1 | /* IEEE floating point support routines, for GDB, the GNU Debugger. |
2 | Copyright (C) 1991-2024 Free Software Foundation, Inc. |
3 | |
4 | This file is part of GDB. |
5 | |
6 | This program is free software; you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. |
10 | |
11 | This program is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | GNU General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ |
19 | |
20 | /* This is needed to pick up the NAN macro on some systems. */ |
21 | #ifndef _GNU_SOURCE |
22 | #define _GNU_SOURCE |
23 | #endif |
24 | |
25 | #ifdef HAVE_CONFIG_H |
26 | #include "config.h" |
27 | #endif |
28 | |
29 | #include <math.h> |
30 | |
31 | #ifdef HAVE_STRING_H |
32 | #include <string.h> |
33 | #endif |
34 | |
35 | /* On some platforms, <float.h> provides DBL_QNAN. */ |
36 | #ifdef STDC_HEADERS |
37 | #include <float.h> |
38 | #endif |
39 | |
40 | #include "ansidecl.h" |
41 | #include "libiberty.h" |
42 | #include "floatformat.h" |
43 | |
44 | #ifndef INFINITY |
45 | #ifdef HUGE_VAL |
46 | #define INFINITY HUGE_VAL |
47 | #else |
48 | #define INFINITY (1.0 / 0.0) |
49 | #endif |
50 | #endif |
51 | |
52 | #ifndef NAN |
53 | #ifdef DBL_QNAN |
54 | #define NAN DBL_QNAN |
55 | #else |
56 | #define NAN (0.0 / 0.0) |
57 | #endif |
58 | #endif |
59 | |
60 | static int mant_bits_set (const struct floatformat *, const unsigned char *); |
61 | static unsigned long get_field (const unsigned char *, |
62 | enum floatformat_byteorders, |
63 | unsigned int, |
64 | unsigned int, |
65 | unsigned int); |
66 | static int floatformat_always_valid (const struct floatformat *fmt, |
67 | const void *from); |
68 | |
69 | static int |
70 | floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED, |
71 | const void *from ATTRIBUTE_UNUSED) |
72 | { |
73 | return 1; |
74 | } |
75 | |
76 | /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not |
77 | going to bother with trying to muck around with whether it is defined in |
78 | a system header, what we do if not, etc. */ |
79 | #define FLOATFORMAT_CHAR_BIT 8 |
80 | |
81 | /* floatformats for IEEE half, single, double and quad, big and little endian. */ |
82 | const struct floatformat floatformat_ieee_half_big = |
83 | { |
84 | .byteorder: floatformat_big, .totalsize: 16, .sign_start: 0, .exp_start: 1, .exp_len: 5, .exp_bias: 15, .exp_nan: 31, .man_start: 6, .man_len: 10, |
85 | .intbit: floatformat_intbit_no, |
86 | .name: "floatformat_ieee_half_big" , |
87 | .is_valid: floatformat_always_valid, |
88 | NULL |
89 | }; |
90 | const struct floatformat floatformat_ieee_half_little = |
91 | { |
92 | .byteorder: floatformat_little, .totalsize: 16, .sign_start: 0, .exp_start: 1, .exp_len: 5, .exp_bias: 15, .exp_nan: 31, .man_start: 6, .man_len: 10, |
93 | .intbit: floatformat_intbit_no, |
94 | .name: "floatformat_ieee_half_little" , |
95 | .is_valid: floatformat_always_valid, |
96 | NULL |
97 | }; |
98 | const struct floatformat floatformat_ieee_single_big = |
99 | { |
100 | .byteorder: floatformat_big, .totalsize: 32, .sign_start: 0, .exp_start: 1, .exp_len: 8, .exp_bias: 127, .exp_nan: 255, .man_start: 9, .man_len: 23, |
101 | .intbit: floatformat_intbit_no, |
102 | .name: "floatformat_ieee_single_big" , |
103 | .is_valid: floatformat_always_valid, |
104 | NULL |
105 | }; |
106 | const struct floatformat floatformat_ieee_single_little = |
107 | { |
108 | .byteorder: floatformat_little, .totalsize: 32, .sign_start: 0, .exp_start: 1, .exp_len: 8, .exp_bias: 127, .exp_nan: 255, .man_start: 9, .man_len: 23, |
109 | .intbit: floatformat_intbit_no, |
110 | .name: "floatformat_ieee_single_little" , |
111 | .is_valid: floatformat_always_valid, |
112 | NULL |
113 | }; |
114 | const struct floatformat floatformat_ieee_double_big = |
115 | { |
116 | .byteorder: floatformat_big, .totalsize: 64, .sign_start: 0, .exp_start: 1, .exp_len: 11, .exp_bias: 1023, .exp_nan: 2047, .man_start: 12, .man_len: 52, |
117 | .intbit: floatformat_intbit_no, |
118 | .name: "floatformat_ieee_double_big" , |
119 | .is_valid: floatformat_always_valid, |
120 | NULL |
121 | }; |
122 | const struct floatformat floatformat_ieee_double_little = |
123 | { |
124 | .byteorder: floatformat_little, .totalsize: 64, .sign_start: 0, .exp_start: 1, .exp_len: 11, .exp_bias: 1023, .exp_nan: 2047, .man_start: 12, .man_len: 52, |
125 | .intbit: floatformat_intbit_no, |
126 | .name: "floatformat_ieee_double_little" , |
127 | .is_valid: floatformat_always_valid, |
128 | NULL |
129 | }; |
130 | const struct floatformat floatformat_ieee_quad_big = |
131 | { |
132 | .byteorder: floatformat_big, .totalsize: 128, .sign_start: 0, .exp_start: 1, .exp_len: 15, .exp_bias: 16383, .exp_nan: 0x7fff, .man_start: 16, .man_len: 112, |
133 | .intbit: floatformat_intbit_no, |
134 | .name: "floatformat_ieee_quad_big" , |
135 | .is_valid: floatformat_always_valid, |
136 | NULL |
137 | }; |
138 | const struct floatformat floatformat_ieee_quad_little = |
139 | { |
140 | .byteorder: floatformat_little, .totalsize: 128, .sign_start: 0, .exp_start: 1, .exp_len: 15, .exp_bias: 16383, .exp_nan: 0x7fff, .man_start: 16, .man_len: 112, |
141 | .intbit: floatformat_intbit_no, |
142 | .name: "floatformat_ieee_quad_little" , |
143 | .is_valid: floatformat_always_valid, |
144 | NULL |
145 | }; |
146 | |
147 | /* floatformat for IEEE double, little endian byte order, with big endian word |
148 | ordering, as on the ARM. */ |
149 | |
150 | const struct floatformat floatformat_ieee_double_littlebyte_bigword = |
151 | { |
152 | .byteorder: floatformat_littlebyte_bigword, .totalsize: 64, .sign_start: 0, .exp_start: 1, .exp_len: 11, .exp_bias: 1023, .exp_nan: 2047, .man_start: 12, .man_len: 52, |
153 | .intbit: floatformat_intbit_no, |
154 | .name: "floatformat_ieee_double_littlebyte_bigword" , |
155 | .is_valid: floatformat_always_valid, |
156 | NULL |
157 | }; |
158 | |
159 | /* floatformat for VAX. Not quite IEEE, but close enough. */ |
160 | |
161 | const struct floatformat floatformat_vax_f = |
162 | { |
163 | .byteorder: floatformat_vax, .totalsize: 32, .sign_start: 0, .exp_start: 1, .exp_len: 8, .exp_bias: 129, .exp_nan: 0, .man_start: 9, .man_len: 23, |
164 | .intbit: floatformat_intbit_no, |
165 | .name: "floatformat_vax_f" , |
166 | .is_valid: floatformat_always_valid, |
167 | NULL |
168 | }; |
169 | const struct floatformat floatformat_vax_d = |
170 | { |
171 | .byteorder: floatformat_vax, .totalsize: 64, .sign_start: 0, .exp_start: 1, .exp_len: 8, .exp_bias: 129, .exp_nan: 0, .man_start: 9, .man_len: 55, |
172 | .intbit: floatformat_intbit_no, |
173 | .name: "floatformat_vax_d" , |
174 | .is_valid: floatformat_always_valid, |
175 | NULL |
176 | }; |
177 | const struct floatformat floatformat_vax_g = |
178 | { |
179 | .byteorder: floatformat_vax, .totalsize: 64, .sign_start: 0, .exp_start: 1, .exp_len: 11, .exp_bias: 1025, .exp_nan: 0, .man_start: 12, .man_len: 52, |
180 | .intbit: floatformat_intbit_no, |
181 | .name: "floatformat_vax_g" , |
182 | .is_valid: floatformat_always_valid, |
183 | NULL |
184 | }; |
185 | |
186 | static int floatformat_i387_ext_is_valid (const struct floatformat *fmt, |
187 | const void *from); |
188 | |
189 | static int |
190 | floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from) |
191 | { |
192 | /* In the i387 double-extended format, if the exponent is all ones, |
193 | then the integer bit must be set. If the exponent is neither 0 |
194 | nor ~0, the intbit must also be set. Only if the exponent is |
195 | zero can it be zero, and then it must be zero. */ |
196 | unsigned long exponent, int_bit; |
197 | const unsigned char *ufrom = (const unsigned char *) from; |
198 | |
199 | exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize, |
200 | fmt->exp_start, fmt->exp_len); |
201 | int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize, |
202 | fmt->man_start, 1); |
203 | |
204 | if ((exponent == 0) != (int_bit == 0)) |
205 | return 0; |
206 | else |
207 | return 1; |
208 | } |
209 | |
210 | const struct floatformat floatformat_i387_ext = |
211 | { |
212 | .byteorder: floatformat_little, .totalsize: 80, .sign_start: 0, .exp_start: 1, .exp_len: 15, .exp_bias: 0x3fff, .exp_nan: 0x7fff, .man_start: 16, .man_len: 64, |
213 | .intbit: floatformat_intbit_yes, |
214 | .name: "floatformat_i387_ext" , |
215 | .is_valid: floatformat_i387_ext_is_valid, |
216 | NULL |
217 | }; |
218 | const struct floatformat floatformat_m68881_ext = |
219 | { |
220 | /* Note that the bits from 16 to 31 are unused. */ |
221 | .byteorder: floatformat_big, .totalsize: 96, .sign_start: 0, .exp_start: 1, .exp_len: 15, .exp_bias: 0x3fff, .exp_nan: 0x7fff, .man_start: 32, .man_len: 64, |
222 | .intbit: floatformat_intbit_yes, |
223 | .name: "floatformat_m68881_ext" , |
224 | .is_valid: floatformat_always_valid, |
225 | NULL |
226 | }; |
227 | const struct floatformat floatformat_i960_ext = |
228 | { |
229 | /* Note that the bits from 0 to 15 are unused. */ |
230 | .byteorder: floatformat_little, .totalsize: 96, .sign_start: 16, .exp_start: 17, .exp_len: 15, .exp_bias: 0x3fff, .exp_nan: 0x7fff, .man_start: 32, .man_len: 64, |
231 | .intbit: floatformat_intbit_yes, |
232 | .name: "floatformat_i960_ext" , |
233 | .is_valid: floatformat_always_valid, |
234 | NULL |
235 | }; |
236 | const struct floatformat floatformat_m88110_ext = |
237 | { |
238 | .byteorder: floatformat_big, .totalsize: 80, .sign_start: 0, .exp_start: 1, .exp_len: 15, .exp_bias: 0x3fff, .exp_nan: 0x7fff, .man_start: 16, .man_len: 64, |
239 | .intbit: floatformat_intbit_yes, |
240 | .name: "floatformat_m88110_ext" , |
241 | .is_valid: floatformat_always_valid, |
242 | NULL |
243 | }; |
244 | const struct floatformat floatformat_m88110_harris_ext = |
245 | { |
246 | /* Harris uses raw format 128 bytes long, but the number is just an ieee |
247 | double, and the last 64 bits are wasted. */ |
248 | .byteorder: floatformat_big,.totalsize: 128, .sign_start: 0, .exp_start: 1, .exp_len: 11, .exp_bias: 0x3ff, .exp_nan: 0x7ff, .man_start: 12, .man_len: 52, |
249 | .intbit: floatformat_intbit_no, |
250 | .name: "floatformat_m88110_ext_harris" , |
251 | .is_valid: floatformat_always_valid, |
252 | NULL |
253 | }; |
254 | const struct floatformat floatformat_arm_ext_big = |
255 | { |
256 | /* Bits 1 to 16 are unused. */ |
257 | .byteorder: floatformat_big, .totalsize: 96, .sign_start: 0, .exp_start: 17, .exp_len: 15, .exp_bias: 0x3fff, .exp_nan: 0x7fff, .man_start: 32, .man_len: 64, |
258 | .intbit: floatformat_intbit_yes, |
259 | .name: "floatformat_arm_ext_big" , |
260 | .is_valid: floatformat_always_valid, |
261 | NULL |
262 | }; |
263 | const struct floatformat floatformat_arm_ext_littlebyte_bigword = |
264 | { |
265 | /* Bits 1 to 16 are unused. */ |
266 | .byteorder: floatformat_littlebyte_bigword, .totalsize: 96, .sign_start: 0, .exp_start: 17, .exp_len: 15, .exp_bias: 0x3fff, .exp_nan: 0x7fff, .man_start: 32, .man_len: 64, |
267 | .intbit: floatformat_intbit_yes, |
268 | .name: "floatformat_arm_ext_littlebyte_bigword" , |
269 | .is_valid: floatformat_always_valid, |
270 | NULL |
271 | }; |
272 | const struct floatformat floatformat_ia64_spill_big = |
273 | { |
274 | .byteorder: floatformat_big, .totalsize: 128, .sign_start: 0, .exp_start: 1, .exp_len: 17, .exp_bias: 65535, .exp_nan: 0x1ffff, .man_start: 18, .man_len: 64, |
275 | .intbit: floatformat_intbit_yes, |
276 | .name: "floatformat_ia64_spill_big" , |
277 | .is_valid: floatformat_always_valid, |
278 | NULL |
279 | }; |
280 | const struct floatformat floatformat_ia64_spill_little = |
281 | { |
282 | .byteorder: floatformat_little, .totalsize: 128, .sign_start: 0, .exp_start: 1, .exp_len: 17, .exp_bias: 65535, .exp_nan: 0x1ffff, .man_start: 18, .man_len: 64, |
283 | .intbit: floatformat_intbit_yes, |
284 | .name: "floatformat_ia64_spill_little" , |
285 | .is_valid: floatformat_always_valid, |
286 | NULL |
287 | }; |
288 | |
289 | static int |
290 | floatformat_ibm_long_double_is_valid (const struct floatformat *fmt, |
291 | const void *from) |
292 | { |
293 | const unsigned char *ufrom = (const unsigned char *) from; |
294 | const struct floatformat *hfmt = fmt->split_half; |
295 | long top_exp, bot_exp; |
296 | int top_nan = 0; |
297 | |
298 | top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize, |
299 | hfmt->exp_start, hfmt->exp_len); |
300 | bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize, |
301 | hfmt->exp_start, hfmt->exp_len); |
302 | |
303 | if ((unsigned long) top_exp == hfmt->exp_nan) |
304 | top_nan = mant_bits_set (hfmt, ufrom); |
305 | |
306 | /* A NaN is valid with any low part. */ |
307 | if (top_nan) |
308 | return 1; |
309 | |
310 | /* An infinity, zero or denormal requires low part 0 (positive or |
311 | negative). */ |
312 | if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0) |
313 | { |
314 | if (bot_exp != 0) |
315 | return 0; |
316 | |
317 | return !mant_bits_set (hfmt, ufrom + 8); |
318 | } |
319 | |
320 | /* The top part is now a finite normal value. The long double value |
321 | is the sum of the two parts, and the top part must equal the |
322 | result of rounding the long double value to nearest double. Thus |
323 | the bottom part must be <= 0.5ulp of the top part in absolute |
324 | value, and if it is < 0.5ulp then the long double is definitely |
325 | valid. */ |
326 | if (bot_exp < top_exp - 53) |
327 | return 1; |
328 | if (bot_exp > top_exp - 53 && bot_exp != 0) |
329 | return 0; |
330 | if (bot_exp == 0) |
331 | { |
332 | /* The bottom part is 0 or denormal. Determine which, and if |
333 | denormal the first two set bits. */ |
334 | int first_bit = -1, second_bit = -1, cur_bit; |
335 | for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++) |
336 | if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize, |
337 | hfmt->man_start + cur_bit, 1)) |
338 | { |
339 | if (first_bit == -1) |
340 | first_bit = cur_bit; |
341 | else |
342 | { |
343 | second_bit = cur_bit; |
344 | break; |
345 | } |
346 | } |
347 | /* Bottom part 0 is OK. */ |
348 | if (first_bit == -1) |
349 | return 1; |
350 | /* The real exponent of the bottom part is -first_bit. */ |
351 | if (-first_bit < top_exp - 53) |
352 | return 1; |
353 | if (-first_bit > top_exp - 53) |
354 | return 0; |
355 | /* The bottom part is at least 0.5ulp of the top part. For this |
356 | to be OK, the bottom part must be exactly 0.5ulp (i.e. no |
357 | more bits set) and the top part must have last bit 0. */ |
358 | if (second_bit != -1) |
359 | return 0; |
360 | return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize, |
361 | hfmt->man_start + hfmt->man_len - 1, 1); |
362 | } |
363 | else |
364 | { |
365 | /* The bottom part is at least 0.5ulp of the top part. For this |
366 | to be OK, it must be exactly 0.5ulp (i.e. no explicit bits |
367 | set) and the top part must have last bit 0. */ |
368 | if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize, |
369 | hfmt->man_start + hfmt->man_len - 1, 1)) |
370 | return 0; |
371 | return !mant_bits_set (hfmt, ufrom + 8); |
372 | } |
373 | } |
374 | |
375 | const struct floatformat floatformat_ibm_long_double_big = |
376 | { |
377 | .byteorder: floatformat_big, .totalsize: 128, .sign_start: 0, .exp_start: 1, .exp_len: 11, .exp_bias: 1023, .exp_nan: 2047, .man_start: 12, .man_len: 52, |
378 | .intbit: floatformat_intbit_no, |
379 | .name: "floatformat_ibm_long_double_big" , |
380 | .is_valid: floatformat_ibm_long_double_is_valid, |
381 | .split_half: &floatformat_ieee_double_big |
382 | }; |
383 | |
384 | const struct floatformat floatformat_ibm_long_double_little = |
385 | { |
386 | .byteorder: floatformat_little, .totalsize: 128, .sign_start: 0, .exp_start: 1, .exp_len: 11, .exp_bias: 1023, .exp_nan: 2047, .man_start: 12, .man_len: 52, |
387 | .intbit: floatformat_intbit_no, |
388 | .name: "floatformat_ibm_long_double_little" , |
389 | .is_valid: floatformat_ibm_long_double_is_valid, |
390 | .split_half: &floatformat_ieee_double_little |
391 | }; |
392 | |
393 | const struct floatformat floatformat_bfloat16_big = |
394 | { |
395 | .byteorder: floatformat_big, .totalsize: 16, .sign_start: 0, .exp_start: 1, .exp_len: 8, .exp_bias: 127, .exp_nan: 255, .man_start: 9, .man_len: 7, |
396 | .intbit: floatformat_intbit_no, |
397 | .name: "floatformat_bfloat16_big" , |
398 | .is_valid: floatformat_always_valid, |
399 | NULL |
400 | }; |
401 | |
402 | const struct floatformat floatformat_bfloat16_little = |
403 | { |
404 | .byteorder: floatformat_little, .totalsize: 16, .sign_start: 0, .exp_start: 1, .exp_len: 8, .exp_bias: 127, .exp_nan: 255, .man_start: 9, .man_len: 7, |
405 | .intbit: floatformat_intbit_no, |
406 | .name: "floatformat_bfloat16_little" , |
407 | .is_valid: floatformat_always_valid, |
408 | NULL |
409 | }; |
410 | |
411 | #ifndef min |
412 | #define min(a, b) ((a) < (b) ? (a) : (b)) |
413 | #endif |
414 | |
415 | /* Return 1 if any bits are explicitly set in the mantissa of UFROM, |
416 | format FMT, 0 otherwise. */ |
417 | static int |
418 | mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom) |
419 | { |
420 | unsigned int mant_bits, mant_off; |
421 | int mant_bits_left; |
422 | |
423 | mant_off = fmt->man_start; |
424 | mant_bits_left = fmt->man_len; |
425 | while (mant_bits_left > 0) |
426 | { |
427 | mant_bits = min (mant_bits_left, 32); |
428 | |
429 | if (get_field (ufrom, fmt->byteorder, fmt->totalsize, |
430 | mant_off, mant_bits) != 0) |
431 | return 1; |
432 | |
433 | mant_off += mant_bits; |
434 | mant_bits_left -= mant_bits; |
435 | } |
436 | return 0; |
437 | } |
438 | |
439 | /* Extract a field which starts at START and is LEN bits long. DATA and |
440 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ |
441 | static unsigned long |
442 | get_field (const unsigned char *data, enum floatformat_byteorders order, |
443 | unsigned int total_len, unsigned int start, unsigned int len) |
444 | { |
445 | unsigned long result = 0; |
446 | unsigned int cur_byte; |
447 | int lo_bit, hi_bit, cur_bitshift = 0; |
448 | int nextbyte = (order == floatformat_little) ? 1 : -1; |
449 | |
450 | /* Start is in big-endian bit order! Fix that first. */ |
451 | start = total_len - (start + len); |
452 | |
453 | /* Start at the least significant part of the field. */ |
454 | if (order == floatformat_little) |
455 | cur_byte = start / FLOATFORMAT_CHAR_BIT; |
456 | else |
457 | cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT; |
458 | |
459 | lo_bit = start % FLOATFORMAT_CHAR_BIT; |
460 | hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT); |
461 | |
462 | do |
463 | { |
464 | unsigned int shifted = *(data + cur_byte) >> lo_bit; |
465 | unsigned int bits = hi_bit - lo_bit; |
466 | unsigned int mask = (1 << bits) - 1; |
467 | result |= (shifted & mask) << cur_bitshift; |
468 | len -= bits; |
469 | cur_bitshift += bits; |
470 | cur_byte += nextbyte; |
471 | lo_bit = 0; |
472 | hi_bit = min (len, FLOATFORMAT_CHAR_BIT); |
473 | } |
474 | while (len != 0); |
475 | |
476 | return result; |
477 | } |
478 | |
479 | /* Convert from FMT to a double. |
480 | FROM is the address of the extended float. |
481 | Store the double in *TO. */ |
482 | |
483 | void |
484 | floatformat_to_double (const struct floatformat *fmt, |
485 | const void *from, double *to) |
486 | { |
487 | const unsigned char *ufrom = (const unsigned char *) from; |
488 | double dto; |
489 | long exponent; |
490 | unsigned long mant; |
491 | unsigned int mant_bits, mant_off; |
492 | int mant_bits_left; |
493 | |
494 | /* Split values are not handled specially, since the top half has |
495 | the correctly rounded double value (in the only supported case of |
496 | split values). */ |
497 | |
498 | exponent = get_field (data: ufrom, order: fmt->byteorder, total_len: fmt->totalsize, |
499 | start: fmt->exp_start, len: fmt->exp_len); |
500 | |
501 | /* If the exponent indicates a NaN, we don't have information to |
502 | decide what to do. So we handle it like IEEE, except that we |
503 | don't try to preserve the type of NaN. FIXME. */ |
504 | if ((unsigned long) exponent == fmt->exp_nan) |
505 | { |
506 | int nan = mant_bits_set (fmt, ufrom); |
507 | |
508 | /* On certain systems (such as GNU/Linux), the use of the |
509 | INFINITY macro below may generate a warning that cannot be |
510 | silenced due to a bug in GCC (PR preprocessor/11931). The |
511 | preprocessor fails to recognise the __extension__ keyword in |
512 | conjunction with the GNU/C99 extension for hexadecimal |
513 | floating point constants and will issue a warning when |
514 | compiling with -pedantic. */ |
515 | if (nan) |
516 | dto = NAN; |
517 | else |
518 | dto = INFINITY; |
519 | |
520 | if (get_field (data: ufrom, order: fmt->byteorder, total_len: fmt->totalsize, start: fmt->sign_start, len: 1)) |
521 | dto = -dto; |
522 | |
523 | *to = dto; |
524 | |
525 | return; |
526 | } |
527 | |
528 | mant_bits_left = fmt->man_len; |
529 | mant_off = fmt->man_start; |
530 | dto = 0.0; |
531 | |
532 | /* Build the result algebraically. Might go infinite, underflow, etc; |
533 | who cares. */ |
534 | |
535 | /* For denorms use minimum exponent. */ |
536 | if (exponent == 0) |
537 | exponent = 1 - fmt->exp_bias; |
538 | else |
539 | { |
540 | exponent -= fmt->exp_bias; |
541 | |
542 | /* If this format uses a hidden bit, explicitly add it in now. |
543 | Otherwise, increment the exponent by one to account for the |
544 | integer bit. */ |
545 | |
546 | if (fmt->intbit == floatformat_intbit_no) |
547 | dto = ldexp (x: 1.0, exponent: exponent); |
548 | else |
549 | exponent++; |
550 | } |
551 | |
552 | while (mant_bits_left > 0) |
553 | { |
554 | mant_bits = min (mant_bits_left, 32); |
555 | |
556 | mant = get_field (data: ufrom, order: fmt->byteorder, total_len: fmt->totalsize, |
557 | start: mant_off, len: mant_bits); |
558 | |
559 | dto += ldexp (x: (double) mant, exponent: exponent - mant_bits); |
560 | exponent -= mant_bits; |
561 | mant_off += mant_bits; |
562 | mant_bits_left -= mant_bits; |
563 | } |
564 | |
565 | /* Negate it if negative. */ |
566 | if (get_field (data: ufrom, order: fmt->byteorder, total_len: fmt->totalsize, start: fmt->sign_start, len: 1)) |
567 | dto = -dto; |
568 | *to = dto; |
569 | } |
570 | |
571 | static void put_field (unsigned char *, enum floatformat_byteorders, |
572 | unsigned int, |
573 | unsigned int, |
574 | unsigned int, |
575 | unsigned long); |
576 | |
577 | /* Set a field which starts at START and is LEN bits long. DATA and |
578 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ |
579 | static void |
580 | put_field (unsigned char *data, enum floatformat_byteorders order, |
581 | unsigned int total_len, unsigned int start, unsigned int len, |
582 | unsigned long stuff_to_put) |
583 | { |
584 | unsigned int cur_byte; |
585 | int lo_bit, hi_bit; |
586 | int nextbyte = (order == floatformat_little) ? 1 : -1; |
587 | |
588 | /* Start is in big-endian bit order! Fix that first. */ |
589 | start = total_len - (start + len); |
590 | |
591 | /* Start at the least significant part of the field. */ |
592 | if (order == floatformat_little) |
593 | cur_byte = start / FLOATFORMAT_CHAR_BIT; |
594 | else |
595 | cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT; |
596 | |
597 | lo_bit = start % FLOATFORMAT_CHAR_BIT; |
598 | hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT); |
599 | |
600 | do |
601 | { |
602 | unsigned char *byte_ptr = data + cur_byte; |
603 | unsigned int bits = hi_bit - lo_bit; |
604 | unsigned int mask = ((1 << bits) - 1) << lo_bit; |
605 | *byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask); |
606 | stuff_to_put >>= bits; |
607 | len -= bits; |
608 | cur_byte += nextbyte; |
609 | lo_bit = 0; |
610 | hi_bit = min (len, FLOATFORMAT_CHAR_BIT); |
611 | } |
612 | while (len != 0); |
613 | } |
614 | |
615 | /* The converse: convert the double *FROM to an extended float |
616 | and store where TO points. Neither FROM nor TO have any alignment |
617 | restrictions. */ |
618 | |
619 | void |
620 | floatformat_from_double (const struct floatformat *fmt, |
621 | const double *from, void *to) |
622 | { |
623 | double dfrom; |
624 | int exponent; |
625 | double mant; |
626 | unsigned int mant_bits, mant_off; |
627 | int mant_bits_left; |
628 | unsigned char *uto = (unsigned char *) to; |
629 | |
630 | dfrom = *from; |
631 | memset (s: uto, c: 0, n: fmt->totalsize / FLOATFORMAT_CHAR_BIT); |
632 | |
633 | /* Split values are not handled specially, since a bottom half of |
634 | zero is correct for any value representable as double (in the |
635 | only supported case of split values). */ |
636 | |
637 | /* If negative, set the sign bit. */ |
638 | if (dfrom < 0) |
639 | { |
640 | put_field (data: uto, order: fmt->byteorder, total_len: fmt->totalsize, start: fmt->sign_start, len: 1, stuff_to_put: 1); |
641 | dfrom = -dfrom; |
642 | } |
643 | |
644 | if (dfrom == 0) |
645 | { |
646 | /* 0.0. */ |
647 | return; |
648 | } |
649 | |
650 | if (dfrom != dfrom) |
651 | { |
652 | /* NaN. */ |
653 | put_field (data: uto, order: fmt->byteorder, total_len: fmt->totalsize, start: fmt->exp_start, |
654 | len: fmt->exp_len, stuff_to_put: fmt->exp_nan); |
655 | /* Be sure it's not infinity, but NaN value is irrelevant. */ |
656 | put_field (data: uto, order: fmt->byteorder, total_len: fmt->totalsize, start: fmt->man_start, |
657 | len: 32, stuff_to_put: 1); |
658 | return; |
659 | } |
660 | |
661 | if (dfrom + dfrom == dfrom) |
662 | { |
663 | /* This can only happen for an infinite value (or zero, which we |
664 | already handled above). */ |
665 | put_field (data: uto, order: fmt->byteorder, total_len: fmt->totalsize, start: fmt->exp_start, |
666 | len: fmt->exp_len, stuff_to_put: fmt->exp_nan); |
667 | return; |
668 | } |
669 | |
670 | mant = frexp (x: dfrom, exponent: &exponent); |
671 | if (exponent + fmt->exp_bias - 1 > 0) |
672 | put_field (data: uto, order: fmt->byteorder, total_len: fmt->totalsize, start: fmt->exp_start, |
673 | len: fmt->exp_len, stuff_to_put: exponent + fmt->exp_bias - 1); |
674 | else |
675 | { |
676 | /* Handle a denormalized number. FIXME: What should we do for |
677 | non-IEEE formats? */ |
678 | put_field (data: uto, order: fmt->byteorder, total_len: fmt->totalsize, start: fmt->exp_start, |
679 | len: fmt->exp_len, stuff_to_put: 0); |
680 | mant = ldexp (x: mant, exponent: exponent + fmt->exp_bias - 1); |
681 | } |
682 | |
683 | mant_bits_left = fmt->man_len; |
684 | mant_off = fmt->man_start; |
685 | while (mant_bits_left > 0) |
686 | { |
687 | unsigned long mant_long; |
688 | mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; |
689 | |
690 | mant *= 4294967296.0; |
691 | mant_long = (unsigned long)mant; |
692 | mant -= mant_long; |
693 | |
694 | /* If the integer bit is implicit, and we are not creating a |
695 | denormalized number, then we need to discard it. */ |
696 | if ((unsigned int) mant_bits_left == fmt->man_len |
697 | && fmt->intbit == floatformat_intbit_no |
698 | && exponent + fmt->exp_bias - 1 > 0) |
699 | { |
700 | mant_long &= 0x7fffffff; |
701 | mant_bits -= 1; |
702 | } |
703 | else if (mant_bits < 32) |
704 | { |
705 | /* The bits we want are in the most significant MANT_BITS bits of |
706 | mant_long. Move them to the least significant. */ |
707 | mant_long >>= 32 - mant_bits; |
708 | } |
709 | |
710 | put_field (data: uto, order: fmt->byteorder, total_len: fmt->totalsize, |
711 | start: mant_off, len: mant_bits, stuff_to_put: mant_long); |
712 | mant_off += mant_bits; |
713 | mant_bits_left -= mant_bits; |
714 | } |
715 | } |
716 | |
717 | /* Return non-zero iff the data at FROM is a valid number in format FMT. */ |
718 | |
719 | int |
720 | floatformat_is_valid (const struct floatformat *fmt, const void *from) |
721 | { |
722 | return fmt->is_valid (fmt, from); |
723 | } |
724 | |
725 | |
726 | #ifdef IEEE_DEBUG |
727 | |
728 | #include <stdio.h> |
729 | |
730 | /* This is to be run on a host which uses IEEE floating point. */ |
731 | |
732 | void |
733 | ieee_test (double n) |
734 | { |
735 | double result; |
736 | |
737 | floatformat_to_double (&floatformat_ieee_double_little, &n, &result); |
738 | if ((n != result && (! isnan (n) || ! isnan (result))) |
739 | || (n < 0 && result >= 0) |
740 | || (n >= 0 && result < 0)) |
741 | printf ("Differ(to): %.20g -> %.20g\n" , n, result); |
742 | |
743 | floatformat_from_double (&floatformat_ieee_double_little, &n, &result); |
744 | if ((n != result && (! isnan (n) || ! isnan (result))) |
745 | || (n < 0 && result >= 0) |
746 | || (n >= 0 && result < 0)) |
747 | printf ("Differ(from): %.20g -> %.20g\n" , n, result); |
748 | |
749 | #if 0 |
750 | { |
751 | char exten[16]; |
752 | |
753 | floatformat_from_double (&floatformat_m68881_ext, &n, exten); |
754 | floatformat_to_double (&floatformat_m68881_ext, exten, &result); |
755 | if (n != result) |
756 | printf ("Differ(to+from): %.20g -> %.20g\n" , n, result); |
757 | } |
758 | #endif |
759 | |
760 | #if IEEE_DEBUG > 1 |
761 | /* This is to be run on a host which uses 68881 format. */ |
762 | { |
763 | long double ex = *(long double *)exten; |
764 | if (ex != n) |
765 | printf ("Differ(from vs. extended): %.20g\n" , n); |
766 | } |
767 | #endif |
768 | } |
769 | |
770 | int |
771 | main (void) |
772 | { |
773 | ieee_test (0.0); |
774 | ieee_test (0.5); |
775 | ieee_test (1.1); |
776 | ieee_test (256.0); |
777 | ieee_test (0.12345); |
778 | ieee_test (234235.78907234); |
779 | ieee_test (-512.0); |
780 | ieee_test (-0.004321); |
781 | ieee_test (1.2E-70); |
782 | ieee_test (1.2E-316); |
783 | ieee_test (4.9406564584124654E-324); |
784 | ieee_test (- 4.9406564584124654E-324); |
785 | ieee_test (- 0.0); |
786 | ieee_test (- INFINITY); |
787 | ieee_test (- NAN); |
788 | ieee_test (INFINITY); |
789 | ieee_test (NAN); |
790 | return 0; |
791 | } |
792 | #endif |
793 | |