1 | /* sha1.c - Functions to compute SHA1 message digest of files or |
2 | memory blocks according to the NIST specification FIPS-180-1. |
3 | |
4 | Copyright (C) 2000-2024 Free Software Foundation, Inc. |
5 | |
6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU General Public License as published by the |
8 | Free Software Foundation; either version 2, or (at your option) any |
9 | later version. |
10 | |
11 | This program is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | GNU General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with this program; if not, write to the Free Software Foundation, |
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ |
19 | |
20 | /* Written by Scott G. Miller |
21 | Credits: |
22 | Robert Klep <robert@ilse.nl> -- Expansion function fix |
23 | */ |
24 | |
25 | #include <config.h> |
26 | |
27 | #include "sha1.h" |
28 | |
29 | #include <stddef.h> |
30 | #include <string.h> |
31 | |
32 | #ifdef HAVE_X86_SHA1_HW_SUPPORT |
33 | # include <x86intrin.h> |
34 | # include <cpuid.h> |
35 | #endif |
36 | |
37 | #if USE_UNLOCKED_IO |
38 | # include "unlocked-io.h" |
39 | #endif |
40 | |
41 | #ifdef WORDS_BIGENDIAN |
42 | # define SWAP(n) (n) |
43 | #else |
44 | # define SWAP(n) \ |
45 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) |
46 | #endif |
47 | |
48 | #define BLOCKSIZE 4096 |
49 | #if BLOCKSIZE % 64 != 0 |
50 | # error "invalid BLOCKSIZE" |
51 | #endif |
52 | |
53 | /* This array contains the bytes used to pad the buffer to the next |
54 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ |
55 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; |
56 | |
57 | |
58 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and |
59 | initialize it to the start constants of the SHA1 algorithm. This |
60 | must be called before using hash in the call to sha1_hash. */ |
61 | void |
62 | sha1_init_ctx (struct sha1_ctx *ctx) |
63 | { |
64 | ctx->A = 0x67452301; |
65 | ctx->B = 0xefcdab89; |
66 | ctx->C = 0x98badcfe; |
67 | ctx->D = 0x10325476; |
68 | ctx->E = 0xc3d2e1f0; |
69 | |
70 | ctx->total[0] = ctx->total[1] = 0; |
71 | ctx->buflen = 0; |
72 | } |
73 | |
74 | /* Put result from CTX in first 20 bytes following RESBUF. The result |
75 | must be in little endian byte order. |
76 | |
77 | IMPORTANT: On some systems it is required that RESBUF is correctly |
78 | aligned for a 32-bit value. */ |
79 | void * |
80 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) |
81 | { |
82 | ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A); |
83 | ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B); |
84 | ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C); |
85 | ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D); |
86 | ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E); |
87 | |
88 | return resbuf; |
89 | } |
90 | |
91 | /* Process the remaining bytes in the internal buffer and the usual |
92 | prolog according to the standard and write the result to RESBUF. |
93 | |
94 | IMPORTANT: On some systems it is required that RESBUF is correctly |
95 | aligned for a 32-bit value. */ |
96 | void * |
97 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) |
98 | { |
99 | /* Take yet unprocessed bytes into account. */ |
100 | sha1_uint32 bytes = ctx->buflen; |
101 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; |
102 | |
103 | /* Now count remaining bytes. */ |
104 | ctx->total[0] += bytes; |
105 | if (ctx->total[0] < bytes) |
106 | ++ctx->total[1]; |
107 | |
108 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
109 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); |
110 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); |
111 | |
112 | memcpy (dest: &((char *) ctx->buffer)[bytes], src: fillbuf, n: (size - 2) * 4 - bytes); |
113 | |
114 | /* Process last bytes. */ |
115 | sha1_process_block (buffer: ctx->buffer, len: size * 4, ctx); |
116 | |
117 | return sha1_read_ctx (ctx, resbuf); |
118 | } |
119 | |
120 | /* Compute SHA1 message digest for bytes read from STREAM. The |
121 | resulting message digest number will be written into the 16 bytes |
122 | beginning at RESBLOCK. */ |
123 | int |
124 | sha1_stream (FILE *stream, void *resblock) |
125 | { |
126 | struct sha1_ctx ctx; |
127 | char buffer[BLOCKSIZE + 72]; |
128 | size_t sum; |
129 | |
130 | /* Initialize the computation context. */ |
131 | sha1_init_ctx (ctx: &ctx); |
132 | |
133 | /* Iterate over full file contents. */ |
134 | while (1) |
135 | { |
136 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the |
137 | computation function processes the whole buffer so that with the |
138 | next round of the loop another block can be read. */ |
139 | size_t n; |
140 | sum = 0; |
141 | |
142 | /* Read block. Take care for partial reads. */ |
143 | while (1) |
144 | { |
145 | n = fread (ptr: buffer + sum, size: 1, BLOCKSIZE - sum, stream: stream); |
146 | |
147 | sum += n; |
148 | |
149 | if (sum == BLOCKSIZE) |
150 | break; |
151 | |
152 | if (n == 0) |
153 | { |
154 | /* Check for the error flag IFF N == 0, so that we don't |
155 | exit the loop after a partial read due to e.g., EAGAIN |
156 | or EWOULDBLOCK. */ |
157 | if (ferror (stream: stream)) |
158 | return 1; |
159 | goto process_partial_block; |
160 | } |
161 | |
162 | /* We've read at least one byte, so ignore errors. But always |
163 | check for EOF, since feof may be true even though N > 0. |
164 | Otherwise, we could end up calling fread after EOF. */ |
165 | if (feof (stream: stream)) |
166 | goto process_partial_block; |
167 | } |
168 | |
169 | /* Process buffer with BLOCKSIZE bytes. Note that |
170 | BLOCKSIZE % 64 == 0 |
171 | */ |
172 | sha1_process_block (buffer, BLOCKSIZE, ctx: &ctx); |
173 | } |
174 | |
175 | process_partial_block:; |
176 | |
177 | /* Process any remaining bytes. */ |
178 | if (sum > 0) |
179 | sha1_process_bytes (buffer, len: sum, ctx: &ctx); |
180 | |
181 | /* Construct result in desired memory. */ |
182 | sha1_finish_ctx (ctx: &ctx, resbuf: resblock); |
183 | return 0; |
184 | } |
185 | |
186 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The |
187 | result is always in little endian byte order, so that a byte-wise |
188 | output yields to the wanted ASCII representation of the message |
189 | digest. */ |
190 | void * |
191 | sha1_buffer (const char *buffer, size_t len, void *resblock) |
192 | { |
193 | struct sha1_ctx ctx; |
194 | |
195 | /* Initialize the computation context. */ |
196 | sha1_init_ctx (ctx: &ctx); |
197 | |
198 | /* Process whole buffer but last len % 64 bytes. */ |
199 | sha1_process_bytes (buffer, len, ctx: &ctx); |
200 | |
201 | /* Put result in desired memory area. */ |
202 | return sha1_finish_ctx (ctx: &ctx, resbuf: resblock); |
203 | } |
204 | |
205 | void |
206 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) |
207 | { |
208 | /* When we already have some bits in our internal buffer concatenate |
209 | both inputs first. */ |
210 | if (ctx->buflen != 0) |
211 | { |
212 | size_t left_over = ctx->buflen; |
213 | size_t add = 128 - left_over > len ? len : 128 - left_over; |
214 | |
215 | memcpy (dest: &((char *) ctx->buffer)[left_over], src: buffer, n: add); |
216 | ctx->buflen += add; |
217 | |
218 | if (ctx->buflen > 64) |
219 | { |
220 | sha1_process_block (buffer: ctx->buffer, len: ctx->buflen & ~63, ctx); |
221 | |
222 | ctx->buflen &= 63; |
223 | /* The regions in the following copy operation cannot overlap. */ |
224 | memcpy (dest: ctx->buffer, |
225 | src: &((char *) ctx->buffer)[(left_over + add) & ~63], |
226 | n: ctx->buflen); |
227 | } |
228 | |
229 | buffer = (const char *) buffer + add; |
230 | len -= add; |
231 | } |
232 | |
233 | /* Process available complete blocks. */ |
234 | if (len >= 64) |
235 | { |
236 | #if !_STRING_ARCH_unaligned |
237 | # define alignof(type) offsetof (struct { char c; type x; }, x) |
238 | # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0) |
239 | if (UNALIGNED_P (buffer)) |
240 | while (len > 64) |
241 | { |
242 | sha1_process_block (buffer: memcpy (dest: ctx->buffer, src: buffer, n: 64), len: 64, ctx); |
243 | buffer = (const char *) buffer + 64; |
244 | len -= 64; |
245 | } |
246 | else |
247 | #endif |
248 | { |
249 | sha1_process_block (buffer, len: len & ~63, ctx); |
250 | buffer = (const char *) buffer + (len & ~63); |
251 | len &= 63; |
252 | } |
253 | } |
254 | |
255 | /* Move remaining bytes in internal buffer. */ |
256 | if (len > 0) |
257 | { |
258 | size_t left_over = ctx->buflen; |
259 | |
260 | memcpy (dest: &((char *) ctx->buffer)[left_over], src: buffer, n: len); |
261 | left_over += len; |
262 | if (left_over >= 64) |
263 | { |
264 | sha1_process_block (buffer: ctx->buffer, len: 64, ctx); |
265 | left_over -= 64; |
266 | memmove (dest: ctx->buffer, src: &ctx->buffer[16], n: left_over); |
267 | } |
268 | ctx->buflen = left_over; |
269 | } |
270 | } |
271 | |
272 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ |
273 | |
274 | /* SHA1 round constants */ |
275 | #define K1 0x5a827999 |
276 | #define K2 0x6ed9eba1 |
277 | #define K3 0x8f1bbcdc |
278 | #define K4 0xca62c1d6 |
279 | |
280 | /* Round functions. Note that F2 is the same as F4. */ |
281 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) |
282 | #define F2(B,C,D) (B ^ C ^ D) |
283 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) |
284 | #define F4(B,C,D) (B ^ C ^ D) |
285 | |
286 | /* Process LEN bytes of BUFFER, accumulating context into CTX. |
287 | It is assumed that LEN % 64 == 0. |
288 | Most of this code comes from GnuPG's cipher/sha1.c. */ |
289 | |
290 | void |
291 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) |
292 | { |
293 | const sha1_uint32 *words = (const sha1_uint32*) buffer; |
294 | size_t nwords = len / sizeof (sha1_uint32); |
295 | const sha1_uint32 *endp = words + nwords; |
296 | sha1_uint32 x[16]; |
297 | sha1_uint32 a = ctx->A; |
298 | sha1_uint32 b = ctx->B; |
299 | sha1_uint32 c = ctx->C; |
300 | sha1_uint32 d = ctx->D; |
301 | sha1_uint32 e = ctx->E; |
302 | |
303 | /* First increment the byte count. RFC 1321 specifies the possible |
304 | length of the file up to 2^64 bits. Here we only compute the |
305 | number of bytes. Do a double word increment. */ |
306 | ctx->total[0] += len; |
307 | ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len); |
308 | |
309 | #define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n)))) |
310 | |
311 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ |
312 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ |
313 | , (x[I&0x0f] = rol(tm, 1)) ) |
314 | |
315 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ |
316 | + F( B, C, D ) \ |
317 | + K \ |
318 | + M; \ |
319 | B = rol( B, 30 ); \ |
320 | } while(0) |
321 | |
322 | while (words < endp) |
323 | { |
324 | sha1_uint32 tm; |
325 | int t; |
326 | for (t = 0; t < 16; t++) |
327 | { |
328 | x[t] = SWAP (*words); |
329 | words++; |
330 | } |
331 | |
332 | R( a, b, c, d, e, F1, K1, x[ 0] ); |
333 | R( e, a, b, c, d, F1, K1, x[ 1] ); |
334 | R( d, e, a, b, c, F1, K1, x[ 2] ); |
335 | R( c, d, e, a, b, F1, K1, x[ 3] ); |
336 | R( b, c, d, e, a, F1, K1, x[ 4] ); |
337 | R( a, b, c, d, e, F1, K1, x[ 5] ); |
338 | R( e, a, b, c, d, F1, K1, x[ 6] ); |
339 | R( d, e, a, b, c, F1, K1, x[ 7] ); |
340 | R( c, d, e, a, b, F1, K1, x[ 8] ); |
341 | R( b, c, d, e, a, F1, K1, x[ 9] ); |
342 | R( a, b, c, d, e, F1, K1, x[10] ); |
343 | R( e, a, b, c, d, F1, K1, x[11] ); |
344 | R( d, e, a, b, c, F1, K1, x[12] ); |
345 | R( c, d, e, a, b, F1, K1, x[13] ); |
346 | R( b, c, d, e, a, F1, K1, x[14] ); |
347 | R( a, b, c, d, e, F1, K1, x[15] ); |
348 | R( e, a, b, c, d, F1, K1, M(16) ); |
349 | R( d, e, a, b, c, F1, K1, M(17) ); |
350 | R( c, d, e, a, b, F1, K1, M(18) ); |
351 | R( b, c, d, e, a, F1, K1, M(19) ); |
352 | R( a, b, c, d, e, F2, K2, M(20) ); |
353 | R( e, a, b, c, d, F2, K2, M(21) ); |
354 | R( d, e, a, b, c, F2, K2, M(22) ); |
355 | R( c, d, e, a, b, F2, K2, M(23) ); |
356 | R( b, c, d, e, a, F2, K2, M(24) ); |
357 | R( a, b, c, d, e, F2, K2, M(25) ); |
358 | R( e, a, b, c, d, F2, K2, M(26) ); |
359 | R( d, e, a, b, c, F2, K2, M(27) ); |
360 | R( c, d, e, a, b, F2, K2, M(28) ); |
361 | R( b, c, d, e, a, F2, K2, M(29) ); |
362 | R( a, b, c, d, e, F2, K2, M(30) ); |
363 | R( e, a, b, c, d, F2, K2, M(31) ); |
364 | R( d, e, a, b, c, F2, K2, M(32) ); |
365 | R( c, d, e, a, b, F2, K2, M(33) ); |
366 | R( b, c, d, e, a, F2, K2, M(34) ); |
367 | R( a, b, c, d, e, F2, K2, M(35) ); |
368 | R( e, a, b, c, d, F2, K2, M(36) ); |
369 | R( d, e, a, b, c, F2, K2, M(37) ); |
370 | R( c, d, e, a, b, F2, K2, M(38) ); |
371 | R( b, c, d, e, a, F2, K2, M(39) ); |
372 | R( a, b, c, d, e, F3, K3, M(40) ); |
373 | R( e, a, b, c, d, F3, K3, M(41) ); |
374 | R( d, e, a, b, c, F3, K3, M(42) ); |
375 | R( c, d, e, a, b, F3, K3, M(43) ); |
376 | R( b, c, d, e, a, F3, K3, M(44) ); |
377 | R( a, b, c, d, e, F3, K3, M(45) ); |
378 | R( e, a, b, c, d, F3, K3, M(46) ); |
379 | R( d, e, a, b, c, F3, K3, M(47) ); |
380 | R( c, d, e, a, b, F3, K3, M(48) ); |
381 | R( b, c, d, e, a, F3, K3, M(49) ); |
382 | R( a, b, c, d, e, F3, K3, M(50) ); |
383 | R( e, a, b, c, d, F3, K3, M(51) ); |
384 | R( d, e, a, b, c, F3, K3, M(52) ); |
385 | R( c, d, e, a, b, F3, K3, M(53) ); |
386 | R( b, c, d, e, a, F3, K3, M(54) ); |
387 | R( a, b, c, d, e, F3, K3, M(55) ); |
388 | R( e, a, b, c, d, F3, K3, M(56) ); |
389 | R( d, e, a, b, c, F3, K3, M(57) ); |
390 | R( c, d, e, a, b, F3, K3, M(58) ); |
391 | R( b, c, d, e, a, F3, K3, M(59) ); |
392 | R( a, b, c, d, e, F4, K4, M(60) ); |
393 | R( e, a, b, c, d, F4, K4, M(61) ); |
394 | R( d, e, a, b, c, F4, K4, M(62) ); |
395 | R( c, d, e, a, b, F4, K4, M(63) ); |
396 | R( b, c, d, e, a, F4, K4, M(64) ); |
397 | R( a, b, c, d, e, F4, K4, M(65) ); |
398 | R( e, a, b, c, d, F4, K4, M(66) ); |
399 | R( d, e, a, b, c, F4, K4, M(67) ); |
400 | R( c, d, e, a, b, F4, K4, M(68) ); |
401 | R( b, c, d, e, a, F4, K4, M(69) ); |
402 | R( a, b, c, d, e, F4, K4, M(70) ); |
403 | R( e, a, b, c, d, F4, K4, M(71) ); |
404 | R( d, e, a, b, c, F4, K4, M(72) ); |
405 | R( c, d, e, a, b, F4, K4, M(73) ); |
406 | R( b, c, d, e, a, F4, K4, M(74) ); |
407 | R( a, b, c, d, e, F4, K4, M(75) ); |
408 | R( e, a, b, c, d, F4, K4, M(76) ); |
409 | R( d, e, a, b, c, F4, K4, M(77) ); |
410 | R( c, d, e, a, b, F4, K4, M(78) ); |
411 | R( b, c, d, e, a, F4, K4, M(79) ); |
412 | |
413 | a = ctx->A += a; |
414 | b = ctx->B += b; |
415 | c = ctx->C += c; |
416 | d = ctx->D += d; |
417 | e = ctx->E += e; |
418 | } |
419 | } |
420 | |
421 | #if defined(HAVE_X86_SHA1_HW_SUPPORT) |
422 | /* HW specific version of sha1_process_bytes. */ |
423 | |
424 | static void sha1_hw_process_block (const void *, size_t, struct sha1_ctx *); |
425 | |
426 | static void |
427 | sha1_hw_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) |
428 | { |
429 | /* When we already have some bits in our internal buffer concatenate |
430 | both inputs first. */ |
431 | if (ctx->buflen != 0) |
432 | { |
433 | size_t left_over = ctx->buflen; |
434 | size_t add = 128 - left_over > len ? len : 128 - left_over; |
435 | |
436 | memcpy (dest: &((char *) ctx->buffer)[left_over], src: buffer, n: add); |
437 | ctx->buflen += add; |
438 | |
439 | if (ctx->buflen > 64) |
440 | { |
441 | sha1_hw_process_block (ctx->buffer, ctx->buflen & ~63, ctx); |
442 | |
443 | ctx->buflen &= 63; |
444 | /* The regions in the following copy operation cannot overlap. */ |
445 | memcpy (dest: ctx->buffer, |
446 | src: &((char *) ctx->buffer)[(left_over + add) & ~63], |
447 | n: ctx->buflen); |
448 | } |
449 | |
450 | buffer = (const char *) buffer + add; |
451 | len -= add; |
452 | } |
453 | |
454 | /* Process available complete blocks. */ |
455 | if (len >= 64) |
456 | { |
457 | #if !_STRING_ARCH_unaligned |
458 | # define alignof(type) offsetof (struct { char c; type x; }, x) |
459 | # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0) |
460 | if (UNALIGNED_P (buffer)) |
461 | while (len > 64) |
462 | { |
463 | sha1_hw_process_block (memcpy (dest: ctx->buffer, src: buffer, n: 64), 64, ctx); |
464 | buffer = (const char *) buffer + 64; |
465 | len -= 64; |
466 | } |
467 | else |
468 | #endif |
469 | { |
470 | sha1_hw_process_block (buffer, len & ~63, ctx); |
471 | buffer = (const char *) buffer + (len & ~63); |
472 | len &= 63; |
473 | } |
474 | } |
475 | |
476 | /* Move remaining bytes in internal buffer. */ |
477 | if (len > 0) |
478 | { |
479 | size_t left_over = ctx->buflen; |
480 | |
481 | memcpy (dest: &((char *) ctx->buffer)[left_over], src: buffer, n: len); |
482 | left_over += len; |
483 | if (left_over >= 64) |
484 | { |
485 | sha1_hw_process_block (ctx->buffer, 64, ctx); |
486 | left_over -= 64; |
487 | memmove (dest: ctx->buffer, src: &ctx->buffer[16], n: left_over); |
488 | } |
489 | ctx->buflen = left_over; |
490 | } |
491 | } |
492 | |
493 | /* Process LEN bytes of BUFFER, accumulating context into CTX. |
494 | Using CPU specific intrinsics. */ |
495 | |
496 | #ifdef HAVE_X86_SHA1_HW_SUPPORT |
497 | __attribute__((__target__ ("sse4.1,sha" ))) |
498 | #endif |
499 | static void |
500 | sha1_hw_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) |
501 | { |
502 | #ifdef HAVE_X86_SHA1_HW_SUPPORT |
503 | /* Implemented from |
504 | https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html */ |
505 | const __m128i *words = (const __m128i *) buffer; |
506 | const __m128i *endp = (const __m128i *) ((const char *) buffer + len); |
507 | __m128i abcd, abcd_save, e0, e0_save, e1, msg0, msg1, msg2, msg3; |
508 | const __m128i shuf_mask |
509 | = _mm_set_epi64x (q1: 0x0001020304050607ULL, q0: 0x08090a0b0c0d0e0fULL); |
510 | char check[((offsetof (struct sha1_ctx, B) |
511 | == offsetof (struct sha1_ctx, A) + sizeof (ctx->A)) |
512 | && (offsetof (struct sha1_ctx, C) |
513 | == offsetof (struct sha1_ctx, A) + 2 * sizeof (ctx->A)) |
514 | && (offsetof (struct sha1_ctx, D) |
515 | == offsetof (struct sha1_ctx, A) + 3 * sizeof (ctx->A))) |
516 | ? 1 : -1]; |
517 | |
518 | /* First increment the byte count. RFC 1321 specifies the possible |
519 | length of the file up to 2^64 bits. Here we only compute the |
520 | number of bytes. Do a double word increment. */ |
521 | ctx->total[0] += len; |
522 | ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len); |
523 | |
524 | (void) &check[0]; |
525 | abcd = _mm_loadu_si128 (p: (const __m128i *) &ctx->A); |
526 | e0 = _mm_set_epi32 (i3: ctx->E, i2: 0, i1: 0, i0: 0); |
527 | abcd = _mm_shuffle_epi32 (abcd, 0x1b); /* 0, 1, 2, 3 */ |
528 | |
529 | while (words < endp) |
530 | { |
531 | abcd_save = abcd; |
532 | e0_save = e0; |
533 | |
534 | /* 0..3 */ |
535 | msg0 = _mm_loadu_si128 (p: words); |
536 | msg0 = _mm_shuffle_epi8 (a: msg0, b: shuf_mask); |
537 | e0 = _mm_add_epi32 (a: e0, b: msg0); |
538 | e1 = abcd; |
539 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 0); |
540 | |
541 | /* 4..7 */ |
542 | msg1 = _mm_loadu_si128 (p: words + 1); |
543 | msg1 = _mm_shuffle_epi8 (a: msg1, b: shuf_mask); |
544 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg1); |
545 | e0 = abcd; |
546 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 0); |
547 | msg0 = _mm_sha1msg1_epu32 (X: msg0, Y: msg1); |
548 | |
549 | /* 8..11 */ |
550 | msg2 = _mm_loadu_si128 (p: words + 2); |
551 | msg2 = _mm_shuffle_epi8 (a: msg2, b: shuf_mask); |
552 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: msg2); |
553 | e1 = abcd; |
554 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 0); |
555 | msg1 = _mm_sha1msg1_epu32 (X: msg1, Y: msg2); |
556 | msg0 = _mm_xor_si128 (a: msg0, b: msg2); |
557 | |
558 | /* 12..15 */ |
559 | msg3 = _mm_loadu_si128 (p: words + 3); |
560 | msg3 = _mm_shuffle_epi8 (a: msg3, b: shuf_mask); |
561 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg3); |
562 | e0 = abcd; |
563 | msg0 = _mm_sha1msg2_epu32 (X: msg0, Y: msg3); |
564 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 0); |
565 | msg2 = _mm_sha1msg1_epu32 (X: msg2, Y: msg3); |
566 | msg1 = _mm_xor_si128 (a: msg1, b: msg3); |
567 | |
568 | /* 16..19 */ |
569 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: msg0); |
570 | e1 = abcd; |
571 | msg1 = _mm_sha1msg2_epu32 (X: msg1, Y: msg0); |
572 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 0); |
573 | msg3 = _mm_sha1msg1_epu32 (X: msg3, Y: msg0); |
574 | msg2 = _mm_xor_si128 (a: msg2, b: msg0); |
575 | |
576 | /* 20..23 */ |
577 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg1); |
578 | e0 = abcd; |
579 | msg2 = _mm_sha1msg2_epu32 (X: msg2, Y: msg1); |
580 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 1); |
581 | msg0 = _mm_sha1msg1_epu32 (X: msg0, Y: msg1); |
582 | msg3 = _mm_xor_si128 (a: msg3, b: msg1); |
583 | |
584 | /* 24..27 */ |
585 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: msg2); |
586 | e1 = abcd; |
587 | msg3 = _mm_sha1msg2_epu32 (X: msg3, Y: msg2); |
588 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 1); |
589 | msg1 = _mm_sha1msg1_epu32 (X: msg1, Y: msg2); |
590 | msg0 = _mm_xor_si128 (a: msg0, b: msg2); |
591 | |
592 | /* 28..31 */ |
593 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg3); |
594 | e0 = abcd; |
595 | msg0 = _mm_sha1msg2_epu32 (X: msg0, Y: msg3); |
596 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 1); |
597 | msg2 = _mm_sha1msg1_epu32 (X: msg2, Y: msg3); |
598 | msg1 = _mm_xor_si128 (a: msg1, b: msg3); |
599 | |
600 | /* 32..35 */ |
601 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: msg0); |
602 | e1 = abcd; |
603 | msg1 = _mm_sha1msg2_epu32 (X: msg1, Y: msg0); |
604 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 1); |
605 | msg3 = _mm_sha1msg1_epu32 (X: msg3, Y: msg0); |
606 | msg2 = _mm_xor_si128 (a: msg2, b: msg0); |
607 | |
608 | /* 36..39 */ |
609 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg1); |
610 | e0 = abcd; |
611 | msg2 = _mm_sha1msg2_epu32 (X: msg2, Y: msg1); |
612 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 1); |
613 | msg0 = _mm_sha1msg1_epu32 (X: msg0, Y: msg1); |
614 | msg3 = _mm_xor_si128 (a: msg3, b: msg1); |
615 | |
616 | /* 40..43 */ |
617 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: msg2); |
618 | e1 = abcd; |
619 | msg3 = _mm_sha1msg2_epu32 (X: msg3, Y: msg2); |
620 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 2); |
621 | msg1 = _mm_sha1msg1_epu32 (X: msg1, Y: msg2); |
622 | msg0 = _mm_xor_si128 (a: msg0, b: msg2); |
623 | |
624 | /* 44..47 */ |
625 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg3); |
626 | e0 = abcd; |
627 | msg0 = _mm_sha1msg2_epu32 (X: msg0, Y: msg3); |
628 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 2); |
629 | msg2 = _mm_sha1msg1_epu32 (X: msg2, Y: msg3); |
630 | msg1 = _mm_xor_si128 (a: msg1, b: msg3); |
631 | |
632 | /* 48..51 */ |
633 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: msg0); |
634 | e1 = abcd; |
635 | msg1 = _mm_sha1msg2_epu32 (X: msg1, Y: msg0); |
636 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 2); |
637 | msg3 = _mm_sha1msg1_epu32 (X: msg3, Y: msg0); |
638 | msg2 = _mm_xor_si128 (a: msg2, b: msg0); |
639 | |
640 | /* 52..55 */ |
641 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg1); |
642 | e0 = abcd; |
643 | msg2 = _mm_sha1msg2_epu32 (X: msg2, Y: msg1); |
644 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 2); |
645 | msg0 = _mm_sha1msg1_epu32 (X: msg0, Y: msg1); |
646 | msg3 = _mm_xor_si128 (a: msg3, b: msg1); |
647 | |
648 | /* 56..59 */ |
649 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: msg2); |
650 | e1 = abcd; |
651 | msg3 = _mm_sha1msg2_epu32 (X: msg3, Y: msg2); |
652 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 2); |
653 | msg1 = _mm_sha1msg1_epu32 (X: msg1, Y: msg2); |
654 | msg0 = _mm_xor_si128 (a: msg0, b: msg2); |
655 | |
656 | /* 60..63 */ |
657 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg3); |
658 | e0 = abcd; |
659 | msg0 = _mm_sha1msg2_epu32 (X: msg0, Y: msg3); |
660 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 3); |
661 | msg2 = _mm_sha1msg1_epu32 (X: msg2, Y: msg3); |
662 | msg1 = _mm_xor_si128 (a: msg1, b: msg3); |
663 | |
664 | /* 64..67 */ |
665 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: msg0); |
666 | e1 = abcd; |
667 | msg1 = _mm_sha1msg2_epu32 (X: msg1, Y: msg0); |
668 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 3); |
669 | msg3 = _mm_sha1msg1_epu32 (X: msg3, Y: msg0); |
670 | msg2 = _mm_xor_si128 (a: msg2, b: msg0); |
671 | |
672 | /* 68..71 */ |
673 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg1); |
674 | e0 = abcd; |
675 | msg2 = _mm_sha1msg2_epu32 (X: msg2, Y: msg1); |
676 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 3); |
677 | msg3 = _mm_xor_si128 (a: msg3, b: msg1); |
678 | |
679 | /* 72..75 */ |
680 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: msg2); |
681 | e1 = abcd; |
682 | msg3 = _mm_sha1msg2_epu32 (X: msg3, Y: msg2); |
683 | abcd = _mm_sha1rnds4_epu32 (abcd, e0, 3); |
684 | |
685 | /* 76..79 */ |
686 | e1 = _mm_sha1nexte_epu32 (X: e1, Y: msg3); |
687 | e0 = abcd; |
688 | abcd = _mm_sha1rnds4_epu32 (abcd, e1, 3); |
689 | |
690 | /* Finalize. */ |
691 | e0 = _mm_sha1nexte_epu32 (X: e0, Y: e0_save); |
692 | abcd = _mm_add_epi32 (a: abcd, b: abcd_save); |
693 | |
694 | words = words + 4; |
695 | } |
696 | |
697 | abcd = _mm_shuffle_epi32 (abcd, 0x1b); /* 0, 1, 2, 3 */ |
698 | _mm_storeu_si128 (p: (__m128i *) &ctx->A, b: abcd); |
699 | ctx->E = _mm_extract_epi32 (e0, 3); |
700 | #endif |
701 | } |
702 | #endif |
703 | |
704 | /* Return sha1_process_bytes or some hardware optimized version thereof |
705 | depending on current CPU. */ |
706 | |
707 | sha1_process_bytes_fn |
708 | sha1_choose_process_bytes (void) |
709 | { |
710 | #ifdef HAVE_X86_SHA1_HW_SUPPORT |
711 | unsigned int eax, ebx, ecx, edx; |
712 | if (__get_cpuid_count (leaf: 7, subleaf: 0, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx) |
713 | && (ebx & bit_SHA) != 0 |
714 | && __get_cpuid (leaf: 1, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx) |
715 | && (ecx & bit_SSE4_1) != 0) |
716 | return sha1_hw_process_bytes; |
717 | #endif |
718 | return sha1_process_bytes; |
719 | } |
720 | |