1 | /* CPP Library - charsets |
2 | Copyright (C) 1998-2024 Free Software Foundation, Inc. |
3 | |
4 | Broken out of c-lex.cc Apr 2003, adding valid C99 UCN ranges. |
5 | |
6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU General Public License as published by the |
8 | Free Software Foundation; either version 3, or (at your option) any |
9 | later version. |
10 | |
11 | This program is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | GNU General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with this program; see the file COPYING3. If not see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | #include "config.h" |
21 | #include "system.h" |
22 | #include "cpplib.h" |
23 | #include "internal.h" |
24 | |
25 | /* Character set handling for C-family languages. |
26 | |
27 | Terminological note: In what follows, "charset" or "character set" |
28 | will be taken to mean both an abstract set of characters and an |
29 | encoding for that set. |
30 | |
31 | The C99 standard discusses two character sets: source and execution. |
32 | The source character set is used for internal processing in translation |
33 | phases 1 through 4; the execution character set is used thereafter. |
34 | Both are required by 5.2.1.2p1 to be multibyte encodings, not wide |
35 | character encodings (see 3.7.2, 3.7.3 for the standardese meanings |
36 | of these terms). Furthermore, the "basic character set" (listed in |
37 | 5.2.1p3) is to be encoded in each with values one byte wide, and is |
38 | to appear in the initial shift state. |
39 | |
40 | It is not explicitly mentioned, but there is also a "wide execution |
41 | character set" used to encode wide character constants and wide |
42 | string literals; this is supposed to be the result of applying the |
43 | standard library function mbstowcs() to an equivalent narrow string |
44 | (6.4.5p5). However, the behavior of hexadecimal and octal |
45 | \-escapes is at odds with this; they are supposed to be translated |
46 | directly to wchar_t values (6.4.4.4p5,6). |
47 | |
48 | The source character set is not necessarily the character set used |
49 | to encode physical source files on disk; translation phase 1 converts |
50 | from whatever that encoding is to the source character set. |
51 | |
52 | The presence of universal character names in C99 (6.4.3 et seq.) |
53 | forces the source character set to be isomorphic to ISO 10646, |
54 | that is, Unicode. There is no such constraint on the execution |
55 | character set; note also that the conversion from source to |
56 | execution character set does not occur for identifiers (5.1.1.2p1#5). |
57 | |
58 | For convenience of implementation, the source character set's |
59 | encoding of the basic character set should be identical to the |
60 | execution character set OF THE HOST SYSTEM's encoding of the basic |
61 | character set, and it should not be a state-dependent encoding. |
62 | |
63 | cpplib uses UTF-8 or UTF-EBCDIC for the source character set, |
64 | depending on whether the host is based on ASCII or EBCDIC (see |
65 | respectively Unicode section 2.3/ISO10646 Amendment 2, and Unicode |
66 | Technical Report #16). With limited exceptions, it relies on the |
67 | system library's iconv() primitive to do charset conversion |
68 | (specified in SUSv2). */ |
69 | |
70 | #if !HAVE_ICONV |
71 | /* Make certain that the uses of iconv(), iconv_open(), iconv_close() |
72 | below, which are guarded only by if statements with compile-time |
73 | constant conditions, do not cause link errors. */ |
74 | #define iconv_open(x, y) (errno = EINVAL, (iconv_t)-1) |
75 | #define iconv(a,b,c,d,e) (errno = EINVAL, (size_t)-1) |
76 | #define iconv_close(x) (void)0 |
77 | #define ICONV_CONST |
78 | #endif |
79 | |
80 | #if HOST_CHARSET == HOST_CHARSET_ASCII |
81 | #define SOURCE_CHARSET "UTF-8" |
82 | #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0x7e |
83 | #elif HOST_CHARSET == HOST_CHARSET_EBCDIC |
84 | #define SOURCE_CHARSET "UTF-EBCDIC" |
85 | #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0xFF |
86 | #else |
87 | #error "Unrecognized basic host character set" |
88 | #endif |
89 | |
90 | #ifndef EILSEQ |
91 | #define EILSEQ EINVAL |
92 | #endif |
93 | |
94 | /* This structure is used for a resizable string buffer throughout. */ |
95 | /* Don't call it strbuf, as that conflicts with unistd.h on systems |
96 | such as DYNIX/ptx where unistd.h includes stropts.h. */ |
97 | struct _cpp_strbuf |
98 | { |
99 | uchar *text; |
100 | size_t asize; |
101 | size_t len; |
102 | }; |
103 | |
104 | /* This is enough to hold any string that fits on a single 80-column |
105 | line, even if iconv quadruples its size (e.g. conversion from |
106 | ASCII to UTF-32) rounded up to a power of two. */ |
107 | #define OUTBUF_BLOCK_SIZE 256 |
108 | |
109 | /* Conversions between UTF-8 and UTF-16/32 are implemented by custom |
110 | logic. This is because a depressing number of systems lack iconv, |
111 | or have have iconv libraries that do not do these conversions, so |
112 | we need a fallback implementation for them. To ensure the fallback |
113 | doesn't break due to neglect, it is used on all systems. |
114 | |
115 | UTF-32 encoding is nice and simple: a four-byte binary number, |
116 | constrained to the range 00000000-7FFFFFFF to avoid questions of |
117 | signedness. We do have to cope with big- and little-endian |
118 | variants. |
119 | |
120 | UTF-16 encoding uses two-byte binary numbers, again in big- and |
121 | little-endian variants, for all values in the 00000000-0000FFFF |
122 | range. Values in the 00010000-0010FFFF range are encoded as pairs |
123 | of two-byte numbers, called "surrogate pairs": given a number S in |
124 | this range, it is mapped to a pair (H, L) as follows: |
125 | |
126 | H = (S - 0x10000) / 0x400 + 0xD800 |
127 | L = (S - 0x10000) % 0x400 + 0xDC00 |
128 | |
129 | Two-byte values in the D800...DFFF range are ill-formed except as a |
130 | component of a surrogate pair. Even if the encoding within a |
131 | two-byte value is little-endian, the H member of the surrogate pair |
132 | comes first. |
133 | |
134 | There is no way to encode values in the 00110000-7FFFFFFF range, |
135 | which is not currently a problem as there are no assigned code |
136 | points in that range; however, the author expects that it will |
137 | eventually become necessary to abandon UTF-16 due to this |
138 | limitation. Note also that, because of these pairs, UTF-16 does |
139 | not meet the requirements of the C standard for a wide character |
140 | encoding (see 3.7.3 and 6.4.4.4p11). |
141 | |
142 | UTF-8 encoding looks like this: |
143 | |
144 | value range encoded as |
145 | 00000000-0000007F 0xxxxxxx |
146 | 00000080-000007FF 110xxxxx 10xxxxxx |
147 | 00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx |
148 | 00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx |
149 | 00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx |
150 | 04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx |
151 | |
152 | Values in the 0000D800 ... 0000DFFF range (surrogates) are invalid, |
153 | which means that three-byte sequences ED xx yy, with A0 <= xx <= BF, |
154 | never occur. Note also that any value that can be encoded by a |
155 | given row of the table can also be encoded by all successive rows, |
156 | but this is not done; only the shortest possible encoding for any |
157 | given value is valid. For instance, the character 07C0 could be |
158 | encoded as any of DF 80, E0 9F 80, F0 80 9F 80, F8 80 80 9F 80, or |
159 | FC 80 80 80 9F 80. Only the first is valid. |
160 | |
161 | An implementation note: the transformation from UTF-16 to UTF-8, or |
162 | vice versa, is easiest done by using UTF-32 as an intermediary. */ |
163 | |
164 | /* Internal primitives which go from an UTF-8 byte stream to native-endian |
165 | UTF-32 in a cppchar_t, or vice versa; this avoids an extra marshal/unmarshal |
166 | operation in several places below. */ |
167 | static inline int |
168 | one_utf8_to_cppchar (const uchar **inbufp, size_t *inbytesleftp, |
169 | cppchar_t *cp) |
170 | { |
171 | static const uchar masks[6] = { 0x7F, 0x1F, 0x0F, 0x07, 0x03, 0x01 }; |
172 | static const uchar patns[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC }; |
173 | |
174 | cppchar_t c; |
175 | const uchar *inbuf = *inbufp; |
176 | size_t nbytes, i; |
177 | |
178 | if (*inbytesleftp < 1) |
179 | return EINVAL; |
180 | |
181 | c = *inbuf; |
182 | if (c < 0x80) |
183 | { |
184 | *cp = c; |
185 | *inbytesleftp -= 1; |
186 | *inbufp += 1; |
187 | return 0; |
188 | } |
189 | |
190 | /* The number of leading 1-bits in the first byte indicates how many |
191 | bytes follow. */ |
192 | for (nbytes = 2; nbytes < 7; nbytes++) |
193 | if ((c & ~masks[nbytes-1]) == patns[nbytes-1]) |
194 | goto found; |
195 | return EILSEQ; |
196 | found: |
197 | |
198 | if (*inbytesleftp < nbytes) |
199 | return EINVAL; |
200 | |
201 | c = (c & masks[nbytes-1]); |
202 | inbuf++; |
203 | for (i = 1; i < nbytes; i++) |
204 | { |
205 | cppchar_t n = *inbuf++; |
206 | if ((n & 0xC0) != 0x80) |
207 | return EILSEQ; |
208 | c = ((c << 6) + (n & 0x3F)); |
209 | } |
210 | |
211 | /* Make sure the shortest possible encoding was used. */ |
212 | if (c <= 0x7F && nbytes > 1) return EILSEQ; |
213 | if (c <= 0x7FF && nbytes > 2) return EILSEQ; |
214 | if (c <= 0xFFFF && nbytes > 3) return EILSEQ; |
215 | if (c <= 0x1FFFFF && nbytes > 4) return EILSEQ; |
216 | if (c <= 0x3FFFFFF && nbytes > 5) return EILSEQ; |
217 | |
218 | /* Make sure the character is valid. */ |
219 | if (c > 0x7FFFFFFF || (c >= 0xD800 && c <= 0xDFFF)) return EILSEQ; |
220 | |
221 | *cp = c; |
222 | *inbufp = inbuf; |
223 | *inbytesleftp -= nbytes; |
224 | return 0; |
225 | } |
226 | |
227 | static inline int |
228 | one_cppchar_to_utf8 (cppchar_t c, uchar **outbufp, size_t *outbytesleftp) |
229 | { |
230 | static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC }; |
231 | static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE }; |
232 | size_t nbytes; |
233 | uchar buf[6], *p = &buf[6]; |
234 | uchar *outbuf = *outbufp; |
235 | |
236 | nbytes = 1; |
237 | if (c < 0x80) |
238 | *--p = c; |
239 | else |
240 | { |
241 | do |
242 | { |
243 | *--p = ((c & 0x3F) | 0x80); |
244 | c >>= 6; |
245 | nbytes++; |
246 | } |
247 | while (c >= 0x3F || (c & limits[nbytes-1])); |
248 | *--p = (c | masks[nbytes-1]); |
249 | } |
250 | |
251 | if (*outbytesleftp < nbytes) |
252 | return E2BIG; |
253 | |
254 | while (p < &buf[6]) |
255 | *outbuf++ = *p++; |
256 | *outbytesleftp -= nbytes; |
257 | *outbufp = outbuf; |
258 | return 0; |
259 | } |
260 | |
261 | /* The following four functions transform one character between the two |
262 | encodings named in the function name. All have the signature |
263 | int (*)(iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, |
264 | uchar **outbufp, size_t *outbytesleftp) |
265 | |
266 | BIGEND must have the value 0 or 1, coerced to (iconv_t); it is |
267 | interpreted as a boolean indicating whether big-endian or |
268 | little-endian encoding is to be used for the member of the pair |
269 | that is not UTF-8. |
270 | |
271 | INBUFP, INBYTESLEFTP, OUTBUFP, OUTBYTESLEFTP work exactly as they |
272 | do for iconv. |
273 | |
274 | The return value is either 0 for success, or an errno value for |
275 | failure, which may be E2BIG (need more space), EILSEQ (ill-formed |
276 | input sequence), ir EINVAL (incomplete input sequence). */ |
277 | |
278 | static inline int |
279 | one_utf8_to_utf32 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, |
280 | uchar **outbufp, size_t *outbytesleftp) |
281 | { |
282 | uchar *outbuf; |
283 | cppchar_t s = 0; |
284 | int rval; |
285 | |
286 | /* Check for space first, since we know exactly how much we need. */ |
287 | if (*outbytesleftp < 4) |
288 | return E2BIG; |
289 | |
290 | rval = one_utf8_to_cppchar (inbufp, inbytesleftp, cp: &s); |
291 | if (rval) |
292 | return rval; |
293 | |
294 | outbuf = *outbufp; |
295 | outbuf[bigend ? 3 : 0] = (s & 0x000000FF); |
296 | outbuf[bigend ? 2 : 1] = (s & 0x0000FF00) >> 8; |
297 | outbuf[bigend ? 1 : 2] = (s & 0x00FF0000) >> 16; |
298 | outbuf[bigend ? 0 : 3] = (s & 0xFF000000) >> 24; |
299 | |
300 | *outbufp += 4; |
301 | *outbytesleftp -= 4; |
302 | return 0; |
303 | } |
304 | |
305 | static inline int |
306 | one_utf32_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, |
307 | uchar **outbufp, size_t *outbytesleftp) |
308 | { |
309 | cppchar_t s; |
310 | int rval; |
311 | const uchar *inbuf; |
312 | |
313 | if (*inbytesleftp < 4) |
314 | return EINVAL; |
315 | |
316 | inbuf = *inbufp; |
317 | |
318 | s = inbuf[bigend ? 0 : 3] << 24; |
319 | s += inbuf[bigend ? 1 : 2] << 16; |
320 | s += inbuf[bigend ? 2 : 1] << 8; |
321 | s += inbuf[bigend ? 3 : 0]; |
322 | |
323 | if (s >= 0x7FFFFFFF || (s >= 0xD800 && s <= 0xDFFF)) |
324 | return EILSEQ; |
325 | |
326 | rval = one_cppchar_to_utf8 (c: s, outbufp, outbytesleftp); |
327 | if (rval) |
328 | return rval; |
329 | |
330 | *inbufp += 4; |
331 | *inbytesleftp -= 4; |
332 | return 0; |
333 | } |
334 | |
335 | static inline int |
336 | one_utf8_to_utf16 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, |
337 | uchar **outbufp, size_t *outbytesleftp) |
338 | { |
339 | int rval; |
340 | cppchar_t s = 0; |
341 | const uchar *save_inbuf = *inbufp; |
342 | size_t save_inbytesleft = *inbytesleftp; |
343 | uchar *outbuf = *outbufp; |
344 | |
345 | rval = one_utf8_to_cppchar (inbufp, inbytesleftp, cp: &s); |
346 | if (rval) |
347 | return rval; |
348 | |
349 | if (s > 0x0010FFFF) |
350 | { |
351 | *inbufp = save_inbuf; |
352 | *inbytesleftp = save_inbytesleft; |
353 | return EILSEQ; |
354 | } |
355 | |
356 | if (s <= 0xFFFF) |
357 | { |
358 | if (*outbytesleftp < 2) |
359 | { |
360 | *inbufp = save_inbuf; |
361 | *inbytesleftp = save_inbytesleft; |
362 | return E2BIG; |
363 | } |
364 | outbuf[bigend ? 1 : 0] = (s & 0x00FF); |
365 | outbuf[bigend ? 0 : 1] = (s & 0xFF00) >> 8; |
366 | |
367 | *outbufp += 2; |
368 | *outbytesleftp -= 2; |
369 | return 0; |
370 | } |
371 | else |
372 | { |
373 | cppchar_t hi, lo; |
374 | |
375 | if (*outbytesleftp < 4) |
376 | { |
377 | *inbufp = save_inbuf; |
378 | *inbytesleftp = save_inbytesleft; |
379 | return E2BIG; |
380 | } |
381 | |
382 | hi = (s - 0x10000) / 0x400 + 0xD800; |
383 | lo = (s - 0x10000) % 0x400 + 0xDC00; |
384 | |
385 | /* Even if we are little-endian, put the high surrogate first. |
386 | ??? Matches practice? */ |
387 | outbuf[bigend ? 1 : 0] = (hi & 0x00FF); |
388 | outbuf[bigend ? 0 : 1] = (hi & 0xFF00) >> 8; |
389 | outbuf[bigend ? 3 : 2] = (lo & 0x00FF); |
390 | outbuf[bigend ? 2 : 3] = (lo & 0xFF00) >> 8; |
391 | |
392 | *outbufp += 4; |
393 | *outbytesleftp -= 4; |
394 | return 0; |
395 | } |
396 | } |
397 | |
398 | static inline int |
399 | one_utf16_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, |
400 | uchar **outbufp, size_t *outbytesleftp) |
401 | { |
402 | cppchar_t s; |
403 | const uchar *inbuf = *inbufp; |
404 | int rval; |
405 | |
406 | if (*inbytesleftp < 2) |
407 | return EINVAL; |
408 | s = inbuf[bigend ? 0 : 1] << 8; |
409 | s += inbuf[bigend ? 1 : 0]; |
410 | |
411 | /* Low surrogate without immediately preceding high surrogate is invalid. */ |
412 | if (s >= 0xDC00 && s <= 0xDFFF) |
413 | return EILSEQ; |
414 | /* High surrogate must have a following low surrogate. */ |
415 | else if (s >= 0xD800 && s <= 0xDBFF) |
416 | { |
417 | cppchar_t hi = s, lo; |
418 | if (*inbytesleftp < 4) |
419 | return EINVAL; |
420 | |
421 | lo = inbuf[bigend ? 2 : 3] << 8; |
422 | lo += inbuf[bigend ? 3 : 2]; |
423 | |
424 | if (lo < 0xDC00 || lo > 0xDFFF) |
425 | return EILSEQ; |
426 | |
427 | s = (hi - 0xD800) * 0x400 + (lo - 0xDC00) + 0x10000; |
428 | } |
429 | |
430 | rval = one_cppchar_to_utf8 (c: s, outbufp, outbytesleftp); |
431 | if (rval) |
432 | return rval; |
433 | |
434 | /* Success - update the input pointers (one_cppchar_to_utf8 has done |
435 | the output pointers for us). */ |
436 | if (s <= 0xFFFF) |
437 | { |
438 | *inbufp += 2; |
439 | *inbytesleftp -= 2; |
440 | } |
441 | else |
442 | { |
443 | *inbufp += 4; |
444 | *inbytesleftp -= 4; |
445 | } |
446 | return 0; |
447 | } |
448 | |
449 | |
450 | /* Special routine which just counts number of characters in the |
451 | string, what exactly is stored into the output doesn't matter |
452 | as long as it is one uchar per character. */ |
453 | |
454 | static inline int |
455 | one_count_chars (iconv_t, const uchar **inbufp, size_t *inbytesleftp, |
456 | uchar **outbufp, size_t *outbytesleftp) |
457 | { |
458 | cppchar_t s = 0; |
459 | int rval; |
460 | |
461 | /* Check for space first, since we know exactly how much we need. */ |
462 | if (*outbytesleftp < 1) |
463 | return E2BIG; |
464 | |
465 | #if HOST_CHARSET == HOST_CHARSET_ASCII |
466 | rval = one_utf8_to_cppchar (inbufp, inbytesleftp, cp: &s); |
467 | if (rval) |
468 | return rval; |
469 | #else |
470 | if (*inbytesleftp < 1) |
471 | return EINVAL; |
472 | static const uchar utf_ebcdic_map[256] = { |
473 | /* See table 4 in http://unicode.org/reports/tr16/tr16-7.2.html */ |
474 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
475 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
476 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
477 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
478 | 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, |
479 | 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, |
480 | 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, |
481 | 9, 9, 9, 9, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, |
482 | 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, |
483 | 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, |
484 | 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, |
485 | 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 3, 3, |
486 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, |
487 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, |
488 | 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 5, 5, 5, |
489 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 6, 6, 7, 7, 0 |
490 | }; |
491 | rval = utf_ebcdic_map[**inbufp]; |
492 | if (rval == 9) |
493 | return EILSEQ; |
494 | if (rval == 0) |
495 | rval = 1; |
496 | if (rval >= 2) |
497 | { |
498 | if (*inbytesleftp < rval) |
499 | return EINVAL; |
500 | for (int i = 1; i < rval; ++i) |
501 | if (utf_ebcdic_map[(*inbufp)[i]] != 9) |
502 | return EILSEQ; |
503 | } |
504 | *inbytesleftp -= rval; |
505 | *inbufp += rval; |
506 | #endif |
507 | |
508 | **outbufp = ' '; |
509 | |
510 | *outbufp += 1; |
511 | *outbytesleftp -= 1; |
512 | return 0; |
513 | } |
514 | |
515 | |
516 | /* Helper routine for the next few functions. The 'const' on |
517 | one_conversion means that we promise not to modify what function is |
518 | pointed to, which lets the inliner see through it. */ |
519 | |
520 | static inline bool |
521 | conversion_loop (int (*const one_conversion)(iconv_t, const uchar **, size_t *, |
522 | uchar **, size_t *), |
523 | iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to) |
524 | { |
525 | const uchar *inbuf; |
526 | uchar *outbuf; |
527 | size_t inbytesleft, outbytesleft; |
528 | int rval; |
529 | |
530 | inbuf = from; |
531 | inbytesleft = flen; |
532 | outbuf = to->text + to->len; |
533 | outbytesleft = to->asize - to->len; |
534 | |
535 | for (;;) |
536 | { |
537 | do |
538 | rval = one_conversion (cd, &inbuf, &inbytesleft, |
539 | &outbuf, &outbytesleft); |
540 | while (inbytesleft && !rval); |
541 | |
542 | if (__builtin_expect (inbytesleft == 0, 1)) |
543 | { |
544 | to->len = to->asize - outbytesleft; |
545 | return true; |
546 | } |
547 | if (rval != E2BIG) |
548 | { |
549 | errno = rval; |
550 | return false; |
551 | } |
552 | |
553 | outbytesleft += OUTBUF_BLOCK_SIZE; |
554 | to->asize += OUTBUF_BLOCK_SIZE; |
555 | to->text = XRESIZEVEC (uchar, to->text, to->asize); |
556 | outbuf = to->text + to->asize - outbytesleft; |
557 | } |
558 | } |
559 | |
560 | |
561 | /* These functions convert entire strings between character sets. |
562 | They all have the signature |
563 | |
564 | bool (*)(iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to); |
565 | |
566 | The input string FROM is converted as specified by the function |
567 | name plus the iconv descriptor CD (which may be fake), and the |
568 | result appended to TO. On any error, false is returned, otherwise true. */ |
569 | |
570 | /* These four use the custom conversion code above. */ |
571 | static bool |
572 | convert_utf8_utf16 (iconv_t cd, const uchar *from, size_t flen, |
573 | struct _cpp_strbuf *to) |
574 | { |
575 | return conversion_loop (one_conversion: one_utf8_to_utf16, cd, from, flen, to); |
576 | } |
577 | |
578 | static bool |
579 | convert_utf8_utf32 (iconv_t cd, const uchar *from, size_t flen, |
580 | struct _cpp_strbuf *to) |
581 | { |
582 | return conversion_loop (one_conversion: one_utf8_to_utf32, cd, from, flen, to); |
583 | } |
584 | |
585 | static bool |
586 | convert_utf16_utf8 (iconv_t cd, const uchar *from, size_t flen, |
587 | struct _cpp_strbuf *to) |
588 | { |
589 | return conversion_loop (one_conversion: one_utf16_to_utf8, cd, from, flen, to); |
590 | } |
591 | |
592 | static bool |
593 | convert_utf32_utf8 (iconv_t cd, const uchar *from, size_t flen, |
594 | struct _cpp_strbuf *to) |
595 | { |
596 | return conversion_loop (one_conversion: one_utf32_to_utf8, cd, from, flen, to); |
597 | } |
598 | |
599 | /* Magic conversion which just counts characters from input, so |
600 | only to->len is significant. */ |
601 | static bool |
602 | convert_count_chars (iconv_t cd, const uchar *from, |
603 | size_t flen, struct _cpp_strbuf *to) |
604 | { |
605 | return conversion_loop (one_conversion: one_count_chars, cd, from, flen, to); |
606 | } |
607 | |
608 | /* Identity conversion, used when we have no alternative. */ |
609 | static bool |
610 | convert_no_conversion (iconv_t cd ATTRIBUTE_UNUSED, |
611 | const uchar *from, size_t flen, struct _cpp_strbuf *to) |
612 | { |
613 | if (to->len + flen > to->asize) |
614 | { |
615 | to->asize = to->len + flen; |
616 | to->asize += to->asize / 4; |
617 | to->text = XRESIZEVEC (uchar, to->text, to->asize); |
618 | } |
619 | memcpy (dest: to->text + to->len, src: from, n: flen); |
620 | to->len += flen; |
621 | return true; |
622 | } |
623 | |
624 | /* And this one uses the system iconv primitive. It's a little |
625 | different, since iconv's interface is a little different. */ |
626 | #if HAVE_ICONV |
627 | |
628 | #define CONVERT_ICONV_GROW_BUFFER \ |
629 | do { \ |
630 | outbytesleft += OUTBUF_BLOCK_SIZE; \ |
631 | to->asize += OUTBUF_BLOCK_SIZE; \ |
632 | to->text = XRESIZEVEC (uchar, to->text, to->asize); \ |
633 | outbuf = (char *)to->text + to->asize - outbytesleft; \ |
634 | } while (0) |
635 | |
636 | static bool |
637 | convert_using_iconv (iconv_t cd, const uchar *from, size_t flen, |
638 | struct _cpp_strbuf *to) |
639 | { |
640 | ICONV_CONST char *inbuf; |
641 | char *outbuf; |
642 | size_t inbytesleft, outbytesleft; |
643 | |
644 | /* Reset conversion descriptor and check that it is valid. */ |
645 | if (iconv (cd, 0, 0, 0, 0) == (size_t)-1) |
646 | return false; |
647 | |
648 | inbuf = (ICONV_CONST char *)from; |
649 | inbytesleft = flen; |
650 | outbuf = (char *)to->text + to->len; |
651 | outbytesleft = to->asize - to->len; |
652 | |
653 | for (;;) |
654 | { |
655 | iconv (cd, &inbuf, &inbytesleft, &outbuf, &outbytesleft); |
656 | if (__builtin_expect (inbytesleft == 0, 1)) |
657 | { |
658 | /* Close out any shift states, returning to the initial state. */ |
659 | if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1) |
660 | { |
661 | if (errno != E2BIG) |
662 | return false; |
663 | |
664 | CONVERT_ICONV_GROW_BUFFER; |
665 | if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1) |
666 | return false; |
667 | } |
668 | |
669 | to->len = to->asize - outbytesleft; |
670 | return true; |
671 | } |
672 | if (errno != E2BIG) |
673 | return false; |
674 | |
675 | CONVERT_ICONV_GROW_BUFFER; |
676 | } |
677 | } |
678 | #else |
679 | #define convert_using_iconv 0 /* prevent undefined symbol error below */ |
680 | #endif |
681 | |
682 | /* Arrange for the above custom conversion logic to be used automatically |
683 | when conversion between a suitable pair of character sets is requested. */ |
684 | |
685 | #define APPLY_CONVERSION(CONVERTER, FROM, FLEN, TO) \ |
686 | CONVERTER.func (CONVERTER.cd, FROM, FLEN, TO) |
687 | |
688 | struct cpp_conversion |
689 | { |
690 | const char *pair; |
691 | convert_f func; |
692 | iconv_t fake_cd; |
693 | }; |
694 | static const struct cpp_conversion conversion_tab[] = { |
695 | { .pair: "UTF-8/UTF-32LE" , .func: convert_utf8_utf32, .fake_cd: (iconv_t)0 }, |
696 | { .pair: "UTF-8/UTF-32BE" , .func: convert_utf8_utf32, .fake_cd: (iconv_t)1 }, |
697 | { .pair: "UTF-8/UTF-16LE" , .func: convert_utf8_utf16, .fake_cd: (iconv_t)0 }, |
698 | { .pair: "UTF-8/UTF-16BE" , .func: convert_utf8_utf16, .fake_cd: (iconv_t)1 }, |
699 | { .pair: "UTF-32LE/UTF-8" , .func: convert_utf32_utf8, .fake_cd: (iconv_t)0 }, |
700 | { .pair: "UTF-32BE/UTF-8" , .func: convert_utf32_utf8, .fake_cd: (iconv_t)1 }, |
701 | { .pair: "UTF-16LE/UTF-8" , .func: convert_utf16_utf8, .fake_cd: (iconv_t)0 }, |
702 | { .pair: "UTF-16BE/UTF-8" , .func: convert_utf16_utf8, .fake_cd: (iconv_t)1 }, |
703 | }; |
704 | |
705 | /* Subroutine of cpp_init_iconv: initialize and return a |
706 | cset_converter structure for conversion from FROM to TO. If |
707 | iconv_open() fails, issue an error and return an identity |
708 | converter. Silently return an identity converter if FROM and TO |
709 | are identical. |
710 | |
711 | PFILE is only used for generating diagnostics; setting it to NULL |
712 | suppresses diagnostics. */ |
713 | |
714 | static struct cset_converter |
715 | init_iconv_desc (cpp_reader *pfile, const char *to, const char *from) |
716 | { |
717 | struct cset_converter ret; |
718 | char *pair; |
719 | size_t i; |
720 | |
721 | ret.to = to; |
722 | ret.from = from; |
723 | |
724 | if (!strcasecmp (s1: to, s2: from)) |
725 | { |
726 | ret.func = convert_no_conversion; |
727 | ret.cd = (iconv_t) -1; |
728 | ret.width = -1; |
729 | return ret; |
730 | } |
731 | |
732 | pair = (char *) alloca(strlen(to) + strlen(from) + 2); |
733 | |
734 | strcpy(dest: pair, src: from); |
735 | strcat(dest: pair, src: "/" ); |
736 | strcat(dest: pair, src: to); |
737 | for (i = 0; i < ARRAY_SIZE (conversion_tab); i++) |
738 | if (!strcasecmp (s1: pair, s2: conversion_tab[i].pair)) |
739 | { |
740 | ret.func = conversion_tab[i].func; |
741 | ret.cd = conversion_tab[i].fake_cd; |
742 | ret.width = -1; |
743 | return ret; |
744 | } |
745 | |
746 | /* No custom converter - try iconv. */ |
747 | if (HAVE_ICONV) |
748 | { |
749 | ret.func = convert_using_iconv; |
750 | ret.cd = iconv_open (to, from); |
751 | ret.width = -1; |
752 | |
753 | if (ret.cd == (iconv_t) -1) |
754 | { |
755 | if (pfile) |
756 | { |
757 | if (errno == EINVAL) |
758 | cpp_error (pfile, CPP_DL_ERROR, /* FIXME should be DL_SORRY */ |
759 | msgid: "conversion from %s to %s not supported by iconv" , |
760 | from, to); |
761 | else |
762 | cpp_errno (pfile, CPP_DL_ERROR, msgid: "iconv_open" ); |
763 | } |
764 | ret.func = convert_no_conversion; |
765 | } |
766 | } |
767 | else |
768 | { |
769 | if (pfile) |
770 | { |
771 | cpp_error (pfile, CPP_DL_ERROR, /* FIXME: should be DL_SORRY */ |
772 | msgid: "no iconv implementation, cannot convert from %s to %s" , |
773 | from, to); |
774 | } |
775 | ret.func = convert_no_conversion; |
776 | ret.cd = (iconv_t) -1; |
777 | ret.width = -1; |
778 | } |
779 | |
780 | return ret; |
781 | } |
782 | |
783 | /* If charset conversion is requested, initialize iconv(3) descriptors |
784 | for conversion from the source character set to the execution |
785 | character sets. If iconv is not present in the C library, and |
786 | conversion is requested, issue an error. */ |
787 | |
788 | void |
789 | cpp_init_iconv (cpp_reader *pfile) |
790 | { |
791 | const char *ncset = CPP_OPTION (pfile, narrow_charset); |
792 | const char *wcset = CPP_OPTION (pfile, wide_charset); |
793 | const char *default_wcset; |
794 | |
795 | bool be = CPP_OPTION (pfile, bytes_big_endian); |
796 | |
797 | if (CPP_OPTION (pfile, wchar_precision) >= 32) |
798 | default_wcset = be ? "UTF-32BE" : "UTF-32LE" ; |
799 | else if (CPP_OPTION (pfile, wchar_precision) >= 16) |
800 | default_wcset = be ? "UTF-16BE" : "UTF-16LE" ; |
801 | else |
802 | /* This effectively means that wide strings are not supported, |
803 | so don't do any conversion at all. */ |
804 | default_wcset = SOURCE_CHARSET; |
805 | |
806 | if (!ncset) |
807 | ncset = SOURCE_CHARSET; |
808 | if (!wcset) |
809 | wcset = default_wcset; |
810 | |
811 | pfile->narrow_cset_desc = init_iconv_desc (pfile, to: ncset, SOURCE_CHARSET); |
812 | pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision); |
813 | pfile->utf8_cset_desc = init_iconv_desc (pfile, to: "UTF-8" , SOURCE_CHARSET); |
814 | pfile->utf8_cset_desc.width = CPP_OPTION (pfile, char_precision); |
815 | pfile->char16_cset_desc = init_iconv_desc (pfile, |
816 | to: be ? "UTF-16BE" : "UTF-16LE" , |
817 | SOURCE_CHARSET); |
818 | pfile->char16_cset_desc.width = 16; |
819 | pfile->char32_cset_desc = init_iconv_desc (pfile, |
820 | to: be ? "UTF-32BE" : "UTF-32LE" , |
821 | SOURCE_CHARSET); |
822 | pfile->char32_cset_desc.width = 32; |
823 | pfile->wide_cset_desc = init_iconv_desc (pfile, to: wcset, SOURCE_CHARSET); |
824 | pfile->wide_cset_desc.width = CPP_OPTION (pfile, wchar_precision); |
825 | } |
826 | |
827 | /* Destroy iconv(3) descriptors set up by cpp_init_iconv, if necessary. */ |
828 | void |
829 | _cpp_destroy_iconv (cpp_reader *pfile) |
830 | { |
831 | if (HAVE_ICONV) |
832 | { |
833 | if (pfile->narrow_cset_desc.func == convert_using_iconv) |
834 | iconv_close (pfile->narrow_cset_desc.cd); |
835 | if (pfile->utf8_cset_desc.func == convert_using_iconv) |
836 | iconv_close (pfile->utf8_cset_desc.cd); |
837 | if (pfile->char16_cset_desc.func == convert_using_iconv) |
838 | iconv_close (pfile->char16_cset_desc.cd); |
839 | if (pfile->char32_cset_desc.func == convert_using_iconv) |
840 | iconv_close (pfile->char32_cset_desc.cd); |
841 | if (pfile->wide_cset_desc.func == convert_using_iconv) |
842 | iconv_close (pfile->wide_cset_desc.cd); |
843 | } |
844 | } |
845 | |
846 | /* Utility routine for use by a full compiler. C is a character taken |
847 | from the *basic* source character set, encoded in the host's |
848 | execution encoding. Convert it to (the target's) execution |
849 | encoding, and return that value. |
850 | |
851 | Issues an internal error if C's representation in the narrow |
852 | execution character set fails to be a single-byte value (C99 |
853 | 5.2.1p3: "The representation of each member of the source and |
854 | execution character sets shall fit in a byte.") May also issue an |
855 | internal error if C fails to be a member of the basic source |
856 | character set (testing this exactly is too hard, especially when |
857 | the host character set is EBCDIC). */ |
858 | cppchar_t |
859 | cpp_host_to_exec_charset (cpp_reader *pfile, cppchar_t c) |
860 | { |
861 | uchar sbuf[1]; |
862 | struct _cpp_strbuf tbuf; |
863 | |
864 | /* This test is merely an approximation, but it suffices to catch |
865 | the most important thing, which is that we don't get handed a |
866 | character outside the unibyte range of the host character set. */ |
867 | if (c > LAST_POSSIBLY_BASIC_SOURCE_CHAR) |
868 | { |
869 | cpp_error (pfile, CPP_DL_ICE, |
870 | msgid: "character 0x%lx is not in the basic source character set\n" , |
871 | (unsigned long)c); |
872 | return 0; |
873 | } |
874 | |
875 | /* Being a character in the unibyte range of the host character set, |
876 | we can safely splat it into a one-byte buffer and trust that that |
877 | is a well-formed string. */ |
878 | sbuf[0] = c; |
879 | |
880 | /* This should never need to reallocate, but just in case... */ |
881 | tbuf.asize = 1; |
882 | tbuf.text = XNEWVEC (uchar, tbuf.asize); |
883 | tbuf.len = 0; |
884 | |
885 | if (!APPLY_CONVERSION (pfile->narrow_cset_desc, sbuf, 1, &tbuf)) |
886 | { |
887 | cpp_errno (pfile, CPP_DL_ICE, msgid: "converting to execution character set" ); |
888 | return 0; |
889 | } |
890 | if (tbuf.len != 1) |
891 | { |
892 | cpp_error (pfile, CPP_DL_ICE, |
893 | msgid: "character 0x%lx is not unibyte in execution character set" , |
894 | (unsigned long)c); |
895 | return 0; |
896 | } |
897 | c = tbuf.text[0]; |
898 | free(ptr: tbuf.text); |
899 | return c; |
900 | } |
901 | |
902 | |
903 | |
904 | /* cpp_substring_ranges's constructor. */ |
905 | |
906 | cpp_substring_ranges::cpp_substring_ranges () : |
907 | m_ranges (NULL), |
908 | m_num_ranges (0), |
909 | m_alloc_ranges (8) |
910 | { |
911 | m_ranges = XNEWVEC (source_range, m_alloc_ranges); |
912 | } |
913 | |
914 | /* cpp_substring_ranges's destructor. */ |
915 | |
916 | cpp_substring_ranges::~cpp_substring_ranges () |
917 | { |
918 | free (ptr: m_ranges); |
919 | } |
920 | |
921 | /* Add RANGE to the vector of source_range information. */ |
922 | |
923 | void |
924 | cpp_substring_ranges::add_range (source_range range) |
925 | { |
926 | if (m_num_ranges >= m_alloc_ranges) |
927 | { |
928 | m_alloc_ranges *= 2; |
929 | m_ranges |
930 | = (source_range *)xrealloc (m_ranges, |
931 | sizeof (source_range) * m_alloc_ranges); |
932 | } |
933 | m_ranges[m_num_ranges++] = range; |
934 | } |
935 | |
936 | /* Read NUM ranges from LOC_READER, adding them to the vector of source_range |
937 | information. */ |
938 | |
939 | void |
940 | cpp_substring_ranges::add_n_ranges (int num, |
941 | cpp_string_location_reader &loc_reader) |
942 | { |
943 | for (int i = 0; i < num; i++) |
944 | add_range (range: loc_reader.get_next ()); |
945 | } |
946 | |
947 | |
948 | |
949 | /* Utility routine that computes a mask of the form 0000...111... with |
950 | WIDTH 1-bits. */ |
951 | static inline size_t |
952 | width_to_mask (size_t width) |
953 | { |
954 | width = MIN (width, BITS_PER_CPPCHAR_T); |
955 | if (width >= CHAR_BIT * sizeof (size_t)) |
956 | return ~(size_t) 0; |
957 | else |
958 | return ((size_t) 1 << width) - 1; |
959 | } |
960 | |
961 | /* A large table of unicode character information. */ |
962 | enum { |
963 | /* Valid in a C99 identifier? */ |
964 | C99 = 1, |
965 | /* Valid in a C99 identifier, but not as the first character? */ |
966 | N99 = 2, |
967 | /* Valid in a C++ identifier? */ |
968 | CXX = 4, |
969 | /* Valid in a C11/C++11 identifier? */ |
970 | C11 = 8, |
971 | /* Valid in a C11/C++11 identifier, but not as the first character? */ |
972 | N11 = 16, |
973 | /* Valid in a C++23 identifier? */ |
974 | CXX23 = 32, |
975 | /* Valid in a C++23 identifier, but not as the first character? */ |
976 | NXX23 = 64, |
977 | /* NFC representation is not valid in an identifier? */ |
978 | CID = 128, |
979 | /* Might be valid NFC form? */ |
980 | NFC = 256, |
981 | /* Might be valid NFKC form? */ |
982 | NKC = 512, |
983 | /* Certain preceding characters might make it not valid NFC/NKFC form? */ |
984 | CTX = 1024 |
985 | }; |
986 | |
987 | struct ucnrange { |
988 | /* Bitmap of flags above. */ |
989 | unsigned short flags; |
990 | /* Combining class of the character. */ |
991 | unsigned char combine; |
992 | /* Last character in the range described by this entry. */ |
993 | unsigned int end; |
994 | }; |
995 | #include "ucnid.h" |
996 | |
997 | /* ISO 10646 defines the UCS codespace as the range 0-0x10FFFF inclusive. */ |
998 | #define UCS_LIMIT 0x10FFFF |
999 | |
1000 | #include "uname2c.h" |
1001 | |
1002 | static const char hangul_syllables[][4] = { |
1003 | /* L */ |
1004 | "G" , "GG" , "N" , "D" , "DD" , "R" , "M" , "B" , "BB" , "S" , "SS" , "" , |
1005 | "J" , "JJ" , "C" , "K" , "T" , "P" , "H" , |
1006 | /* V */ |
1007 | "A" , "AE" , "YA" , "YAE" , "EO" , "E" , "YEO" , "YE" , "O" , "WA" , "WAE" , |
1008 | "OE" , "YO" , "U" , "WEO" , "WE" , "WI" , "YU" , "EU" , "YI" , "I" , |
1009 | /* T */ |
1010 | "" , "G" , "GG" , "GS" , "N" , "NJ" , "NH" , "D" , "L" , "LG" , "LM" , "LB" , |
1011 | "LS" , "LT" , "LP" , "LH" , "M" , "B" , "BS" , "S" , "SS" , "NG" , "J" , "C" , |
1012 | "K" , "T" , "P" , "H" |
1013 | }; |
1014 | |
1015 | static const short hangul_count[6] = { 19, 21, 28 }; |
1016 | |
1017 | /* Used for Unicode loose matching rule UAX44-LM2 matching. */ |
1018 | |
1019 | struct uname2c_data |
1020 | { |
1021 | char *canon_name; |
1022 | char prev_char; |
1023 | }; |
1024 | |
1025 | /* Map NAME, a Unicode character name or correction/control/alternate |
1026 | alias, to a Unicode codepoint, or return (cppchar_t) -1 if |
1027 | not found. This uses a space optimized radix tree precomputed |
1028 | by the makeuname2c utility, with binary format documented in its |
1029 | source makeuname2c.cc. */ |
1030 | |
1031 | static cppchar_t |
1032 | _cpp_uname2c (const char *name, size_t len, const unsigned char *n, |
1033 | struct uname2c_data *data) |
1034 | { |
1035 | do |
1036 | { |
1037 | char k; |
1038 | const char *key; |
1039 | size_t key_len, len_adj; |
1040 | bool has_value = *n & 0x40; |
1041 | bool has_children, no_sibling = false; |
1042 | cppchar_t codepoint = -1; |
1043 | const unsigned char *child = NULL; |
1044 | int ret; |
1045 | |
1046 | if (*n & 0x80) |
1047 | { |
1048 | k = ' ' + (*n++ & 0x3f); |
1049 | key = &k; |
1050 | key_len = 1; |
1051 | } |
1052 | else |
1053 | { |
1054 | key_len = *n++ & 0x3f; |
1055 | key = &uname2c_dict[*n++]; |
1056 | key += (*n++ << 8); |
1057 | } |
1058 | if (has_value) |
1059 | { |
1060 | codepoint = *n + (n[1] << 8) + ((n[2] & 0x1f) << 16); |
1061 | has_children = n[2] & 0x80; |
1062 | no_sibling = n[2] & 0x40; |
1063 | n += 3; |
1064 | } |
1065 | else |
1066 | has_children = true; |
1067 | if (has_children) |
1068 | { |
1069 | unsigned int shift = 0; |
1070 | size_t child_off = 0; |
1071 | |
1072 | do |
1073 | { |
1074 | child_off |= (*n & 0x7f) << shift; |
1075 | shift += 7; |
1076 | } |
1077 | while ((*n++ & 0x80) != 0); |
1078 | child = n + child_off; |
1079 | } |
1080 | if (__builtin_expect (data == NULL, 1)) |
1081 | { |
1082 | ret = memcmp (s1: name, s2: key, n: len > key_len ? key_len : len); |
1083 | len_adj = key_len; |
1084 | } |
1085 | else |
1086 | { |
1087 | const char *p = name, *q = key; |
1088 | |
1089 | while (1) |
1090 | { |
1091 | if ((size_t) (p - name) == len || (size_t) (q - key) == key_len) |
1092 | break; |
1093 | if (*q == ' ') |
1094 | { |
1095 | ++q; |
1096 | continue; |
1097 | } |
1098 | if (*q == '-') |
1099 | { |
1100 | /* This is the hard case. Only medial hyphens |
1101 | should be removed, where medial means preceded |
1102 | and followed by alnum. */ |
1103 | if (ISALNUM (q == key ? data->prev_char : q[-1])) |
1104 | { |
1105 | if (q + 1 == key + key_len) |
1106 | { |
1107 | /* We don't know what the next letter will be. |
1108 | It could be ISALNUM, then we are supposed |
1109 | to omit it, or it could be a space and then |
1110 | we should not omit it and need to compare it. |
1111 | Fortunately the only 3 names with hyphen |
1112 | followed by non-letter are |
1113 | U+0F0A TIBETAN MARK BKA- SHOG YIG MGO |
1114 | U+0FD0 TIBETAN MARK BKA- SHOG GI MGO RGYAN |
1115 | U+0FD0 TIBETAN MARK BSKA- SHOG GI MGO RGYAN |
1116 | Furthermore, prefixes of NR2 generated |
1117 | ranges all end with a hyphen, but the generated |
1118 | part is then followed by alpha-numeric. |
1119 | So, let's just assume that - at the end of |
1120 | key is always followed by alphanumeric and |
1121 | so should be omitted. |
1122 | makeuname2c.cc verifies that this is true. */ |
1123 | ++q; |
1124 | continue; |
1125 | } |
1126 | else if (ISALNUM (q[1])) |
1127 | { |
1128 | ++q; |
1129 | continue; |
1130 | } |
1131 | } |
1132 | } |
1133 | if (*p != *q) |
1134 | break; |
1135 | ++p; |
1136 | ++q; |
1137 | } |
1138 | len_adj = p - name; |
1139 | /* If we don't consume the whole key, signal a mismatch, |
1140 | but always with ret = 1, so that we keep looking through |
1141 | siblings. */ |
1142 | ret = q < key + key_len; |
1143 | } |
1144 | if (ret < 0) |
1145 | return -1; |
1146 | else if (ret == 0) |
1147 | { |
1148 | if (len < len_adj) |
1149 | return -1; |
1150 | else if (codepoint >= 0xd800 |
1151 | && codepoint < 0xd800 + ARRAY_SIZE (uname2c_generated)) |
1152 | { |
1153 | name += len_adj; |
1154 | len -= len_adj; |
1155 | if (codepoint == 0xd800) |
1156 | { |
1157 | /* NR1 - Hangul syllables. */ |
1158 | size_t start = 0, end, i, j; |
1159 | int this_len, max_len; |
1160 | char winner[3]; |
1161 | |
1162 | for (i = 0; i < 3; ++i) |
1163 | { |
1164 | end = start + hangul_count[i]; |
1165 | max_len = -1; |
1166 | winner[i] = -1; |
1167 | for (j = start; j < end; j++) |
1168 | { |
1169 | this_len = strlen (s: hangul_syllables[j]); |
1170 | if (len >= (size_t) this_len |
1171 | && this_len > max_len |
1172 | && memcmp (s1: name, s2: hangul_syllables[j], |
1173 | n: this_len) == 0) |
1174 | { |
1175 | max_len = this_len; |
1176 | winner[i] = j - start; |
1177 | } |
1178 | } |
1179 | if (max_len == -1) |
1180 | return -1; |
1181 | name += max_len; |
1182 | len -= max_len; |
1183 | start = end; |
1184 | } |
1185 | if (__builtin_expect (data != NULL, 0)) |
1186 | { |
1187 | memcpy (dest: data->canon_name, src: key, n: key_len); |
1188 | data->canon_name[key_len] = '\0'; |
1189 | for (i = 0, start = 0; i < 3; ++i) |
1190 | { |
1191 | strcat (dest: data->canon_name, |
1192 | src: hangul_syllables[start + winner[i]]); |
1193 | start += hangul_count[i]; |
1194 | } |
1195 | } |
1196 | return (0xac00 + 21 * 28 * winner[0] |
1197 | + 28 * winner[1] + winner[2]); |
1198 | } |
1199 | else |
1200 | { |
1201 | /* NR2 - prefix followed by hexadecimal codepoint. */ |
1202 | const cppchar_t *p; |
1203 | size_t i; |
1204 | |
1205 | if (len < 4 || len > 5) |
1206 | return -1; |
1207 | p = uname2c_pairs + uname2c_generated[codepoint - 0xd800]; |
1208 | codepoint = 0; |
1209 | for (i = 0; i < len; ++i) |
1210 | { |
1211 | codepoint <<= 4; |
1212 | if (!ISXDIGIT (name[i])) |
1213 | return -1; |
1214 | codepoint += hex_value (name[i]); |
1215 | } |
1216 | for (; *p; p += 2) |
1217 | if (codepoint < *p) |
1218 | return -1; |
1219 | else if (codepoint <= p[1]) |
1220 | { |
1221 | if (__builtin_expect (data != NULL, 0)) |
1222 | { |
1223 | memcpy (dest: data->canon_name, src: key, n: key_len); |
1224 | memcpy (dest: data->canon_name + key_len, src: name, n: len); |
1225 | data->canon_name[key_len + len] = '\0'; |
1226 | } |
1227 | return codepoint; |
1228 | } |
1229 | return -1; |
1230 | } |
1231 | } |
1232 | else if (__builtin_expect (data != NULL, 0)) |
1233 | { |
1234 | if (len == len_adj) |
1235 | { |
1236 | memcpy (dest: data->canon_name, src: key, n: key_len); |
1237 | data->canon_name[key_len] = '\0'; |
1238 | return codepoint; |
1239 | } |
1240 | if (has_children) |
1241 | { |
1242 | struct uname2c_data save = *data; |
1243 | memcpy (dest: data->canon_name, src: key, n: key_len); |
1244 | data->canon_name += key_len; |
1245 | data->prev_char = key[key_len - 1]; |
1246 | codepoint = _cpp_uname2c (name: name + len_adj, len: len - len_adj, |
1247 | n: child, data); |
1248 | if (codepoint != (cppchar_t) -1) |
1249 | return codepoint; |
1250 | *data = save; |
1251 | } |
1252 | } |
1253 | else if (len == len_adj) |
1254 | return codepoint; |
1255 | else if (!has_children) |
1256 | return -1; |
1257 | else |
1258 | { |
1259 | name += len_adj; |
1260 | len -= len_adj; |
1261 | n = child; |
1262 | continue; |
1263 | } |
1264 | } |
1265 | if (no_sibling || (!has_value && *n == 0xff)) |
1266 | break; |
1267 | } |
1268 | while (1); |
1269 | return -1; |
1270 | } |
1271 | |
1272 | /* Try to do a loose name lookup according to Unicode loose matching rule |
1273 | UAX44-LM2. First ignore medial hyphens, whitespace, underscore |
1274 | characters and convert to upper case. */ |
1275 | |
1276 | static cppchar_t |
1277 | _cpp_uname2c_uax44_lm2 (const char *name, size_t len, char *canon_name) |
1278 | { |
1279 | char name_after_uax44_lm2[uname2c_max_name_len]; |
1280 | char *q = name_after_uax44_lm2; |
1281 | const char *p; |
1282 | |
1283 | for (p = name; p < name + len; p++) |
1284 | if (*p == '_' || *p == ' ') |
1285 | continue; |
1286 | else if (*p == '-' && p != name && ISALNUM (p[-1]) && ISALNUM (p[1])) |
1287 | continue; |
1288 | else if (q == name_after_uax44_lm2 + uname2c_max_name_len) |
1289 | return -1; |
1290 | else if (ISLOWER (*p)) |
1291 | *q++ = TOUPPER (*p); |
1292 | else |
1293 | *q++ = *p; |
1294 | |
1295 | struct uname2c_data data; |
1296 | data.canon_name = canon_name; |
1297 | data.prev_char = ' '; |
1298 | /* Hangul Jungseong O- E after UAX44-LM2 should be HANGULJUNGSEONGO-E |
1299 | and so should match U+1180. */ |
1300 | if (q - name_after_uax44_lm2 == sizeof ("HANGULJUNGSEONGO-E" ) - 1 |
1301 | && memcmp (s1: name_after_uax44_lm2, s2: "HANGULJUNGSEONGO-E" , |
1302 | n: sizeof ("HANGULJUNGSEONGO-E" ) - 1) == 0) |
1303 | { |
1304 | name_after_uax44_lm2[sizeof ("HANGULJUNGSEONGO" ) - 1] = 'E'; |
1305 | --q; |
1306 | } |
1307 | cppchar_t result |
1308 | = _cpp_uname2c (name: name_after_uax44_lm2, len: q - name_after_uax44_lm2, |
1309 | n: uname2c_tree, data: &data); |
1310 | |
1311 | /* Unicode UAX44-LM2 exception: |
1312 | U+116C HANGUL JUNGSEONG OE |
1313 | U+1180 HANGUL JUNGSEONG O-E |
1314 | We remove all medial hyphens when we shouldn't remote the U+1180 one. |
1315 | The U+1180 entry sorts before U+116C lexicographilly, so we get U+1180 |
1316 | in both cases. Thus, if result is U+1180, check if user's name doesn't |
1317 | have a hyphen there and adjust. */ |
1318 | if (result == 0x1180) |
1319 | { |
1320 | while (p[-1] == ' ' || p[-1] == '_') |
1321 | --p; |
1322 | gcc_assert (TOUPPER (p[-1]) == 'E'); |
1323 | --p; |
1324 | while (p[-1] == ' ' || p[-1] == '_') |
1325 | --p; |
1326 | if (p[-1] != '-') |
1327 | { |
1328 | result = 0x116c; |
1329 | memcpy (dest: canon_name + sizeof ("HANGUL JUNGSEONG O" ) - 1, src: "E" , n: 2); |
1330 | } |
1331 | } |
1332 | return result; |
1333 | } |
1334 | |
1335 | /* Returns flags representing the XID properties of the given codepoint. */ |
1336 | unsigned int |
1337 | cpp_check_xid_property (cppchar_t c) |
1338 | { |
1339 | // fast path for ASCII |
1340 | if (c < 0x80) |
1341 | { |
1342 | if (('A' <= c && c <= 'Z') || ('a' <= c && c <= 'z')) |
1343 | return CPP_XID_START | CPP_XID_CONTINUE; |
1344 | if (('0' <= c && c <= '9') || c == '_') |
1345 | return CPP_XID_CONTINUE; |
1346 | } |
1347 | |
1348 | if (c > UCS_LIMIT) |
1349 | return 0; |
1350 | |
1351 | int mn, mx, md; |
1352 | mn = 0; |
1353 | mx = ARRAY_SIZE (ucnranges) - 1; |
1354 | while (mx != mn) |
1355 | { |
1356 | md = (mn + mx) / 2; |
1357 | if (c <= ucnranges[md].end) |
1358 | mx = md; |
1359 | else |
1360 | mn = md + 1; |
1361 | } |
1362 | |
1363 | unsigned short flags = ucnranges[mn].flags; |
1364 | |
1365 | if (flags & CXX23) |
1366 | return CPP_XID_START | CPP_XID_CONTINUE; |
1367 | if (flags & NXX23) |
1368 | return CPP_XID_CONTINUE; |
1369 | return 0; |
1370 | } |
1371 | |
1372 | /* Returns 1 if C is valid in an identifier, 2 if C is valid except at |
1373 | the start of an identifier, and 0 if C is not valid in an |
1374 | identifier. We assume C has already gone through the checks of |
1375 | _cpp_valid_ucn. Also update NST for C if returning nonzero. The |
1376 | algorithm is a simple binary search on the table defined in |
1377 | ucnid.h. */ |
1378 | |
1379 | static int |
1380 | ucn_valid_in_identifier (cpp_reader *pfile, cppchar_t c, |
1381 | struct normalize_state *nst) |
1382 | { |
1383 | int mn, mx, md; |
1384 | unsigned short valid_flags, invalid_start_flags; |
1385 | |
1386 | if (c > UCS_LIMIT) |
1387 | return 0; |
1388 | |
1389 | mn = 0; |
1390 | mx = ARRAY_SIZE (ucnranges) - 1; |
1391 | while (mx != mn) |
1392 | { |
1393 | md = (mn + mx) / 2; |
1394 | if (c <= ucnranges[md].end) |
1395 | mx = md; |
1396 | else |
1397 | mn = md + 1; |
1398 | } |
1399 | |
1400 | /* When -pedantic, we require the character to have been listed by |
1401 | the standard for the current language. Otherwise, we accept the |
1402 | union of the acceptable sets for all supported language versions. */ |
1403 | valid_flags = C99 | CXX | C11 | CXX23; |
1404 | if (CPP_PEDANTIC (pfile)) |
1405 | { |
1406 | if (CPP_OPTION (pfile, xid_identifiers)) |
1407 | valid_flags = CXX23; |
1408 | else if (CPP_OPTION (pfile, c11_identifiers)) |
1409 | valid_flags = C11; |
1410 | else if (CPP_OPTION (pfile, c99)) |
1411 | valid_flags = C99; |
1412 | } |
1413 | if (! (ucnranges[mn].flags & valid_flags)) |
1414 | return 0; |
1415 | |
1416 | /* Update NST. */ |
1417 | if (ucnranges[mn].combine != 0 && ucnranges[mn].combine < nst->prev_class) |
1418 | nst->level = normalized_none; |
1419 | else if (ucnranges[mn].flags & CTX) |
1420 | { |
1421 | bool safe; |
1422 | cppchar_t p = nst->previous; |
1423 | |
1424 | /* For Hangul, characters in the range AC00-D7A3 are NFC/NFKC, |
1425 | and are combined algorithmically from a sequence of the form |
1426 | 1100-1112 1161-1175 11A8-11C2 |
1427 | (if the third is not present, it is treated as 11A7, which is not |
1428 | really a valid character). |
1429 | Unfortunately, C99 allows (only) the NFC form, but C++ allows |
1430 | only the combining characters. */ |
1431 | if (c >= 0x1161 && c <= 0x1175) |
1432 | safe = p < 0x1100 || p > 0x1112; |
1433 | else if (c >= 0x11A8 && c <= 0x11C2) |
1434 | safe = (p < 0xAC00 || p > 0xD7A3 || (p - 0xAC00) % 28 != 0); |
1435 | else |
1436 | safe = check_nfc (pfile, c, p); |
1437 | if (!safe) |
1438 | { |
1439 | if ((c >= 0x1161 && c <= 0x1175) || (c >= 0x11A8 && c <= 0x11C2)) |
1440 | nst->level = MAX (nst->level, normalized_identifier_C); |
1441 | else |
1442 | nst->level = normalized_none; |
1443 | } |
1444 | } |
1445 | else if (ucnranges[mn].flags & NKC) |
1446 | ; |
1447 | else if (ucnranges[mn].flags & NFC) |
1448 | nst->level = MAX (nst->level, normalized_C); |
1449 | else if (ucnranges[mn].flags & CID) |
1450 | nst->level = MAX (nst->level, normalized_identifier_C); |
1451 | else |
1452 | nst->level = normalized_none; |
1453 | if (ucnranges[mn].combine == 0) |
1454 | nst->previous = c; |
1455 | nst->prev_class = ucnranges[mn].combine; |
1456 | |
1457 | if (!CPP_PEDANTIC (pfile)) |
1458 | { |
1459 | /* If not -pedantic, accept as character that may |
1460 | begin an identifier a union of characters allowed |
1461 | at that position in each of the character sets. */ |
1462 | if ((ucnranges[mn].flags & (C99 | N99)) == C99 |
1463 | || (ucnranges[mn].flags & CXX) != 0 |
1464 | || (ucnranges[mn].flags & (C11 | N11)) == C11 |
1465 | || (ucnranges[mn].flags & (CXX23 | NXX23)) == CXX23) |
1466 | return 1; |
1467 | return 2; |
1468 | } |
1469 | |
1470 | if (CPP_OPTION (pfile, xid_identifiers)) |
1471 | invalid_start_flags = NXX23; |
1472 | else if (CPP_OPTION (pfile, c11_identifiers)) |
1473 | invalid_start_flags = N11; |
1474 | else if (CPP_OPTION (pfile, c99)) |
1475 | invalid_start_flags = N99; |
1476 | else |
1477 | invalid_start_flags = 0; |
1478 | |
1479 | /* In C99, UCN digits may not begin identifiers. In C11 and C++11, |
1480 | UCN combining characters may not begin identifiers. */ |
1481 | if (ucnranges[mn].flags & invalid_start_flags) |
1482 | return 2; |
1483 | |
1484 | return 1; |
1485 | } |
1486 | |
1487 | /* Increment char_range->m_finish by a single character. */ |
1488 | |
1489 | static void |
1490 | extend_char_range (source_range *char_range, |
1491 | cpp_string_location_reader *loc_reader) |
1492 | { |
1493 | if (loc_reader) |
1494 | { |
1495 | gcc_assert (char_range); |
1496 | char_range->m_finish = loc_reader->get_next ().m_finish; |
1497 | } |
1498 | } |
1499 | |
1500 | /* [lex.charset]: The character designated by the universal character |
1501 | name \UNNNNNNNN is that character whose character short name in |
1502 | ISO/IEC 10646 is NNNNNNNN; the character designated by the |
1503 | universal character name \uNNNN is that character whose character |
1504 | short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value |
1505 | for a universal character name corresponds to a surrogate code point |
1506 | (in the range 0xD800-0xDFFF, inclusive), the program is ill-formed. |
1507 | Additionally, if the hexadecimal value for a universal-character-name |
1508 | outside a character or string literal corresponds to a control character |
1509 | (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a |
1510 | character in the basic source character set, the program is ill-formed. |
1511 | |
1512 | C99 6.4.3: A universal character name shall not specify a character |
1513 | whose short identifier is less than 00A0 other than 0024 ($), 0040 (@), |
1514 | or 0060 (`), nor one in the range D800 through DFFF inclusive. |
1515 | |
1516 | If the hexadecimal value is larger than the upper bound of the UCS |
1517 | codespace specified in ISO/IEC 10646, a pedantic warning is issued |
1518 | in all versions of C and in the C++20 or later versions of C++. |
1519 | |
1520 | *PSTR must be preceded by "\u" or "\U"; it is assumed that the |
1521 | buffer end is delimited by a non-hex digit. Returns false if the |
1522 | UCN has not been consumed, true otherwise. |
1523 | |
1524 | The value of the UCN, whether valid or invalid, is returned in *CP. |
1525 | Diagnostics are emitted for invalid values. PSTR is updated to point |
1526 | one beyond the UCN, or to the syntactically invalid character. |
1527 | |
1528 | IDENTIFIER_POS is 0 when not in an identifier, 1 for the start of |
1529 | an identifier, or 2 otherwise. |
1530 | |
1531 | If LOC_READER is non-NULL, then position information is |
1532 | read from *LOC_READER and CHAR_RANGE->m_finish is updated accordingly. */ |
1533 | |
1534 | bool |
1535 | _cpp_valid_ucn (cpp_reader *pfile, const uchar **pstr, |
1536 | const uchar *limit, int identifier_pos, |
1537 | struct normalize_state *nst, cppchar_t *cp, |
1538 | source_range *char_range, |
1539 | cpp_string_location_reader *loc_reader) |
1540 | { |
1541 | cppchar_t result, c; |
1542 | unsigned int length; |
1543 | const uchar *str = *pstr; |
1544 | const uchar *base = str - 2; |
1545 | bool delimited = false, named = false; |
1546 | |
1547 | if (!CPP_OPTION (pfile, cplusplus) && !CPP_OPTION (pfile, c99)) |
1548 | cpp_error (pfile, CPP_DL_WARNING, |
1549 | msgid: "universal character names are only valid in C++ and C99" ); |
1550 | else if (CPP_OPTION (pfile, cpp_warn_c90_c99_compat) > 0 |
1551 | && !CPP_OPTION (pfile, cplusplus)) |
1552 | cpp_error (pfile, CPP_DL_WARNING, |
1553 | msgid: "C99's universal character names are incompatible with C90" ); |
1554 | else if (CPP_WTRADITIONAL (pfile) && identifier_pos == 0) |
1555 | cpp_warning (pfile, CPP_W_TRADITIONAL, |
1556 | msgid: "the meaning of '\\%c' is different in traditional C" , |
1557 | (int) str[-1]); |
1558 | |
1559 | result = 0; |
1560 | if (str[-1] == 'u') |
1561 | { |
1562 | length = 4; |
1563 | if (str < limit |
1564 | && *str == '{' |
1565 | && (!identifier_pos |
1566 | || CPP_OPTION (pfile, delimited_escape_seqs) |
1567 | || !CPP_OPTION (pfile, std))) |
1568 | { |
1569 | str++; |
1570 | /* Magic value to indicate no digits seen. */ |
1571 | length = 32; |
1572 | delimited = true; |
1573 | extend_char_range (char_range, loc_reader); |
1574 | } |
1575 | } |
1576 | else if (str[-1] == 'U') |
1577 | length = 8; |
1578 | else if (str[-1] == 'N') |
1579 | { |
1580 | length = 4; |
1581 | if (identifier_pos |
1582 | && !CPP_OPTION (pfile, delimited_escape_seqs) |
1583 | && CPP_OPTION (pfile, std)) |
1584 | { |
1585 | *cp = 0; |
1586 | return false; |
1587 | } |
1588 | if (str == limit || *str != '{') |
1589 | { |
1590 | if (identifier_pos) |
1591 | { |
1592 | *cp = 0; |
1593 | return false; |
1594 | } |
1595 | cpp_error (pfile, CPP_DL_ERROR, msgid: "'\\N' not followed by '{'" ); |
1596 | } |
1597 | else |
1598 | { |
1599 | str++; |
1600 | named = true; |
1601 | extend_char_range (char_range, loc_reader); |
1602 | length = 0; |
1603 | const uchar *name = str; |
1604 | bool strict = true; |
1605 | |
1606 | do |
1607 | { |
1608 | if (str == limit) |
1609 | break; |
1610 | c = *str; |
1611 | if (!ISIDNUM (c) && c != ' ' && c != '-') |
1612 | break; |
1613 | if (ISLOWER (c) || c == '_') |
1614 | strict = false; |
1615 | str++; |
1616 | extend_char_range (char_range, loc_reader); |
1617 | } |
1618 | while (1); |
1619 | |
1620 | if (str < limit && *str == '}') |
1621 | { |
1622 | if (identifier_pos && name == str) |
1623 | { |
1624 | cpp_warning (pfile, CPP_W_UNICODE, |
1625 | msgid: "empty named universal character escape " |
1626 | "sequence; treating it as separate tokens" ); |
1627 | *cp = 0; |
1628 | return false; |
1629 | } |
1630 | if (name == str) |
1631 | cpp_error (pfile, CPP_DL_ERROR, |
1632 | msgid: "empty named universal character escape sequence" ); |
1633 | else if ((!identifier_pos || strict) |
1634 | && !CPP_OPTION (pfile, delimited_escape_seqs) |
1635 | && CPP_OPTION (pfile, cpp_pedantic)) |
1636 | cpp_error (pfile, CPP_DL_PEDWARN, |
1637 | msgid: "named universal character escapes are only valid " |
1638 | "in C++23" ); |
1639 | if (name == str) |
1640 | result = 0x40; |
1641 | else |
1642 | { |
1643 | /* If the name is longer than maximum length of a Unicode |
1644 | name, it can't be strictly valid. */ |
1645 | if ((size_t) (str - name) > uname2c_max_name_len || !strict) |
1646 | result = -1; |
1647 | else |
1648 | result = _cpp_uname2c (name: (const char *) name, len: str - name, |
1649 | n: uname2c_tree, NULL); |
1650 | if (result == (cppchar_t) -1) |
1651 | { |
1652 | bool ret = true; |
1653 | if (identifier_pos |
1654 | && (!CPP_OPTION (pfile, delimited_escape_seqs) |
1655 | || !strict)) |
1656 | ret = cpp_warning (pfile, CPP_W_UNICODE, |
1657 | msgid: "\\N{%.*s} is not a valid " |
1658 | "universal character; treating it " |
1659 | "as separate tokens" , |
1660 | (int) (str - name), name); |
1661 | else |
1662 | cpp_error (pfile, CPP_DL_ERROR, |
1663 | msgid: "\\N{%.*s} is not a valid universal " |
1664 | "character" , (int) (str - name), name); |
1665 | |
1666 | /* Try to do a loose name lookup according to |
1667 | Unicode loose matching rule UAX44-LM2. */ |
1668 | char canon_name[uname2c_max_name_len + 1]; |
1669 | result = _cpp_uname2c_uax44_lm2 (name: (const char *) name, |
1670 | len: str - name, canon_name); |
1671 | if (result != (cppchar_t) -1 && ret) |
1672 | cpp_error (pfile, CPP_DL_NOTE, |
1673 | msgid: "did you mean \\N{%s}?" , canon_name); |
1674 | else |
1675 | result = 0xC0; |
1676 | if (identifier_pos |
1677 | && (!CPP_OPTION (pfile, delimited_escape_seqs) |
1678 | || !strict)) |
1679 | { |
1680 | *cp = 0; |
1681 | return false; |
1682 | } |
1683 | } |
1684 | } |
1685 | str++; |
1686 | extend_char_range (char_range, loc_reader); |
1687 | } |
1688 | else if (identifier_pos) |
1689 | { |
1690 | cpp_warning (pfile, CPP_W_UNICODE, |
1691 | msgid: "'\\N{' not terminated with '}' after %.*s; " |
1692 | "treating it as separate tokens" , |
1693 | (int) (str - base), base); |
1694 | *cp = 0; |
1695 | return false; |
1696 | } |
1697 | else |
1698 | { |
1699 | cpp_error (pfile, CPP_DL_ERROR, |
1700 | msgid: "'\\N{' not terminated with '}' after %.*s" , |
1701 | (int) (str - base), base); |
1702 | result = 1; |
1703 | } |
1704 | } |
1705 | } |
1706 | else |
1707 | { |
1708 | cpp_error (pfile, CPP_DL_ICE, msgid: "In _cpp_valid_ucn but not a UCN" ); |
1709 | length = 4; |
1710 | } |
1711 | |
1712 | if (!named) |
1713 | do |
1714 | { |
1715 | if (str == limit) |
1716 | break; |
1717 | c = *str; |
1718 | if (!ISXDIGIT (c)) |
1719 | break; |
1720 | str++; |
1721 | extend_char_range (char_range, loc_reader); |
1722 | if (delimited) |
1723 | { |
1724 | if (!result) |
1725 | /* Accept arbitrary number of leading zeros. |
1726 | 16 is another magic value, smaller than 32 above |
1727 | and bigger than 8, so that upon encountering first |
1728 | non-zero digit we can count 8 digits and after that |
1729 | or in overflow bit and ensure length doesn't decrease |
1730 | to 0, as delimited escape sequence doesn't have upper |
1731 | bound on the number of hex digits. */ |
1732 | length = 16; |
1733 | else if (length == 16 - 8) |
1734 | { |
1735 | /* Make sure we detect overflows. */ |
1736 | result |= 0x8000000; |
1737 | ++length; |
1738 | } |
1739 | } |
1740 | |
1741 | result = (result << 4) + hex_value (c); |
1742 | } |
1743 | while (--length); |
1744 | |
1745 | if (delimited && str < limit && *str == '}') |
1746 | { |
1747 | if (length == 32 && identifier_pos) |
1748 | { |
1749 | cpp_warning (pfile, CPP_W_UNICODE, |
1750 | msgid: "empty delimited escape sequence; " |
1751 | "treating it as separate tokens" ); |
1752 | *cp = 0; |
1753 | return false; |
1754 | } |
1755 | else if (length == 32) |
1756 | cpp_error (pfile, CPP_DL_ERROR, |
1757 | msgid: "empty delimited escape sequence" ); |
1758 | else if (!CPP_OPTION (pfile, delimited_escape_seqs) |
1759 | && CPP_OPTION (pfile, cpp_pedantic)) |
1760 | cpp_error (pfile, CPP_DL_PEDWARN, |
1761 | msgid: "delimited escape sequences are only valid in C++23" ); |
1762 | str++; |
1763 | length = 0; |
1764 | delimited = false; |
1765 | extend_char_range (char_range, loc_reader); |
1766 | } |
1767 | |
1768 | /* Partial UCNs are not valid in strings, but decompose into |
1769 | multiple tokens in identifiers, so we can't give a helpful |
1770 | error message in that case. */ |
1771 | if (length && identifier_pos) |
1772 | { |
1773 | if (delimited) |
1774 | cpp_warning (pfile, CPP_W_UNICODE, |
1775 | msgid: "'\\u{' not terminated with '}' after %.*s; " |
1776 | "treating it as separate tokens" , |
1777 | (int) (str - base), base); |
1778 | *cp = 0; |
1779 | return false; |
1780 | } |
1781 | |
1782 | *pstr = str; |
1783 | if (length) |
1784 | { |
1785 | if (!delimited) |
1786 | cpp_error (pfile, CPP_DL_ERROR, |
1787 | msgid: "incomplete universal character name %.*s" , |
1788 | (int) (str - base), base); |
1789 | else |
1790 | cpp_error (pfile, CPP_DL_ERROR, |
1791 | msgid: "'\\u{' not terminated with '}' after %.*s" , |
1792 | (int) (str - base), base); |
1793 | result = 1; |
1794 | } |
1795 | /* The C99 standard permits $, @ and ` to be specified as UCNs. We use |
1796 | hex escapes so that this also works with EBCDIC hosts. |
1797 | C++0x permits everything below 0xa0 within literals; |
1798 | ucn_valid_in_identifier will complain about identifiers. */ |
1799 | else if ((result < 0xa0 |
1800 | && !CPP_OPTION (pfile, cplusplus) |
1801 | && (result != 0x24 && result != 0x40 && result != 0x60)) |
1802 | || (result & 0x80000000) |
1803 | || (result >= 0xD800 && result <= 0xDFFF)) |
1804 | { |
1805 | cpp_error (pfile, CPP_DL_ERROR, |
1806 | msgid: "%.*s is not a valid universal character" , |
1807 | (int) (str - base), base); |
1808 | result = 1; |
1809 | } |
1810 | else if (identifier_pos && result == 0x24 |
1811 | && CPP_OPTION (pfile, dollars_in_ident)) |
1812 | { |
1813 | if (CPP_OPTION (pfile, warn_dollars) && !pfile->state.skipping) |
1814 | { |
1815 | CPP_OPTION (pfile, warn_dollars) = 0; |
1816 | cpp_error (pfile, CPP_DL_PEDWARN, msgid: "'$' in identifier or number" ); |
1817 | } |
1818 | NORMALIZE_STATE_UPDATE_IDNUM (nst, result); |
1819 | } |
1820 | else if (identifier_pos) |
1821 | { |
1822 | int validity = ucn_valid_in_identifier (pfile, c: result, nst); |
1823 | |
1824 | if (validity == 0) |
1825 | cpp_error (pfile, CPP_DL_ERROR, |
1826 | msgid: "universal character %.*s is not valid in an identifier" , |
1827 | (int) (str - base), base); |
1828 | else if (validity == 2 && identifier_pos == 1) |
1829 | cpp_error (pfile, CPP_DL_ERROR, |
1830 | msgid: "universal character %.*s is not valid at the start of an identifier" , |
1831 | (int) (str - base), base); |
1832 | } |
1833 | else if (result > UCS_LIMIT |
1834 | && (!CPP_OPTION (pfile, cplusplus) |
1835 | || CPP_OPTION (pfile, lang) > CLK_CXX17)) |
1836 | cpp_error (pfile, CPP_DL_PEDWARN, |
1837 | msgid: "%.*s is outside the UCS codespace" , |
1838 | (int) (str - base), base); |
1839 | |
1840 | *cp = result; |
1841 | return true; |
1842 | } |
1843 | |
1844 | /* Convert an UCN, pointed to by FROM, to UTF-8 encoding, then translate |
1845 | it to the execution character set and write the result into TBUF, |
1846 | if TBUF is non-NULL. |
1847 | An advanced pointer is returned. Issues all relevant diagnostics. |
1848 | If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE |
1849 | contains the location of the character so far: location information |
1850 | is read from *LOC_READER, and *RANGES is updated accordingly. */ |
1851 | static const uchar * |
1852 | convert_ucn (cpp_reader *pfile, const uchar *from, const uchar *limit, |
1853 | struct _cpp_strbuf *tbuf, struct cset_converter cvt, |
1854 | source_range char_range, |
1855 | cpp_string_location_reader *loc_reader, |
1856 | cpp_substring_ranges *ranges) |
1857 | { |
1858 | cppchar_t ucn; |
1859 | uchar buf[6]; |
1860 | uchar *bufp = buf; |
1861 | size_t bytesleft = 6; |
1862 | int rval; |
1863 | struct normalize_state nst = INITIAL_NORMALIZE_STATE; |
1864 | |
1865 | /* loc_reader and ranges must either be both NULL, or both be non-NULL. */ |
1866 | gcc_assert ((loc_reader != NULL) == (ranges != NULL)); |
1867 | |
1868 | from++; /* Skip u/U/N. */ |
1869 | |
1870 | /* The u/U is part of the spelling of this character. */ |
1871 | extend_char_range (char_range: &char_range, loc_reader); |
1872 | |
1873 | _cpp_valid_ucn (pfile, pstr: &from, limit, identifier_pos: 0, nst: &nst, |
1874 | cp: &ucn, char_range: &char_range, loc_reader); |
1875 | |
1876 | rval = one_cppchar_to_utf8 (c: ucn, outbufp: &bufp, outbytesleftp: &bytesleft); |
1877 | if (rval) |
1878 | { |
1879 | errno = rval; |
1880 | cpp_errno (pfile, CPP_DL_ERROR, |
1881 | msgid: "converting UCN to source character set" ); |
1882 | } |
1883 | else |
1884 | { |
1885 | if (tbuf) |
1886 | if (!APPLY_CONVERSION (cvt, buf, 6 - bytesleft, tbuf)) |
1887 | cpp_errno (pfile, CPP_DL_ERROR, |
1888 | msgid: "converting UCN to execution character set" ); |
1889 | |
1890 | if (loc_reader) |
1891 | { |
1892 | int num_encoded_bytes = 6 - bytesleft; |
1893 | for (int i = 0; i < num_encoded_bytes; i++) |
1894 | ranges->add_range (range: char_range); |
1895 | } |
1896 | } |
1897 | |
1898 | return from; |
1899 | } |
1900 | |
1901 | /* Performs a similar task as _cpp_valid_ucn, but parses UTF-8-encoded |
1902 | extended characters rather than UCNs. If the return value is TRUE, then a |
1903 | character was successfully decoded and stored in *CP; *PSTR has been |
1904 | updated to point one past the valid UTF-8 sequence. Diagnostics may have |
1905 | been emitted if the character parsed is not allowed in the current context. |
1906 | If the return value is FALSE, then *PSTR has not been modified and *CP may |
1907 | equal 0, to indicate that *PSTR does not form a valid UTF-8 sequence, or it |
1908 | may, when processing an identifier in C mode, equal a codepoint that was |
1909 | validly encoded but is not allowed to appear in an identifier. In either |
1910 | case, no diagnostic is emitted, and the return value of FALSE should cause |
1911 | a new token to be formed. |
1912 | |
1913 | _cpp_valid_utf8 can be called when lexing a potential identifier, or a |
1914 | CPP_OTHER token or for the purposes of -Winvalid-utf8 warning in string or |
1915 | character literals. NST is unused when not in a potential identifier. |
1916 | |
1917 | As in _cpp_valid_ucn, IDENTIFIER_POS is 0 when not in an identifier, 1 for |
1918 | the start of an identifier, or 2 otherwise. */ |
1919 | |
1920 | extern bool |
1921 | _cpp_valid_utf8 (cpp_reader *pfile, |
1922 | const uchar **pstr, |
1923 | const uchar *limit, |
1924 | int identifier_pos, |
1925 | struct normalize_state *nst, |
1926 | cppchar_t *cp) |
1927 | { |
1928 | const uchar *base = *pstr; |
1929 | size_t inbytesleft = limit - base; |
1930 | if (one_utf8_to_cppchar (inbufp: pstr, inbytesleftp: &inbytesleft, cp)) |
1931 | { |
1932 | /* No diagnostic here as this byte will rather become a |
1933 | new token. */ |
1934 | *cp = 0; |
1935 | return false; |
1936 | } |
1937 | |
1938 | if (identifier_pos) |
1939 | { |
1940 | switch (ucn_valid_in_identifier (pfile, c: *cp, nst)) |
1941 | { |
1942 | |
1943 | case 0: |
1944 | /* In C++, this is an error for invalid character in an identifier |
1945 | because logically, the UTF-8 was converted to a UCN during |
1946 | translation phase 1 (even though we don't physically do it that |
1947 | way). In C, this byte rather becomes grammatically a separate |
1948 | token. */ |
1949 | |
1950 | if (CPP_OPTION (pfile, cplusplus)) |
1951 | cpp_error (pfile, CPP_DL_ERROR, |
1952 | msgid: "extended character %.*s is not valid in an identifier" , |
1953 | (int) (*pstr - base), base); |
1954 | else |
1955 | { |
1956 | *pstr = base; |
1957 | return false; |
1958 | } |
1959 | |
1960 | break; |
1961 | |
1962 | case 2: |
1963 | if (identifier_pos == 1) |
1964 | { |
1965 | /* This is treated the same way in C++ or C99 -- lexed as an |
1966 | identifier which is then invalid because an identifier is |
1967 | not allowed to start with this character. */ |
1968 | cpp_error (pfile, CPP_DL_ERROR, |
1969 | msgid: "extended character %.*s is not valid at the start of an identifier" , |
1970 | (int) (*pstr - base), base); |
1971 | } |
1972 | break; |
1973 | } |
1974 | } |
1975 | |
1976 | return true; |
1977 | } |
1978 | |
1979 | /* Return true iff BUFFER of size NUM_BYTES is validly-encoded UTF-8. */ |
1980 | |
1981 | extern bool |
1982 | cpp_valid_utf8_p (const char *buffer, size_t num_bytes) |
1983 | { |
1984 | const uchar *iter = (const uchar *)buffer; |
1985 | size_t bytesleft = num_bytes; |
1986 | while (bytesleft > 0) |
1987 | { |
1988 | /* one_utf8_to_cppchar implements 5-byte and 6 byte sequences as per |
1989 | RFC 2279, but this has been superceded by RFC 3629, which |
1990 | restricts UTF-8 to 1-byte through 4-byte sequences, and |
1991 | states "the octet values C0, C1, F5 to FF never appear". |
1992 | |
1993 | Reject such values. */ |
1994 | if (*iter >= 0xf4) |
1995 | return false; |
1996 | |
1997 | cppchar_t cp; |
1998 | int err = one_utf8_to_cppchar (inbufp: &iter, inbytesleftp: &bytesleft, cp: &cp); |
1999 | if (err) |
2000 | return false; |
2001 | |
2002 | /* Additionally, Unicode declares that all codepoints above 0010FFFF are |
2003 | invalid because they cannot be represented in UTF-16. |
2004 | |
2005 | Reject such values.*/ |
2006 | if (cp > UCS_LIMIT) |
2007 | return false; |
2008 | } |
2009 | /* No problems encountered. */ |
2010 | return true; |
2011 | } |
2012 | |
2013 | /* Subroutine of convert_hex and convert_oct. N is the representation |
2014 | in the execution character set of a numeric escape; write it into the |
2015 | string buffer TBUF and update the end-of-string pointer therein. WIDE |
2016 | is true if it's a wide string that's being assembled in TBUF. This |
2017 | function issues no diagnostics and never fails. */ |
2018 | static void |
2019 | emit_numeric_escape (cpp_reader *pfile, cppchar_t n, |
2020 | struct _cpp_strbuf *tbuf, struct cset_converter cvt) |
2021 | { |
2022 | size_t width = cvt.width; |
2023 | |
2024 | if (width != CPP_OPTION (pfile, char_precision)) |
2025 | { |
2026 | /* We have to render this into the target byte order, which may not |
2027 | be our byte order. */ |
2028 | bool bigend = CPP_OPTION (pfile, bytes_big_endian); |
2029 | size_t cwidth = CPP_OPTION (pfile, char_precision); |
2030 | size_t cmask = width_to_mask (width: cwidth); |
2031 | size_t nbwc = width / cwidth; |
2032 | size_t i; |
2033 | size_t off = tbuf->len; |
2034 | cppchar_t c; |
2035 | |
2036 | if (tbuf->len + nbwc > tbuf->asize) |
2037 | { |
2038 | tbuf->asize += OUTBUF_BLOCK_SIZE; |
2039 | tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize); |
2040 | } |
2041 | |
2042 | for (i = 0; i < nbwc; i++) |
2043 | { |
2044 | c = n & cmask; |
2045 | n >>= cwidth; |
2046 | tbuf->text[off + (bigend ? nbwc - i - 1 : i)] = c; |
2047 | } |
2048 | tbuf->len += nbwc; |
2049 | } |
2050 | else |
2051 | { |
2052 | /* Note: this code does not handle the case where the target |
2053 | and host have a different number of bits in a byte. */ |
2054 | if (tbuf->len + 1 > tbuf->asize) |
2055 | { |
2056 | tbuf->asize += OUTBUF_BLOCK_SIZE; |
2057 | tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize); |
2058 | } |
2059 | tbuf->text[tbuf->len++] = n; |
2060 | } |
2061 | } |
2062 | |
2063 | /* Convert a hexadecimal escape, pointed to by FROM, to the execution |
2064 | character set and write it into the string buffer TBUF (if non-NULL). |
2065 | Returns an advanced pointer, and issues diagnostics as necessary. |
2066 | No character set translation occurs; this routine always produces the |
2067 | execution-set character with numeric value equal to the given hex |
2068 | number. You can, e.g. generate surrogate pairs this way. |
2069 | If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE |
2070 | contains the location of the character so far: location information |
2071 | is read from *LOC_READER, and *RANGES is updated accordingly. */ |
2072 | static const uchar * |
2073 | convert_hex (cpp_reader *pfile, const uchar *from, const uchar *limit, |
2074 | struct _cpp_strbuf *tbuf, struct cset_converter cvt, |
2075 | source_range char_range, |
2076 | cpp_string_location_reader *loc_reader, |
2077 | cpp_substring_ranges *ranges) |
2078 | { |
2079 | cppchar_t c, n = 0, overflow = 0; |
2080 | int digits_found = 0; |
2081 | size_t width = cvt.width; |
2082 | size_t mask = width_to_mask (width); |
2083 | bool delimited = false; |
2084 | const uchar *base = from - 1; |
2085 | |
2086 | /* loc_reader and ranges must either be both NULL, or both be non-NULL. */ |
2087 | gcc_assert ((loc_reader != NULL) == (ranges != NULL)); |
2088 | |
2089 | if (CPP_WTRADITIONAL (pfile)) |
2090 | cpp_warning (pfile, CPP_W_TRADITIONAL, |
2091 | msgid: "the meaning of '\\x' is different in traditional C" ); |
2092 | |
2093 | /* Skip 'x'. */ |
2094 | from++; |
2095 | |
2096 | /* The 'x' is part of the spelling of this character. */ |
2097 | extend_char_range (char_range: &char_range, loc_reader); |
2098 | |
2099 | if (from < limit && *from == '{') |
2100 | { |
2101 | delimited = true; |
2102 | from++; |
2103 | extend_char_range (char_range: &char_range, loc_reader); |
2104 | } |
2105 | |
2106 | while (from < limit) |
2107 | { |
2108 | c = *from; |
2109 | if (! hex_p (c)) |
2110 | break; |
2111 | from++; |
2112 | extend_char_range (char_range: &char_range, loc_reader); |
2113 | overflow |= n ^ (n << 4 >> 4); |
2114 | n = (n << 4) + hex_value (c); |
2115 | digits_found = 1; |
2116 | } |
2117 | |
2118 | if (delimited && from < limit && *from == '}') |
2119 | { |
2120 | from++; |
2121 | if (!digits_found) |
2122 | { |
2123 | cpp_error (pfile, CPP_DL_ERROR, |
2124 | msgid: "empty delimited escape sequence" ); |
2125 | return from; |
2126 | } |
2127 | else if (!CPP_OPTION (pfile, delimited_escape_seqs) |
2128 | && CPP_OPTION (pfile, cpp_pedantic)) |
2129 | cpp_error (pfile, CPP_DL_PEDWARN, |
2130 | msgid: "delimited escape sequences are only valid in C++23" ); |
2131 | delimited = false; |
2132 | extend_char_range (char_range: &char_range, loc_reader); |
2133 | } |
2134 | |
2135 | if (!digits_found) |
2136 | { |
2137 | cpp_error (pfile, CPP_DL_ERROR, |
2138 | msgid: "\\x used with no following hex digits" ); |
2139 | return from; |
2140 | } |
2141 | else if (delimited) |
2142 | { |
2143 | cpp_error (pfile, CPP_DL_ERROR, |
2144 | msgid: "'\\x{' not terminated with '}' after %.*s" , |
2145 | (int) (from - base), base); |
2146 | return from; |
2147 | } |
2148 | |
2149 | if (overflow | (n != (n & mask))) |
2150 | { |
2151 | cpp_error (pfile, CPP_DL_PEDWARN, |
2152 | msgid: "hex escape sequence out of range" ); |
2153 | n &= mask; |
2154 | } |
2155 | |
2156 | if (tbuf) |
2157 | emit_numeric_escape (pfile, n, tbuf, cvt); |
2158 | if (ranges) |
2159 | ranges->add_range (range: char_range); |
2160 | |
2161 | return from; |
2162 | } |
2163 | |
2164 | /* Convert an octal escape, pointed to by FROM, to the execution |
2165 | character set and write it into the string buffer TBUF. Returns an |
2166 | advanced pointer, and issues diagnostics as necessary. |
2167 | No character set translation occurs; this routine always produces the |
2168 | execution-set character with numeric value equal to the given octal |
2169 | number. |
2170 | If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE |
2171 | contains the location of the character so far: location information |
2172 | is read from *LOC_READER, and *RANGES is updated accordingly. */ |
2173 | static const uchar * |
2174 | convert_oct (cpp_reader *pfile, const uchar *from, const uchar *limit, |
2175 | struct _cpp_strbuf *tbuf, struct cset_converter cvt, |
2176 | source_range char_range, |
2177 | cpp_string_location_reader *loc_reader, |
2178 | cpp_substring_ranges *ranges) |
2179 | { |
2180 | size_t count = 0; |
2181 | cppchar_t c, n = 0, overflow = 0; |
2182 | size_t width = cvt.width; |
2183 | size_t mask = width_to_mask (width); |
2184 | bool delimited = false; |
2185 | const uchar *base = from - 1; |
2186 | |
2187 | /* loc_reader and ranges must either be both NULL, or both be non-NULL. */ |
2188 | gcc_assert ((loc_reader != NULL) == (ranges != NULL)); |
2189 | |
2190 | if (from < limit && *from == 'o') |
2191 | { |
2192 | from++; |
2193 | extend_char_range (char_range: &char_range, loc_reader); |
2194 | if (from == limit || *from != '{') |
2195 | cpp_error (pfile, CPP_DL_ERROR, msgid: "'\\o' not followed by '{'" ); |
2196 | else |
2197 | { |
2198 | from++; |
2199 | extend_char_range (char_range: &char_range, loc_reader); |
2200 | delimited = true; |
2201 | } |
2202 | } |
2203 | |
2204 | while (from < limit && count++ < 3) |
2205 | { |
2206 | c = *from; |
2207 | if (c < '0' || c > '7') |
2208 | break; |
2209 | from++; |
2210 | extend_char_range (char_range: &char_range, loc_reader); |
2211 | if (delimited) |
2212 | { |
2213 | count = 2; |
2214 | overflow |= n ^ (n << 3 >> 3); |
2215 | } |
2216 | n = (n << 3) + c - '0'; |
2217 | } |
2218 | |
2219 | if (delimited) |
2220 | { |
2221 | if (from < limit && *from == '}') |
2222 | { |
2223 | from++; |
2224 | if (count == 1) |
2225 | { |
2226 | cpp_error (pfile, CPP_DL_ERROR, |
2227 | msgid: "empty delimited escape sequence" ); |
2228 | return from; |
2229 | } |
2230 | else if (!CPP_OPTION (pfile, delimited_escape_seqs) |
2231 | && CPP_OPTION (pfile, cpp_pedantic)) |
2232 | cpp_error (pfile, CPP_DL_PEDWARN, |
2233 | msgid: "delimited escape sequences are only valid in C++23" ); |
2234 | extend_char_range (char_range: &char_range, loc_reader); |
2235 | } |
2236 | else |
2237 | { |
2238 | cpp_error (pfile, CPP_DL_ERROR, |
2239 | msgid: "'\\o{' not terminated with '}' after %.*s" , |
2240 | (int) (from - base), base); |
2241 | return from; |
2242 | } |
2243 | } |
2244 | |
2245 | if (overflow | (n != (n & mask))) |
2246 | { |
2247 | cpp_error (pfile, CPP_DL_PEDWARN, |
2248 | msgid: "octal escape sequence out of range" ); |
2249 | n &= mask; |
2250 | } |
2251 | |
2252 | if (tbuf) |
2253 | emit_numeric_escape (pfile, n, tbuf, cvt); |
2254 | if (ranges) |
2255 | ranges->add_range (range: char_range); |
2256 | |
2257 | return from; |
2258 | } |
2259 | |
2260 | /* Convert an escape sequence (pointed to by FROM) to its value on |
2261 | the target, and to the execution character set. Do not scan past |
2262 | LIMIT. Write the converted value into TBUF, if TBUF is non-NULL. |
2263 | Returns an advanced pointer. Handles all relevant diagnostics. |
2264 | If LOC_READER is non-NULL, then RANGES must be non-NULL: location |
2265 | information is read from *LOC_READER, and *RANGES is updated |
2266 | accordingly. */ |
2267 | static const uchar * |
2268 | convert_escape (cpp_reader *pfile, const uchar *from, const uchar *limit, |
2269 | struct _cpp_strbuf *tbuf, struct cset_converter cvt, |
2270 | cpp_string_location_reader *loc_reader, |
2271 | cpp_substring_ranges *ranges, bool uneval) |
2272 | { |
2273 | /* Values of \a \b \e \f \n \r \t \v respectively. */ |
2274 | #if HOST_CHARSET == HOST_CHARSET_ASCII |
2275 | static const uchar charconsts[] = { 7, 8, 27, 12, 10, 13, 9, 11 }; |
2276 | #elif HOST_CHARSET == HOST_CHARSET_EBCDIC |
2277 | static const uchar charconsts[] = { 47, 22, 39, 12, 21, 13, 5, 11 }; |
2278 | #else |
2279 | #error "unknown host character set" |
2280 | #endif |
2281 | |
2282 | uchar c; |
2283 | |
2284 | /* Record the location of the backslash. */ |
2285 | source_range char_range; |
2286 | if (loc_reader) |
2287 | char_range = loc_reader->get_next (); |
2288 | |
2289 | c = *from; |
2290 | switch (c) |
2291 | { |
2292 | /* UCNs, hex escapes, and octal escapes are processed separately. */ |
2293 | case 'u': case 'U': case 'N': |
2294 | return convert_ucn (pfile, from, limit, tbuf, cvt, |
2295 | char_range, loc_reader, ranges); |
2296 | |
2297 | case 'x': |
2298 | if (uneval && CPP_PEDANTIC (pfile)) |
2299 | cpp_error (pfile, CPP_DL_PEDWARN, |
2300 | msgid: "numeric escape sequence in unevaluated string: " |
2301 | "'\\%c'" , (int) c); |
2302 | return convert_hex (pfile, from, limit, tbuf, cvt, |
2303 | char_range, loc_reader, ranges); |
2304 | |
2305 | case '0': case '1': case '2': case '3': |
2306 | case '4': case '5': case '6': case '7': |
2307 | case 'o': |
2308 | if (uneval && CPP_PEDANTIC (pfile)) |
2309 | cpp_error (pfile, CPP_DL_PEDWARN, |
2310 | msgid: "numeric escape sequence in unevaluated string: " |
2311 | "'\\%c'" , (int) c); |
2312 | return convert_oct (pfile, from, limit, tbuf, cvt, |
2313 | char_range, loc_reader, ranges); |
2314 | |
2315 | /* Various letter escapes. Get the appropriate host-charset |
2316 | value into C. */ |
2317 | case '\\': case '\'': case '"': case '?': break; |
2318 | |
2319 | case '(': case '{': case '[': case '%': |
2320 | /* '\(', etc, can be used at the beginning of a line in a long |
2321 | string split onto multiple lines with \-newline, to prevent |
2322 | Emacs or other text editors from getting confused. '\%' can |
2323 | be used to prevent SCCS from mangling printf format strings. */ |
2324 | if (CPP_PEDANTIC (pfile)) |
2325 | goto unknown; |
2326 | break; |
2327 | |
2328 | case 'b': c = charconsts[1]; break; |
2329 | case 'f': c = charconsts[3]; break; |
2330 | case 'n': c = charconsts[4]; break; |
2331 | case 'r': c = charconsts[5]; break; |
2332 | case 't': c = charconsts[6]; break; |
2333 | case 'v': c = charconsts[7]; break; |
2334 | |
2335 | case 'a': |
2336 | if (CPP_WTRADITIONAL (pfile)) |
2337 | cpp_warning (pfile, CPP_W_TRADITIONAL, |
2338 | msgid: "the meaning of '\\a' is different in traditional C" ); |
2339 | c = charconsts[0]; |
2340 | break; |
2341 | |
2342 | case 'e': case 'E': |
2343 | if (CPP_PEDANTIC (pfile)) |
2344 | cpp_error (pfile, CPP_DL_PEDWARN, |
2345 | msgid: "non-ISO-standard escape sequence, '\\%c'" , (int) c); |
2346 | c = charconsts[2]; |
2347 | break; |
2348 | |
2349 | default: |
2350 | unknown: |
2351 | if (ISGRAPH (c)) |
2352 | cpp_error (pfile, CPP_DL_PEDWARN, |
2353 | msgid: "unknown escape sequence: '\\%c'" , (int) c); |
2354 | else |
2355 | { |
2356 | encoding_rich_location rich_loc (pfile); |
2357 | |
2358 | /* diagnostic.cc does not support "%03o". When it does, this |
2359 | code can use %03o directly in the diagnostic again. */ |
2360 | char buf[32]; |
2361 | sprintf(s: buf, format: "%03o" , (int) c); |
2362 | cpp_error_at (pfile, CPP_DL_PEDWARN, richloc: &rich_loc, |
2363 | msgid: "unknown escape sequence: '\\%s'" , buf); |
2364 | } |
2365 | } |
2366 | |
2367 | if (tbuf) |
2368 | /* Now convert what we have to the execution character set. */ |
2369 | if (!APPLY_CONVERSION (cvt, &c, 1, tbuf)) |
2370 | cpp_errno (pfile, CPP_DL_ERROR, |
2371 | msgid: "converting escape sequence to execution character set" ); |
2372 | |
2373 | if (loc_reader) |
2374 | { |
2375 | char_range.m_finish = loc_reader->get_next ().m_finish; |
2376 | ranges->add_range (range: char_range); |
2377 | } |
2378 | |
2379 | return from + 1; |
2380 | } |
2381 | |
2382 | /* TYPE is a token type. The return value is the conversion needed to |
2383 | convert from source to execution character set for the given type. */ |
2384 | static struct cset_converter |
2385 | converter_for_type (cpp_reader *pfile, enum cpp_ttype type) |
2386 | { |
2387 | switch (type) |
2388 | { |
2389 | default: |
2390 | return pfile->narrow_cset_desc; |
2391 | case CPP_UTF8CHAR: |
2392 | case CPP_UTF8STRING: |
2393 | return pfile->utf8_cset_desc; |
2394 | case CPP_CHAR16: |
2395 | case CPP_STRING16: |
2396 | return pfile->char16_cset_desc; |
2397 | case CPP_CHAR32: |
2398 | case CPP_STRING32: |
2399 | return pfile->char32_cset_desc; |
2400 | case CPP_WCHAR: |
2401 | case CPP_WSTRING: |
2402 | return pfile->wide_cset_desc; |
2403 | } |
2404 | } |
2405 | |
2406 | /* FROM is an array of cpp_string structures of length COUNT. These |
2407 | are to be converted from the source to the execution character set, |
2408 | escape sequences translated, and finally all are to be |
2409 | concatenated. WIDE indicates whether or not to produce a wide |
2410 | string. If TO is non-NULL, the result is written into TO. |
2411 | If LOC_READERS and OUT are non-NULL, then location information |
2412 | is read from LOC_READERS (which must be an array of length COUNT), |
2413 | and location information is written to *RANGES. |
2414 | |
2415 | Returns true for success, false for failure. */ |
2416 | |
2417 | static bool |
2418 | cpp_interpret_string_1 (cpp_reader *pfile, const cpp_string *from, size_t count, |
2419 | cpp_string *to, enum cpp_ttype type, |
2420 | cpp_string_location_reader *loc_readers, |
2421 | cpp_substring_ranges *out) |
2422 | { |
2423 | struct _cpp_strbuf tbuf; |
2424 | const uchar *p, *base, *limit; |
2425 | size_t i; |
2426 | struct cset_converter cvt = converter_for_type (pfile, type); |
2427 | |
2428 | /* loc_readers and out must either be both NULL, or both be non-NULL. */ |
2429 | gcc_assert ((loc_readers != NULL) == (out != NULL)); |
2430 | |
2431 | if (to) |
2432 | { |
2433 | tbuf.asize = MAX (OUTBUF_BLOCK_SIZE, from->len); |
2434 | tbuf.text = XNEWVEC (uchar, tbuf.asize); |
2435 | tbuf.len = 0; |
2436 | } |
2437 | |
2438 | cpp_string_location_reader *loc_reader = NULL; |
2439 | for (i = 0; i < count; i++) |
2440 | { |
2441 | if (loc_readers) |
2442 | loc_reader = &loc_readers[i]; |
2443 | |
2444 | p = from[i].text; |
2445 | if (*p == 'u') |
2446 | { |
2447 | p++; |
2448 | if (loc_reader) |
2449 | loc_reader->get_next (); |
2450 | if (*p == '8') |
2451 | { |
2452 | p++; |
2453 | if (loc_reader) |
2454 | loc_reader->get_next (); |
2455 | } |
2456 | } |
2457 | else if (*p == 'L' || *p == 'U') p++; |
2458 | if (*p == 'R') |
2459 | { |
2460 | const uchar *prefix; |
2461 | |
2462 | /* Skip over 'R"'. */ |
2463 | p += 2; |
2464 | if (loc_reader) |
2465 | { |
2466 | loc_reader->get_next (); |
2467 | loc_reader->get_next (); |
2468 | } |
2469 | prefix = p; |
2470 | while (*p != '(') |
2471 | { |
2472 | p++; |
2473 | if (loc_reader) |
2474 | loc_reader->get_next (); |
2475 | } |
2476 | p++; |
2477 | if (loc_reader) |
2478 | loc_reader->get_next (); |
2479 | limit = from[i].text + from[i].len; |
2480 | if (limit >= p + (p - prefix) + 1) |
2481 | limit -= (p - prefix) + 1; |
2482 | |
2483 | /* Raw strings are all normal characters; these can be fed |
2484 | directly to convert_cset. */ |
2485 | if (to) |
2486 | if (!APPLY_CONVERSION (cvt, p, limit - p, &tbuf)) |
2487 | goto fail; |
2488 | |
2489 | if (loc_reader) |
2490 | { |
2491 | /* If generating source ranges, assume we have a 1:1 |
2492 | correspondence between bytes in the source encoding and bytes |
2493 | in the execution encoding (e.g. if we have a UTF-8 to UTF-8 |
2494 | conversion), so that this run of bytes in the source file |
2495 | corresponds to a run of bytes in the execution string. |
2496 | This requirement is guaranteed by an early-reject in |
2497 | cpp_interpret_string_ranges. */ |
2498 | gcc_assert (cvt.func == convert_no_conversion); |
2499 | out->add_n_ranges (num: limit - p, loc_reader&: *loc_reader); |
2500 | } |
2501 | |
2502 | continue; |
2503 | } |
2504 | |
2505 | /* If we don't now have a leading quote, something has gone wrong. |
2506 | This can occur if cpp_interpret_string_ranges is handling a |
2507 | stringified macro argument, but should not be possible otherwise. */ |
2508 | if (*p != '"' && *p != '\'') |
2509 | { |
2510 | gcc_assert (out != NULL); |
2511 | cpp_error (pfile, CPP_DL_ERROR, msgid: "missing open quote" ); |
2512 | if (to) |
2513 | free (ptr: tbuf.text); |
2514 | return false; |
2515 | } |
2516 | |
2517 | /* Skip leading quote. */ |
2518 | p++; |
2519 | if (loc_reader) |
2520 | loc_reader->get_next (); |
2521 | |
2522 | limit = from[i].text + from[i].len - 1; /* Skip trailing quote. */ |
2523 | |
2524 | for (;;) |
2525 | { |
2526 | base = p; |
2527 | while (p < limit && *p != '\\') |
2528 | p++; |
2529 | if (p > base) |
2530 | { |
2531 | /* We have a run of normal characters; these can be fed |
2532 | directly to convert_cset. */ |
2533 | if (to) |
2534 | if (!APPLY_CONVERSION (cvt, base, p - base, &tbuf)) |
2535 | goto fail; |
2536 | /* Similar to above: assumes we have a 1:1 correspondence |
2537 | between bytes in the source encoding and bytes in the |
2538 | execution encoding. */ |
2539 | if (loc_reader) |
2540 | { |
2541 | gcc_assert (cvt.func == convert_no_conversion); |
2542 | out->add_n_ranges (num: p - base, loc_reader&: *loc_reader); |
2543 | } |
2544 | } |
2545 | if (p >= limit) |
2546 | break; |
2547 | |
2548 | struct _cpp_strbuf *tbuf_ptr = to ? &tbuf : NULL; |
2549 | p = convert_escape (pfile, from: p + 1, limit, tbuf: tbuf_ptr, cvt, |
2550 | loc_reader, ranges: out, uneval: type == CPP_UNEVAL_STRING); |
2551 | } |
2552 | } |
2553 | |
2554 | if (to) |
2555 | { |
2556 | /* NUL-terminate the 'to' buffer and translate it to a cpp_string |
2557 | structure. */ |
2558 | emit_numeric_escape (pfile, n: 0, tbuf: &tbuf, cvt); |
2559 | tbuf.text = XRESIZEVEC (uchar, tbuf.text, tbuf.len); |
2560 | to->text = tbuf.text; |
2561 | to->len = tbuf.len; |
2562 | } |
2563 | /* Use the location of the trailing quote as the location of the |
2564 | NUL-terminator. */ |
2565 | if (loc_reader) |
2566 | { |
2567 | source_range range = loc_reader->get_next (); |
2568 | out->add_range (range); |
2569 | } |
2570 | |
2571 | return true; |
2572 | |
2573 | fail: |
2574 | cpp_errno (pfile, CPP_DL_ERROR, msgid: "converting to execution character set" ); |
2575 | if (to) |
2576 | free (ptr: tbuf.text); |
2577 | return false; |
2578 | } |
2579 | |
2580 | /* FROM is an array of cpp_string structures of length COUNT. These |
2581 | are to be converted from the source to the execution character set, |
2582 | escape sequences translated, and finally all are to be |
2583 | concatenated. WIDE indicates whether or not to produce a wide |
2584 | string. The result is written into TO. Returns true for success, |
2585 | false for failure. */ |
2586 | bool |
2587 | cpp_interpret_string (cpp_reader *pfile, const cpp_string *from, size_t count, |
2588 | cpp_string *to, enum cpp_ttype type) |
2589 | { |
2590 | return cpp_interpret_string_1 (pfile, from, count, to, type, NULL, NULL); |
2591 | } |
2592 | |
2593 | /* A "do nothing" diagnostic-handling callback for use by |
2594 | cpp_interpret_string_ranges, so that it can temporarily suppress |
2595 | diagnostic-handling. */ |
2596 | |
2597 | static bool |
2598 | noop_diagnostic_cb (cpp_reader *, enum cpp_diagnostic_level, |
2599 | enum cpp_warning_reason, rich_location *, |
2600 | const char *, va_list *) |
2601 | { |
2602 | /* no-op. */ |
2603 | return true; |
2604 | } |
2605 | |
2606 | /* This function mimics the behavior of cpp_interpret_string, but |
2607 | rather than generating a string in the execution character set, |
2608 | *OUT is written to with the source code ranges of the characters |
2609 | in such a string. |
2610 | FROM and LOC_READERS should both be arrays of length COUNT. |
2611 | Returns NULL for success, or an error message for failure. */ |
2612 | |
2613 | const char * |
2614 | cpp_interpret_string_ranges (cpp_reader *pfile, const cpp_string *from, |
2615 | cpp_string_location_reader *loc_readers, |
2616 | size_t count, |
2617 | cpp_substring_ranges *out, |
2618 | enum cpp_ttype type) |
2619 | { |
2620 | /* There are a couple of cases in the range-handling in |
2621 | cpp_interpret_string_1 that rely on there being a 1:1 correspondence |
2622 | between bytes in the source encoding and bytes in the execution |
2623 | encoding, so that each byte in the execution string can correspond |
2624 | to the location of a byte in the source string. |
2625 | |
2626 | This holds for the typical case of a UTF-8 to UTF-8 conversion. |
2627 | Enforce this requirement by only attempting to track substring |
2628 | locations if we have source encoding == execution encoding. |
2629 | |
2630 | This is a stronger condition than we need, since we could e.g. |
2631 | have ASCII to EBCDIC (with 1 byte per character before and after), |
2632 | but it seems to be a reasonable restriction. */ |
2633 | struct cset_converter cvt = converter_for_type (pfile, type); |
2634 | if (cvt.func != convert_no_conversion) |
2635 | return "execution character set != source character set" ; |
2636 | |
2637 | /* For on-demand strings we have already lexed the strings, so there |
2638 | should be no diagnostics. However, if we have bogus source location |
2639 | data (or stringified macro arguments), the attempt to lex the |
2640 | strings could fail with an diagnostic. Temporarily install an |
2641 | diagnostic-handler to catch the diagnostic, so that it can lead to this call |
2642 | failing, rather than being emitted as a user-visible diagnostic. |
2643 | If an diagnostic does occur, we should see it via the return value of |
2644 | cpp_interpret_string_1. */ |
2645 | bool (*saved_diagnostic_handler) (cpp_reader *, enum cpp_diagnostic_level, |
2646 | enum cpp_warning_reason, rich_location *, |
2647 | const char *, va_list *) |
2648 | ATTRIBUTE_FPTR_PRINTF(5,0); |
2649 | |
2650 | saved_diagnostic_handler = pfile->cb.diagnostic; |
2651 | pfile->cb.diagnostic = noop_diagnostic_cb; |
2652 | |
2653 | bool result = cpp_interpret_string_1 (pfile, from, count, NULL, type, |
2654 | loc_readers, out); |
2655 | |
2656 | /* Restore the saved diagnostic-handler. */ |
2657 | pfile->cb.diagnostic = saved_diagnostic_handler; |
2658 | |
2659 | if (!result) |
2660 | return "cpp_interpret_string_1 failed" ; |
2661 | |
2662 | /* Success. */ |
2663 | return NULL; |
2664 | } |
2665 | |
2666 | /* Subroutine of do_line and do_linemarker. Convert escape sequences |
2667 | in a string, but do not perform character set conversion. */ |
2668 | bool |
2669 | cpp_interpret_string_notranslate (cpp_reader *pfile, const cpp_string *from, |
2670 | size_t count, cpp_string *to, |
2671 | enum cpp_ttype type) |
2672 | { |
2673 | struct cset_converter save_narrow_cset_desc = pfile->narrow_cset_desc; |
2674 | bool retval; |
2675 | |
2676 | pfile->narrow_cset_desc.func = convert_no_conversion; |
2677 | pfile->narrow_cset_desc.cd = (iconv_t) -1; |
2678 | pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision); |
2679 | |
2680 | retval = cpp_interpret_string (pfile, from, count, to, |
2681 | type: type == CPP_UNEVAL_STRING |
2682 | ? CPP_UNEVAL_STRING : CPP_STRING); |
2683 | |
2684 | pfile->narrow_cset_desc = save_narrow_cset_desc; |
2685 | return retval; |
2686 | } |
2687 | |
2688 | |
2689 | /* Return number of source characters in STR. */ |
2690 | static unsigned |
2691 | count_source_chars (cpp_reader *pfile, cpp_string str, cpp_ttype type) |
2692 | { |
2693 | cpp_string str2 = { .len: 0, .text: 0 }; |
2694 | bool (*saved_diagnostic_handler) (cpp_reader *, enum cpp_diagnostic_level, |
2695 | enum cpp_warning_reason, rich_location *, |
2696 | const char *, va_list *) |
2697 | ATTRIBUTE_FPTR_PRINTF(5,0); |
2698 | saved_diagnostic_handler = pfile->cb.diagnostic; |
2699 | pfile->cb.diagnostic = noop_diagnostic_cb; |
2700 | convert_f save_func = pfile->narrow_cset_desc.func; |
2701 | pfile->narrow_cset_desc.func = convert_count_chars; |
2702 | bool ret = cpp_interpret_string (pfile, from: &str, count: 1, to: &str2, type); |
2703 | pfile->narrow_cset_desc.func = save_func; |
2704 | pfile->cb.diagnostic = saved_diagnostic_handler; |
2705 | if (ret) |
2706 | { |
2707 | if (str2.text != str.text) |
2708 | free (ptr: (void *)str2.text); |
2709 | return str2.len; |
2710 | } |
2711 | else |
2712 | return 0; |
2713 | } |
2714 | |
2715 | /* Subroutine of cpp_interpret_charconst which performs the conversion |
2716 | to a number, for narrow strings. STR is the string structure returned |
2717 | by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for |
2718 | cpp_interpret_charconst. TOKEN is the token. */ |
2719 | static cppchar_t |
2720 | narrow_str_to_charconst (cpp_reader *pfile, cpp_string str, |
2721 | unsigned int *pchars_seen, int *unsignedp, |
2722 | const cpp_token *token) |
2723 | { |
2724 | enum cpp_ttype type = token->type; |
2725 | size_t width = CPP_OPTION (pfile, char_precision); |
2726 | size_t max_chars = CPP_OPTION (pfile, int_precision) / width; |
2727 | size_t mask = width_to_mask (width); |
2728 | size_t i; |
2729 | cppchar_t result, c; |
2730 | bool unsigned_p; |
2731 | bool diagnosed = false; |
2732 | |
2733 | /* The value of a multi-character character constant, or a |
2734 | single-character character constant whose representation in the |
2735 | execution character set is more than one byte long, is |
2736 | implementation defined. This implementation defines it to be the |
2737 | number formed by interpreting the byte sequence in memory as a |
2738 | big-endian binary number. If overflow occurs, the high bytes are |
2739 | lost, and a warning is issued. |
2740 | |
2741 | We don't want to process the NUL terminator handed back by |
2742 | cpp_interpret_string. */ |
2743 | result = 0; |
2744 | for (i = 0; i < str.len - 1; i++) |
2745 | { |
2746 | c = str.text[i] & mask; |
2747 | if (width < BITS_PER_CPPCHAR_T) |
2748 | result = (result << width) | c; |
2749 | else |
2750 | result = c; |
2751 | } |
2752 | |
2753 | if (type == CPP_UTF8CHAR) |
2754 | max_chars = 1; |
2755 | else if (i > 1 && CPP_OPTION (pfile, cplusplus) && CPP_PEDANTIC (pfile)) |
2756 | { |
2757 | /* C++ as a DR since |
2758 | P1854R4 - Making non-encodable string literals ill-formed |
2759 | makes multi-character narrow character literals if any of the |
2760 | characters in the literal isn't encodable in char/unsigned char |
2761 | ill-formed. We need to count the number of c-chars and compare |
2762 | that to str.len. */ |
2763 | unsigned src_chars = count_source_chars (pfile, str: token->val.str, type); |
2764 | |
2765 | if (src_chars) |
2766 | { |
2767 | if (str.len > src_chars) |
2768 | { |
2769 | if (src_chars <= 2) |
2770 | diagnosed |
2771 | = cpp_error (pfile, CPP_DL_PEDWARN, |
2772 | msgid: "character not encodable in a single execution " |
2773 | "character code unit" ); |
2774 | else |
2775 | diagnosed |
2776 | = cpp_error (pfile, CPP_DL_PEDWARN, |
2777 | msgid: "at least one character in a multi-character " |
2778 | "literal not encodable in a single execution " |
2779 | "character code unit" ); |
2780 | if (diagnosed && i > max_chars) |
2781 | i = max_chars; |
2782 | } |
2783 | } |
2784 | } |
2785 | if (diagnosed) |
2786 | /* Already diagnosed above. */; |
2787 | else if (i > max_chars) |
2788 | { |
2789 | unsigned src_chars |
2790 | = count_source_chars (pfile, str: token->val.str, |
2791 | type: type == CPP_UTF8CHAR ? CPP_CHAR : type); |
2792 | |
2793 | if (type != CPP_UTF8CHAR) |
2794 | cpp_error (pfile, CPP_DL_WARNING, |
2795 | msgid: "multi-character literal with %ld characters exceeds " |
2796 | "'int' size of %ld bytes" , (long) i, (long) max_chars); |
2797 | else if (src_chars > 2) |
2798 | cpp_error (pfile, CPP_DL_ERROR, |
2799 | msgid: "multi-character literal cannot have an encoding prefix" ); |
2800 | else |
2801 | cpp_error (pfile, CPP_DL_ERROR, |
2802 | msgid: "character not encodable in a single code unit" ); |
2803 | i = max_chars; |
2804 | } |
2805 | else if (i > 1 && CPP_OPTION (pfile, warn_multichar)) |
2806 | cpp_warning (pfile, CPP_W_MULTICHAR, msgid: "multi-character character constant" ); |
2807 | |
2808 | /* Multichar constants are of type int and therefore signed. */ |
2809 | if (i > 1) |
2810 | unsigned_p = 0; |
2811 | else if (type == CPP_UTF8CHAR) |
2812 | unsigned_p = CPP_OPTION (pfile, unsigned_utf8char); |
2813 | else |
2814 | unsigned_p = CPP_OPTION (pfile, unsigned_char); |
2815 | |
2816 | /* Truncate the constant to its natural width, and simultaneously |
2817 | sign- or zero-extend to the full width of cppchar_t. |
2818 | For single-character constants, the value is WIDTH bits wide. |
2819 | For multi-character constants, the value is INT_PRECISION bits wide. */ |
2820 | if (i > 1) |
2821 | width = CPP_OPTION (pfile, int_precision); |
2822 | if (width < BITS_PER_CPPCHAR_T) |
2823 | { |
2824 | mask = ((cppchar_t) 1 << width) - 1; |
2825 | if (unsigned_p || !(result & (1 << (width - 1)))) |
2826 | result &= mask; |
2827 | else |
2828 | result |= ~mask; |
2829 | } |
2830 | *pchars_seen = i; |
2831 | *unsignedp = unsigned_p; |
2832 | return result; |
2833 | } |
2834 | |
2835 | /* Subroutine of cpp_interpret_charconst which performs the conversion |
2836 | to a number, for wide strings. STR is the string structure returned |
2837 | by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for |
2838 | cpp_interpret_charconst. TOKEN is the token. */ |
2839 | static cppchar_t |
2840 | wide_str_to_charconst (cpp_reader *pfile, cpp_string str, |
2841 | unsigned int *pchars_seen, int *unsignedp, |
2842 | const cpp_token *token) |
2843 | { |
2844 | enum cpp_ttype type = token->type; |
2845 | bool bigend = CPP_OPTION (pfile, bytes_big_endian); |
2846 | size_t width = converter_for_type (pfile, type).width; |
2847 | size_t cwidth = CPP_OPTION (pfile, char_precision); |
2848 | size_t mask = width_to_mask (width); |
2849 | size_t cmask = width_to_mask (width: cwidth); |
2850 | size_t nbwc = width / cwidth; |
2851 | size_t off, i; |
2852 | cppchar_t result = 0, c; |
2853 | |
2854 | if (str.len <= nbwc) |
2855 | { |
2856 | /* Error recovery, if no errors have been diagnosed previously, |
2857 | there should be at least two wide characters. Empty literals |
2858 | are diagnosed earlier and we can get just the zero terminator |
2859 | only if there were errors diagnosed during conversion. */ |
2860 | *pchars_seen = 0; |
2861 | *unsignedp = 0; |
2862 | return 0; |
2863 | } |
2864 | |
2865 | /* This is finicky because the string is in the target's byte order, |
2866 | which may not be our byte order. Only the last character, ignoring |
2867 | the NUL terminator, is relevant. */ |
2868 | off = str.len - (nbwc * 2); |
2869 | result = 0; |
2870 | for (i = 0; i < nbwc; i++) |
2871 | { |
2872 | c = bigend ? str.text[off + i] : str.text[off + nbwc - i - 1]; |
2873 | result = (result << cwidth) | (c & cmask); |
2874 | } |
2875 | |
2876 | /* Wide character constants have type wchar_t, and a single |
2877 | character exactly fills a wchar_t, so a multi-character wide |
2878 | character constant is guaranteed to overflow. */ |
2879 | if (str.len > nbwc * 2) |
2880 | { |
2881 | cpp_diagnostic_level level = CPP_DL_WARNING; |
2882 | unsigned src_chars |
2883 | = count_source_chars (pfile, str: token->val.str, type: CPP_CHAR); |
2884 | |
2885 | if (CPP_OPTION (pfile, cplusplus) |
2886 | && (type == CPP_CHAR16 |
2887 | || type == CPP_CHAR32 |
2888 | /* In C++23 this is error even for L'ab'. */ |
2889 | || (type == CPP_WCHAR |
2890 | && CPP_OPTION (pfile, size_t_literals)))) |
2891 | level = CPP_DL_ERROR; |
2892 | if (src_chars > 2) |
2893 | cpp_error (pfile, level, |
2894 | msgid: "multi-character literal cannot have an encoding prefix" ); |
2895 | else |
2896 | cpp_error (pfile, level, |
2897 | msgid: "character not encodable in a single code unit" ); |
2898 | } |
2899 | |
2900 | /* Truncate the constant to its natural width, and simultaneously |
2901 | sign- or zero-extend to the full width of cppchar_t. */ |
2902 | if (width < BITS_PER_CPPCHAR_T) |
2903 | { |
2904 | if (type == CPP_CHAR16 || type == CPP_CHAR32 |
2905 | || CPP_OPTION (pfile, unsigned_wchar) |
2906 | || !(result & (1 << (width - 1)))) |
2907 | result &= mask; |
2908 | else |
2909 | result |= ~mask; |
2910 | } |
2911 | |
2912 | if (type == CPP_CHAR16 || type == CPP_CHAR32 |
2913 | || CPP_OPTION (pfile, unsigned_wchar)) |
2914 | *unsignedp = 1; |
2915 | else |
2916 | *unsignedp = 0; |
2917 | |
2918 | *pchars_seen = 1; |
2919 | return result; |
2920 | } |
2921 | |
2922 | /* Interpret a (possibly wide) character constant in TOKEN. |
2923 | PCHARS_SEEN points to a variable that is filled in with the number |
2924 | of characters seen, and UNSIGNEDP to a variable that indicates |
2925 | whether the result has signed type. */ |
2926 | cppchar_t |
2927 | cpp_interpret_charconst (cpp_reader *pfile, const cpp_token *token, |
2928 | unsigned int *pchars_seen, int *unsignedp) |
2929 | { |
2930 | cpp_string str = { .len: 0, .text: 0 }; |
2931 | bool wide = (token->type != CPP_CHAR && token->type != CPP_UTF8CHAR); |
2932 | int u8 = 2 * int(token->type == CPP_UTF8CHAR); |
2933 | cppchar_t result; |
2934 | |
2935 | /* An empty constant will appear as L'', u'', U'', u8'', or '' */ |
2936 | if (token->val.str.len == (size_t) (2 + wide + u8)) |
2937 | { |
2938 | cpp_error (pfile, CPP_DL_ERROR, msgid: "empty character constant" ); |
2939 | *pchars_seen = 0; |
2940 | *unsignedp = 0; |
2941 | return 0; |
2942 | } |
2943 | else if (!cpp_interpret_string (pfile, from: &token->val.str, count: 1, to: &str, |
2944 | type: token->type)) |
2945 | { |
2946 | *pchars_seen = 0; |
2947 | *unsignedp = 0; |
2948 | return 0; |
2949 | } |
2950 | |
2951 | if (wide) |
2952 | result = wide_str_to_charconst (pfile, str, pchars_seen, unsignedp, |
2953 | token); |
2954 | else |
2955 | result = narrow_str_to_charconst (pfile, str, pchars_seen, unsignedp, |
2956 | token); |
2957 | |
2958 | if (str.text != token->val.str.text) |
2959 | free (ptr: (void *)str.text); |
2960 | |
2961 | return result; |
2962 | } |
2963 | |
2964 | /* Convert an identifier denoted by ID and LEN, which might contain |
2965 | UCN escapes or UTF-8 multibyte chars, to the source character set, |
2966 | either UTF-8 or UTF-EBCDIC. Assumes that the identifier is actually |
2967 | a valid identifier. */ |
2968 | cpp_hashnode * |
2969 | _cpp_interpret_identifier (cpp_reader *pfile, const uchar *id, size_t len) |
2970 | { |
2971 | /* It turns out that a UCN escape always turns into fewer characters |
2972 | than the escape itself, so we can allocate a temporary in advance. */ |
2973 | uchar * buf = (uchar *) alloca (len + 1); |
2974 | uchar * bufp = buf; |
2975 | size_t idp; |
2976 | |
2977 | for (idp = 0; idp < len; idp++) |
2978 | if (id[idp] != '\\') |
2979 | *bufp++ = id[idp]; |
2980 | else |
2981 | { |
2982 | unsigned length = id[idp + 1] == 'u' ? 4 : 8; |
2983 | cppchar_t value = 0; |
2984 | size_t bufleft = len - (bufp - buf); |
2985 | int rval; |
2986 | bool delimited = false; |
2987 | |
2988 | idp += 2; |
2989 | if (id[idp - 1] == 'N' && id[idp] == '{') |
2990 | { |
2991 | idp++; |
2992 | const uchar *name = &id[idp]; |
2993 | while (idp < len |
2994 | && (ISIDNUM (id[idp]) || id[idp] == ' ' || id[idp] == '-')) |
2995 | idp++; |
2996 | if (id[idp] == '}') |
2997 | { |
2998 | value = _cpp_uname2c (name: (const char *) name, len: &id[idp] - name, |
2999 | n: uname2c_tree, NULL); |
3000 | if (value == (cppchar_t) -1) |
3001 | value = 1; |
3002 | } |
3003 | else |
3004 | idp--; |
3005 | } |
3006 | else |
3007 | { |
3008 | if (length == 4 && id[idp] == '{') |
3009 | { |
3010 | delimited = true; |
3011 | idp++; |
3012 | } |
3013 | while (length && idp < len && ISXDIGIT (id[idp])) |
3014 | { |
3015 | value = (value << 4) + hex_value (id[idp]); |
3016 | idp++; |
3017 | if (!delimited) |
3018 | length--; |
3019 | } |
3020 | if (!delimited || id[idp] != '}') |
3021 | idp--; |
3022 | } |
3023 | |
3024 | /* Special case for EBCDIC: if the identifier contains |
3025 | a '$' specified using a UCN, translate it to EBCDIC. */ |
3026 | if (value == 0x24) |
3027 | { |
3028 | *bufp++ = '$'; |
3029 | continue; |
3030 | } |
3031 | |
3032 | rval = one_cppchar_to_utf8 (c: value, outbufp: &bufp, outbytesleftp: &bufleft); |
3033 | if (rval) |
3034 | { |
3035 | errno = rval; |
3036 | cpp_errno (pfile, CPP_DL_ERROR, |
3037 | msgid: "converting UCN to source character set" ); |
3038 | break; |
3039 | } |
3040 | } |
3041 | |
3042 | return CPP_HASHNODE (ht_lookup (pfile->hash_table, |
3043 | buf, bufp - buf, HT_ALLOC)); |
3044 | } |
3045 | |
3046 | |
3047 | /* Utility to strip a UTF-8 byte order marking from the beginning |
3048 | of a buffer. Returns the number of bytes to skip, which currently |
3049 | will be either 0 or 3. */ |
3050 | int |
3051 | cpp_check_utf8_bom (const char *data, size_t data_length) |
3052 | { |
3053 | |
3054 | #if HOST_CHARSET == HOST_CHARSET_ASCII |
3055 | const unsigned char *udata = (const unsigned char *) data; |
3056 | if (data_length >= 3 && udata[0] == 0xef && udata[1] == 0xbb |
3057 | && udata[2] == 0xbf) |
3058 | return 3; |
3059 | #endif |
3060 | |
3061 | return 0; |
3062 | } |
3063 | |
3064 | |
3065 | /* Convert an input buffer (containing the complete contents of one |
3066 | source file) from INPUT_CHARSET to the source character set. INPUT |
3067 | points to the input buffer, SIZE is its allocated size, and LEN is |
3068 | the length of the meaningful data within the buffer. The |
3069 | translated buffer is returned, *ST_SIZE is set to the length of |
3070 | the meaningful data within the translated buffer, and *BUFFER_START |
3071 | is set to the start of the returned buffer. *BUFFER_START may |
3072 | differ from the return value in the case of a BOM or other ignored |
3073 | marker information. |
3074 | |
3075 | INPUT is expected to have been allocated with xmalloc. This |
3076 | function will either set *BUFFER_START to INPUT, or free it and set |
3077 | *BUFFER_START to a pointer to another xmalloc-allocated block of |
3078 | memory. |
3079 | |
3080 | PFILE is only used to generate diagnostics; setting it to NULL suppresses |
3081 | diagnostics, and causes a return of NULL if there was any error instead. */ |
3082 | |
3083 | uchar * |
3084 | _cpp_convert_input (cpp_reader *pfile, const char *input_charset, |
3085 | uchar *input, size_t size, size_t len, |
3086 | const unsigned char **buffer_start, off_t *st_size) |
3087 | { |
3088 | struct cset_converter input_cset; |
3089 | struct _cpp_strbuf to; |
3090 | unsigned char *buffer; |
3091 | |
3092 | input_cset = init_iconv_desc (pfile, SOURCE_CHARSET, from: input_charset); |
3093 | if (input_cset.func == convert_no_conversion) |
3094 | { |
3095 | to.text = input; |
3096 | to.asize = size; |
3097 | to.len = len; |
3098 | } |
3099 | else |
3100 | { |
3101 | to.asize = MAX (65536, len); |
3102 | to.text = XNEWVEC (uchar, to.asize); |
3103 | to.len = 0; |
3104 | |
3105 | const bool ok = APPLY_CONVERSION (input_cset, input, len, &to); |
3106 | free (ptr: input); |
3107 | |
3108 | /* Clean up the mess. */ |
3109 | if (input_cset.func == convert_using_iconv) |
3110 | iconv_close (input_cset.cd); |
3111 | |
3112 | /* Handle conversion failure. */ |
3113 | if (!ok) |
3114 | { |
3115 | if (!pfile) |
3116 | { |
3117 | XDELETEVEC (to.text); |
3118 | *buffer_start = NULL; |
3119 | *st_size = 0; |
3120 | return NULL; |
3121 | } |
3122 | cpp_error (pfile, CPP_DL_ERROR, msgid: "failure to convert %s to %s" , |
3123 | input_charset, SOURCE_CHARSET); |
3124 | } |
3125 | } |
3126 | |
3127 | /* Resize buffer if we allocated substantially too much, or if we |
3128 | haven't enough space for the \n-terminator or following |
3129 | 15 bytes of padding (used to quiet warnings from valgrind or |
3130 | Address Sanitizer, when the optimized lexer accesses aligned |
3131 | 16-byte memory chunks, including the bytes after the malloced, |
3132 | area, and stops lexing on '\n'). */ |
3133 | if (to.len + 4096 < to.asize || to.len + 16 > to.asize) |
3134 | to.text = XRESIZEVEC (uchar, to.text, to.len + 16); |
3135 | |
3136 | memset (s: to.text + to.len, c: '\0', n: 16); |
3137 | |
3138 | /* If the file is using old-school Mac line endings (\r only), |
3139 | terminate with another \r, not an \n, so that we do not mistake |
3140 | the \r\n sequence for a single DOS line ending and erroneously |
3141 | issue the "No newline at end of file" diagnostic. */ |
3142 | if (to.len && to.text[to.len - 1] == '\r') |
3143 | to.text[to.len] = '\r'; |
3144 | else |
3145 | to.text[to.len] = '\n'; |
3146 | |
3147 | buffer = to.text; |
3148 | *st_size = to.len; |
3149 | |
3150 | /* Ignore a UTF-8 BOM if we see one and the source charset is UTF-8. Note |
3151 | that glib'c UTF-8 iconv() provider (as of glibc 2.7) does not ignore a |
3152 | BOM -- however, even if it did, we would still need this code due |
3153 | to the 'convert_no_conversion' case. */ |
3154 | const int bom_len = cpp_check_utf8_bom (data: (const char *) to.text, data_length: to.len); |
3155 | *st_size -= bom_len; |
3156 | buffer += bom_len; |
3157 | |
3158 | *buffer_start = to.text; |
3159 | return buffer; |
3160 | } |
3161 | |
3162 | /* Decide on the default encoding to assume for input files. */ |
3163 | const char * |
3164 | _cpp_default_encoding (void) |
3165 | { |
3166 | const char *current_encoding = NULL; |
3167 | |
3168 | /* We disable this because the default codeset is 7-bit ASCII on |
3169 | most platforms, and this causes conversion failures on every |
3170 | file in GCC that happens to have one of the upper 128 characters |
3171 | in it -- most likely, as part of the name of a contributor. |
3172 | We should definitely recognize in-band markers of file encoding, |
3173 | like: |
3174 | - the appropriate Unicode byte-order mark (FE FF) to recognize |
3175 | UTF16 and UCS4 (in both big-endian and little-endian flavors) |
3176 | and UTF8 |
3177 | - a "#i", "#d", "/ *", "//", " #p" or "#p" (for #pragma) to |
3178 | distinguish ASCII and EBCDIC. |
3179 | - now we can parse something like "#pragma GCC encoding <xyz> |
3180 | on the first line, or even Emacs/VIM's mode line tags (there's |
3181 | a problem here in that VIM uses the last line, and Emacs has |
3182 | its more elaborate "local variables" convention). |
3183 | - investigate whether Java has another common convention, which |
3184 | would be friendly to support. |
3185 | (Zack Weinberg and Paolo Bonzini, May 20th 2004) */ |
3186 | #if defined (HAVE_LOCALE_H) && defined (HAVE_LANGINFO_CODESET) && 0 |
3187 | setlocale (LC_CTYPE, "" ); |
3188 | current_encoding = nl_langinfo (CODESET); |
3189 | #endif |
3190 | if (current_encoding == NULL || *current_encoding == '\0') |
3191 | current_encoding = SOURCE_CHARSET; |
3192 | |
3193 | return current_encoding; |
3194 | } |
3195 | |
3196 | /* Check if the configured input charset requires no conversion, other than |
3197 | possibly stripping a UTF-8 BOM. */ |
3198 | bool cpp_input_conversion_is_trivial (const char *input_charset) |
3199 | { |
3200 | return !strcasecmp (s1: input_charset, SOURCE_CHARSET); |
3201 | } |
3202 | |
3203 | /* Implementation of class cpp_string_location_reader. */ |
3204 | |
3205 | /* Constructor for cpp_string_location_reader. */ |
3206 | |
3207 | cpp_string_location_reader:: |
3208 | cpp_string_location_reader (location_t src_loc, |
3209 | line_maps *line_table) |
3210 | { |
3211 | src_loc = get_range_from_loc (set: line_table, loc: src_loc).m_start; |
3212 | |
3213 | /* SRC_LOC might be a macro location. It only makes sense to do |
3214 | column-by-column calculations on ordinary maps, so get the |
3215 | corresponding location in an ordinary map. */ |
3216 | m_loc |
3217 | = linemap_resolve_location (line_table, loc: src_loc, |
3218 | lrk: LRK_SPELLING_LOCATION, NULL); |
3219 | |
3220 | const line_map_ordinary *map |
3221 | = linemap_check_ordinary (map: linemap_lookup (line_table, m_loc)); |
3222 | m_offset_per_column = (1 << map->m_range_bits); |
3223 | } |
3224 | |
3225 | /* Get the range of the next source byte. */ |
3226 | |
3227 | source_range |
3228 | cpp_string_location_reader::get_next () |
3229 | { |
3230 | source_range result; |
3231 | result.m_start = m_loc; |
3232 | result.m_finish = m_loc; |
3233 | if (m_loc <= LINE_MAP_MAX_LOCATION_WITH_COLS) |
3234 | m_loc += m_offset_per_column; |
3235 | return result; |
3236 | } |
3237 | |
3238 | cpp_display_width_computation:: |
3239 | cpp_display_width_computation (const char *data, int data_length, |
3240 | const cpp_char_column_policy &policy) : |
3241 | m_begin (data), |
3242 | m_next (m_begin), |
3243 | m_bytes_left (data_length), |
3244 | m_policy (policy), |
3245 | m_display_cols (0) |
3246 | { |
3247 | gcc_assert (policy.m_tabstop > 0); |
3248 | gcc_assert (policy.m_width_cb); |
3249 | } |
3250 | |
3251 | |
3252 | /* The main implementation function for class cpp_display_width_computation. |
3253 | m_next points on entry to the start of the UTF-8 encoding of the next |
3254 | character, and is updated to point just after the last byte of the encoding. |
3255 | m_bytes_left contains on entry the remaining size of the buffer into which |
3256 | m_next points, and this is also updated accordingly. If m_next does not |
3257 | point to a valid UTF-8-encoded sequence, then it will be treated as a single |
3258 | byte with display width 1. m_cur_display_col is the current display column, |
3259 | relative to which tab stops should be expanded. Returns the display width of |
3260 | the codepoint just processed. |
3261 | If OUT is non-NULL, it is populated. */ |
3262 | |
3263 | int |
3264 | cpp_display_width_computation::process_next_codepoint (cpp_decoded_char *out) |
3265 | { |
3266 | cppchar_t c; |
3267 | int next_width; |
3268 | |
3269 | if (out) |
3270 | out->m_start_byte = m_next; |
3271 | |
3272 | if (*m_next == '\t') |
3273 | { |
3274 | ++m_next; |
3275 | --m_bytes_left; |
3276 | next_width = m_policy.m_tabstop - (m_display_cols % m_policy.m_tabstop); |
3277 | if (out) |
3278 | { |
3279 | out->m_ch = '\t'; |
3280 | out->m_valid_ch = true; |
3281 | } |
3282 | } |
3283 | else if (one_utf8_to_cppchar (inbufp: (const uchar **) &m_next, inbytesleftp: &m_bytes_left, cp: &c) |
3284 | != 0) |
3285 | { |
3286 | /* Input is not convertible to UTF-8. This could be fine, e.g. in a |
3287 | string literal, so don't complain. Just treat it as if it has a width |
3288 | of one. */ |
3289 | ++m_next; |
3290 | --m_bytes_left; |
3291 | next_width = m_policy.m_undecoded_byte_width; |
3292 | if (out) |
3293 | out->m_valid_ch = false; |
3294 | } |
3295 | else |
3296 | { |
3297 | /* one_utf8_to_cppchar() has updated m_next and m_bytes_left for us. */ |
3298 | next_width = m_policy.m_width_cb (c); |
3299 | if (out) |
3300 | { |
3301 | out->m_ch = c; |
3302 | out->m_valid_ch = true; |
3303 | } |
3304 | } |
3305 | |
3306 | if (out) |
3307 | out->m_next_byte = m_next; |
3308 | |
3309 | m_display_cols += next_width; |
3310 | return next_width; |
3311 | } |
3312 | |
3313 | /* Utility to advance the byte stream by the minimum amount needed to consume |
3314 | N display columns. Returns the number of display columns that were |
3315 | actually skipped. This could be less than N, if there was not enough data, |
3316 | or more than N, if the last character to be skipped had a sufficiently large |
3317 | display width. */ |
3318 | int |
3319 | cpp_display_width_computation::advance_display_cols (int n) |
3320 | { |
3321 | const int start = m_display_cols; |
3322 | const int target = start + n; |
3323 | while (m_display_cols < target && !done ()) |
3324 | process_next_codepoint (NULL); |
3325 | return m_display_cols - start; |
3326 | } |
3327 | |
3328 | /* For the string of length DATA_LENGTH bytes that begins at DATA, compute |
3329 | how many display columns are occupied by the first COLUMN bytes. COLUMN |
3330 | may exceed DATA_LENGTH, in which case the phantom bytes at the end are |
3331 | treated as if they have display width 1. Tabs are expanded to the next tab |
3332 | stop, relative to the start of DATA, and non-printable-ASCII characters |
3333 | will be escaped as per POLICY. */ |
3334 | |
3335 | int |
3336 | cpp_byte_column_to_display_column (const char *data, int data_length, |
3337 | int column, |
3338 | const cpp_char_column_policy &policy) |
3339 | { |
3340 | const int offset = MAX (0, column - data_length); |
3341 | cpp_display_width_computation dw (data, column - offset, policy); |
3342 | while (!dw.done ()) |
3343 | dw.process_next_codepoint (NULL); |
3344 | return dw.display_cols_processed () + offset; |
3345 | } |
3346 | |
3347 | /* For the string of length DATA_LENGTH bytes that begins at DATA, compute |
3348 | the least number of bytes that will result in at least DISPLAY_COL display |
3349 | columns. The return value may exceed DATA_LENGTH if the entire string does |
3350 | not occupy enough display columns. Non-printable-ASCII characters |
3351 | will be escaped as per POLICY. */ |
3352 | |
3353 | int |
3354 | cpp_display_column_to_byte_column (const char *data, int data_length, |
3355 | int display_col, |
3356 | const cpp_char_column_policy &policy) |
3357 | { |
3358 | cpp_display_width_computation dw (data, data_length, policy); |
3359 | const int avail_display = dw.advance_display_cols (n: display_col); |
3360 | return dw.bytes_processed () + MAX (0, display_col - avail_display); |
3361 | } |
3362 | |
3363 | template <typename PropertyType> |
3364 | PropertyType |
3365 | get_cppchar_property (cppchar_t c, |
3366 | const cppchar_t *range_ends, |
3367 | const PropertyType *range_values, |
3368 | size_t num_ranges, |
3369 | PropertyType default_value) |
3370 | { |
3371 | if (__builtin_expect (c <= range_ends[0], true)) |
3372 | return range_values[0]; |
3373 | |
3374 | /* Binary search the tables. */ |
3375 | int begin = 1; |
3376 | static const int end = num_ranges; |
3377 | int len = end - begin; |
3378 | do |
3379 | { |
3380 | int half = len/2; |
3381 | int middle = begin + half; |
3382 | if (c > range_ends[middle]) |
3383 | { |
3384 | begin = middle + 1; |
3385 | len -= half + 1; |
3386 | } |
3387 | else |
3388 | len = half; |
3389 | } while (len); |
3390 | |
3391 | if (__builtin_expect (begin != end, true)) |
3392 | return range_values[begin]; |
3393 | |
3394 | return default_value; |
3395 | } |
3396 | |
3397 | /* Our own version of wcwidth(). We don't use the actual wcwidth() in glibc, |
3398 | because that will inspect the user's locale, and in particular in an ASCII |
3399 | locale, it will not return anything useful for extended characters. But GCC |
3400 | in other respects (see e.g. _cpp_default_encoding()) behaves as if |
3401 | everything is UTF-8. We also make some tweaks that are useful for the way |
3402 | GCC needs to use this data, e.g. tabs and other control characters should be |
3403 | treated as having width 1. The lookup tables are generated from |
3404 | contrib/unicode/gen_wcwidth.py and were made by simply calling glibc |
3405 | wcwidth() on all codepoints, then applying the small tweaks. These tables |
3406 | are not highly optimized, but for the present purpose of outputting |
3407 | diagnostics, they are sufficient. */ |
3408 | |
3409 | #include "generated_cpp_wcwidth.h" |
3410 | |
3411 | int |
3412 | cpp_wcwidth (cppchar_t c) |
3413 | { |
3414 | const size_t num_ranges |
3415 | = sizeof wcwidth_range_ends / sizeof (*wcwidth_range_ends); |
3416 | return get_cppchar_property<unsigned char > (c, |
3417 | range_ends: &wcwidth_range_ends[0], |
3418 | range_values: &wcwidth_widths[0], |
3419 | num_ranges, |
3420 | default_value: 1); |
3421 | } |
3422 | |
3423 | #include "combining-chars.inc" |
3424 | |
3425 | bool |
3426 | cpp_is_combining_char (cppchar_t c) |
3427 | { |
3428 | const size_t num_ranges |
3429 | = sizeof combining_range_ends / sizeof (*combining_range_ends); |
3430 | return get_cppchar_property<bool> (c, |
3431 | range_ends: &combining_range_ends[0], |
3432 | range_values: &is_combining[0], |
3433 | num_ranges, |
3434 | default_value: false); |
3435 | } |
3436 | |
3437 | #include "printable-chars.inc" |
3438 | |
3439 | bool |
3440 | cpp_is_printable_char (cppchar_t c) |
3441 | { |
3442 | const size_t num_ranges |
3443 | = sizeof printable_range_ends / sizeof (*printable_range_ends); |
3444 | return get_cppchar_property<bool> (c, |
3445 | range_ends: &printable_range_ends[0], |
3446 | range_values: &is_printable[0], |
3447 | num_ranges, |
3448 | default_value: false); |
3449 | } |
3450 | |