| 1 | // |
| 2 | // SPDX-License-Identifier: BSD-3-Clause |
| 3 | // Copyright Contributors to the OpenEXR Project. |
| 4 | // |
| 5 | |
| 6 | // |
| 7 | // A representation of a shear transformation |
| 8 | // |
| 9 | |
| 10 | #ifndef INCLUDED_IMATHSHEAR_H |
| 11 | #define INCLUDED_IMATHSHEAR_H |
| 12 | |
| 13 | #include "ImathExport.h" |
| 14 | #include "ImathNamespace.h" |
| 15 | |
| 16 | #include "ImathMath.h" |
| 17 | #include "ImathVec.h" |
| 18 | #include <iostream> |
| 19 | |
| 20 | IMATH_INTERNAL_NAMESPACE_HEADER_ENTER |
| 21 | |
| 22 | /// |
| 23 | /// Shear6 class template. |
| 24 | /// |
| 25 | /// A shear matrix is technically defined as having a single nonzero |
| 26 | /// off-diagonal element; more generally, a shear transformation is |
| 27 | /// defined by those off-diagonal elements, so in 3D, that means there |
| 28 | /// are 6 possible elements/coefficients: |
| 29 | /// |
| 30 | /// | X' | | 1 YX ZX 0 | | X | |
| 31 | /// | Y' | | XY 1 ZY 0 | | Y | |
| 32 | /// | Z' | = | XZ YZ 1 0 | = | Z | |
| 33 | /// | 1 | | 0 0 0 1 | | 1 | |
| 34 | /// |
| 35 | /// X' = X + YX * Y + ZX * Z |
| 36 | /// Y' = YX * X + Y + ZY * Z |
| 37 | /// Z` = XZ * X + YZ * Y + Z |
| 38 | /// |
| 39 | /// See |
| 40 | /// https://www.cs.drexel.edu/~david/Classes/CS430/Lectures/L-04_3DTransformations.6.pdf |
| 41 | /// |
| 42 | /// Those variable elements correspond to the 6 values in a Shear6. |
| 43 | /// So, looking at those equations, "Shear YX", for example, means |
| 44 | /// that for any point transformed by that matrix, its X values will |
| 45 | /// have some of their Y values added. If you're talking |
| 46 | /// about "Axis A has values from Axis B added to it", there are 6 |
| 47 | /// permutations for A and B (XY, XZ, YX, YZ, ZX, ZY). |
| 48 | /// |
| 49 | /// Not that Maya has only three values, which represent the |
| 50 | /// lower/upper (depending on column/row major) triangle of the |
| 51 | /// matrix. Houdini is the same as Maya (see |
| 52 | /// https://www.sidefx.com/docs/houdini/props/obj.html) in this |
| 53 | /// respect. |
| 54 | /// |
| 55 | /// There's another way to look at it. A general affine transformation |
| 56 | /// in 3D has 12 degrees of freedom - 12 "available" elements in the |
| 57 | /// 4x4 matrix since a single row/column must be (0,0,0,1). If you |
| 58 | /// add up the degrees of freedom from Maya: |
| 59 | /// |
| 60 | /// - 3 translation |
| 61 | /// - 3 rotation |
| 62 | /// - 3 scale |
| 63 | /// - 3 shear |
| 64 | /// |
| 65 | /// You obviously get the full 12. So technically, the Shear6 option |
| 66 | /// of having all 6 shear options is overkill; Imath/Shear6 has 15 |
| 67 | /// values for a 12-degree-of-freedom transformation. This means that |
| 68 | /// any nonzero values in those last 3 shear coefficients can be |
| 69 | /// represented in those standard 12 degrees of freedom. Here's a |
| 70 | /// python example of how to do that: |
| 71 | /// |
| 72 | /// |
| 73 | /// >>> import imath |
| 74 | /// >>> M = imath.M44f() |
| 75 | /// >>> s = imath.V3f() |
| 76 | /// >>> h = imath.V3f() |
| 77 | /// >>> r = imath.V3f() |
| 78 | /// >>> t = imath.V3f() |
| 79 | /// # Use Shear.YX (index 3), which is an "extra" shear value |
| 80 | /// >>> M.setShear((0,0,0,1,0,0)) |
| 81 | /// M44f((1, 1, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)) |
| 82 | /// >>> M.extractSHRT(s, h, r, t) |
| 83 | /// 1 |
| 84 | /// >>> s |
| 85 | /// V3f(1.41421354, 0.707106769, 1) |
| 86 | /// >>> h |
| 87 | /// V3f(1, 0, 0) |
| 88 | /// >>> r |
| 89 | /// V3f(0, -0, 0.785398185) |
| 90 | /// >>> t |
| 91 | /// V3f(0, 0, 0) |
| 92 | /// |
| 93 | /// That shows how to decompose a transform matrix with one of those |
| 94 | /// "extra" shear coefficients into those standard 12 degrees of |
| 95 | /// freedom. But it's not necessarily intuitive; in this case, a |
| 96 | /// single non-zero shear coefficient resulted in a transform that has |
| 97 | /// non-uniform scale, a single "standard" shear value, and some |
| 98 | /// rotation. |
| 99 | /// |
| 100 | /// So, it would seem that any transform with those extra shear |
| 101 | /// values set could be translated into Maya to produce the exact same |
| 102 | /// transformation matrix; but doing this is probably pretty |
| 103 | /// undesirable, since the result would have some surprising values on |
| 104 | /// the other transformation attributes, despite being technically |
| 105 | /// correct. |
| 106 | /// |
| 107 | /// This usage of "degrees of freedom" is a bit hand-wavey here; |
| 108 | /// having a total of 12 inputs into the construction of a standard |
| 109 | /// transformation matrix doesn't necessarily mean that the matrix has |
| 110 | /// 12 true degrees of freedom, but the standard |
| 111 | /// translation/rotation/scale/shear matrices have the right |
| 112 | /// construction to ensure that. |
| 113 | /// |
| 114 | |
| 115 | template <class T> class IMATH_EXPORT_TEMPLATE_TYPE Shear6 |
| 116 | { |
| 117 | public: |
| 118 | |
| 119 | /// @{ |
| 120 | /// @name Direct access to members |
| 121 | |
| 122 | T xy, xz, yz, yx, zx, zy; |
| 123 | |
| 124 | /// @} |
| 125 | |
| 126 | /// Element access |
| 127 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 T& operator[] (int i); |
| 128 | |
| 129 | /// Element access |
| 130 | IMATH_HOSTDEVICE constexpr const T& operator[] (int i) const; |
| 131 | |
| 132 | /// @{ |
| 133 | /// @name Constructors and Assignment |
| 134 | |
| 135 | /// Initialize to 0 |
| 136 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6(); |
| 137 | |
| 138 | /// Initialize to the given XY, XZ, YZ values |
| 139 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (T XY, T XZ, T YZ); |
| 140 | |
| 141 | /// Initialize to the given XY, XZ, YZ values held in (v.x, v.y, v.z) |
| 142 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (const Vec3<T>& v); |
| 143 | |
| 144 | /// Initialize to the given XY, XZ, YZ values held in (v.x, v.y, v.z) |
| 145 | template <class S> |
| 146 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (const Vec3<S>& v); |
| 147 | |
| 148 | /// Initialize to the given (XY XZ YZ YX ZX ZY) values |
| 149 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (T XY, |
| 150 | T XZ, |
| 151 | T YZ, |
| 152 | T YX, |
| 153 | T ZX, |
| 154 | T ZY); |
| 155 | |
| 156 | /// Copy constructor |
| 157 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (const Shear6& h); |
| 158 | |
| 159 | /// Construct from a Shear6 object of another base type |
| 160 | template <class S> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (const Shear6<S>& h); |
| 161 | |
| 162 | /// Assignment |
| 163 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator= (const Shear6& h); |
| 164 | |
| 165 | /// Assignment from vector |
| 166 | template <class S> |
| 167 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator= (const Vec3<S>& v); |
| 168 | |
| 169 | /// Destructor |
| 170 | ~Shear6() = default; |
| 171 | |
| 172 | /// @} |
| 173 | |
| 174 | /// @{ |
| 175 | /// @name Compatibility with Sb |
| 176 | |
| 177 | /// Set the value |
| 178 | template <class S> IMATH_HOSTDEVICE void setValue (S XY, S XZ, S YZ, S YX, S ZX, S ZY); |
| 179 | |
| 180 | /// Set the value |
| 181 | template <class S> IMATH_HOSTDEVICE void setValue (const Shear6<S>& h); |
| 182 | |
| 183 | /// Return the values |
| 184 | template <class S> |
| 185 | IMATH_HOSTDEVICE void getValue (S& XY, S& XZ, S& YZ, S& YX, S& ZX, S& ZY) const; |
| 186 | |
| 187 | /// Return the value in `h` |
| 188 | template <class S> IMATH_HOSTDEVICE void getValue (Shear6<S>& h) const; |
| 189 | |
| 190 | /// Return a raw pointer to the array of values |
| 191 | IMATH_HOSTDEVICE T* getValue(); |
| 192 | |
| 193 | /// Return a raw pointer to the array of values |
| 194 | IMATH_HOSTDEVICE const T* getValue() const; |
| 195 | |
| 196 | /// @} |
| 197 | |
| 198 | /// @{ |
| 199 | /// @name Arithmetic and Comparison |
| 200 | |
| 201 | /// Equality |
| 202 | template <class S> IMATH_HOSTDEVICE constexpr bool operator== (const Shear6<S>& h) const; |
| 203 | |
| 204 | /// Inequality |
| 205 | template <class S> IMATH_HOSTDEVICE constexpr bool operator!= (const Shear6<S>& h) const; |
| 206 | |
| 207 | /// Compare two shears and test if they are "approximately equal": |
| 208 | /// @return True if the coefficients of this and h are the same with |
| 209 | /// an absolute error of no more than e, i.e., for all i |
| 210 | /// abs (this[i] - h[i]) <= e |
| 211 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithAbsError (const Shear6<T>& h, T e) const; |
| 212 | |
| 213 | /// Compare two shears and test if they are "approximately equal": |
| 214 | /// @return True if the coefficients of this and h are the same with |
| 215 | /// a relative error of no more than e, i.e., for all i |
| 216 | /// abs (this[i] - h[i]) <= e * abs (this[i]) |
| 217 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithRelError (const Shear6<T>& h, T e) const; |
| 218 | |
| 219 | /// Component-wise addition |
| 220 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator+= (const Shear6& h); |
| 221 | |
| 222 | /// Component-wise addition |
| 223 | IMATH_HOSTDEVICE constexpr Shear6 operator+ (const Shear6& h) const; |
| 224 | |
| 225 | /// Component-wise subtraction |
| 226 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator-= (const Shear6& h); |
| 227 | |
| 228 | /// Component-wise subtraction |
| 229 | IMATH_HOSTDEVICE constexpr Shear6 operator- (const Shear6& h) const; |
| 230 | |
| 231 | /// Component-wise multiplication by -1 |
| 232 | IMATH_HOSTDEVICE constexpr Shear6 operator-() const; |
| 233 | |
| 234 | /// Component-wise multiplication by -1 |
| 235 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& negate(); |
| 236 | |
| 237 | /// Component-wise multiplication |
| 238 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator*= (const Shear6& h); |
| 239 | /// Scalar multiplication |
| 240 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator*= (T a); |
| 241 | |
| 242 | /// Component-wise multiplication |
| 243 | IMATH_HOSTDEVICE constexpr Shear6 operator* (const Shear6& h) const; |
| 244 | |
| 245 | /// Scalar multiplication |
| 246 | IMATH_HOSTDEVICE constexpr Shear6 operator* (T a) const; |
| 247 | |
| 248 | /// Component-wise division |
| 249 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator/= (const Shear6& h); |
| 250 | |
| 251 | /// Scalar division |
| 252 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator/= (T a); |
| 253 | |
| 254 | /// Component-wise division |
| 255 | IMATH_HOSTDEVICE constexpr Shear6 operator/ (const Shear6& h) const; |
| 256 | |
| 257 | /// Scalar division |
| 258 | IMATH_HOSTDEVICE constexpr Shear6 operator/ (T a) const; |
| 259 | |
| 260 | /// @} |
| 261 | |
| 262 | /// @{ |
| 263 | /// @name Numerical Limits |
| 264 | |
| 265 | /// Largest possible negative value |
| 266 | IMATH_HOSTDEVICE constexpr static T baseTypeLowest() IMATH_NOEXCEPT { return std::numeric_limits<T>::lowest(); } |
| 267 | |
| 268 | /// Largest possible positive value |
| 269 | IMATH_HOSTDEVICE constexpr static T baseTypeMax() IMATH_NOEXCEPT { return std::numeric_limits<T>::max(); } |
| 270 | |
| 271 | /// Smallest possible positive value |
| 272 | IMATH_HOSTDEVICE constexpr static T baseTypeSmallest() IMATH_NOEXCEPT { return std::numeric_limits<T>::min(); } |
| 273 | |
| 274 | /// Smallest possible e for which 1+e != 1 |
| 275 | IMATH_HOSTDEVICE constexpr static T baseTypeEpsilon() IMATH_NOEXCEPT { return std::numeric_limits<T>::epsilon(); } |
| 276 | |
| 277 | /// @} |
| 278 | |
| 279 | /// Return the number of dimensions, i.e. 6 |
| 280 | IMATH_HOSTDEVICE constexpr static unsigned int dimensions() { return 6; } |
| 281 | |
| 282 | /// The base type: In templates that accept a parameter `V` (could |
| 283 | /// be a Color4), you can refer to `T` as `V::BaseType` |
| 284 | typedef T BaseType; |
| 285 | }; |
| 286 | |
| 287 | /// Stream output, as "(xy xz yz yx zx zy)" |
| 288 | template <class T> std::ostream& operator<< (std::ostream& s, const Shear6<T>& h); |
| 289 | |
| 290 | /// Reverse multiplication: scalar * Shear6<T> |
| 291 | template <class S, class T> |
| 292 | IMATH_HOSTDEVICE constexpr Shear6<T> operator* (S a, const Shear6<T>& h); |
| 293 | |
| 294 | /// 3D shear of type float |
| 295 | typedef Vec3<float> Shear3f; |
| 296 | |
| 297 | /// 3D shear of type double |
| 298 | typedef Vec3<double> Shear3d; |
| 299 | |
| 300 | /// Shear6 of type float |
| 301 | typedef Shear6<float> Shear6f; |
| 302 | |
| 303 | /// Shear6 of type double |
| 304 | typedef Shear6<double> Shear6d; |
| 305 | |
| 306 | //----------------------- |
| 307 | // Implementation of Shear6 |
| 308 | //----------------------- |
| 309 | |
| 310 | template <class T> |
| 311 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline T& |
| 312 | Shear6<T>::operator[] (int i) |
| 313 | { |
| 314 | return (&xy)[i]; // NOSONAR - suppress SonarCloud bug report. |
| 315 | } |
| 316 | |
| 317 | template <class T> |
| 318 | IMATH_HOSTDEVICE constexpr inline const T& |
| 319 | Shear6<T>::operator[] (int i) const |
| 320 | { |
| 321 | return (&xy)[i]; // NOSONAR - suppress SonarCloud bug report. |
| 322 | } |
| 323 | |
| 324 | template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6() |
| 325 | { |
| 326 | xy = xz = yz = yx = zx = zy = 0; |
| 327 | } |
| 328 | |
| 329 | template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (T XY, T XZ, T YZ) |
| 330 | { |
| 331 | xy = XY; |
| 332 | xz = XZ; |
| 333 | yz = YZ; |
| 334 | yx = 0; |
| 335 | zx = 0; |
| 336 | zy = 0; |
| 337 | } |
| 338 | |
| 339 | template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (const Vec3<T>& v) |
| 340 | { |
| 341 | xy = v.x; |
| 342 | xz = v.y; |
| 343 | yz = v.z; |
| 344 | yx = 0; |
| 345 | zx = 0; |
| 346 | zy = 0; |
| 347 | } |
| 348 | |
| 349 | template <class T> |
| 350 | template <class S> |
| 351 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (const Vec3<S>& v) |
| 352 | { |
| 353 | xy = T (v.x); |
| 354 | xz = T (v.y); |
| 355 | yz = T (v.z); |
| 356 | yx = 0; |
| 357 | zx = 0; |
| 358 | zy = 0; |
| 359 | } |
| 360 | |
| 361 | template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (T XY, T XZ, T YZ, T YX, T ZX, T ZY) |
| 362 | { |
| 363 | xy = XY; |
| 364 | xz = XZ; |
| 365 | yz = YZ; |
| 366 | yx = YX; |
| 367 | zx = ZX; |
| 368 | zy = ZY; |
| 369 | } |
| 370 | |
| 371 | template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (const Shear6& h) |
| 372 | { |
| 373 | xy = h.xy; |
| 374 | xz = h.xz; |
| 375 | yz = h.yz; |
| 376 | yx = h.yx; |
| 377 | zx = h.zx; |
| 378 | zy = h.zy; |
| 379 | } |
| 380 | |
| 381 | template <class T> |
| 382 | template <class S> |
| 383 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (const Shear6<S>& h) |
| 384 | { |
| 385 | xy = T (h.xy); |
| 386 | xz = T (h.xz); |
| 387 | yz = T (h.yz); |
| 388 | yx = T (h.yx); |
| 389 | zx = T (h.zx); |
| 390 | zy = T (h.zy); |
| 391 | } |
| 392 | |
| 393 | template <class T> |
| 394 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>& |
| 395 | Shear6<T>::operator= (const Shear6& h) |
| 396 | { |
| 397 | xy = h.xy; |
| 398 | xz = h.xz; |
| 399 | yz = h.yz; |
| 400 | yx = h.yx; |
| 401 | zx = h.zx; |
| 402 | zy = h.zy; |
| 403 | return *this; |
| 404 | } |
| 405 | |
| 406 | template <class T> |
| 407 | template <class S> |
| 408 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>& |
| 409 | Shear6<T>::operator= (const Vec3<S>& v) |
| 410 | { |
| 411 | xy = T (v.x); |
| 412 | xz = T (v.y); |
| 413 | yz = T (v.z); |
| 414 | yx = 0; |
| 415 | zx = 0; |
| 416 | zy = 0; |
| 417 | return *this; |
| 418 | } |
| 419 | |
| 420 | template <class T> |
| 421 | template <class S> |
| 422 | IMATH_HOSTDEVICE inline void |
| 423 | Shear6<T>::setValue (S XY, S XZ, S YZ, S YX, S ZX, S ZY) |
| 424 | { |
| 425 | xy = T (XY); |
| 426 | xz = T (XZ); |
| 427 | yz = T (YZ); |
| 428 | yx = T (YX); |
| 429 | zx = T (ZX); |
| 430 | zy = T (ZY); |
| 431 | } |
| 432 | |
| 433 | template <class T> |
| 434 | template <class S> |
| 435 | IMATH_HOSTDEVICE inline void |
| 436 | Shear6<T>::setValue (const Shear6<S>& h) |
| 437 | { |
| 438 | xy = T (h.xy); |
| 439 | xz = T (h.xz); |
| 440 | yz = T (h.yz); |
| 441 | yx = T (h.yx); |
| 442 | zx = T (h.zx); |
| 443 | zy = T (h.zy); |
| 444 | } |
| 445 | |
| 446 | template <class T> |
| 447 | template <class S> |
| 448 | IMATH_HOSTDEVICE inline void |
| 449 | Shear6<T>::getValue (S& XY, S& XZ, S& YZ, S& YX, S& ZX, S& ZY) const |
| 450 | { |
| 451 | XY = S (xy); |
| 452 | XZ = S (xz); |
| 453 | YZ = S (yz); |
| 454 | YX = S (yx); |
| 455 | ZX = S (zx); |
| 456 | ZY = S (zy); |
| 457 | } |
| 458 | |
| 459 | template <class T> |
| 460 | template <class S> |
| 461 | IMATH_HOSTDEVICE inline void |
| 462 | Shear6<T>::getValue (Shear6<S>& h) const |
| 463 | { |
| 464 | h.xy = S (xy); |
| 465 | h.xz = S (xz); |
| 466 | h.yz = S (yz); |
| 467 | h.yx = S (yx); |
| 468 | h.zx = S (zx); |
| 469 | h.zy = S (zy); |
| 470 | } |
| 471 | |
| 472 | template <class T> |
| 473 | IMATH_HOSTDEVICE inline T* |
| 474 | Shear6<T>::getValue() |
| 475 | { |
| 476 | return (T*) &xy; |
| 477 | } |
| 478 | |
| 479 | template <class T> |
| 480 | IMATH_HOSTDEVICE inline const T* |
| 481 | Shear6<T>::getValue() const |
| 482 | { |
| 483 | return (const T*) &xy; |
| 484 | } |
| 485 | |
| 486 | template <class T> |
| 487 | template <class S> |
| 488 | IMATH_HOSTDEVICE constexpr inline bool |
| 489 | Shear6<T>::operator== (const Shear6<S>& h) const |
| 490 | { |
| 491 | return xy == h.xy && xz == h.xz && yz == h.yz && yx == h.yx && zx == h.zx && zy == h.zy; |
| 492 | } |
| 493 | |
| 494 | template <class T> |
| 495 | template <class S> |
| 496 | IMATH_HOSTDEVICE constexpr inline bool |
| 497 | Shear6<T>::operator!= (const Shear6<S>& h) const |
| 498 | { |
| 499 | return xy != h.xy || xz != h.xz || yz != h.yz || yx != h.yx || zx != h.zx || zy != h.zy; |
| 500 | } |
| 501 | |
| 502 | template <class T> |
| 503 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool |
| 504 | Shear6<T>::equalWithAbsError (const Shear6<T>& h, T e) const |
| 505 | { |
| 506 | for (int i = 0; i < 6; i++) |
| 507 | if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], h[i], e)) |
| 508 | return false; |
| 509 | |
| 510 | return true; |
| 511 | } |
| 512 | |
| 513 | template <class T> |
| 514 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool |
| 515 | Shear6<T>::equalWithRelError (const Shear6<T>& h, T e) const |
| 516 | { |
| 517 | for (int i = 0; i < 6; i++) |
| 518 | if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], h[i], e)) |
| 519 | return false; |
| 520 | |
| 521 | return true; |
| 522 | } |
| 523 | |
| 524 | template <class T> |
| 525 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>& |
| 526 | Shear6<T>::operator+= (const Shear6& h) |
| 527 | { |
| 528 | xy += h.xy; |
| 529 | xz += h.xz; |
| 530 | yz += h.yz; |
| 531 | yx += h.yx; |
| 532 | zx += h.zx; |
| 533 | zy += h.zy; |
| 534 | return *this; |
| 535 | } |
| 536 | |
| 537 | template <class T> |
| 538 | IMATH_HOSTDEVICE constexpr inline Shear6<T> |
| 539 | Shear6<T>::operator+ (const Shear6& h) const |
| 540 | { |
| 541 | return Shear6 (xy + h.xy, xz + h.xz, yz + h.yz, yx + h.yx, zx + h.zx, zy + h.zy); |
| 542 | } |
| 543 | |
| 544 | template <class T> |
| 545 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>& |
| 546 | Shear6<T>::operator-= (const Shear6& h) |
| 547 | { |
| 548 | xy -= h.xy; |
| 549 | xz -= h.xz; |
| 550 | yz -= h.yz; |
| 551 | yx -= h.yx; |
| 552 | zx -= h.zx; |
| 553 | zy -= h.zy; |
| 554 | return *this; |
| 555 | } |
| 556 | |
| 557 | template <class T> |
| 558 | IMATH_HOSTDEVICE constexpr inline Shear6<T> |
| 559 | Shear6<T>::operator- (const Shear6& h) const |
| 560 | { |
| 561 | return Shear6 (xy - h.xy, xz - h.xz, yz - h.yz, yx - h.yx, zx - h.zx, zy - h.zy); |
| 562 | } |
| 563 | |
| 564 | template <class T> |
| 565 | IMATH_HOSTDEVICE constexpr inline Shear6<T> |
| 566 | Shear6<T>::operator-() const |
| 567 | { |
| 568 | return Shear6 (-xy, -xz, -yz, -yx, -zx, -zy); |
| 569 | } |
| 570 | |
| 571 | template <class T> |
| 572 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>& |
| 573 | Shear6<T>::negate() |
| 574 | { |
| 575 | xy = -xy; |
| 576 | xz = -xz; |
| 577 | yz = -yz; |
| 578 | yx = -yx; |
| 579 | zx = -zx; |
| 580 | zy = -zy; |
| 581 | return *this; |
| 582 | } |
| 583 | |
| 584 | template <class T> |
| 585 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>& |
| 586 | Shear6<T>::operator*= (const Shear6& h) |
| 587 | { |
| 588 | xy *= h.xy; |
| 589 | xz *= h.xz; |
| 590 | yz *= h.yz; |
| 591 | yx *= h.yx; |
| 592 | zx *= h.zx; |
| 593 | zy *= h.zy; |
| 594 | return *this; |
| 595 | } |
| 596 | |
| 597 | template <class T> |
| 598 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>& |
| 599 | Shear6<T>::operator*= (T a) |
| 600 | { |
| 601 | xy *= a; |
| 602 | xz *= a; |
| 603 | yz *= a; |
| 604 | yx *= a; |
| 605 | zx *= a; |
| 606 | zy *= a; |
| 607 | return *this; |
| 608 | } |
| 609 | |
| 610 | template <class T> |
| 611 | IMATH_HOSTDEVICE constexpr inline Shear6<T> |
| 612 | Shear6<T>::operator* (const Shear6& h) const |
| 613 | { |
| 614 | return Shear6 (xy * h.xy, xz * h.xz, yz * h.yz, yx * h.yx, zx * h.zx, zy * h.zy); |
| 615 | } |
| 616 | |
| 617 | template <class T> |
| 618 | IMATH_HOSTDEVICE constexpr inline Shear6<T> |
| 619 | Shear6<T>::operator* (T a) const |
| 620 | { |
| 621 | return Shear6 (xy * a, xz * a, yz * a, yx * a, zx * a, zy * a); |
| 622 | } |
| 623 | |
| 624 | template <class T> |
| 625 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>& |
| 626 | Shear6<T>::operator/= (const Shear6& h) |
| 627 | { |
| 628 | xy /= h.xy; |
| 629 | xz /= h.xz; |
| 630 | yz /= h.yz; |
| 631 | yx /= h.yx; |
| 632 | zx /= h.zx; |
| 633 | zy /= h.zy; |
| 634 | return *this; |
| 635 | } |
| 636 | |
| 637 | template <class T> |
| 638 | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>& |
| 639 | Shear6<T>::operator/= (T a) |
| 640 | { |
| 641 | xy /= a; |
| 642 | xz /= a; |
| 643 | yz /= a; |
| 644 | yx /= a; |
| 645 | zx /= a; |
| 646 | zy /= a; |
| 647 | return *this; |
| 648 | } |
| 649 | |
| 650 | template <class T> |
| 651 | IMATH_HOSTDEVICE constexpr inline Shear6<T> |
| 652 | Shear6<T>::operator/ (const Shear6& h) const |
| 653 | { |
| 654 | return Shear6 (xy / h.xy, xz / h.xz, yz / h.yz, yx / h.yx, zx / h.zx, zy / h.zy); |
| 655 | } |
| 656 | |
| 657 | template <class T> |
| 658 | IMATH_HOSTDEVICE constexpr inline Shear6<T> |
| 659 | Shear6<T>::operator/ (T a) const |
| 660 | { |
| 661 | return Shear6 (xy / a, xz / a, yz / a, yx / a, zx / a, zy / a); |
| 662 | } |
| 663 | |
| 664 | //----------------------------- |
| 665 | // Stream output implementation |
| 666 | //----------------------------- |
| 667 | |
| 668 | template <class T> |
| 669 | std::ostream& |
| 670 | operator<< (std::ostream& s, const Shear6<T>& h) |
| 671 | { |
| 672 | return s << '(' << h.xy << ' ' << h.xz << ' ' << h.yz << h.yx << ' ' << h.zx << ' ' << h.zy |
| 673 | << ')'; |
| 674 | } |
| 675 | |
| 676 | //----------------------------------------- |
| 677 | // Implementation of reverse multiplication |
| 678 | //----------------------------------------- |
| 679 | |
| 680 | template <class S, class T> |
| 681 | IMATH_HOSTDEVICE constexpr inline Shear6<T> |
| 682 | operator* (S a, const Shear6<T>& h) |
| 683 | { |
| 684 | return Shear6<T> (a * h.xy, a * h.xz, a * h.yz, a * h.yx, a * h.zx, a * h.zy); |
| 685 | } |
| 686 | |
| 687 | IMATH_INTERNAL_NAMESPACE_HEADER_EXIT |
| 688 | |
| 689 | #endif // INCLUDED_IMATHSHEAR_H |
| 690 | |