1 | /* Local definitions for the decNumber C Library. |
2 | Copyright (C) 2007-2024 Free Software Foundation, Inc. |
3 | Contributed by IBM Corporation. Author Mike Cowlishaw. |
4 | |
5 | This file is part of GCC. |
6 | |
7 | GCC is free software; you can redistribute it and/or modify it under |
8 | the terms of the GNU General Public License as published by the Free |
9 | Software Foundation; either version 3, or (at your option) any later |
10 | version. |
11 | |
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
15 | for more details. |
16 | |
17 | Under Section 7 of GPL version 3, you are granted additional |
18 | permissions described in the GCC Runtime Library Exception, version |
19 | 3.1, as published by the Free Software Foundation. |
20 | |
21 | You should have received a copy of the GNU General Public License and |
22 | a copy of the GCC Runtime Library Exception along with this program; |
23 | see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
24 | <http://www.gnu.org/licenses/>. */ |
25 | |
26 | /* ------------------------------------------------------------------ */ |
27 | /* decNumber package local type, tuning, and macro definitions */ |
28 | /* ------------------------------------------------------------------ */ |
29 | /* This header file is included by all modules in the decNumber */ |
30 | /* library, and contains local type definitions, tuning parameters, */ |
31 | /* etc. It should not need to be used by application programs. */ |
32 | /* decNumber.h or one of decDouble (etc.) must be included first. */ |
33 | /* ------------------------------------------------------------------ */ |
34 | |
35 | #if !defined(DECNUMBERLOC) |
36 | #define DECNUMBERLOC |
37 | #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */ |
38 | #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ |
39 | |
40 | #include <stdlib.h> /* for abs */ |
41 | #include <string.h> /* for memset, strcpy */ |
42 | #include "dconfig.h" /* for WORDS_BIGENDIAN */ |
43 | |
44 | /* Conditional code flag -- set this to match hardware platform */ |
45 | /* 1=little-endian, 0=big-endian */ |
46 | #if WORDS_BIGENDIAN |
47 | #define DECLITEND 0 |
48 | #else |
49 | #define DECLITEND 1 |
50 | #endif |
51 | |
52 | #if !defined(DECLITEND) |
53 | #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ |
54 | #endif |
55 | |
56 | /* Conditional code flag -- set this to 1 for best performance */ |
57 | #if !defined(DECUSE64) |
58 | #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ |
59 | #endif |
60 | |
61 | /* Conditional check flags -- set these to 0 for best performance */ |
62 | #if !defined(DECCHECK) |
63 | #define DECCHECK 0 /* 1 to enable robust checking */ |
64 | #endif |
65 | #if !defined(DECALLOC) |
66 | #define DECALLOC 0 /* 1 to enable memory accounting */ |
67 | #endif |
68 | #if !defined(DECTRACE) |
69 | #define DECTRACE 0 /* 1 to trace certain internals, etc. */ |
70 | #endif |
71 | |
72 | /* Tuning parameter for decNumber (arbitrary precision) module */ |
73 | #if !defined(DECBUFFER) |
74 | #define DECBUFFER 36 /* Size basis for local buffers. This */ |
75 | /* should be a common maximum precision */ |
76 | /* rounded up to a multiple of 4; must */ |
77 | /* be zero or positive. */ |
78 | #endif |
79 | |
80 | /* ---------------------------------------------------------------- */ |
81 | /* Definitions for all modules (general-purpose) */ |
82 | /* ---------------------------------------------------------------- */ |
83 | |
84 | /* Local names for common types -- for safety, decNumber modules do */ |
85 | /* not use int or long directly. */ |
86 | #define Flag uint8_t |
87 | #define Byte int8_t |
88 | #define uByte uint8_t |
89 | #define Short int16_t |
90 | #define uShort uint16_t |
91 | #define Int int32_t |
92 | #define uInt uint32_t |
93 | #define Unit decNumberUnit |
94 | #if DECUSE64 |
95 | #define Long int64_t |
96 | #define uLong uint64_t |
97 | #endif |
98 | |
99 | /* Development-use definitions */ |
100 | typedef long int LI; /* for printf arguments only */ |
101 | #define DECNOINT 0 /* 1 to check no internal use of 'int' */ |
102 | /* or stdint types */ |
103 | #if DECNOINT |
104 | /* if these interfere with your C includes, do not set DECNOINT */ |
105 | #define int ? /* enable to ensure that plain C 'int' */ |
106 | #define long ?? /* .. or 'long' types are not used */ |
107 | #endif |
108 | |
109 | /* Shared lookup tables */ |
110 | extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */ |
111 | extern const uInt DECPOWERS[10]; /* powers of ten table */ |
112 | /* The following are included from decDPD.h */ |
113 | #include "decDPDSymbols.h" |
114 | extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */ |
115 | extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */ |
116 | extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */ |
117 | extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */ |
118 | extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */ |
119 | extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */ |
120 | extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/ |
121 | |
122 | /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ |
123 | /* (that is, sets w to be the high-order word of the 64-bit result; */ |
124 | /* the low-order word is simply u*v.) */ |
125 | /* This version is derived from Knuth via Hacker's Delight; */ |
126 | /* it seems to optimize better than some others tried */ |
127 | #define LONGMUL32HI(w, u, v) { \ |
128 | uInt u0, u1, v0, v1, w0, w1, w2, t; \ |
129 | u0=u & 0xffff; u1=u>>16; \ |
130 | v0=v & 0xffff; v1=v>>16; \ |
131 | w0=u0*v0; \ |
132 | t=u1*v0 + (w0>>16); \ |
133 | w1=t & 0xffff; w2=t>>16; \ |
134 | w1=u0*v1 + w1; \ |
135 | (w)=u1*v1 + w2 + (w1>>16);} |
136 | |
137 | /* ROUNDUP -- round an integer up to a multiple of n */ |
138 | #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) |
139 | #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ |
140 | |
141 | /* ROUNDDOWN -- round an integer down to a multiple of n */ |
142 | #define ROUNDDOWN(i, n) (((i)/n)*n) |
143 | #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ |
144 | |
145 | /* References to multi-byte sequences under different sizes; these */ |
146 | /* require locally declared variables, but do not violate strict */ |
147 | /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ |
148 | /* Variables needed are uswork, uiwork, etc. [so do not use at same */ |
149 | /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ |
150 | |
151 | /* Return a uInt, etc., from bytes starting at a char* or uByte* */ |
152 | #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) |
153 | #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) |
154 | |
155 | /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ |
156 | /* Has to use uiwork because i may be an expression. */ |
157 | #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2)) |
158 | #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4)) |
159 | |
160 | /* X10 and X100 -- multiply integer i by 10 or 100 */ |
161 | /* [shifts are usually faster than multiply; could be conditional] */ |
162 | #define X10(i) (((i)<<1)+((i)<<3)) |
163 | #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) |
164 | |
165 | /* MAXI and MINI -- general max & min (not in ANSI) for integers */ |
166 | #define MAXI(x,y) ((x)<(y)?(y):(x)) |
167 | #define MINI(x,y) ((x)>(y)?(y):(x)) |
168 | |
169 | /* Useful constants */ |
170 | #define BILLION 1000000000 /* 10**9 */ |
171 | /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ |
172 | #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') |
173 | |
174 | |
175 | /* ---------------------------------------------------------------- */ |
176 | /* Definitions for arbitary-precision modules (only valid after */ |
177 | /* decNumber.h has been included) */ |
178 | /* ---------------------------------------------------------------- */ |
179 | |
180 | /* Limits and constants */ |
181 | #define DECNUMMAXP 999999999 /* maximum precision code can handle */ |
182 | #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ |
183 | #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ |
184 | #if (DECNUMMAXP != DEC_MAX_DIGITS) |
185 | #error Maximum digits mismatch |
186 | #endif |
187 | #if (DECNUMMAXE != DEC_MAX_EMAX) |
188 | #error Maximum exponent mismatch |
189 | #endif |
190 | #if (DECNUMMINE != DEC_MIN_EMIN) |
191 | #error Minimum exponent mismatch |
192 | #endif |
193 | |
194 | /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ |
195 | /* digits, and D2UTABLE -- the initializer for the D2U table */ |
196 | #if DECDPUN==1 |
197 | #define DECDPUNMAX 9 |
198 | #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ |
199 | 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ |
200 | 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ |
201 | 48,49} |
202 | #elif DECDPUN==2 |
203 | #define DECDPUNMAX 99 |
204 | #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ |
205 | 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ |
206 | 18,19,19,20,20,21,21,22,22,23,23,24,24,25} |
207 | #elif DECDPUN==3 |
208 | #define DECDPUNMAX 999 |
209 | #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ |
210 | 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ |
211 | 13,14,14,14,15,15,15,16,16,16,17} |
212 | #elif DECDPUN==4 |
213 | #define DECDPUNMAX 9999 |
214 | #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ |
215 | 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ |
216 | 11,11,11,12,12,12,12,13} |
217 | #elif DECDPUN==5 |
218 | #define DECDPUNMAX 99999 |
219 | #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ |
220 | 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ |
221 | 9,9,10,10,10,10} |
222 | #elif DECDPUN==6 |
223 | #define DECDPUNMAX 999999 |
224 | #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ |
225 | 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ |
226 | 8,8,8,8,8,9} |
227 | #elif DECDPUN==7 |
228 | #define DECDPUNMAX 9999999 |
229 | #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ |
230 | 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ |
231 | 7,7,7,7,7,7} |
232 | #elif DECDPUN==8 |
233 | #define DECDPUNMAX 99999999 |
234 | #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ |
235 | 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ |
236 | 6,6,6,6,6,7} |
237 | #elif DECDPUN==9 |
238 | #define DECDPUNMAX 999999999 |
239 | #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ |
240 | 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ |
241 | 5,5,6,6,6,6} |
242 | #elif defined(DECDPUN) |
243 | #error DECDPUN must be in the range 1-9 |
244 | #endif |
245 | |
246 | /* ----- Shared data (in decNumber.c) ----- */ |
247 | /* Public lookup table used by the D2U macro (see below) */ |
248 | #define DECMAXD2U 49 |
249 | extern const uByte d2utable[DECMAXD2U+1]; |
250 | |
251 | /* ----- Macros ----- */ |
252 | /* ISZERO -- return true if decNumber dn is a zero */ |
253 | /* [performance-critical in some situations] */ |
254 | #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ |
255 | |
256 | /* D2U -- return the number of Units needed to hold d digits */ |
257 | /* (runtime version, with table lookaside for small d) */ |
258 | #if DECDPUN==8 |
259 | #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) |
260 | #elif DECDPUN==4 |
261 | #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) |
262 | #else |
263 | #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) |
264 | #endif |
265 | /* SD2U -- static D2U macro (for compile-time calculation) */ |
266 | #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) |
267 | |
268 | /* MSUDIGITS -- returns digits in msu, from digits, calculated */ |
269 | /* using D2U */ |
270 | #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) |
271 | |
272 | /* D2N -- return the number of decNumber structs that would be */ |
273 | /* needed to contain that number of digits (and the initial */ |
274 | /* decNumber struct) safely. Note that one Unit is included in the */ |
275 | /* initial structure. Used for allocating space that is aligned on */ |
276 | /* a decNumber struct boundary. */ |
277 | #define D2N(d) \ |
278 | ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) |
279 | |
280 | /* TODIGIT -- macro to remove the leading digit from the unsigned */ |
281 | /* integer u at column cut (counting from the right, LSD=0) and */ |
282 | /* place it as an ASCII character into the character pointed to by */ |
283 | /* c. Note that cut must be <= 9, and the maximum value for u is */ |
284 | /* 2,000,000,000 (as is needed for negative exponents of */ |
285 | /* subnormals). The unsigned integer pow is used as a temporary */ |
286 | /* variable. */ |
287 | #define TODIGIT(u, cut, c, pow) { \ |
288 | *(c)='0'; \ |
289 | pow=DECPOWERS[cut]*2; \ |
290 | if ((u)>pow) { \ |
291 | pow*=4; \ |
292 | if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ |
293 | pow/=2; \ |
294 | if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ |
295 | pow/=2; \ |
296 | } \ |
297 | if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ |
298 | pow/=2; \ |
299 | if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ |
300 | } |
301 | |
302 | /* ---------------------------------------------------------------- */ |
303 | /* Definitions for fixed-precision modules (only valid after */ |
304 | /* decSingle.h, decDouble.h, or decQuad.h has been included) */ |
305 | /* ---------------------------------------------------------------- */ |
306 | |
307 | /* bcdnum -- a structure describing a format-independent finite */ |
308 | /* number, whose coefficient is a string of bcd8 uBytes */ |
309 | typedef struct { |
310 | uByte *msd; /* -> most significant digit */ |
311 | uByte *lsd; /* -> least ditto */ |
312 | uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ |
313 | Int exponent; /* Unadjusted signed exponent (q), or */ |
314 | /* DECFLOAT_NaN etc. for a special */ |
315 | } bcdnum; |
316 | |
317 | /* Test if exponent or bcdnum exponent must be a special, etc. */ |
318 | #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) |
319 | #define EXPISINF(exp) (exp==DECFLOAT_Inf) |
320 | #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) |
321 | #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) |
322 | |
323 | /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ |
324 | /* (array) notation (the 0 word or byte contains the sign bit), */ |
325 | /* automatically adjusting for endianness; similarly address a word */ |
326 | /* in the next-wider format (decFloatWider, or dfw) */ |
327 | #define DECWORDS (DECBYTES/4) |
328 | #define DECWWORDS (DECWBYTES/4) |
329 | #if DECLITEND |
330 | #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) |
331 | #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) |
332 | #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) |
333 | #else |
334 | #define DFBYTE(df, off) ((df)->bytes[off]) |
335 | #define DFWORD(df, off) ((df)->words[off]) |
336 | #define DFWWORD(dfw, off) ((dfw)->words[off]) |
337 | #endif |
338 | |
339 | /* Tests for sign or specials, directly on DECFLOATs */ |
340 | #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000) |
341 | #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) |
342 | #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) |
343 | #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) |
344 | #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) |
345 | #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) |
346 | |
347 | /* Shared lookup tables */ |
348 | #include "decCommonSymbols.h" |
349 | extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ |
350 | extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ |
351 | |
352 | /* Private generic (utility) routine */ |
353 | #if DECCHECK || DECTRACE |
354 | extern void decShowNum(const bcdnum *, const char *); |
355 | #endif |
356 | |
357 | /* Format-dependent macros and constants */ |
358 | #if defined(DECPMAX) |
359 | |
360 | /* Useful constants */ |
361 | #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ |
362 | /* Top words for a zero */ |
363 | #define SINGLEZERO 0x22500000 |
364 | #define DOUBLEZERO 0x22380000 |
365 | #define QUADZERO 0x22080000 |
366 | /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ |
367 | |
368 | /* Format-dependent common tests: */ |
369 | /* DFISZERO -- test for (any) zero */ |
370 | /* DFISCCZERO -- test for coefficient continuation being zero */ |
371 | /* DFISCC01 -- test for coefficient contains only 0s and 1s */ |
372 | /* DFISINT -- test for finite and exponent q=0 */ |
373 | /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ |
374 | /* MSD=0 or 1 */ |
375 | /* ZEROWORD is also defined here. */ |
376 | /* In DFISZERO the first test checks the least-significant word */ |
377 | /* (most likely to be non-zero); the penultimate tests MSD and */ |
378 | /* DPDs in the signword, and the final test excludes specials and */ |
379 | /* MSD>7. DFISINT similarly has to allow for the two forms of */ |
380 | /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ |
381 | /* code. */ |
382 | #if DECPMAX==7 |
383 | #define ZEROWORD SINGLEZERO |
384 | /* [test macros not needed except for Zero] */ |
385 | #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ |
386 | && (DFWORD(df, 0)&0x60000000)!=0x60000000) |
387 | #elif DECPMAX==16 |
388 | #define ZEROWORD DOUBLEZERO |
389 | #define DFISZERO(df) ((DFWORD(df, 1)==0 \ |
390 | && (DFWORD(df, 0)&0x1c03ffff)==0 \ |
391 | && (DFWORD(df, 0)&0x60000000)!=0x60000000)) |
392 | #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ |
393 | ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) |
394 | #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) |
395 | #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ |
396 | && (DFWORD(df, 0)&0x0003ffff)==0) |
397 | #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ |
398 | && (DFWORD(df, 1)&~0x49124491)==0) |
399 | #elif DECPMAX==34 |
400 | #define ZEROWORD QUADZERO |
401 | #define DFISZERO(df) ((DFWORD(df, 3)==0 \ |
402 | && DFWORD(df, 2)==0 \ |
403 | && DFWORD(df, 1)==0 \ |
404 | && (DFWORD(df, 0)&0x1c003fff)==0 \ |
405 | && (DFWORD(df, 0)&0x60000000)!=0x60000000)) |
406 | #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ |
407 | ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) |
408 | #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) |
409 | #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ |
410 | && DFWORD(df, 2)==0 \ |
411 | && DFWORD(df, 1)==0 \ |
412 | && (DFWORD(df, 0)&0x00003fff)==0) |
413 | |
414 | #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ |
415 | && (DFWORD(df, 1)&~0x44912449)==0 \ |
416 | && (DFWORD(df, 2)&~0x12449124)==0 \ |
417 | && (DFWORD(df, 3)&~0x49124491)==0) |
418 | #endif |
419 | |
420 | /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ |
421 | /* are a canonical declet [higher or lower bits are ignored]. */ |
422 | /* declet is at offset 0 (from the right) in a uInt: */ |
423 | #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) |
424 | /* declet is at offset k (a multiple of 2) in a uInt: */ |
425 | #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ |
426 | || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) |
427 | /* declet is at offset k (a multiple of 2) in a pair of uInts: */ |
428 | /* [the top 2 bits will always be in the more-significant uInt] */ |
429 | #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ |
430 | || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ |
431 | || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) |
432 | |
433 | /* Macro to test whether a full-length (length DECPMAX) BCD8 */ |
434 | /* coefficient, starting at uByte u, is all zeros */ |
435 | /* Test just the LSWord first, then the remainder as a sequence */ |
436 | /* of tests in order to avoid same-level use of UBTOUI */ |
437 | #if DECPMAX==7 |
438 | #define ISCOEFFZERO(u) ( \ |
439 | UBTOUI((u)+DECPMAX-4)==0 \ |
440 | && UBTOUS((u)+DECPMAX-6)==0 \ |
441 | && *(u)==0) |
442 | #elif DECPMAX==16 |
443 | #define ISCOEFFZERO(u) ( \ |
444 | UBTOUI((u)+DECPMAX-4)==0 \ |
445 | && UBTOUI((u)+DECPMAX-8)==0 \ |
446 | && UBTOUI((u)+DECPMAX-12)==0 \ |
447 | && UBTOUI(u)==0) |
448 | #elif DECPMAX==34 |
449 | #define ISCOEFFZERO(u) ( \ |
450 | UBTOUI((u)+DECPMAX-4)==0 \ |
451 | && UBTOUI((u)+DECPMAX-8)==0 \ |
452 | && UBTOUI((u)+DECPMAX-12)==0 \ |
453 | && UBTOUI((u)+DECPMAX-16)==0 \ |
454 | && UBTOUI((u)+DECPMAX-20)==0 \ |
455 | && UBTOUI((u)+DECPMAX-24)==0 \ |
456 | && UBTOUI((u)+DECPMAX-28)==0 \ |
457 | && UBTOUI((u)+DECPMAX-32)==0 \ |
458 | && UBTOUS(u)==0) |
459 | #endif |
460 | |
461 | /* Macros and masks for the exponent continuation field and MSD */ |
462 | /* Get the exponent continuation from a decFloat *df as an Int */ |
463 | #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) |
464 | /* Ditto, from the next-wider format */ |
465 | #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) |
466 | /* Get the biased exponent similarly */ |
467 | #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) |
468 | /* Get the unbiased exponent similarly */ |
469 | #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) |
470 | /* Get the MSD similarly (as uInt) */ |
471 | #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) |
472 | |
473 | /* Compile-time computes of the exponent continuation field masks */ |
474 | /* full exponent continuation field: */ |
475 | #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) |
476 | /* same, not including its first digit (the qNaN/sNaN selector): */ |
477 | #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) |
478 | |
479 | /* Macros to decode the coefficient in a finite decFloat *df into */ |
480 | /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ |
481 | |
482 | /* In-line sequence to convert least significant 10 bits of uInt */ |
483 | /* dpd to three BCD8 digits starting at uByte u. Note that an */ |
484 | /* extra byte is written to the right of the three digits because */ |
485 | /* four bytes are moved at a time for speed; the alternative */ |
486 | /* macro moves exactly three bytes (usually slower). */ |
487 | #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) |
488 | #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) |
489 | |
490 | /* Decode the declets. After extracting each one, it is decoded */ |
491 | /* to BCD8 using a table lookup (also used for variable-length */ |
492 | /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ |
493 | /* length which is not used, here). Fixed-length 4-byte moves */ |
494 | /* are fast, however, almost everywhere, and so are used except */ |
495 | /* for the final three bytes (to avoid overrun). The code below */ |
496 | /* is 36 instructions for Doubles and about 70 for Quads, even */ |
497 | /* on IA32. */ |
498 | |
499 | /* Two macros are defined for each format: */ |
500 | /* GETCOEFF extracts the coefficient of the current format */ |
501 | /* GETWCOEFF extracts the coefficient of the next-wider format. */ |
502 | /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ |
503 | |
504 | #if DECPMAX==7 |
505 | #define GETCOEFF(df, bcd) { \ |
506 | uInt sourhi=DFWORD(df, 0); \ |
507 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
508 | dpd2bcd8(bcd+1, sourhi>>10); \ |
509 | dpd2bcd83(bcd+4, sourhi);} |
510 | #define GETWCOEFF(df, bcd) { \ |
511 | uInt sourhi=DFWWORD(df, 0); \ |
512 | uInt sourlo=DFWWORD(df, 1); \ |
513 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
514 | dpd2bcd8(bcd+1, sourhi>>8); \ |
515 | dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ |
516 | dpd2bcd8(bcd+7, sourlo>>20); \ |
517 | dpd2bcd8(bcd+10, sourlo>>10); \ |
518 | dpd2bcd83(bcd+13, sourlo);} |
519 | |
520 | #elif DECPMAX==16 |
521 | #define GETCOEFF(df, bcd) { \ |
522 | uInt sourhi=DFWORD(df, 0); \ |
523 | uInt sourlo=DFWORD(df, 1); \ |
524 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
525 | dpd2bcd8(bcd+1, sourhi>>8); \ |
526 | dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ |
527 | dpd2bcd8(bcd+7, sourlo>>20); \ |
528 | dpd2bcd8(bcd+10, sourlo>>10); \ |
529 | dpd2bcd83(bcd+13, sourlo);} |
530 | #define GETWCOEFF(df, bcd) { \ |
531 | uInt sourhi=DFWWORD(df, 0); \ |
532 | uInt sourmh=DFWWORD(df, 1); \ |
533 | uInt sourml=DFWWORD(df, 2); \ |
534 | uInt sourlo=DFWWORD(df, 3); \ |
535 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
536 | dpd2bcd8(bcd+1, sourhi>>4); \ |
537 | dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ |
538 | dpd2bcd8(bcd+7, sourmh>>16); \ |
539 | dpd2bcd8(bcd+10, sourmh>>6); \ |
540 | dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ |
541 | dpd2bcd8(bcd+16, sourml>>18); \ |
542 | dpd2bcd8(bcd+19, sourml>>8); \ |
543 | dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ |
544 | dpd2bcd8(bcd+25, sourlo>>20); \ |
545 | dpd2bcd8(bcd+28, sourlo>>10); \ |
546 | dpd2bcd83(bcd+31, sourlo);} |
547 | |
548 | #elif DECPMAX==34 |
549 | #define GETCOEFF(df, bcd) { \ |
550 | uInt sourhi=DFWORD(df, 0); \ |
551 | uInt sourmh=DFWORD(df, 1); \ |
552 | uInt sourml=DFWORD(df, 2); \ |
553 | uInt sourlo=DFWORD(df, 3); \ |
554 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
555 | dpd2bcd8(bcd+1, sourhi>>4); \ |
556 | dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ |
557 | dpd2bcd8(bcd+7, sourmh>>16); \ |
558 | dpd2bcd8(bcd+10, sourmh>>6); \ |
559 | dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ |
560 | dpd2bcd8(bcd+16, sourml>>18); \ |
561 | dpd2bcd8(bcd+19, sourml>>8); \ |
562 | dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ |
563 | dpd2bcd8(bcd+25, sourlo>>20); \ |
564 | dpd2bcd8(bcd+28, sourlo>>10); \ |
565 | dpd2bcd83(bcd+31, sourlo);} |
566 | |
567 | #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ |
568 | #endif |
569 | |
570 | /* Macros to decode the coefficient in a finite decFloat *df into */ |
571 | /* a base-billion uInt array, with the least-significant */ |
572 | /* 0-999999999 'digit' at offset 0. */ |
573 | |
574 | /* Decode the declets. After extracting each one, it is decoded */ |
575 | /* to binary using a table lookup. Three tables are used; one */ |
576 | /* the usual DPD to binary, the other two pre-multiplied by 1000 */ |
577 | /* and 1000000 to avoid multiplication during decode. These */ |
578 | /* tables can also be used for multiplying up the MSD as the DPD */ |
579 | /* code for 0 through 9 is the identity. */ |
580 | #define DPD2BIN0 DPD2BIN /* for prettier code */ |
581 | |
582 | #if DECPMAX==7 |
583 | #define GETCOEFFBILL(df, buf) { \ |
584 | uInt sourhi=DFWORD(df, 0); \ |
585 | (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ |
586 | +DPD2BINK[(sourhi>>10)&0x3ff] \ |
587 | +DPD2BINM[DECCOMBMSD[sourhi>>26]];} |
588 | |
589 | #elif DECPMAX==16 |
590 | #define GETCOEFFBILL(df, buf) { \ |
591 | uInt sourhi, sourlo; \ |
592 | sourlo=DFWORD(df, 1); \ |
593 | (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ |
594 | +DPD2BINK[(sourlo>>10)&0x3ff] \ |
595 | +DPD2BINM[(sourlo>>20)&0x3ff]; \ |
596 | sourhi=DFWORD(df, 0); \ |
597 | (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ |
598 | +DPD2BINK[(sourhi>>8)&0x3ff] \ |
599 | +DPD2BINM[DECCOMBMSD[sourhi>>26]];} |
600 | |
601 | #elif DECPMAX==34 |
602 | #define GETCOEFFBILL(df, buf) { \ |
603 | uInt sourhi, sourmh, sourml, sourlo; \ |
604 | sourlo=DFWORD(df, 3); \ |
605 | (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ |
606 | +DPD2BINK[(sourlo>>10)&0x3ff] \ |
607 | +DPD2BINM[(sourlo>>20)&0x3ff]; \ |
608 | sourml=DFWORD(df, 2); \ |
609 | (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ |
610 | +DPD2BINK[(sourml>>8)&0x3ff] \ |
611 | +DPD2BINM[(sourml>>18)&0x3ff]; \ |
612 | sourmh=DFWORD(df, 1); \ |
613 | (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ |
614 | +DPD2BINK[(sourmh>>6)&0x3ff] \ |
615 | +DPD2BINM[(sourmh>>16)&0x3ff]; \ |
616 | sourhi=DFWORD(df, 0); \ |
617 | (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ |
618 | +DPD2BINK[(sourhi>>4)&0x3ff] \ |
619 | +DPD2BINM[DECCOMBMSD[sourhi>>26]];} |
620 | |
621 | #endif |
622 | |
623 | /* Macros to decode the coefficient in a finite decFloat *df into */ |
624 | /* a base-thousand uInt array (of size DECLETS+1, to allow for */ |
625 | /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ |
626 | |
627 | /* Decode the declets. After extracting each one, it is decoded */ |
628 | /* to binary using a table lookup. */ |
629 | #if DECPMAX==7 |
630 | #define GETCOEFFTHOU(df, buf) { \ |
631 | uInt sourhi=DFWORD(df, 0); \ |
632 | (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ |
633 | (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ |
634 | (buf)[2]=DECCOMBMSD[sourhi>>26];} |
635 | |
636 | #elif DECPMAX==16 |
637 | #define GETCOEFFTHOU(df, buf) { \ |
638 | uInt sourhi, sourlo; \ |
639 | sourlo=DFWORD(df, 1); \ |
640 | (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ |
641 | (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
642 | (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
643 | sourhi=DFWORD(df, 0); \ |
644 | (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ |
645 | (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ |
646 | (buf)[5]=DECCOMBMSD[sourhi>>26];} |
647 | |
648 | #elif DECPMAX==34 |
649 | #define GETCOEFFTHOU(df, buf) { \ |
650 | uInt sourhi, sourmh, sourml, sourlo; \ |
651 | sourlo=DFWORD(df, 3); \ |
652 | (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ |
653 | (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
654 | (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
655 | sourml=DFWORD(df, 2); \ |
656 | (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ |
657 | (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ |
658 | (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ |
659 | sourmh=DFWORD(df, 1); \ |
660 | (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ |
661 | (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ |
662 | (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ |
663 | sourhi=DFWORD(df, 0); \ |
664 | (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ |
665 | (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ |
666 | (buf)[11]=DECCOMBMSD[sourhi>>26];} |
667 | #endif |
668 | |
669 | |
670 | /* Macros to decode the coefficient in a finite decFloat *df and */ |
671 | /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ |
672 | /* After the addition then most significant 'digit' in the array */ |
673 | /* might have a value larger then 10 (with a maximum of 19). */ |
674 | #if DECPMAX==7 |
675 | #define ADDCOEFFTHOU(df, buf) { \ |
676 | uInt sourhi=DFWORD(df, 0); \ |
677 | (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ |
678 | if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ |
679 | (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ |
680 | if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ |
681 | (buf)[2]+=DECCOMBMSD[sourhi>>26];} |
682 | |
683 | #elif DECPMAX==16 |
684 | #define ADDCOEFFTHOU(df, buf) { \ |
685 | uInt sourhi, sourlo; \ |
686 | sourlo=DFWORD(df, 1); \ |
687 | (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ |
688 | if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ |
689 | (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
690 | if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ |
691 | (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
692 | if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ |
693 | sourhi=DFWORD(df, 0); \ |
694 | (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ |
695 | if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ |
696 | (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ |
697 | if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ |
698 | (buf)[5]+=DECCOMBMSD[sourhi>>26];} |
699 | |
700 | #elif DECPMAX==34 |
701 | #define ADDCOEFFTHOU(df, buf) { \ |
702 | uInt sourhi, sourmh, sourml, sourlo; \ |
703 | sourlo=DFWORD(df, 3); \ |
704 | (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ |
705 | if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ |
706 | (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
707 | if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ |
708 | (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
709 | if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ |
710 | sourml=DFWORD(df, 2); \ |
711 | (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ |
712 | if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ |
713 | (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ |
714 | if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ |
715 | (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ |
716 | if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ |
717 | sourmh=DFWORD(df, 1); \ |
718 | (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ |
719 | if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ |
720 | (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ |
721 | if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ |
722 | (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ |
723 | if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ |
724 | sourhi=DFWORD(df, 0); \ |
725 | (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ |
726 | if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ |
727 | (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ |
728 | if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ |
729 | (buf)[11]+=DECCOMBMSD[sourhi>>26];} |
730 | #endif |
731 | |
732 | |
733 | /* Set a decFloat to the maximum positive finite number (Nmax) */ |
734 | #if DECPMAX==7 |
735 | #define DFSETNMAX(df) \ |
736 | {DFWORD(df, 0)=0x77f3fcff;} |
737 | #elif DECPMAX==16 |
738 | #define DFSETNMAX(df) \ |
739 | {DFWORD(df, 0)=0x77fcff3f; \ |
740 | DFWORD(df, 1)=0xcff3fcff;} |
741 | #elif DECPMAX==34 |
742 | #define DFSETNMAX(df) \ |
743 | {DFWORD(df, 0)=0x77ffcff3; \ |
744 | DFWORD(df, 1)=0xfcff3fcf; \ |
745 | DFWORD(df, 2)=0xf3fcff3f; \ |
746 | DFWORD(df, 3)=0xcff3fcff;} |
747 | #endif |
748 | |
749 | /* [end of format-dependent macros and constants] */ |
750 | #endif |
751 | |
752 | #else |
753 | #error decNumberLocal included more than once |
754 | #endif |
755 | |