) * N]; |
1700 | }; |
1701 | |
1702 | /* auto_vec is a sub class of vec whose storage is released when it is |
1703 | destroyed. */ |
1704 | template<typename T> |
1705 | class auto_vec<T, 0> : public vec<T, va_heap> |
1706 | { |
1707 | public: |
1708 | auto_vec () { this->m_vec = NULL; } |
1709 | auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); } |
1710 | ~auto_vec () { this->release (); } |
1711 | |
1712 | auto_vec (vec<T, va_heap>&& r) |
1713 | { |
1714 | gcc_assert (!r.using_auto_storage ()); |
1715 | this->m_vec = r.m_vec; |
1716 | r.m_vec = NULL; |
1717 | } |
1718 | |
1719 | auto_vec (auto_vec<T> &&r) |
1720 | { |
1721 | gcc_assert (!r.using_auto_storage ()); |
1722 | this->m_vec = r.m_vec; |
1723 | r.m_vec = NULL; |
1724 | } |
1725 | |
1726 | auto_vec& operator= (vec<T, va_heap>&& r) |
1727 | { |
1728 | if (this == &r) |
1729 | return *this; |
1730 | |
1731 | gcc_assert (!r.using_auto_storage ()); |
1732 | this->release (); |
1733 | this->m_vec = r.m_vec; |
1734 | r.m_vec = NULL; |
1735 | return *this; |
1736 | } |
1737 | |
1738 | auto_vec& operator= (auto_vec<T> &&r) |
1739 | { |
1740 | if (this == &r) |
1741 | return *this; |
1742 | |
1743 | gcc_assert (!r.using_auto_storage ()); |
1744 | this->release (); |
1745 | this->m_vec = r.m_vec; |
1746 | r.m_vec = NULL; |
1747 | return *this; |
1748 | } |
1749 | |
1750 | /* Explicitly convert to the base class. There is no conversion |
1751 | from a const auto_vec because a copy of the returned vec can |
1752 | be used to modify *THIS. |
1753 | This is a legacy function not to be used in new code. */ |
1754 | vec<T, va_heap> to_vec_legacy () { |
1755 | return *static_cast<vec<T, va_heap> *>(this); |
1756 | } |
1757 | |
1758 | // You probably don't want to copy a vector, so these are deleted to prevent |
1759 | // unintentional use. If you really need a copy of the vectors contents you |
1760 | // can use copy (). |
1761 | auto_vec (const auto_vec &) = delete; |
1762 | auto_vec &operator= (const auto_vec &) = delete; |
1763 | }; |
1764 | |
1765 | |
1766 | /* Allocate heap memory for pointer V and create the internal vector |
1767 | with space for NELEMS elements. If NELEMS is 0, the internal |
1768 | vector is initialized to empty. */ |
1769 | |
1770 | template<typename T> |
1771 | inline void |
1772 | vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO) |
1773 | { |
1774 | v = new vec<T>; |
1775 | v->create (nelems PASS_MEM_STAT); |
1776 | } |
1777 | |
1778 | |
1779 | /* A subclass of auto_vec <char *> that frees all of its elements on |
1780 | deletion. */ |
1781 | |
1782 | class auto_string_vec : public auto_vec <char *> |
1783 | { |
1784 | public: |
1785 | ~auto_string_vec (); |
1786 | }; |
1787 | |
1788 | /* A subclass of auto_vec <T *> that deletes all of its elements on |
1789 | destruction. |
1790 | |
1791 | This is a crude way for a vec to "own" the objects it points to |
1792 | and clean up automatically. |
1793 | |
1794 | For example, no attempt is made to delete elements when an item |
1795 | within the vec is overwritten. |
1796 | |
1797 | We can't rely on gnu::unique_ptr within a container, |
1798 | since we can't rely on move semantics in C++98. */ |
1799 | |
1800 | template <typename T> |
1801 | class auto_delete_vec : public auto_vec <T *> |
1802 | { |
1803 | public: |
1804 | auto_delete_vec () {} |
1805 | auto_delete_vec (size_t s) : auto_vec <T *> (s) {} |
1806 | |
1807 | ~auto_delete_vec (); |
1808 | |
1809 | private: |
1810 | DISABLE_COPY_AND_ASSIGN(auto_delete_vec); |
1811 | }; |
1812 | |
1813 | /* Conditionally allocate heap memory for VEC and its internal vector. */ |
1814 | |
1815 | template<typename T> |
1816 | inline void |
1817 | vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO) |
1818 | { |
1819 | if (!vec) |
1820 | vec_alloc (vec, nelems PASS_MEM_STAT); |
1821 | } |
1822 | |
1823 | |
1824 | /* Free the heap memory allocated by vector V and set it to NULL. */ |
1825 | |
1826 | template<typename T> |
1827 | inline void |
1828 | vec_free (vec<T> *&v) |
1829 | { |
1830 | if (v == NULL) |
1831 | return; |
1832 | |
1833 | v->release (); |
1834 | delete v; |
1835 | v = NULL; |
1836 | } |
1837 | |
1838 | |
1839 | /* Return iteration condition and update PTR to point to the IX'th |
1840 | element of this vector. Use this to iterate over the elements of a |
1841 | vector as follows, |
1842 | |
1843 | for (ix = 0; v.iterate (ix, &ptr); ix++) |
1844 | continue; */ |
1845 | |
1846 | template<typename T> |
1847 | inline bool |
1848 | vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const |
1849 | { |
1850 | if (m_vec) |
1851 | return m_vec->iterate (ix, ptr); |
1852 | else |
1853 | { |
1854 | *ptr = 0; |
1855 | return false; |
1856 | } |
1857 | } |
1858 | |
1859 | |
1860 | /* Return iteration condition and update *PTR to point to the |
1861 | IX'th element of this vector. Use this to iterate over the |
1862 | elements of a vector as follows, |
1863 | |
1864 | for (ix = 0; v->iterate (ix, &ptr); ix++) |
1865 | continue; |
1866 | |
1867 | This variant is for vectors of objects. */ |
1868 | |
1869 | template<typename T> |
1870 | inline bool |
1871 | vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const |
1872 | { |
1873 | if (m_vec) |
1874 | return m_vec->iterate (ix, ptr); |
1875 | else |
1876 | { |
1877 | *ptr = 0; |
1878 | return false; |
1879 | } |
1880 | } |
1881 | |
1882 | |
1883 | /* Convenience macro for forward iteration. */ |
1884 | #define FOR_EACH_VEC_ELT(V, I, P) \ |
1885 | for (I = 0; (V).iterate ((I), &(P)); ++(I)) |
1886 | |
1887 | #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \ |
1888 | for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) |
1889 | |
1890 | /* Likewise, but start from FROM rather than 0. */ |
1891 | #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \ |
1892 | for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) |
1893 | |
1894 | /* Convenience macro for reverse iteration. */ |
1895 | #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \ |
1896 | for (I = (V).length () - 1; \ |
1897 | (V).iterate ((I), &(P)); \ |
1898 | (I)--) |
1899 | |
1900 | #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \ |
1901 | for (I = vec_safe_length (V) - 1; \ |
1902 | vec_safe_iterate ((V), (I), &(P)); \ |
1903 | (I)--) |
1904 | |
1905 | /* auto_string_vec's dtor, freeing all contained strings, automatically |
1906 | chaining up to ~auto_vec <char *>, which frees the internal buffer. */ |
1907 | |
1908 | inline |
1909 | auto_string_vec::~auto_string_vec () |
1910 | { |
1911 | int i; |
1912 | char *str; |
1913 | FOR_EACH_VEC_ELT (*this, i, str) |
1914 | free (ptr: str); |
1915 | } |
1916 | |
1917 | /* auto_delete_vec's dtor, deleting all contained items, automatically |
1918 | chaining up to ~auto_vec <T*>, which frees the internal buffer. */ |
1919 | |
1920 | template <typename T> |
1921 | inline |
1922 | auto_delete_vec<T>::~auto_delete_vec () |
1923 | { |
1924 | int i; |
1925 | T *item; |
1926 | FOR_EACH_VEC_ELT (*this, i, item) |
1927 | delete item; |
1928 | } |
1929 | |
1930 | |
1931 | /* Return a copy of this vector. */ |
1932 | |
1933 | template<typename T> |
1934 | inline vec<T, va_heap, vl_ptr> |
1935 | vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const |
1936 | { |
1937 | vec<T, va_heap, vl_ptr> new_vec{ }; |
1938 | if (length ()) |
1939 | new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT); |
1940 | return new_vec; |
1941 | } |
1942 | |
1943 | |
1944 | /* Ensure that the vector has at least RESERVE slots available (if |
1945 | EXACT is false), or exactly RESERVE slots available (if EXACT is |
1946 | true). |
1947 | |
1948 | This may create additional headroom if EXACT is false. |
1949 | |
1950 | Note that this can cause the embedded vector to be reallocated. |
1951 | Returns true iff reallocation actually occurred. */ |
1952 | |
1953 | template<typename T> |
1954 | inline bool |
1955 | vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL) |
1956 | { |
1957 | if (space (nelems)) |
1958 | return false; |
1959 | |
1960 | /* For now play a game with va_heap::reserve to hide our auto storage if any, |
1961 | this is necessary because it doesn't have enough information to know the |
1962 | embedded vector is in auto storage, and so should not be freed. */ |
1963 | vec<T, va_heap, vl_embed> *oldvec = m_vec; |
1964 | unsigned int oldsize = 0; |
1965 | bool handle_auto_vec = m_vec && using_auto_storage (); |
1966 | if (handle_auto_vec) |
1967 | { |
1968 | m_vec = NULL; |
1969 | oldsize = oldvec->length (); |
1970 | nelems += oldsize; |
1971 | } |
1972 | |
1973 | va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT); |
1974 | if (handle_auto_vec) |
1975 | { |
1976 | vec_copy_construct (m_vec->address (), oldvec->address (), oldsize); |
1977 | m_vec->m_vecpfx.m_num = oldsize; |
1978 | } |
1979 | |
1980 | return true; |
1981 | } |
1982 | |
1983 | |
1984 | /* Ensure that this vector has exactly NELEMS slots available. This |
1985 | will not create additional headroom. Note this can cause the |
1986 | embedded vector to be reallocated. Returns true iff reallocation |
1987 | actually occurred. */ |
1988 | |
1989 | template<typename T> |
1990 | inline bool |
1991 | vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL) |
1992 | { |
1993 | return reserve (nelems, exact: true PASS_MEM_STAT); |
1994 | } |
1995 | |
1996 | |
1997 | /* Create the internal vector and reserve NELEMS for it. This is |
1998 | exactly like vec::reserve, but the internal vector is |
1999 | unconditionally allocated from scratch. The old one, if it |
2000 | existed, is lost. */ |
2001 | |
2002 | template<typename T> |
2003 | inline void |
2004 | vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL) |
2005 | { |
2006 | m_vec = NULL; |
2007 | if (nelems > 0) |
2008 | reserve_exact (nelems PASS_MEM_STAT); |
2009 | } |
2010 | |
2011 | |
2012 | /* Free the memory occupied by the embedded vector. */ |
2013 | |
2014 | template<typename T> |
2015 | inline void |
2016 | vec<T, va_heap, vl_ptr>::release (void) |
2017 | { |
2018 | if (!m_vec) |
2019 | return; |
2020 | |
2021 | if (using_auto_storage ()) |
2022 | { |
2023 | m_vec->m_vecpfx.m_num = 0; |
2024 | return; |
2025 | } |
2026 | |
2027 | va_heap::release (m_vec); |
2028 | } |
2029 | |
2030 | /* Copy the elements from SRC to the end of this vector as if by memcpy. |
2031 | SRC and this vector must be allocated with the same memory |
2032 | allocation mechanism. This vector is assumed to have sufficient |
2033 | headroom available. */ |
2034 | |
2035 | template<typename T> |
2036 | inline void |
2037 | vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src) |
2038 | { |
2039 | if (src.length ()) |
2040 | m_vec->splice (*(src.m_vec)); |
2041 | } |
2042 | |
2043 | |
2044 | /* Copy the elements in SRC to the end of this vector as if by memcpy. |
2045 | SRC and this vector must be allocated with the same mechanism. |
2046 | If there is not enough headroom in this vector, it will be reallocated |
2047 | as needed. */ |
2048 | |
2049 | template<typename T> |
2050 | inline void |
2051 | vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src |
2052 | MEM_STAT_DECL) |
2053 | { |
2054 | if (src.length ()) |
2055 | { |
2056 | reserve_exact (nelems: src.length ()); |
2057 | splice (src); |
2058 | } |
2059 | } |
2060 | |
2061 | |
2062 | /* Push OBJ (a new element) onto the end of the vector. There must be |
2063 | sufficient space in the vector. Return a pointer to the slot |
2064 | where OBJ was inserted. */ |
2065 | |
2066 | template<typename T> |
2067 | inline T * |
2068 | vec<T, va_heap, vl_ptr>::quick_push (const T &obj) |
2069 | { |
2070 | return m_vec->quick_push (obj); |
2071 | } |
2072 | |
2073 | |
2074 | /* Push a new element OBJ onto the end of this vector. Reallocates |
2075 | the embedded vector, if needed. Return a pointer to the slot where |
2076 | OBJ was inserted. */ |
2077 | |
2078 | template<typename T> |
2079 | inline T * |
2080 | vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL) |
2081 | { |
2082 | reserve (nelems: 1, exact: false PASS_MEM_STAT); |
2083 | return quick_push (obj); |
2084 | } |
2085 | |
2086 | |
2087 | /* Pop and return a reference to the last element off the end of the |
2088 | vector. If T has non-trivial destructor, this method just pops |
2089 | last element and returns void. */ |
2090 | |
2091 | template<typename T> |
2092 | inline typename vec<T, va_heap, vl_ptr>::pop_ret_type |
2093 | vec<T, va_heap, vl_ptr>::pop (void) |
2094 | { |
2095 | return m_vec->pop (); |
2096 | } |
2097 | |
2098 | |
2099 | /* Set the length of the vector to LEN. The new length must be less |
2100 | than or equal to the current length. This is an O(1) operation. */ |
2101 | |
2102 | template<typename T> |
2103 | inline void |
2104 | vec<T, va_heap, vl_ptr>::truncate (unsigned size) |
2105 | { |
2106 | if (m_vec) |
2107 | m_vec->truncate (size); |
2108 | else |
2109 | gcc_checking_assert (size == 0); |
2110 | } |
2111 | |
2112 | |
2113 | /* Grow the vector to a specific length. LEN must be as long or |
2114 | longer than the current length. The new elements are |
2115 | uninitialized. Reallocate the internal vector, if needed. */ |
2116 | |
2117 | template<typename T> |
2118 | inline void |
2119 | vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL) |
2120 | { |
2121 | unsigned oldlen = length (); |
2122 | gcc_checking_assert (oldlen <= len); |
2123 | reserve (nelems: len - oldlen, exact PASS_MEM_STAT); |
2124 | if (m_vec) |
2125 | m_vec->quick_grow (len); |
2126 | else |
2127 | gcc_checking_assert (len == 0); |
2128 | } |
2129 | |
2130 | |
2131 | /* Grow the embedded vector to a specific length. LEN must be as |
2132 | long or longer than the current length. The new elements are |
2133 | initialized to zero. Reallocate the internal vector, if needed. */ |
2134 | |
2135 | template<typename T> |
2136 | inline void |
2137 | vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact |
2138 | MEM_STAT_DECL) |
2139 | { |
2140 | unsigned oldlen = length (); |
2141 | gcc_checking_assert (oldlen <= len); |
2142 | reserve (nelems: len - oldlen, exact PASS_MEM_STAT); |
2143 | if (m_vec) |
2144 | m_vec->quick_grow_cleared (len); |
2145 | else |
2146 | gcc_checking_assert (len == 0); |
2147 | } |
2148 | |
2149 | |
2150 | /* Same as vec::safe_grow but without reallocation of the internal vector. |
2151 | If the vector cannot be extended, a runtime assertion will be triggered. */ |
2152 | |
2153 | template<typename T> |
2154 | inline void |
2155 | vec<T, va_heap, vl_ptr>::quick_grow (unsigned len) |
2156 | { |
2157 | gcc_checking_assert (m_vec); |
2158 | m_vec->quick_grow (len); |
2159 | } |
2160 | |
2161 | |
2162 | /* Same as vec::quick_grow_cleared but without reallocation of the |
2163 | internal vector. If the vector cannot be extended, a runtime |
2164 | assertion will be triggered. */ |
2165 | |
2166 | template<typename T> |
2167 | inline void |
2168 | vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len) |
2169 | { |
2170 | gcc_checking_assert (m_vec); |
2171 | m_vec->quick_grow_cleared (len); |
2172 | } |
2173 | |
2174 | |
2175 | /* Insert an element, OBJ, at the IXth position of this vector. There |
2176 | must be sufficient space. */ |
2177 | |
2178 | template<typename T> |
2179 | inline void |
2180 | vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj) |
2181 | { |
2182 | m_vec->quick_insert (ix, obj); |
2183 | } |
2184 | |
2185 | |
2186 | /* Insert an element, OBJ, at the IXth position of the vector. |
2187 | Reallocate the embedded vector, if necessary. */ |
2188 | |
2189 | template<typename T> |
2190 | inline void |
2191 | vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL) |
2192 | { |
2193 | reserve (nelems: 1, exact: false PASS_MEM_STAT); |
2194 | quick_insert (ix, obj); |
2195 | } |
2196 | |
2197 | |
2198 | /* Remove an element from the IXth position of this vector. Ordering of |
2199 | remaining elements is preserved. This is an O(N) operation due to |
2200 | a memmove. */ |
2201 | |
2202 | template<typename T> |
2203 | inline void |
2204 | vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix) |
2205 | { |
2206 | m_vec->ordered_remove (ix); |
2207 | } |
2208 | |
2209 | |
2210 | /* Remove an element from the IXth position of this vector. Ordering |
2211 | of remaining elements is destroyed. This is an O(1) operation. */ |
2212 | |
2213 | template<typename T> |
2214 | inline void |
2215 | vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix) |
2216 | { |
2217 | m_vec->unordered_remove (ix); |
2218 | } |
2219 | |
2220 | |
2221 | /* Remove LEN elements starting at the IXth. Ordering is retained. |
2222 | This is an O(N) operation due to memmove. */ |
2223 | |
2224 | template<typename T> |
2225 | inline void |
2226 | vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len) |
2227 | { |
2228 | m_vec->block_remove (ix, len); |
2229 | } |
2230 | |
2231 | |
2232 | /* Sort the contents of this vector with qsort. CMP is the comparison |
2233 | function to pass to qsort. */ |
2234 | |
2235 | template<typename T> |
2236 | inline void |
2237 | vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *)) |
2238 | { |
2239 | if (m_vec) |
2240 | m_vec->qsort (cmp); |
2241 | } |
2242 | |
2243 | /* Sort the contents of this vector with qsort. CMP is the comparison |
2244 | function to pass to qsort. */ |
2245 | |
2246 | template<typename T> |
2247 | inline void |
2248 | vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *, |
2249 | void *), void *data) |
2250 | { |
2251 | if (m_vec) |
2252 | m_vec->sort (cmp, data); |
2253 | } |
2254 | |
2255 | /* Sort the contents of this vector with gcc_stablesort_r. CMP is the |
2256 | comparison function to pass to qsort. */ |
2257 | |
2258 | template<typename T> |
2259 | inline void |
2260 | vec<T, va_heap, vl_ptr>::stablesort (int (*cmp) (const void *, const void *, |
2261 | void *), void *data) |
2262 | { |
2263 | if (m_vec) |
2264 | m_vec->stablesort (cmp, data); |
2265 | } |
2266 | |
2267 | /* Search the contents of the sorted vector with a binary search. |
2268 | CMP is the comparison function to pass to bsearch. */ |
2269 | |
2270 | template<typename T> |
2271 | inline T * |
2272 | vec<T, va_heap, vl_ptr>::bsearch (const void *key, |
2273 | int (*cmp) (const void *, const void *)) |
2274 | { |
2275 | if (m_vec) |
2276 | return m_vec->bsearch (key, cmp); |
2277 | return NULL; |
2278 | } |
2279 | |
2280 | /* Search the contents of the sorted vector with a binary search. |
2281 | CMP is the comparison function to pass to bsearch. */ |
2282 | |
2283 | template<typename T> |
2284 | inline T * |
2285 | vec<T, va_heap, vl_ptr>::bsearch (const void *key, |
2286 | int (*cmp) (const void *, const void *, |
2287 | void *), void *data) |
2288 | { |
2289 | if (m_vec) |
2290 | return m_vec->bsearch (key, cmp, data); |
2291 | return NULL; |
2292 | } |
2293 | |
2294 | |
2295 | /* Find and return the first position in which OBJ could be inserted |
2296 | without changing the ordering of this vector. LESSTHAN is a |
2297 | function that returns true if the first argument is strictly less |
2298 | than the second. */ |
2299 | |
2300 | template<typename T> |
2301 | inline unsigned |
2302 | vec<T, va_heap, vl_ptr>::lower_bound (T obj, |
2303 | bool (*lessthan)(const T &, const T &)) |
2304 | const |
2305 | { |
2306 | return m_vec ? m_vec->lower_bound (obj, lessthan) : 0; |
2307 | } |
2308 | |
2309 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the |
2310 | size of the vector and so should be used with care. */ |
2311 | |
2312 | template<typename T> |
2313 | inline bool |
2314 | vec<T, va_heap, vl_ptr>::contains (const T &search) const |
2315 | { |
2316 | return m_vec ? m_vec->contains (search) : false; |
2317 | } |
2318 | |
2319 | /* Reverse content of the vector. */ |
2320 | |
2321 | template<typename T> |
2322 | inline void |
2323 | vec<T, va_heap, vl_ptr>::reverse (void) |
2324 | { |
2325 | unsigned l = length (); |
2326 | T *ptr = address (); |
2327 | |
2328 | for (unsigned i = 0; i < l / 2; i++) |
2329 | std::swap (ptr[i], ptr[l - i - 1]); |
2330 | } |
2331 | |
2332 | template<typename T> |
2333 | inline bool |
2334 | vec<T, va_heap, vl_ptr>::using_auto_storage () const |
2335 | { |
2336 | return m_vec ? m_vec->m_vecpfx.m_using_auto_storage : false; |
2337 | } |
2338 | |
2339 | /* Release VEC and call release of all element vectors. */ |
2340 | |
2341 | template<typename T> |
2342 | inline void |
2343 | release_vec_vec (vec<vec<T> > &vec) |
2344 | { |
2345 | for (unsigned i = 0; i < vec.length (); i++) |
2346 | vec[i].release (); |
2347 | |
2348 | vec.release (); |
2349 | } |
2350 | |
2351 | // Provide a subset of the std::span functionality. (We can't use std::span |
2352 | // itself because it's a C++20 feature.) |
2353 | // |
2354 | // In addition, provide an invalid value that is distinct from all valid |
2355 | // sequences (including the empty sequence). This can be used to return |
2356 | // failure without having to use std::optional. |
2357 | // |
2358 | // There is no operator bool because it would be ambiguous whether it is |
2359 | // testing for a valid value or an empty sequence. |
2360 | template<typename T> |
2361 | class array_slice |
2362 | { |
2363 | template<typename OtherT> friend class array_slice; |
2364 | |
2365 | public: |
2366 | using value_type = T; |
2367 | using iterator = T *; |
2368 | using const_iterator = const T *; |
2369 | |
2370 | array_slice () : m_base (nullptr), m_size (0) {} |
2371 | |
2372 | template<typename OtherT> |
2373 | array_slice (array_slice<OtherT> other) |
2374 | : m_base (other.m_base), m_size (other.m_size) {} |
2375 | |
2376 | array_slice (iterator base, unsigned int size) |
2377 | : m_base (base), m_size (size) {} |
2378 | |
2379 | template<size_t N> |
2380 | array_slice (T (&array)[N]) : m_base (array), m_size (N) {} |
2381 | |
2382 | template<typename OtherT> |
2383 | array_slice (const vec<OtherT> &v) |
2384 | : m_base (v.address ()), m_size (v.length ()) {} |
2385 | |
2386 | template<typename OtherT> |
2387 | array_slice (vec<OtherT> &v) |
2388 | : m_base (v.address ()), m_size (v.length ()) {} |
2389 | |
2390 | template<typename OtherT, typename A> |
2391 | array_slice (const vec<OtherT, A, vl_embed> *v) |
2392 | : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {} |
2393 | |
2394 | template<typename OtherT, typename A> |
2395 | array_slice (vec<OtherT, A, vl_embed> *v) |
2396 | : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {} |
2397 | |
2398 | iterator begin () { return m_base; } |
2399 | iterator end () { return m_base + m_size; } |
2400 | |
2401 | const_iterator begin () const { return m_base; } |
2402 | const_iterator end () const { return m_base + m_size; } |
2403 | |
2404 | value_type &front (); |
2405 | value_type &back (); |
2406 | value_type &operator[] (unsigned int i); |
2407 | |
2408 | const value_type &front () const; |
2409 | const value_type &back () const; |
2410 | const value_type &operator[] (unsigned int i) const; |
2411 | |
2412 | size_t size () const { return m_size; } |
2413 | size_t size_bytes () const { return m_size * sizeof (T); } |
2414 | bool empty () const { return m_size == 0; } |
2415 | |
2416 | // An invalid array_slice that represents a failed operation. This is |
2417 | // distinct from an empty slice, which is a valid result in some contexts. |
2418 | static array_slice invalid () { return { nullptr, ~0U }; } |
2419 | |
2420 | // True if the array is valid, false if it is an array like INVALID. |
2421 | bool is_valid () const { return m_base || m_size == 0; } |
2422 | |
2423 | private: |
2424 | iterator m_base; |
2425 | unsigned int m_size; |
2426 | }; |
2427 | |
2428 | template<typename T> |
2429 | inline typename array_slice<T>::value_type & |
2430 | array_slice<T>::front () |
2431 | { |
2432 | gcc_checking_assert (m_size); |
2433 | return m_base[0]; |
2434 | } |
2435 | |
2436 | template<typename T> |
2437 | inline const typename array_slice<T>::value_type & |
2438 | array_slice<T>::front () const |
2439 | { |
2440 | gcc_checking_assert (m_size); |
2441 | return m_base[0]; |
2442 | } |
2443 | |
2444 | template<typename T> |
2445 | inline typename array_slice<T>::value_type & |
2446 | array_slice<T>::back () |
2447 | { |
2448 | gcc_checking_assert (m_size); |
2449 | return m_base[m_size - 1]; |
2450 | } |
2451 | |
2452 | template<typename T> |
2453 | inline const typename array_slice<T>::value_type & |
2454 | array_slice<T>::back () const |
2455 | { |
2456 | gcc_checking_assert (m_size); |
2457 | return m_base[m_size - 1]; |
2458 | } |
2459 | |
2460 | template<typename T> |
2461 | inline typename array_slice<T>::value_type & |
2462 | array_slice<T>::operator[] (unsigned int i) |
2463 | { |
2464 | gcc_checking_assert (i < m_size); |
2465 | return m_base[i]; |
2466 | } |
2467 | |
2468 | template<typename T> |
2469 | inline const typename array_slice<T>::value_type & |
2470 | array_slice<T>::operator[] (unsigned int i) const |
2471 | { |
2472 | gcc_checking_assert (i < m_size); |
2473 | return m_base[i]; |
2474 | } |
2475 | |
2476 | template<typename T> |
2477 | array_slice<T> |
2478 | make_array_slice (T *base, unsigned int size) |
2479 | { |
2480 | return array_slice<T> (base, size); |
2481 | } |
2482 | |
2483 | #if (GCC_VERSION >= 3000) |
2484 | # pragma GCC poison m_vec m_vecpfx m_vecdata |
2485 | #endif |
2486 | |
2487 | #endif // GCC_VEC_H |
2488 | |