| 1 | // |
| 2 | // SPDX-License-Identifier: BSD-3-Clause |
| 3 | // Copyright Contributors to the OpenEXR Project. |
| 4 | // |
| 5 | |
| 6 | // |
| 7 | // This file contains type traits related to or used by the Imath library. |
| 8 | // |
| 9 | |
| 10 | #ifndef INCLUDED_IMATHTYPETRAITS_H |
| 11 | #define INCLUDED_IMATHTYPETRAITS_H |
| 12 | |
| 13 | #include <type_traits> |
| 14 | |
| 15 | #include "ImathPlatform.h" |
| 16 | |
| 17 | IMATH_INTERNAL_NAMESPACE_HEADER_ENTER |
| 18 | |
| 19 | |
| 20 | /// Define Imath::enable_if_t to be std for C++14, equivalent for C++11. |
| 21 | #if (IMATH_CPLUSPLUS_VERSION >= 14) |
| 22 | using std::enable_if_t; // Use C++14 std::enable_if_t |
| 23 | #else |
| 24 | // Define enable_if_t for C++11 |
| 25 | template <bool B, class T = void> |
| 26 | using enable_if_t = typename std::enable_if<B, T>::type; |
| 27 | #endif |
| 28 | |
| 29 | |
| 30 | /// An enable_if helper to be used in template parameters which results in |
| 31 | /// much shorter symbols. |
| 32 | #define IMATH_ENABLE_IF(...) IMATH_INTERNAL_NAMESPACE::enable_if_t<(__VA_ARGS__), int> = 0 |
| 33 | |
| 34 | |
| 35 | #if IMATH_FOREIGN_VECTOR_INTEROP |
| 36 | |
| 37 | /// @{ |
| 38 | /// @name Detecting interoperable types. |
| 39 | /// |
| 40 | /// In order to construct or assign from external "compatible" types without |
| 41 | /// prior knowledge of their definitions, we have a few helper type traits. |
| 42 | /// The intent of these is to allow custom linear algebra types in an |
| 43 | /// application that have seamless conversion to and from Imath types. |
| 44 | /// |
| 45 | /// `has_xy<T,Base>`, `has_xyz<T,Base>`, `has_xyzw<T,Base>` detect if class |
| 46 | /// `T` has elements `.x`, `.y`, and `.z` all of type `Base` and seems to be |
| 47 | /// the right size to hold exactly those members and nothing more. |
| 48 | /// |
| 49 | /// `has_subscript<T,Base,N>` detects if class `T` can perform `T[int]` |
| 50 | /// to yield a `Base`, and that it seems to be exactly the right size to |
| 51 | /// hold `N` of those elements. |
| 52 | /// |
| 53 | /// This is not exact. It's possible that for a particular user-defined |
| 54 | /// type, this may yield a false negative or false positive. For example: |
| 55 | /// * A class for a 3-vector that contains an extra element of padding |
| 56 | /// so that it will have the right size and alignment to use 4-wide |
| 57 | /// SIMD math ops will appear to be the wrong size. |
| 58 | /// * A `std::vector<T>` is subscriptable and might have N elements at |
| 59 | /// runtime, but the size is dynamic and so would fail this test. |
| 60 | /// * A foreign type may have .x, .y, .z that are not matching our base |
| 61 | /// type but we still want it to work (with appropriate conversions). |
| 62 | /// |
| 63 | /// In these cases, user code may declare an exception -- for example, |
| 64 | /// stating that `mytype` should be considered implicitly convertible to |
| 65 | /// an Imath::V3f by subscripting: |
| 66 | /// |
| 67 | /// template<> |
| 68 | /// struct Imath::has_subscript<mytype, float, 3> : public std::true_type { }; |
| 69 | /// |
| 70 | /// And similarly, user code may correct a potential false positive (that |
| 71 | /// is, a `mytype` looks like it should be convertible to a V3f, but you |
| 72 | /// don't want it to ever happen): |
| 73 | /// |
| 74 | /// template<typename B, int N> |
| 75 | /// struct Imath::has_subscript<mytype, B, N> : public std::false_type { }; |
| 76 | /// |
| 77 | |
| 78 | |
| 79 | /// `has_xy<T,Base>::value` will be true if type `T` has member variables |
| 80 | /// `.x` and `.y`, all of type `Base`, and the size of a `T` is exactly big |
| 81 | /// enough to hold 2 Base values. |
| 82 | template <typename T, typename Base> |
| 83 | struct has_xy { |
| 84 | private: |
| 85 | typedef char Yes[1]; |
| 86 | typedef char No[2]; |
| 87 | |
| 88 | // Valid only if .x, .y exist and are the right type: return a Yes. |
| 89 | template<typename C, |
| 90 | IMATH_ENABLE_IF(std::is_same<decltype(C().x), Base>::value), |
| 91 | IMATH_ENABLE_IF(std::is_same<decltype(C().y), Base>::value)> |
| 92 | static Yes& test(int); |
| 93 | |
| 94 | // Fallback, default to returning a No. |
| 95 | template<typename C> static No& test(...); |
| 96 | public: |
| 97 | enum { value = (sizeof(test<T>(0)) == sizeof(Yes) |
| 98 | && sizeof(T) == 2*sizeof(Base)) |
| 99 | }; |
| 100 | }; |
| 101 | |
| 102 | |
| 103 | /// `has_xyz<T,Base>::value` will be true if type `T` has member variables |
| 104 | /// `.x`, `.y`, and `.z`, all of type `Base`, and the size of a `T` is |
| 105 | /// exactly big enough to hold 3 Base values. |
| 106 | template <typename T, typename Base> |
| 107 | struct has_xyz { |
| 108 | private: |
| 109 | typedef char Yes[1]; |
| 110 | typedef char No[2]; |
| 111 | |
| 112 | // Valid only if .x, .y, .z exist and are the right type: return a Yes. |
| 113 | template<typename C, |
| 114 | IMATH_ENABLE_IF(std::is_same<decltype(C().x), Base>::value), |
| 115 | IMATH_ENABLE_IF(std::is_same<decltype(C().y), Base>::value), |
| 116 | IMATH_ENABLE_IF(std::is_same<decltype(C().z), Base>::value)> |
| 117 | static Yes& test(int); |
| 118 | |
| 119 | // Fallback, default to returning a No. |
| 120 | template<typename C> static No& test(...); |
| 121 | public: |
| 122 | enum { value = (sizeof(test<T>(0)) == sizeof(Yes) |
| 123 | && sizeof(T) == 3*sizeof(Base)) |
| 124 | }; |
| 125 | }; |
| 126 | |
| 127 | |
| 128 | /// `has_xyzw<T,Base>::value` will be true if type `T` has member variables |
| 129 | /// `.x`, `.y`, `.z`, and `.w`, all of type `Base`, and the size of a `T` is |
| 130 | /// exactly big enough to hold 4 Base values. |
| 131 | template <typename T, typename Base> |
| 132 | struct has_xyzw { |
| 133 | private: |
| 134 | typedef char Yes[1]; |
| 135 | typedef char No[2]; |
| 136 | |
| 137 | // Valid only if .x, .y, .z, .w exist and are the right type: return a Yes. |
| 138 | template<typename C, |
| 139 | IMATH_ENABLE_IF(std::is_same<decltype(C().x), Base>::value), |
| 140 | IMATH_ENABLE_IF(std::is_same<decltype(C().y), Base>::value), |
| 141 | IMATH_ENABLE_IF(std::is_same<decltype(C().z), Base>::value), |
| 142 | IMATH_ENABLE_IF(std::is_same<decltype(C().w), Base>::value)> |
| 143 | static Yes& test(int); |
| 144 | |
| 145 | // Fallback, default to returning a No. |
| 146 | template<typename C> static No& test(...); |
| 147 | public: |
| 148 | enum { value = (sizeof(test<T>(0)) == sizeof(Yes) |
| 149 | && sizeof(T) == 4*sizeof(Base)) |
| 150 | }; |
| 151 | }; |
| 152 | |
| 153 | |
| 154 | |
| 155 | /// `has_subscript<T,Base,Nelem>::value` will be true if type `T` has |
| 156 | /// subscripting syntax, a `T[int]` returns a `Base`, and the size of a `T` |
| 157 | /// is exactly big enough to hold `Nelem` `Base` values. |
| 158 | template <typename T, typename Base, int Nelem> |
| 159 | struct has_subscript { |
| 160 | private: |
| 161 | typedef char Yes[1]; |
| 162 | typedef char No[2]; |
| 163 | |
| 164 | // Valid only if T[] is possible and is the right type: return a Yes. |
| 165 | template<typename C, |
| 166 | IMATH_ENABLE_IF(std::is_same<typename std::decay<decltype(C()[0])>::type, Base>::value)> |
| 167 | static Yes& test(int); |
| 168 | |
| 169 | // Fallback, default to returning a No. |
| 170 | template<typename C> static No& test(...); |
| 171 | public: |
| 172 | enum { value = (sizeof(test<T>(0)) == sizeof(Yes) |
| 173 | && sizeof(T) == Nelem*sizeof(Base)) |
| 174 | }; |
| 175 | }; |
| 176 | |
| 177 | |
| 178 | /// C arrays of just the right length also are qualified for has_subscript. |
| 179 | template<typename Base, int Nelem> |
| 180 | struct has_subscript<Base[Nelem], Base, Nelem> : public std::true_type { }; |
| 181 | |
| 182 | |
| 183 | |
| 184 | /// `has_double_subscript<T,Base,Rows,Cols>::value` will be true if type `T` |
| 185 | /// has 2-level subscripting syntax, a `T[int][int]` returns a `Base`, and |
| 186 | /// the size of a `T` is exactly big enough to hold `R*C` `Base` values. |
| 187 | template <typename T, typename Base, int Rows, int Cols> |
| 188 | struct has_double_subscript { |
| 189 | private: |
| 190 | typedef char Yes[1]; |
| 191 | typedef char No[2]; |
| 192 | |
| 193 | // Valid only if T[][] is possible and is the right type: return a Yes. |
| 194 | template<typename C, |
| 195 | IMATH_ENABLE_IF(std::is_same<typename std::decay<decltype(C()[0][0])>::type, Base>::value)> |
| 196 | static Yes& test(int); |
| 197 | |
| 198 | // Fallback, default to returning a No. |
| 199 | template<typename C> static No& test(...); |
| 200 | public: |
| 201 | enum { value = (sizeof(test<T>(0)) == sizeof(Yes) |
| 202 | && sizeof(T) == (Rows*Cols)*sizeof(Base)) |
| 203 | }; |
| 204 | }; |
| 205 | |
| 206 | |
| 207 | /// C arrays of just the right length also are qualified for has_double_subscript. |
| 208 | template<typename Base, int Rows, int Cols> |
| 209 | struct has_double_subscript<Base[Rows][Cols], Base, Rows, Cols> : public std::true_type { }; |
| 210 | |
| 211 | /// @} |
| 212 | |
| 213 | #endif |
| 214 | |
| 215 | IMATH_INTERNAL_NAMESPACE_HEADER_EXIT |
| 216 | |
| 217 | #endif // INCLUDED_IMATHTYPETRAITS_H |
| 218 | |