1 | /* |
2 | xcf.cpp: A Qt 5 plug-in for reading GIMP XCF image files |
3 | SPDX-FileCopyrightText: 2001 lignum Computing Inc. <allen@lignumcomputing.com> |
4 | SPDX-FileCopyrightText: 2004 Melchior FRANZ <mfranz@kde.org> |
5 | |
6 | SPDX-License-Identifier: LGPL-2.1-or-later |
7 | */ |
8 | |
9 | #include "util_p.h" |
10 | #include "xcf_p.h" |
11 | |
12 | #include <QColorSpace> |
13 | #include <QDebug> |
14 | #include <QIODevice> |
15 | #include <QImage> |
16 | #include <QImageReader> |
17 | #include <QList> |
18 | #include <QLoggingCategory> |
19 | #include <QPainter> |
20 | #include <QStack> |
21 | #include <QtEndian> |
22 | |
23 | #ifndef XCF_QT5_SUPPORT |
24 | // Float images are not supported by Qt 5 and can be disabled in QT 6 to reduce memory usage. |
25 | // Unfortunately enabling/disabling this define results in slightly different images, so leave the default if possible. |
26 | #define USE_FLOAT_IMAGES // default uncommented |
27 | |
28 | // Let's set a "reasonable" maximum size |
29 | #define MAX_IMAGE_WIDTH 300000 |
30 | #define MAX_IMAGE_HEIGHT 300000 |
31 | #else |
32 | // While it is possible to have images larger than 32767 pixels, QPainter seems unable to go beyond this threshold using Qt 5. |
33 | #define MAX_IMAGE_WIDTH 32767 |
34 | #define MAX_IMAGE_HEIGHT 32767 |
35 | #endif |
36 | |
37 | #ifdef USE_FLOAT_IMAGES |
38 | #include <qrgbafloat.h> |
39 | #endif |
40 | |
41 | #include <stdlib.h> |
42 | #include <string.h> |
43 | |
44 | #include "gimp_p.h" |
45 | |
46 | Q_DECLARE_LOGGING_CATEGORY(XCFPLUGIN) |
47 | Q_LOGGING_CATEGORY(XCFPLUGIN, "kf.imageformats.plugins.xcf" , QtWarningMsg) |
48 | |
49 | //#define DISABLE_TILE_PROFILE // default commented (comment to use the conversion as intended by Martin) |
50 | #define DISABLE_IMAGE_PROFILE // default uncommented (comment to use the conversion as intended by Martin) |
51 | #define DISABLE_TILE_PROFILE_CONV // default uncommented (comment to use the conversion as intended by Martin) |
52 | #define DISABLE_IMAGE_PROFILE_CONV // default uncommented (comment to use the conversion as intended by Martin) |
53 | |
54 | const float INCHESPERMETER = (100.0f / 2.54f); |
55 | |
56 | namespace |
57 | { |
58 | struct RandomTable { |
59 | // From glibc |
60 | static constexpr int rand_r(unsigned int *seed) |
61 | { |
62 | unsigned int next = *seed; |
63 | int result = 0; |
64 | |
65 | next *= 1103515245; |
66 | next += 12345; |
67 | result = (unsigned int)(next / 65536) % 2048; |
68 | |
69 | next *= 1103515245; |
70 | next += 12345; |
71 | result <<= 10; |
72 | result ^= (unsigned int)(next / 65536) % 1024; |
73 | |
74 | next *= 1103515245; |
75 | next += 12345; |
76 | result <<= 10; |
77 | result ^= (unsigned int)(next / 65536) % 1024; |
78 | |
79 | *seed = next; |
80 | |
81 | return result; |
82 | } |
83 | |
84 | constexpr RandomTable() |
85 | : values{} |
86 | { |
87 | unsigned int next = RANDOM_SEED; |
88 | |
89 | for (int i = 0; i < RANDOM_TABLE_SIZE; i++) { |
90 | values[i] = rand_r(seed: &next); |
91 | } |
92 | |
93 | for (int i = 0; i < RANDOM_TABLE_SIZE; i++) { |
94 | int tmp{}; |
95 | int swap = i + rand_r(seed: &next) % (RANDOM_TABLE_SIZE - i); |
96 | tmp = values[i]; |
97 | values[i] = values[swap]; |
98 | values[swap] = tmp; |
99 | } |
100 | } |
101 | |
102 | int values[RANDOM_TABLE_SIZE]{}; |
103 | }; |
104 | } // namespace { |
105 | |
106 | /*! |
107 | * Each layer in an XCF file is stored as a matrix of |
108 | * 64-pixel by 64-pixel images. The GIMP has a sophisticated |
109 | * method of handling very large images as well as implementing |
110 | * parallel processing on a tile-by-tile basis. Here, though, |
111 | * we just read them in en-masse and store them in a matrix. |
112 | */ |
113 | typedef QList<QList<QImage>> Tiles; |
114 | |
115 | class XCFImageFormat |
116 | { |
117 | Q_GADGET |
118 | public: |
119 | //! Properties which can be stored in an XCF file. |
120 | enum PropType { |
121 | PROP_END = 0, |
122 | PROP_COLORMAP = 1, |
123 | PROP_ACTIVE_LAYER = 2, |
124 | PROP_ACTIVE_CHANNEL = 3, |
125 | PROP_SELECTION = 4, |
126 | PROP_FLOATING_SELECTION = 5, |
127 | PROP_OPACITY = 6, |
128 | PROP_MODE = 7, |
129 | PROP_VISIBLE = 8, |
130 | PROP_LINKED = 9, |
131 | PROP_LOCK_ALPHA = 10, |
132 | PROP_APPLY_MASK = 11, |
133 | PROP_EDIT_MASK = 12, |
134 | PROP_SHOW_MASK = 13, |
135 | PROP_SHOW_MASKED = 14, |
136 | PROP_OFFSETS = 15, |
137 | PROP_COLOR = 16, |
138 | PROP_COMPRESSION = 17, |
139 | PROP_GUIDES = 18, |
140 | PROP_RESOLUTION = 19, |
141 | PROP_TATTOO = 20, |
142 | PROP_PARASITES = 21, |
143 | PROP_UNIT = 22, |
144 | PROP_PATHS = 23, |
145 | PROP_USER_UNIT = 24, |
146 | PROP_VECTORS = 25, |
147 | PROP_TEXT_LAYER_FLAGS = 26, |
148 | PROP_OLD_SAMPLE_POINTS = 27, |
149 | PROP_LOCK_CONTENT = 28, |
150 | PROP_GROUP_ITEM = 29, |
151 | PROP_ITEM_PATH = 30, |
152 | PROP_GROUP_ITEM_FLAGS = 31, |
153 | PROP_LOCK_POSITION = 32, |
154 | PROP_FLOAT_OPACITY = 33, |
155 | PROP_COLOR_TAG = 34, |
156 | PROP_COMPOSITE_MODE = 35, |
157 | PROP_COMPOSITE_SPACE = 36, |
158 | PROP_BLEND_SPACE = 37, |
159 | PROP_FLOAT_COLOR = 38, |
160 | PROP_SAMPLE_POINTS = 39, |
161 | MAX_SUPPORTED_PROPTYPE, // should always be at the end so its value is last + 1 |
162 | }; |
163 | Q_ENUM(PropType) |
164 | |
165 | //! Compression type used in layer tiles. |
166 | enum XcfCompressionType : qint8 { |
167 | COMPRESS_INVALID = -1, /* our own */ |
168 | COMPRESS_NONE = 0, |
169 | COMPRESS_RLE = 1, |
170 | COMPRESS_ZLIB = 2, /* unused */ |
171 | COMPRESS_FRACTAL = 3, /* unused */ |
172 | }; |
173 | Q_ENUM(XcfCompressionType) |
174 | |
175 | enum LayerModeType : quint32 { |
176 | GIMP_LAYER_MODE_NORMAL_LEGACY, |
177 | GIMP_LAYER_MODE_DISSOLVE, |
178 | GIMP_LAYER_MODE_BEHIND_LEGACY, |
179 | GIMP_LAYER_MODE_MULTIPLY_LEGACY, |
180 | GIMP_LAYER_MODE_SCREEN_LEGACY, |
181 | GIMP_LAYER_MODE_OVERLAY_LEGACY, |
182 | GIMP_LAYER_MODE_DIFFERENCE_LEGACY, |
183 | GIMP_LAYER_MODE_ADDITION_LEGACY, |
184 | GIMP_LAYER_MODE_SUBTRACT_LEGACY, |
185 | GIMP_LAYER_MODE_DARKEN_ONLY_LEGACY, |
186 | GIMP_LAYER_MODE_LIGHTEN_ONLY_LEGACY, |
187 | GIMP_LAYER_MODE_HSV_HUE_LEGACY, |
188 | GIMP_LAYER_MODE_HSV_SATURATION_LEGACY, |
189 | GIMP_LAYER_MODE_HSL_COLOR_LEGACY, |
190 | GIMP_LAYER_MODE_HSV_VALUE_LEGACY, |
191 | GIMP_LAYER_MODE_DIVIDE_LEGACY, |
192 | GIMP_LAYER_MODE_DODGE_LEGACY, |
193 | GIMP_LAYER_MODE_BURN_LEGACY, |
194 | GIMP_LAYER_MODE_HARDLIGHT_LEGACY, |
195 | GIMP_LAYER_MODE_SOFTLIGHT_LEGACY, |
196 | , |
197 | GIMP_LAYER_MODE_GRAIN_MERGE_LEGACY, |
198 | GIMP_LAYER_MODE_COLOR_ERASE_LEGACY, |
199 | GIMP_LAYER_MODE_OVERLAY, |
200 | GIMP_LAYER_MODE_LCH_HUE, |
201 | GIMP_LAYER_MODE_LCH_CHROMA, |
202 | GIMP_LAYER_MODE_LCH_COLOR, |
203 | GIMP_LAYER_MODE_LCH_LIGHTNESS, |
204 | GIMP_LAYER_MODE_NORMAL, |
205 | GIMP_LAYER_MODE_BEHIND, |
206 | GIMP_LAYER_MODE_MULTIPLY, |
207 | GIMP_LAYER_MODE_SCREEN, |
208 | GIMP_LAYER_MODE_DIFFERENCE, |
209 | GIMP_LAYER_MODE_ADDITION, |
210 | GIMP_LAYER_MODE_SUBTRACT, |
211 | GIMP_LAYER_MODE_DARKEN_ONLY, |
212 | GIMP_LAYER_MODE_LIGHTEN_ONLY, |
213 | GIMP_LAYER_MODE_HSV_HUE, |
214 | GIMP_LAYER_MODE_HSV_SATURATION, |
215 | GIMP_LAYER_MODE_HSL_COLOR, |
216 | GIMP_LAYER_MODE_HSV_VALUE, |
217 | GIMP_LAYER_MODE_DIVIDE, |
218 | GIMP_LAYER_MODE_DODGE, |
219 | GIMP_LAYER_MODE_BURN, |
220 | GIMP_LAYER_MODE_HARDLIGHT, |
221 | GIMP_LAYER_MODE_SOFTLIGHT, |
222 | , |
223 | GIMP_LAYER_MODE_GRAIN_MERGE, |
224 | GIMP_LAYER_MODE_VIVID_LIGHT, |
225 | GIMP_LAYER_MODE_PIN_LIGHT, |
226 | GIMP_LAYER_MODE_LINEAR_LIGHT, |
227 | GIMP_LAYER_MODE_HARD_MIX, |
228 | GIMP_LAYER_MODE_EXCLUSION, |
229 | GIMP_LAYER_MODE_LINEAR_BURN, |
230 | GIMP_LAYER_MODE_LUMA_DARKEN_ONLY, |
231 | GIMP_LAYER_MODE_LUMA_LIGHTEN_ONLY, |
232 | GIMP_LAYER_MODE_LUMINANCE, |
233 | GIMP_LAYER_MODE_COLOR_ERASE, |
234 | GIMP_LAYER_MODE_ERASE, |
235 | GIMP_LAYER_MODE_MERGE, |
236 | GIMP_LAYER_MODE_SPLIT, |
237 | GIMP_LAYER_MODE_PASS_THROUGH, |
238 | GIMP_LAYER_MODE_COUNT, |
239 | }; |
240 | Q_ENUM(LayerModeType) |
241 | |
242 | //! Type of individual layers in an XCF file. |
243 | enum GimpImageType : qint32 { |
244 | RGB_GIMAGE, |
245 | RGBA_GIMAGE, |
246 | GRAY_GIMAGE, |
247 | GRAYA_GIMAGE, |
248 | INDEXED_GIMAGE, |
249 | INDEXEDA_GIMAGE, |
250 | }; |
251 | Q_ENUM(GimpImageType) |
252 | |
253 | //! Type of individual layers in an XCF file. |
254 | enum GimpColorSpace : qint32 { |
255 | AutoColorSpace, |
256 | RgbLinearSpace, |
257 | RgbPerceptualSpace, |
258 | LabSpace, |
259 | }; |
260 | Q_ENUM(GimpColorSpace); |
261 | |
262 | //! Mode to use when compositing layer |
263 | enum GimpCompositeMode : qint32 { |
264 | CompositeAuto, |
265 | CompositeUnion, |
266 | CompositeClipBackdrop, |
267 | CompositeClipLayer, |
268 | CompositeIntersect, |
269 | }; |
270 | Q_ENUM(GimpCompositeMode); |
271 | |
272 | enum GimpPrecision : qint32 { |
273 | GIMP_PRECISION_U8_LINEAR = 100, /*< desc="8-bit linear integer" >*/ |
274 | GIMP_PRECISION_U8_NON_LINEAR = 150, /*< desc="8-bit non-linear integer" >*/ |
275 | GIMP_PRECISION_U8_PERCEPTUAL = 175, /*< desc="8-bit perceptual integer" >*/ |
276 | GIMP_PRECISION_U16_LINEAR = 200, /*< desc="16-bit linear integer" >*/ |
277 | GIMP_PRECISION_U16_NON_LINEAR = 250, /*< desc="16-bit non-linear integer" >*/ |
278 | GIMP_PRECISION_U16_PERCEPTUAL = 275, /*< desc="16-bit perceptual integer" >*/ |
279 | GIMP_PRECISION_U32_LINEAR = 300, /*< desc="32-bit linear integer" >*/ |
280 | GIMP_PRECISION_U32_NON_LINEAR = 350, /*< desc="32-bit non-linear integer" >*/ |
281 | GIMP_PRECISION_U32_PERCEPTUAL = 375, /*< desc="32-bit perceptual integer" >*/ |
282 | GIMP_PRECISION_HALF_LINEAR = 500, /*< desc="16-bit linear floating point" >*/ |
283 | GIMP_PRECISION_HALF_NON_LINEAR = 550, /*< desc="16-bit non-linear floating point" >*/ |
284 | GIMP_PRECISION_HALF_PERCEPTUAL = 575, /*< desc="16-bit perceptual floating point" >*/ |
285 | GIMP_PRECISION_FLOAT_LINEAR = 600, /*< desc="32-bit linear floating point" >*/ |
286 | GIMP_PRECISION_FLOAT_NON_LINEAR = 650, /*< desc="32-bit non-linear floating point" >*/ |
287 | GIMP_PRECISION_FLOAT_PERCEPTUAL = 675, /*< desc="32-bit perceptual floating point" >*/ |
288 | GIMP_PRECISION_DOUBLE_LINEAR = 700, /*< desc="64-bit linear floating point" >*/ |
289 | GIMP_PRECISION_DOUBLE_NON_LINEAR = 750, /*< desc="64-bit non-linear floating point" >*/ |
290 | GIMP_PRECISION_DOUBLE_PERCEPTUAL = 775, /*< desc="64-bit perceptual floating point" >*/ |
291 | }; |
292 | Q_ENUM(GimpPrecision); |
293 | |
294 | XCFImageFormat(); |
295 | bool readXCF(QIODevice *device, QImage *image); |
296 | |
297 | /*! |
298 | * Each GIMP image is composed of one or more layers. A layer can |
299 | * be one of any three basic types: RGB, grayscale or indexed. With an |
300 | * optional alpha channel, there are six possible types altogether. |
301 | * |
302 | * Note: there is only ever one instance of this structure. The |
303 | * layer info is discarded after it is merged into the final QImage. |
304 | */ |
305 | class Layer |
306 | { |
307 | public: |
308 | quint32 width; //!< Width of the layer |
309 | quint32 height; //!< Height of the layer |
310 | GimpImageType type; //!< Type of the layer (GimpImageType) |
311 | char *name; //!< Name of the layer |
312 | qint64 hierarchy_offset; //!< File position of Tile hierarchy |
313 | qint64 mask_offset; //!< File position of mask image |
314 | |
315 | uint nrows; //!< Number of rows of tiles (y direction) |
316 | uint ncols; //!< Number of columns of tiles (x direction) |
317 | |
318 | Tiles image_tiles; //!< The basic image |
319 | //! For Grayscale and Indexed images, the alpha channel is stored |
320 | //! separately (in this data structure, anyway). |
321 | Tiles alpha_tiles; |
322 | Tiles mask_tiles; //!< The layer mask (optional) |
323 | |
324 | //! Additional information about a layer mask. |
325 | struct { |
326 | quint32 opacity; |
327 | float opacityFloat = 1.f; |
328 | quint32 visible; |
329 | quint32 show_masked; |
330 | uchar red, green, blue; |
331 | float redF, greenF, blueF; // Floats should override |
332 | quint32 tattoo; |
333 | } mask_channel; |
334 | |
335 | XcfCompressionType compression = COMPRESS_INVALID; //!< tile compression method (CompressionType) |
336 | |
337 | bool active; //!< Is this layer the active layer? |
338 | quint32 opacity = 255; //!< The opacity of the layer |
339 | float opacityFloat = 1.f; //!< The opacity of the layer, but floating point (both are set) |
340 | quint32 visible = 1; //!< Is the layer visible? |
341 | quint32 linked; //!< Is this layer linked (geometrically) |
342 | quint32 preserve_transparency; //!< Preserve alpha when drawing on layer? |
343 | quint32 apply_mask = 9; //!< Apply the layer mask? Use 9 as "uninitilized". Spec says "If the property does not appear for a layer which has a layer |
344 | //!< mask, it defaults to true (1). |
345 | // Robust readers should force this to false if the layer has no layer mask. |
346 | quint32 edit_mask; //!< Is the layer mask the being edited? |
347 | quint32 show_mask; //!< Show the layer mask rather than the image? |
348 | qint32 x_offset = 0; //!< x offset of the layer relative to the image |
349 | qint32 y_offset = 0; //!< y offset of the layer relative to the image |
350 | LayerModeType mode = GIMP_LAYER_MODE_NORMAL_LEGACY; //!< Combining mode of layer (LayerModeEffects) |
351 | quint32 tattoo; //!< (unique identifier?) |
352 | GimpColorSpace blendSpace = RgbLinearSpace; //!< What colorspace to use when blending |
353 | GimpColorSpace compositeSpace = RgbLinearSpace; //!< What colorspace to use when compositing |
354 | GimpCompositeMode compositeMode = CompositeUnion; //!< How to composite layer (union, clip, etc.) |
355 | |
356 | //! As each tile is read from the file, it is buffered here. |
357 | #ifdef USE_FLOAT_IMAGES |
358 | uchar tile[quint64(TILE_WIDTH * TILE_HEIGHT * sizeof(QRgbaFloat32) * 1.5)]; |
359 | #else |
360 | uchar tile[quint64(TILE_WIDTH * TILE_HEIGHT * sizeof(QRgba64) * 1.5)]; |
361 | #endif |
362 | |
363 | //! The data from tile buffer is copied to the Tile by this |
364 | //! method. Depending on the type of the tile (RGB, Grayscale, |
365 | //! Indexed) and use (image or mask), the bytes in the buffer are |
366 | //! copied in different ways. |
367 | bool (*assignBytes)(Layer &layer, uint i, uint j, const GimpPrecision &precision); |
368 | |
369 | Layer(void) |
370 | : name(nullptr) |
371 | { |
372 | } |
373 | ~Layer(void) |
374 | { |
375 | delete[] name; |
376 | } |
377 | |
378 | Layer(const Layer &) = delete; |
379 | Layer &operator=(const Layer &) = delete; |
380 | |
381 | QImage::Format qimageFormat(const GimpPrecision precision, uint num_colors = 0, bool legacyMode = false) const |
382 | { |
383 | int bpc = bytesPerChannel(precision); |
384 | #ifdef USE_FLOAT_IMAGES |
385 | bool float16 = !legacyMode && precision >= GIMP_PRECISION_HALF_LINEAR && precision <= GIMP_PRECISION_HALF_PERCEPTUAL; |
386 | bool float32 = !legacyMode && precision >= GIMP_PRECISION_FLOAT_LINEAR && precision <= GIMP_PRECISION_FLOAT_PERCEPTUAL; |
387 | #endif |
388 | |
389 | if (legacyMode) { |
390 | bpc = std::min(a: bpc, b: 1); |
391 | } |
392 | |
393 | switch (type) { |
394 | case RGB_GIMAGE: |
395 | if (opacity == OPAQUE_OPACITY) { |
396 | #ifdef USE_FLOAT_IMAGES |
397 | if (float16) { |
398 | return QImage::Format_RGBX16FPx4; |
399 | } |
400 | if (float32) { |
401 | return QImage::QImage::Format_RGBX32FPx4; |
402 | } |
403 | #endif |
404 | |
405 | if (bpc == 1) { |
406 | return QImage::Format_RGBX8888; |
407 | } else if (bpc == 2 || bpc == 4) { |
408 | return QImage::Format_RGBX64; |
409 | } else { |
410 | qCDebug(XCFPLUGIN) << "Layer has invalid bpc" << bpc << precision; |
411 | return QImage::Format_Invalid; |
412 | } |
413 | } |
414 | Q_FALLTHROUGH(); |
415 | case RGBA_GIMAGE: |
416 | #ifdef USE_FLOAT_IMAGES |
417 | if (float16) { |
418 | return QImage::Format_RGBA16FPx4; |
419 | } |
420 | if (float32) { |
421 | return QImage::QImage::Format_RGBA32FPx4; |
422 | } |
423 | #endif |
424 | if (bpc == 1) { |
425 | return QImage::Format_RGBA8888; |
426 | } else if (bpc == 2 || bpc == 4) { |
427 | return QImage::Format_RGBA64; |
428 | } else { |
429 | qCDebug(XCFPLUGIN) << "Layer has invalid bpc" << bpc; |
430 | return QImage::Format_Invalid; |
431 | } |
432 | break; |
433 | |
434 | case GRAY_GIMAGE: |
435 | if (opacity == OPAQUE_OPACITY) { |
436 | return QImage::Format_Indexed8; |
437 | } // else, fall through to 32-bit representation |
438 | Q_FALLTHROUGH(); |
439 | case GRAYA_GIMAGE: |
440 | return QImage::Format_RGBA8888; |
441 | break; |
442 | |
443 | case INDEXED_GIMAGE: |
444 | // As noted in the table above, there are quite a few combinations |
445 | // which are possible with indexed images, depending on the |
446 | // presence of transparency (note: not translucency, which is not |
447 | // supported by The GIMP for indexed images) and the number of |
448 | // individual colors. |
449 | |
450 | // Note: Qt treats a bitmap with a Black and White color palette |
451 | // as a mask, so only the "on" bits are drawn, regardless of the |
452 | // order color table entries. Otherwise (i.e., at least one of the |
453 | // color table entries is not black or white), it obeys the one- |
454 | // or two-color palette. Have to ask about this... |
455 | |
456 | if (num_colors == 1 || num_colors == 2) { |
457 | return QImage::Format_MonoLSB; |
458 | } else { |
459 | return QImage::Format_Indexed8; |
460 | } |
461 | break; |
462 | |
463 | case INDEXEDA_GIMAGE: |
464 | if (num_colors == 1) { |
465 | return QImage::Format_MonoLSB; |
466 | } else { |
467 | return QImage::Format_Indexed8; |
468 | } |
469 | } |
470 | qCWarning(XCFPLUGIN) << "Unhandled layer mode" << XCFImageFormat::LayerModeType(type); |
471 | return QImage::Format_Invalid; |
472 | } |
473 | }; |
474 | |
475 | /*! |
476 | * The in-memory representation of the XCF Image. It contains a few |
477 | * metadata items, but is mostly a container for the layer information. |
478 | */ |
479 | class XCFImage |
480 | { |
481 | public: |
482 | struct { |
483 | GimpPrecision = GIMP_PRECISION_U8_LINEAR; //!< Default precision (GimpPrecision) |
484 | quint32 ; //!< width of the XCF image |
485 | quint32 ; //!< height of the XCF image |
486 | qint32 ; //!< type of the XCF image (GimpImageBaseType) |
487 | } ; |
488 | |
489 | XcfCompressionType compression = COMPRESS_RLE; //!< tile compression method (CompressionType) |
490 | float x_resolution = -1; //!< x resolution in dots per inch |
491 | float y_resolution = -1; //!< y resolution in dots per inch |
492 | qint32 tattoo; //!< (unique identifier?) |
493 | quint32 unit; //!< Units of The GIMP (inch, mm, pica, etc...) |
494 | qint32 num_colors = 0; //!< number of colors in an indexed image |
495 | QList<QRgb> palette; //!< indexed image color palette |
496 | |
497 | int num_layers; //!< number of layers |
498 | Layer layer; //!< most recently read layer |
499 | |
500 | bool initialized; //!< Is the QImage initialized? |
501 | QImage image; //!< final QImage |
502 | |
503 | QHash<QString,QByteArray> parasites; //!< parasites data |
504 | |
505 | XCFImage(void) |
506 | : initialized(false) |
507 | { |
508 | } |
509 | |
510 | QImage::Format qimageFormat() const |
511 | { |
512 | return layer.qimageFormat(precision: header.precision, num_colors, legacyMode: true); |
513 | } |
514 | |
515 | uint bytesPerChannel() const |
516 | { |
517 | return XCFImageFormat::bytesPerChannel(precision: header.precision); |
518 | } |
519 | }; |
520 | |
521 | private: |
522 | static qint64 readOffsetPtr(QDataStream &stream) |
523 | { |
524 | if (stream.version() >= 11) { |
525 | qint64 ret; |
526 | stream >> ret; |
527 | return ret; |
528 | } else { |
529 | quint32 ret; |
530 | stream >> ret; |
531 | return ret; |
532 | } |
533 | } |
534 | |
535 | //! In layer DISSOLVE mode, a random number is chosen to compare to a |
536 | //! pixel's alpha. If the alpha is greater than the random number, the |
537 | //! pixel is drawn. This table merely contains the random number seeds |
538 | //! for each ROW of an image. Therefore, the random numbers chosen |
539 | //! are consistent from run to run. |
540 | static int random_table[RANDOM_TABLE_SIZE]; |
541 | static bool random_table_initialized; |
542 | |
543 | static constexpr RandomTable randomTable{}; |
544 | |
545 | //! This table is used as a shared grayscale ramp to be set on grayscale |
546 | //! images. This is because Qt does not differentiate between indexed and |
547 | //! grayscale images. |
548 | static QList<QRgb> grayTable; |
549 | |
550 | //! This table provides the add_pixel saturation values (i.e. 250 + 250 = 255). |
551 | // static int add_lut[256][256]; - this is so lame waste of 256k of memory |
552 | static int add_lut(int, int); |
553 | |
554 | //! The bottom-most layer is copied into the final QImage by this |
555 | //! routine. |
556 | typedef void (*PixelCopyOperation)(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
557 | |
558 | //! Higher layers are merged into the final QImage by this routine. |
559 | typedef bool (*PixelMergeOperation)(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
560 | |
561 | static bool modeAffectsSourceAlpha(const quint32 type); |
562 | |
563 | bool loadImageProperties(QDataStream &xcf_io, XCFImage &image); |
564 | bool loadProperty(QDataStream &xcf_io, PropType &type, QByteArray &bytes, quint32 &rawType); |
565 | bool loadLayer(QDataStream &xcf_io, XCFImage &xcf_image); |
566 | bool loadLayerProperties(QDataStream &xcf_io, Layer &layer); |
567 | bool composeTiles(XCFImage &xcf_image); |
568 | void setGrayPalette(QImage &image); |
569 | void setPalette(XCFImage &xcf_image, QImage &image); |
570 | void setImageParasites(const XCFImage &xcf_image, QImage &image); |
571 | static bool assignImageBytes(Layer &layer, uint i, uint j, const GimpPrecision &precision); |
572 | bool loadHierarchy(QDataStream &xcf_io, Layer &layer, const GimpPrecision precision); |
573 | bool loadLevel(QDataStream &xcf_io, Layer &layer, qint32 bpp, const GimpPrecision precision); |
574 | static bool assignMaskBytes(Layer &layer, uint i, uint j, const GimpPrecision &precision); |
575 | bool loadMask(QDataStream &xcf_io, Layer &layer, const GimpPrecision precision); |
576 | bool loadChannelProperties(QDataStream &xcf_io, Layer &layer); |
577 | bool initializeImage(XCFImage &xcf_image); |
578 | bool loadTileRLE(QDataStream &xcf_io, uchar *tile, int size, int data_length, qint32 bpp, qint64 *bytesParsed); |
579 | |
580 | static void copyLayerToImage(XCFImage &xcf_image); |
581 | static void copyRGBToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
582 | static void copyGrayToGray(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
583 | static void copyGrayToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
584 | static void copyGrayAToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
585 | static void copyIndexedToIndexed(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
586 | static void copyIndexedAToIndexed(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
587 | static void copyIndexedAToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
588 | |
589 | static void mergeLayerIntoImage(XCFImage &xcf_image); |
590 | static bool mergeRGBToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
591 | static bool mergeGrayToGray(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
592 | static bool mergeGrayAToGray(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
593 | static bool mergeGrayToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
594 | static bool mergeGrayAToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
595 | static bool mergeIndexedToIndexed(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
596 | static bool mergeIndexedAToIndexed(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
597 | static bool mergeIndexedAToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n); |
598 | |
599 | static void initializeRandomTable(); |
600 | static void dissolveRGBPixels(QImage &image, int x, int y); |
601 | static void dissolveAlphaPixels(QImage &image, int x, int y); |
602 | |
603 | static uint bytesPerChannel(const GimpPrecision precision) |
604 | { |
605 | switch (precision) { |
606 | case GIMP_PRECISION_U8_LINEAR: |
607 | case GIMP_PRECISION_U8_NON_LINEAR: |
608 | case GIMP_PRECISION_U8_PERCEPTUAL: |
609 | return 1; |
610 | break; |
611 | case GIMP_PRECISION_U16_LINEAR: |
612 | case GIMP_PRECISION_U16_NON_LINEAR: |
613 | case GIMP_PRECISION_U16_PERCEPTUAL: |
614 | case GIMP_PRECISION_HALF_LINEAR: |
615 | case GIMP_PRECISION_HALF_NON_LINEAR: |
616 | case GIMP_PRECISION_HALF_PERCEPTUAL: |
617 | return 2; |
618 | break; |
619 | |
620 | case GIMP_PRECISION_U32_LINEAR: |
621 | case GIMP_PRECISION_U32_NON_LINEAR: |
622 | case GIMP_PRECISION_U32_PERCEPTUAL: |
623 | case GIMP_PRECISION_FLOAT_LINEAR: |
624 | case GIMP_PRECISION_FLOAT_NON_LINEAR: |
625 | case GIMP_PRECISION_FLOAT_PERCEPTUAL: |
626 | return 4; |
627 | break; |
628 | case GIMP_PRECISION_DOUBLE_LINEAR: |
629 | case GIMP_PRECISION_DOUBLE_NON_LINEAR: |
630 | case GIMP_PRECISION_DOUBLE_PERCEPTUAL: |
631 | return 8; |
632 | break; |
633 | |
634 | default: |
635 | qCDebug(XCFPLUGIN) << "Layer has invalid precision" << precision; |
636 | return 0; |
637 | } |
638 | } |
639 | |
640 | public: |
641 | static bool readXCFHeader(QDataStream &ds, XCFImage::Header *); |
642 | }; |
643 | |
644 | int XCFImageFormat::random_table[RANDOM_TABLE_SIZE]; |
645 | bool XCFImageFormat::random_table_initialized; |
646 | |
647 | constexpr RandomTable XCFImageFormat::randomTable; |
648 | |
649 | QList<QRgb> XCFImageFormat::grayTable; |
650 | |
651 | bool XCFImageFormat::modeAffectsSourceAlpha(const quint32 type) |
652 | { |
653 | switch (type) { |
654 | case GIMP_LAYER_MODE_NORMAL_LEGACY: |
655 | case GIMP_LAYER_MODE_DISSOLVE: |
656 | case GIMP_LAYER_MODE_BEHIND_LEGACY: |
657 | return true; |
658 | |
659 | case GIMP_LAYER_MODE_MULTIPLY_LEGACY: |
660 | case GIMP_LAYER_MODE_SCREEN_LEGACY: |
661 | case GIMP_LAYER_MODE_OVERLAY_LEGACY: |
662 | case GIMP_LAYER_MODE_DIFFERENCE_LEGACY: |
663 | case GIMP_LAYER_MODE_ADDITION_LEGACY: |
664 | case GIMP_LAYER_MODE_SUBTRACT_LEGACY: |
665 | case GIMP_LAYER_MODE_DARKEN_ONLY_LEGACY: |
666 | case GIMP_LAYER_MODE_LIGHTEN_ONLY_LEGACY: |
667 | case GIMP_LAYER_MODE_HSV_HUE_LEGACY: |
668 | case GIMP_LAYER_MODE_HSV_SATURATION_LEGACY: |
669 | case GIMP_LAYER_MODE_HSL_COLOR_LEGACY: |
670 | case GIMP_LAYER_MODE_HSV_VALUE_LEGACY: |
671 | case GIMP_LAYER_MODE_DIVIDE_LEGACY: |
672 | case GIMP_LAYER_MODE_DODGE_LEGACY: |
673 | case GIMP_LAYER_MODE_BURN_LEGACY: |
674 | case GIMP_LAYER_MODE_HARDLIGHT_LEGACY: |
675 | case GIMP_LAYER_MODE_SOFTLIGHT_LEGACY: |
676 | case GIMP_LAYER_MODE_GRAIN_EXTRACT_LEGACY: |
677 | case GIMP_LAYER_MODE_GRAIN_MERGE_LEGACY: |
678 | return false; |
679 | |
680 | case GIMP_LAYER_MODE_COLOR_ERASE_LEGACY: |
681 | case GIMP_LAYER_MODE_OVERLAY: |
682 | case GIMP_LAYER_MODE_LCH_HUE: |
683 | case GIMP_LAYER_MODE_LCH_CHROMA: |
684 | case GIMP_LAYER_MODE_LCH_COLOR: |
685 | case GIMP_LAYER_MODE_LCH_LIGHTNESS: |
686 | return false; |
687 | |
688 | case GIMP_LAYER_MODE_NORMAL: |
689 | return true; |
690 | |
691 | case GIMP_LAYER_MODE_BEHIND: |
692 | case GIMP_LAYER_MODE_MULTIPLY: |
693 | case GIMP_LAYER_MODE_SCREEN: |
694 | case GIMP_LAYER_MODE_DIFFERENCE: |
695 | case GIMP_LAYER_MODE_ADDITION: |
696 | case GIMP_LAYER_MODE_SUBTRACT: |
697 | case GIMP_LAYER_MODE_DARKEN_ONLY: |
698 | case GIMP_LAYER_MODE_LIGHTEN_ONLY: |
699 | case GIMP_LAYER_MODE_HSV_HUE: |
700 | case GIMP_LAYER_MODE_HSV_SATURATION: |
701 | case GIMP_LAYER_MODE_HSL_COLOR: |
702 | case GIMP_LAYER_MODE_HSV_VALUE: |
703 | case GIMP_LAYER_MODE_DIVIDE: |
704 | case GIMP_LAYER_MODE_DODGE: |
705 | case GIMP_LAYER_MODE_BURN: |
706 | case GIMP_LAYER_MODE_HARDLIGHT: |
707 | case GIMP_LAYER_MODE_SOFTLIGHT: |
708 | case GIMP_LAYER_MODE_GRAIN_EXTRACT: |
709 | case GIMP_LAYER_MODE_GRAIN_MERGE: |
710 | case GIMP_LAYER_MODE_VIVID_LIGHT: |
711 | case GIMP_LAYER_MODE_PIN_LIGHT: |
712 | case GIMP_LAYER_MODE_LINEAR_LIGHT: |
713 | case GIMP_LAYER_MODE_HARD_MIX: |
714 | case GIMP_LAYER_MODE_EXCLUSION: |
715 | case GIMP_LAYER_MODE_LINEAR_BURN: |
716 | case GIMP_LAYER_MODE_LUMA_DARKEN_ONLY: |
717 | case GIMP_LAYER_MODE_LUMA_LIGHTEN_ONLY: |
718 | case GIMP_LAYER_MODE_LUMINANCE: |
719 | case GIMP_LAYER_MODE_COLOR_ERASE: |
720 | case GIMP_LAYER_MODE_ERASE: |
721 | case GIMP_LAYER_MODE_MERGE: |
722 | case GIMP_LAYER_MODE_SPLIT: |
723 | case GIMP_LAYER_MODE_PASS_THROUGH: |
724 | return false; |
725 | |
726 | default: |
727 | qCWarning(XCFPLUGIN) << "Unhandled layer mode" << XCFImageFormat::LayerModeType(type); |
728 | return false; |
729 | } |
730 | } |
731 | |
732 | //! Change a QRgb value's alpha only. |
733 | inline QRgb qRgba(const QRgb rgb, int a) |
734 | { |
735 | return ((a & 0xff) << 24 | (rgb & RGB_MASK)); |
736 | } |
737 | |
738 | /*! |
739 | * The constructor for the XCF image loader. |
740 | */ |
741 | XCFImageFormat::XCFImageFormat() |
742 | { |
743 | static_assert(sizeof(QRgb) == 4, "the code assumes sizeof(QRgb) == 4, if that's not your case, help us fix it :)" ); |
744 | } |
745 | |
746 | /*! |
747 | * This initializes the tables used in the layer dissolving routines. |
748 | */ |
749 | void XCFImageFormat::initializeRandomTable() |
750 | { |
751 | // From GIMP "paint_funcs.c" v1.2 |
752 | srand(seed: RANDOM_SEED); |
753 | |
754 | for (int i = 0; i < RANDOM_TABLE_SIZE; i++) { |
755 | random_table[i] = rand(); |
756 | } |
757 | |
758 | for (int i = 0; i < RANDOM_TABLE_SIZE; i++) { |
759 | int tmp; |
760 | int swap = i + rand() % (RANDOM_TABLE_SIZE - i); |
761 | tmp = random_table[i]; |
762 | random_table[i] = random_table[swap]; |
763 | random_table[swap] = tmp; |
764 | } |
765 | } |
766 | |
767 | inline int XCFImageFormat::add_lut(int a, int b) |
768 | { |
769 | return qMin(a: a + b, b: 255); |
770 | } |
771 | |
772 | bool XCFImageFormat::(QDataStream &xcf_io, XCFImage::Header *) |
773 | { |
774 | QByteArray tag(14, '\0'); |
775 | |
776 | if (xcf_io.readRawData(tag.data(), len: tag.size()) != tag.size()) { |
777 | qCDebug(XCFPLUGIN) << "XCF: read failure on header tag" ; |
778 | return false; |
779 | } |
780 | if (!tag.startsWith(bv: "gimp xcf" ) || !tag.endsWith(c: '\0')) { |
781 | qCDebug(XCFPLUGIN) << "XCF: read called on non-XCF file" ; |
782 | return false; |
783 | } |
784 | |
785 | // Remove null terminator |
786 | tag.chop(n: 1); |
787 | |
788 | if (tag.right(n: 4) == "file" ) { |
789 | xcf_io.setVersion(0); |
790 | } else { |
791 | // Version 1 and onwards use the format "gimp xcf v###" instead of "gimp xcf file" |
792 | bool ok; |
793 | xcf_io.setVersion(tag.right(n: 3).toInt(ok: &ok)); |
794 | if (!ok) { |
795 | qCDebug(XCFPLUGIN) << "Failed to parse version" << tag; |
796 | return false; |
797 | } |
798 | } |
799 | qCDebug(XCFPLUGIN) << "version" << xcf_io.version(); |
800 | |
801 | if (xcf_io.version() > 12) { |
802 | qCDebug(XCFPLUGIN) << "Unsupported version" << xcf_io.version(); |
803 | return false; |
804 | } |
805 | |
806 | xcf_io >> header->width >> header->height >> header->type; |
807 | |
808 | if (xcf_io.version() >= 4) { |
809 | int precision; |
810 | xcf_io >> precision; |
811 | qCDebug(XCFPLUGIN) << "Precision" << GimpPrecision(precision); |
812 | if (xcf_io.version() < 7) { |
813 | switch (precision) { |
814 | case 0: |
815 | precision = GIMP_PRECISION_U8_NON_LINEAR; |
816 | break; |
817 | case 1: |
818 | precision = GIMP_PRECISION_U16_NON_LINEAR; |
819 | break; |
820 | case 2: |
821 | precision = GIMP_PRECISION_U32_LINEAR; |
822 | break; |
823 | case 3: |
824 | precision = GIMP_PRECISION_HALF_LINEAR; |
825 | break; |
826 | case 4: |
827 | precision = GIMP_PRECISION_FLOAT_LINEAR; |
828 | break; |
829 | default: |
830 | if (precision < GIMP_PRECISION_U8_LINEAR) { |
831 | qCWarning(XCFPLUGIN) << "Invalid precision read" << precision; |
832 | return false; |
833 | } else { |
834 | qCDebug(XCFPLUGIN) << "Unexpected precision" << precision << "in version" << xcf_io.version(); |
835 | } |
836 | } |
837 | } |
838 | header->precision = GimpPrecision(precision); |
839 | } |
840 | qCDebug(XCFPLUGIN) << "tag:" << tag << " height: " << header->width << " width: " << header->height << " type: " << header->type; |
841 | |
842 | if ((sizeof(void *) == 4 && qint64(header->width) * header->height > 16384 * 16384)) { |
843 | qCWarning(XCFPLUGIN) << "On 32-bits programs the maximum image size is limited to" << 16384 << "x" << 16384 << "px" ; |
844 | return false; |
845 | } |
846 | |
847 | if (header->width > MAX_IMAGE_WIDTH || header->height > MAX_IMAGE_HEIGHT) { |
848 | qCWarning(XCFPLUGIN) << "The maximum image size is limited to" << MAX_IMAGE_WIDTH << "x" << MAX_IMAGE_HEIGHT << "px" ; |
849 | return false; |
850 | } |
851 | |
852 | return true; |
853 | } |
854 | |
855 | bool XCFImageFormat::readXCF(QIODevice *device, QImage *outImage) |
856 | { |
857 | XCFImage xcf_image; |
858 | QDataStream xcf_io(device); |
859 | |
860 | if (!readXCFHeader(xcf_io, header: &xcf_image.header)) { |
861 | return false; |
862 | } |
863 | |
864 | if (!loadImageProperties(xcf_io, image&: xcf_image)) { |
865 | return false; |
866 | } |
867 | |
868 | // The layers appear to be stored in top-to-bottom order. This is |
869 | // the reverse of how a merged image must be computed. So, the layer |
870 | // offsets are pushed onto a LIFO stack (thus, we don't have to load |
871 | // all the data of all layers before beginning to construct the |
872 | // merged image). |
873 | |
874 | QStack<qint64> layer_offsets; |
875 | |
876 | while (true) { |
877 | const qint64 layer_offset = readOffsetPtr(stream&: xcf_io); |
878 | |
879 | if (layer_offset == 0) { |
880 | break; |
881 | } |
882 | |
883 | if (layer_offset < 0) { |
884 | qCDebug(XCFPLUGIN) << "XCF: negative layer offset" ; |
885 | return false; |
886 | } |
887 | |
888 | layer_offsets.push(t: layer_offset); |
889 | } |
890 | |
891 | xcf_image.num_layers = layer_offsets.size(); |
892 | |
893 | if (layer_offsets.size() == 0) { |
894 | qCDebug(XCFPLUGIN) << "XCF: no layers!" ; |
895 | return false; |
896 | } |
897 | qCDebug(XCFPLUGIN) << xcf_image.num_layers << "layers" ; |
898 | |
899 | // Load each layer and add it to the image |
900 | while (!layer_offsets.isEmpty()) { |
901 | qint64 layer_offset = layer_offsets.pop(); |
902 | |
903 | if (!xcf_io.device()->seek(pos: layer_offset)) { |
904 | return false; |
905 | } |
906 | |
907 | if (!loadLayer(xcf_io, xcf_image)) { |
908 | return false; |
909 | } |
910 | } |
911 | |
912 | if (!xcf_image.initialized) { |
913 | qCDebug(XCFPLUGIN) << "XCF: no visible layers!" ; |
914 | return false; |
915 | } |
916 | |
917 | // The image was created: now I can set metadata and ICC color profile inside it. |
918 | setImageParasites(xcf_image, image&: xcf_image.image); |
919 | |
920 | *outImage = xcf_image.image; |
921 | return true; |
922 | } |
923 | |
924 | /*! |
925 | * An XCF file can contain an arbitrary number of properties associated |
926 | * with the image (and layer and mask). |
927 | * \param xcf_io the data stream connected to the XCF image |
928 | * \param xcf_image XCF image data. |
929 | * \return true if there were no I/O errors. |
930 | */ |
931 | bool XCFImageFormat::loadImageProperties(QDataStream &xcf_io, XCFImage &xcf_image) |
932 | { |
933 | while (true) { |
934 | PropType type; |
935 | QByteArray bytes; |
936 | quint32 rawType; |
937 | |
938 | if (!loadProperty(xcf_io, type, bytes, rawType)) { |
939 | qCDebug(XCFPLUGIN) << "XCF: error loading global image properties" ; |
940 | return false; |
941 | } |
942 | |
943 | QDataStream property(bytes); |
944 | |
945 | switch (type) { |
946 | case PROP_END: |
947 | return true; |
948 | |
949 | case PROP_COMPRESSION: |
950 | property >> xcf_image.compression; |
951 | break; |
952 | |
953 | case PROP_RESOLUTION: |
954 | property.setFloatingPointPrecision(QDataStream::SinglePrecision); |
955 | property >> xcf_image.x_resolution >> xcf_image.y_resolution; |
956 | break; |
957 | |
958 | case PROP_TATTOO: |
959 | property >> xcf_image.tattoo; |
960 | break; |
961 | |
962 | case PROP_PARASITES: |
963 | while (!property.atEnd()) { |
964 | char *tag; |
965 | qint64 size; |
966 | |
967 | property.readBytes(tag, len&: size); |
968 | |
969 | quint32 flags; |
970 | QByteArray data; |
971 | property >> flags >> data; |
972 | |
973 | // WARNING: you cannot add metadata to QImage here because it can be null. |
974 | // Adding a metadata to a QImage when it is null, does nothing (metas are lost). |
975 | if (tag) // store metadata for future use |
976 | xcf_image.parasites.insert(key: QString::fromUtf8(utf8: tag), value: data); |
977 | |
978 | delete[] tag; |
979 | } |
980 | break; |
981 | |
982 | case PROP_UNIT: |
983 | property >> xcf_image.unit; |
984 | break; |
985 | |
986 | case PROP_PATHS: // This property is ignored. |
987 | break; |
988 | |
989 | case PROP_USER_UNIT: // This property is ignored. |
990 | break; |
991 | |
992 | case PROP_COLORMAP: |
993 | property >> xcf_image.num_colors; |
994 | if (xcf_image.num_colors < 0 || xcf_image.num_colors > 65535) { |
995 | return false; |
996 | } |
997 | |
998 | xcf_image.palette = QList<QRgb>(); |
999 | xcf_image.palette.reserve(asize: xcf_image.num_colors); |
1000 | |
1001 | for (int i = 0; i < xcf_image.num_colors; i++) { |
1002 | uchar r; |
1003 | uchar g; |
1004 | uchar b; |
1005 | property >> r >> g >> b; |
1006 | xcf_image.palette.push_back(t: qRgb(r, g, b)); |
1007 | } |
1008 | break; |
1009 | |
1010 | default: |
1011 | qCDebug(XCFPLUGIN) << "XCF: unimplemented image property" << type << "(" << rawType << ")" |
1012 | << ", size " << bytes.size(); |
1013 | break; |
1014 | } |
1015 | } |
1016 | } |
1017 | |
1018 | /*! |
1019 | * Read a single property from the image file. The property type is returned |
1020 | * in type and the data is returned in bytes. |
1021 | * \param xcf the image file data stream. |
1022 | * \param type returns with the property type. |
1023 | * \param bytes returns with the property data. |
1024 | * \return true if there were no IO errors. */ |
1025 | bool XCFImageFormat::loadProperty(QDataStream &xcf_io, PropType &type, QByteArray &bytes, quint32 &rawType) |
1026 | { |
1027 | quint32 size; |
1028 | |
1029 | xcf_io >> rawType; |
1030 | if (rawType >= MAX_SUPPORTED_PROPTYPE) { |
1031 | type = MAX_SUPPORTED_PROPTYPE; |
1032 | // we don't support the property, but we still need to read from the device, assume it's like all the |
1033 | // non custom properties that is data_length + data |
1034 | xcf_io >> size; |
1035 | xcf_io.skipRawData(len: size); |
1036 | // return true because we don't really want to totally fail on an unsupported property since it may not be fatal |
1037 | return true; |
1038 | } |
1039 | |
1040 | type = PropType(rawType); |
1041 | |
1042 | char *data = nullptr; |
1043 | |
1044 | // The colormap property size is not the correct number of bytes: |
1045 | // The GIMP source xcf.c has size = 4 + ncolors, but it should be |
1046 | // 4 + 3 * ncolors |
1047 | |
1048 | if (type == PROP_COLORMAP) { |
1049 | xcf_io >> size; |
1050 | quint32 ncolors; |
1051 | xcf_io >> ncolors; |
1052 | |
1053 | size = 3 * ncolors + 4; |
1054 | |
1055 | if (size > 65535 || size < 4) { |
1056 | return false; |
1057 | } |
1058 | |
1059 | data = new char[size]; |
1060 | |
1061 | // since we already read "ncolors" from the stream, we put that data back |
1062 | data[0] = 0; |
1063 | data[1] = 0; |
1064 | data[2] = ncolors >> 8; |
1065 | data[3] = ncolors & 255; |
1066 | |
1067 | // ... and read the remaining bytes from the stream |
1068 | xcf_io.readRawData(data + 4, len: size - 4); |
1069 | } else if (type == PROP_USER_UNIT) { |
1070 | // The USER UNIT property size is not correct. I'm not sure why, though. |
1071 | float factor; |
1072 | qint32 digits; |
1073 | |
1074 | xcf_io >> size >> factor >> digits; |
1075 | |
1076 | for (int i = 0; i < 5; i++) { |
1077 | char *unit_strings; |
1078 | |
1079 | xcf_io >> unit_strings; |
1080 | |
1081 | delete[] unit_strings; |
1082 | |
1083 | if (xcf_io.device()->atEnd()) { |
1084 | qCDebug(XCFPLUGIN) << "XCF: read failure on property " << type; |
1085 | return false; |
1086 | } |
1087 | } |
1088 | |
1089 | size = 0; |
1090 | } else { |
1091 | xcf_io >> size; |
1092 | if (size > 256000 * 4) { |
1093 | // NOTE: I didn't find any reference to maximum property dimensions in the specs, so I assume it's just a sanity check. |
1094 | qCDebug(XCFPLUGIN) << "XCF: loadProperty skips" << type << "due to size being too large" ; |
1095 | return false; |
1096 | } |
1097 | data = new char[size]; |
1098 | const quint32 dataRead = xcf_io.readRawData(data, len: size); |
1099 | if (dataRead < size) { |
1100 | qCDebug(XCFPLUGIN) << "XCF: loadProperty read less data than expected" << size << dataRead; |
1101 | memset(s: &data[dataRead], c: 0, n: size - dataRead); |
1102 | } |
1103 | } |
1104 | |
1105 | if (size != 0 && data) { |
1106 | bytes = QByteArray(data, size); |
1107 | } |
1108 | |
1109 | delete[] data; |
1110 | |
1111 | return true; |
1112 | } |
1113 | |
1114 | /*! |
1115 | * Load a layer from the XCF file. The data stream must be positioned at |
1116 | * the beginning of the layer data. |
1117 | * \param xcf_io the image file data stream. |
1118 | * \param xcf_image contains the layer and the color table |
1119 | * (if the image is indexed). |
1120 | * \return true if there were no I/O errors. |
1121 | */ |
1122 | bool XCFImageFormat::loadLayer(QDataStream &xcf_io, XCFImage &xcf_image) |
1123 | { |
1124 | Layer &layer(xcf_image.layer); |
1125 | delete[] layer.name; |
1126 | |
1127 | xcf_io >> layer.width >> layer.height >> layer.type >> layer.name; |
1128 | |
1129 | // Don't want to keep passing this around, dumb XCF format |
1130 | layer.compression = XcfCompressionType(xcf_image.compression); |
1131 | |
1132 | if (!loadLayerProperties(xcf_io, layer)) { |
1133 | return false; |
1134 | } |
1135 | |
1136 | qCDebug(XCFPLUGIN) << "layer: \"" << layer.name << "\", size: " << layer.width << " x " << layer.height << ", type: " << layer.type |
1137 | << ", mode: " << layer.mode << ", opacity: " << layer.opacity << ", visible: " << layer.visible << ", offset: " << layer.x_offset << ", " |
1138 | << layer.y_offset << ", compression" << layer.compression; |
1139 | |
1140 | // Skip reading the rest of it if it is not visible. Typically, when |
1141 | // you export an image from the The GIMP it flattens (or merges) only |
1142 | // the visible layers into the output image. |
1143 | |
1144 | if (layer.visible == 0) { |
1145 | return true; |
1146 | } |
1147 | |
1148 | // If there are any more layers, merge them into the final QImage. |
1149 | |
1150 | layer.hierarchy_offset = readOffsetPtr(stream&: xcf_io); |
1151 | layer.mask_offset = readOffsetPtr(stream&: xcf_io); |
1152 | |
1153 | if (layer.hierarchy_offset < 0) { |
1154 | qCDebug(XCFPLUGIN) << "XCF: negative layer hierarchy_offset" ; |
1155 | return false; |
1156 | } |
1157 | |
1158 | if (layer.mask_offset < 0) { |
1159 | qCDebug(XCFPLUGIN) << "XCF: negative layer mask_offset" ; |
1160 | return false; |
1161 | } |
1162 | |
1163 | // Allocate the individual tile QImages based on the size and type |
1164 | // of this layer. |
1165 | |
1166 | if (!composeTiles(xcf_image)) { |
1167 | return false; |
1168 | } |
1169 | xcf_io.device()->seek(pos: layer.hierarchy_offset); |
1170 | |
1171 | // As tiles are loaded, they are copied into the layers tiles by |
1172 | // this routine. (loadMask(), below, uses a slightly different |
1173 | // version of assignBytes().) |
1174 | |
1175 | layer.assignBytes = assignImageBytes; |
1176 | |
1177 | if (!loadHierarchy(xcf_io, layer, precision: xcf_image.header.precision)) { |
1178 | return false; |
1179 | } |
1180 | |
1181 | if (layer.mask_offset != 0) { |
1182 | // 9 means its not on the file. Spec says "If the property does not appear for a layer which has a layer mask, it defaults to true (1). |
1183 | if (layer.apply_mask == 9) { |
1184 | layer.apply_mask = 1; |
1185 | } |
1186 | |
1187 | xcf_io.device()->seek(pos: layer.mask_offset); |
1188 | |
1189 | if (!loadMask(xcf_io, layer, precision: xcf_image.header.precision)) { |
1190 | return false; |
1191 | } |
1192 | } else { |
1193 | // Spec says "Robust readers should force this to false if the layer has no layer mask." |
1194 | layer.apply_mask = 0; |
1195 | } |
1196 | |
1197 | // Now we should have enough information to initialize the final |
1198 | // QImage. The first visible layer determines the attributes |
1199 | // of the QImage. |
1200 | |
1201 | if (!xcf_image.initialized) { |
1202 | if (!initializeImage(xcf_image)) { |
1203 | return false; |
1204 | } |
1205 | copyLayerToImage(xcf_image); |
1206 | xcf_image.initialized = true; |
1207 | } else { |
1208 | const QColorSpace colorspaceBefore = xcf_image.image.colorSpace(); |
1209 | mergeLayerIntoImage(xcf_image); |
1210 | if (xcf_image.image.colorSpace() != colorspaceBefore) { |
1211 | qCDebug(XCFPLUGIN) << "Converting color space back to" << colorspaceBefore << "after layer composition" ; |
1212 | xcf_image.image.convertToColorSpace(colorSpace: colorspaceBefore); |
1213 | } |
1214 | } |
1215 | |
1216 | return true; |
1217 | } |
1218 | |
1219 | /*! |
1220 | * An XCF file can contain an arbitrary number of properties associated |
1221 | * with a layer. |
1222 | * \param xcf_io the data stream connected to the XCF image. |
1223 | * \param layer layer to collect the properties. |
1224 | * \return true if there were no I/O errors. |
1225 | */ |
1226 | bool XCFImageFormat::loadLayerProperties(QDataStream &xcf_io, Layer &layer) |
1227 | { |
1228 | while (true) { |
1229 | PropType type; |
1230 | QByteArray bytes; |
1231 | quint32 rawType; |
1232 | |
1233 | if (!loadProperty(xcf_io, type, bytes, rawType)) { |
1234 | qCDebug(XCFPLUGIN) << "XCF: error loading layer properties" ; |
1235 | return false; |
1236 | } |
1237 | |
1238 | QDataStream property(bytes); |
1239 | |
1240 | switch (type) { |
1241 | case PROP_END: |
1242 | return true; |
1243 | |
1244 | case PROP_ACTIVE_LAYER: |
1245 | layer.active = true; |
1246 | break; |
1247 | |
1248 | case PROP_OPACITY: |
1249 | property >> layer.opacity; |
1250 | layer.opacity = std::min(a: layer.opacity, b: 255u); |
1251 | break; |
1252 | |
1253 | case PROP_FLOAT_OPACITY: |
1254 | // For some reason QDataStream isn't able to read the float (tried |
1255 | // setting the endianness manually) |
1256 | if (bytes.size() == 4) { |
1257 | layer.opacityFloat = qFromBigEndian(source: *reinterpret_cast<float *>(bytes.data())); |
1258 | } else { |
1259 | qCDebug(XCFPLUGIN) << "XCF: Invalid data size for float:" << bytes.size(); |
1260 | } |
1261 | break; |
1262 | |
1263 | case PROP_VISIBLE: |
1264 | property >> layer.visible; |
1265 | break; |
1266 | |
1267 | case PROP_LINKED: |
1268 | property >> layer.linked; |
1269 | break; |
1270 | |
1271 | case PROP_LOCK_ALPHA: |
1272 | property >> layer.preserve_transparency; |
1273 | break; |
1274 | |
1275 | case PROP_APPLY_MASK: |
1276 | property >> layer.apply_mask; |
1277 | break; |
1278 | |
1279 | case PROP_EDIT_MASK: |
1280 | property >> layer.edit_mask; |
1281 | break; |
1282 | |
1283 | case PROP_SHOW_MASK: |
1284 | property >> layer.show_mask; |
1285 | break; |
1286 | |
1287 | case PROP_OFFSETS: |
1288 | property >> layer.x_offset >> layer.y_offset; |
1289 | break; |
1290 | |
1291 | case PROP_MODE: |
1292 | property >> layer.mode; |
1293 | if (layer.mode >= GIMP_LAYER_MODE_COUNT) { |
1294 | qCDebug(XCFPLUGIN) << "Found layer with unsupported mode" << LayerModeType(layer.mode) << "Defaulting to mode 0" ; |
1295 | layer.mode = GIMP_LAYER_MODE_NORMAL_LEGACY; |
1296 | } |
1297 | break; |
1298 | |
1299 | case PROP_TATTOO: |
1300 | property >> layer.tattoo; |
1301 | break; |
1302 | |
1303 | case PROP_COMPOSITE_SPACE: |
1304 | property >> layer.compositeSpace; |
1305 | if (layer.compositeSpace < 0) { |
1306 | layer.compositeSpace = GimpColorSpace(layer.compositeSpace == std::numeric_limits<qint32>::lowest() ? 0 : -layer.compositeSpace); |
1307 | } |
1308 | break; |
1309 | |
1310 | case PROP_COMPOSITE_MODE: |
1311 | property >> layer.compositeMode; |
1312 | if (layer.compositeMode < 0) { |
1313 | layer.compositeMode = |
1314 | XCFImageFormat::GimpCompositeMode(layer.compositeMode == std::numeric_limits<qint32>::lowest() ? 0 : -layer.compositeMode); |
1315 | } |
1316 | break; |
1317 | |
1318 | case PROP_BLEND_SPACE: |
1319 | property >> layer.blendSpace; |
1320 | if (layer.blendSpace < 0) { |
1321 | layer.blendSpace = GimpColorSpace(layer.blendSpace == std::numeric_limits<qint32>::lowest() ? 0 : -layer.blendSpace); |
1322 | } |
1323 | break; |
1324 | |
1325 | // Just for organization in the UI, doesn't influence rendering |
1326 | case PROP_COLOR_TAG: |
1327 | break; |
1328 | |
1329 | // We don't support editing, so for now just ignore locking |
1330 | case PROP_LOCK_CONTENT: |
1331 | case PROP_LOCK_POSITION: |
1332 | break; |
1333 | |
1334 | default: |
1335 | qCDebug(XCFPLUGIN) << "XCF: unimplemented layer property " << type << "(" << rawType << ")" |
1336 | << ", size " << bytes.size(); |
1337 | break; |
1338 | } |
1339 | } |
1340 | } |
1341 | |
1342 | /*! |
1343 | * Compute the number of tiles in the current layer and allocate |
1344 | * QImage structures for each of them. |
1345 | * \param xcf_image contains the current layer. |
1346 | */ |
1347 | bool XCFImageFormat::composeTiles(XCFImage &xcf_image) |
1348 | { |
1349 | Layer &layer(xcf_image.layer); |
1350 | |
1351 | layer.nrows = (layer.height + TILE_HEIGHT - 1) / TILE_HEIGHT; |
1352 | layer.ncols = (layer.width + TILE_WIDTH - 1) / TILE_WIDTH; |
1353 | |
1354 | qCDebug(XCFPLUGIN) << "IMAGE: height=" << xcf_image.header.height << ", width=" << xcf_image.header.width; |
1355 | qCDebug(XCFPLUGIN) << "LAYER: height=" << layer.height << ", width=" << layer.width; |
1356 | qCDebug(XCFPLUGIN) << "LAYER: rows=" << layer.nrows << ", columns=" << layer.ncols; |
1357 | |
1358 | // NOTE: starting from GIMP 2.10, images can be very large. The 32K limit for width and height is obsolete |
1359 | // and it was changed to 300000 (the same as Photoshop Big image). This plugin was able to open an RGB |
1360 | // image of 108000x40000 pixels saved with GIMP 2.10 |
1361 | // SANITY CHECK: Catch corrupted XCF image file where the width or height |
1362 | // of a tile is reported are bogus. See Bug# 234030. |
1363 | if ((sizeof(void *) == 4 && qint64(layer.width) * layer.height > 16384 * 16384)) { |
1364 | qCWarning(XCFPLUGIN) << "On 32-bits programs the maximum layer size is limited to" << 16384 << "x" << 16384 << "px" ; |
1365 | return false; |
1366 | } |
1367 | if (layer.width > MAX_IMAGE_WIDTH || layer.height > MAX_IMAGE_HEIGHT) { |
1368 | qCWarning(XCFPLUGIN) << "The maximum layer size is limited to" << MAX_IMAGE_WIDTH << "x" << MAX_IMAGE_HEIGHT << "px" ; |
1369 | return false; |
1370 | } |
1371 | |
1372 | // NOTE: A layer is a named rectangular area of pixels which has a definite position with respect to the canvas. |
1373 | // It may extend beyond the canvas or (more commonly) only cover some of it. |
1374 | // SANITY CHECK: Avoid to load XCF with a layer grater than 10 times the final image |
1375 | if (qint64(layer.width) * layer.height / 10 > qint64(xcf_image.header.width) * xcf_image.header.height) { |
1376 | if (qint64(layer.width) * layer.height > 16384 * 16384) { // large layers only |
1377 | qCWarning(XCFPLUGIN) << "Euristic sanity check: the image may be corrupted!" ; |
1378 | return false; |
1379 | } |
1380 | } |
1381 | |
1382 | #ifndef XCF_QT5_SUPPORT |
1383 | // Qt 6 image allocation limit calculation: we have to check the limit here because the image is splitted in |
1384 | // tiles of 64x64 pixels. The required memory to build the image is at least doubled because tiles are loaded |
1385 | // and then the final image is created by copying the tiles inside it. |
1386 | // NOTE: on Windows to open a 10GiB image the plugin uses 28GiB of RAM |
1387 | qint64 channels = 1 + (layer.type == RGB_GIMAGE ? 2 : 0) + (layer.type == RGBA_GIMAGE ? 3 : 0); |
1388 | if (qint64(layer.width) * qint64(layer.height) * channels * 2ll / 1024ll / 1024ll > QImageReader::allocationLimit()) { |
1389 | qCDebug(XCFPLUGIN) << "Rejecting image as it exceeds the current allocation limit of" << QImageReader::allocationLimit() << "megabytes" ; |
1390 | return false; |
1391 | } |
1392 | #endif |
1393 | |
1394 | layer.image_tiles.resize(size: layer.nrows); |
1395 | |
1396 | if (layer.type == GRAYA_GIMAGE || layer.type == INDEXEDA_GIMAGE) { |
1397 | layer.alpha_tiles.resize(size: layer.nrows); |
1398 | } |
1399 | |
1400 | if (layer.mask_offset != 0) { |
1401 | layer.mask_tiles.resize(size: layer.nrows); |
1402 | } |
1403 | |
1404 | for (uint j = 0; j < layer.nrows; j++) { |
1405 | layer.image_tiles[j].resize(size: layer.ncols); |
1406 | |
1407 | if (layer.type == GRAYA_GIMAGE || layer.type == INDEXEDA_GIMAGE) { |
1408 | layer.alpha_tiles[j].resize(size: layer.ncols); |
1409 | } |
1410 | |
1411 | if (layer.mask_offset != 0) { |
1412 | layer.mask_tiles[j].resize(size: layer.ncols); |
1413 | } |
1414 | } |
1415 | |
1416 | const QImage::Format format = layer.qimageFormat(precision: xcf_image.header.precision); |
1417 | |
1418 | for (uint j = 0; j < layer.nrows; j++) { |
1419 | for (uint i = 0; i < layer.ncols; i++) { |
1420 | uint tile_width = (i + 1) * TILE_WIDTH <= layer.width ? TILE_WIDTH : layer.width - i * TILE_WIDTH; |
1421 | |
1422 | uint tile_height = (j + 1) * TILE_HEIGHT <= layer.height ? TILE_HEIGHT : layer.height - j * TILE_HEIGHT; |
1423 | |
1424 | // Try to create the most appropriate QImage (each GIMP layer |
1425 | // type is treated slightly differently) |
1426 | |
1427 | switch (layer.type) { |
1428 | case RGB_GIMAGE: |
1429 | case RGBA_GIMAGE: |
1430 | layer.image_tiles[j][i] = QImage(tile_width, tile_height, format); |
1431 | if (layer.image_tiles[j][i].isNull()) { |
1432 | return false; |
1433 | } |
1434 | layer.image_tiles[j][i].setColorCount(0); |
1435 | break; |
1436 | |
1437 | case GRAY_GIMAGE: |
1438 | layer.image_tiles[j][i] = QImage(tile_width, tile_height, QImage::Format_Indexed8); |
1439 | if (layer.image_tiles[j][i].isNull()) { |
1440 | return false; |
1441 | } |
1442 | layer.image_tiles[j][i].setColorCount(256); |
1443 | setGrayPalette(layer.image_tiles[j][i]); |
1444 | break; |
1445 | |
1446 | case GRAYA_GIMAGE: |
1447 | layer.image_tiles[j][i] = QImage(tile_width, tile_height, QImage::Format_Indexed8); |
1448 | layer.image_tiles[j][i].setColorCount(256); |
1449 | if (layer.image_tiles[j][i].isNull()) { |
1450 | return false; |
1451 | } |
1452 | setGrayPalette(layer.image_tiles[j][i]); |
1453 | |
1454 | layer.alpha_tiles[j][i] = QImage(tile_width, tile_height, QImage::Format_Indexed8); |
1455 | if (layer.alpha_tiles[j][i].isNull()) { |
1456 | return false; |
1457 | } |
1458 | layer.alpha_tiles[j][i].setColorCount(256); |
1459 | setGrayPalette(layer.alpha_tiles[j][i]); |
1460 | break; |
1461 | |
1462 | case INDEXED_GIMAGE: |
1463 | layer.image_tiles[j][i] = QImage(tile_width, tile_height, QImage::Format_Indexed8); |
1464 | layer.image_tiles[j][i].setColorCount(xcf_image.num_colors); |
1465 | if (layer.image_tiles[j][i].isNull()) { |
1466 | return false; |
1467 | } |
1468 | setPalette(xcf_image, image&: layer.image_tiles[j][i]); |
1469 | break; |
1470 | |
1471 | case INDEXEDA_GIMAGE: |
1472 | layer.image_tiles[j][i] = QImage(tile_width, tile_height, QImage::Format_Indexed8); |
1473 | if (layer.image_tiles[j][i].isNull()) { |
1474 | return false; |
1475 | } |
1476 | layer.image_tiles[j][i].setColorCount(xcf_image.num_colors); |
1477 | setPalette(xcf_image, image&: layer.image_tiles[j][i]); |
1478 | |
1479 | layer.alpha_tiles[j][i] = QImage(tile_width, tile_height, QImage::Format_Indexed8); |
1480 | if (layer.alpha_tiles[j][i].isNull()) { |
1481 | return false; |
1482 | } |
1483 | layer.alpha_tiles[j][i].setColorCount(256); |
1484 | setGrayPalette(layer.alpha_tiles[j][i]); |
1485 | } |
1486 | if (layer.type != GRAYA_GIMAGE && layer.image_tiles[j][i].format() != format) { |
1487 | qCWarning(XCFPLUGIN) << "Selected wrong tile format" << layer.image_tiles[j][i].format() << "expected" << format; |
1488 | return false; |
1489 | } |
1490 | |
1491 | #ifndef DISABLE_TILE_PROFILE |
1492 | switch (xcf_image.header.precision) { |
1493 | case XCFImageFormat::GIMP_PRECISION_HALF_LINEAR: |
1494 | case XCFImageFormat::GIMP_PRECISION_FLOAT_LINEAR: |
1495 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_LINEAR: |
1496 | case XCFImageFormat::GIMP_PRECISION_U8_LINEAR: |
1497 | case XCFImageFormat::GIMP_PRECISION_U16_LINEAR: |
1498 | case XCFImageFormat::GIMP_PRECISION_U32_LINEAR: |
1499 | layer.image_tiles[j][i].setColorSpace(QColorSpace::SRgbLinear); |
1500 | break; |
1501 | case XCFImageFormat::GIMP_PRECISION_HALF_NON_LINEAR: |
1502 | case XCFImageFormat::GIMP_PRECISION_FLOAT_NON_LINEAR: |
1503 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_NON_LINEAR: |
1504 | case XCFImageFormat::GIMP_PRECISION_U8_NON_LINEAR: |
1505 | case XCFImageFormat::GIMP_PRECISION_U16_NON_LINEAR: |
1506 | case XCFImageFormat::GIMP_PRECISION_U32_NON_LINEAR: |
1507 | layer.image_tiles[j][i].setColorSpace(QColorSpace::SRgb); |
1508 | break; |
1509 | case XCFImageFormat::GIMP_PRECISION_HALF_PERCEPTUAL: |
1510 | case XCFImageFormat::GIMP_PRECISION_FLOAT_PERCEPTUAL: |
1511 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_PERCEPTUAL: |
1512 | case XCFImageFormat::GIMP_PRECISION_U8_PERCEPTUAL: |
1513 | case XCFImageFormat::GIMP_PRECISION_U16_PERCEPTUAL: |
1514 | case XCFImageFormat::GIMP_PRECISION_U32_PERCEPTUAL: |
1515 | layer.image_tiles[j][i].setColorSpace(QColorSpace::SRgb); |
1516 | break; |
1517 | } |
1518 | #endif |
1519 | if (layer.mask_offset != 0) { |
1520 | layer.mask_tiles[j][i] = QImage(tile_width, tile_height, QImage::Format_Indexed8); |
1521 | layer.mask_tiles[j][i].setColorCount(256); |
1522 | if (layer.mask_tiles[j][i].isNull()) { |
1523 | return false; |
1524 | } |
1525 | setGrayPalette(layer.mask_tiles[j][i]); |
1526 | } |
1527 | } |
1528 | } |
1529 | return true; |
1530 | } |
1531 | |
1532 | /*! |
1533 | * Apply a grayscale palette to the QImage. Note that Qt does not distinguish |
1534 | * between grayscale and indexed images. A grayscale image is just |
1535 | * an indexed image with a 256-color, grayscale palette. |
1536 | * \param image image to set to a grayscale palette. |
1537 | */ |
1538 | void XCFImageFormat::setGrayPalette(QImage &image) |
1539 | { |
1540 | if (grayTable.isEmpty()) { |
1541 | grayTable.resize(size: 256); |
1542 | |
1543 | for (int i = 0; i < 256; i++) { |
1544 | grayTable[i] = qRgb(r: i, g: i, b: i); |
1545 | } |
1546 | } |
1547 | |
1548 | image.setColorTable(grayTable); |
1549 | } |
1550 | |
1551 | /*! |
1552 | * Copy the indexed palette from the XCF image into the QImage. |
1553 | * \param xcf_image XCF image containing the palette read from the data stream. |
1554 | * \param image image to apply the palette to. |
1555 | */ |
1556 | void XCFImageFormat::setPalette(XCFImage &xcf_image, QImage &image) |
1557 | { |
1558 | Q_ASSERT(xcf_image.num_colors == xcf_image.palette.size()); |
1559 | |
1560 | image.setColorTable(xcf_image.palette); |
1561 | } |
1562 | |
1563 | /*! |
1564 | * Copy the parasites info to QImage. |
1565 | * \param xcf_image XCF image containing the parasites read from the data stream. |
1566 | * \param image image to apply the parasites data. |
1567 | * \note Some comment taken from https://gitlab.gnome.org/GNOME/gimp/-/blob/master/devel-docs/parasites.txt |
1568 | */ |
1569 | void XCFImageFormat::setImageParasites(const XCFImage &xcf_image, QImage &image) |
1570 | { |
1571 | auto&& p = xcf_image.parasites; |
1572 | auto keys = p.keys(); |
1573 | for (auto &&key : std::as_const(t&: keys)) { |
1574 | auto value = p.value(key); |
1575 | if (value.isEmpty()) |
1576 | continue; |
1577 | |
1578 | // "icc-profile" (IMAGE, PERSISTENT | UNDOABLE) |
1579 | // This contains an ICC profile describing the color space the |
1580 | // image was produced in. TIFF images stored in PhotoShop do |
1581 | // oftentimes contain embedded profiles. An experimental color |
1582 | // manager exists to use this parasite, and it will be used |
1583 | // for interchange between TIFF and PNG (identical profiles) |
1584 | if (key == QStringLiteral("icc-profile" )) { |
1585 | auto cs = QColorSpace::fromIccProfile(iccProfile: value); |
1586 | if (cs.isValid()) |
1587 | image.setColorSpace(cs); |
1588 | continue; |
1589 | } |
1590 | |
1591 | // "gimp-comment" (IMAGE, PERSISTENT) |
1592 | // Standard GIF-style image comments. This parasite should be |
1593 | // human-readable text in UTF-8 encoding. A trailing \0 might |
1594 | // be included and is not part of the comment. Note that image |
1595 | // comments may also be present in the "gimp-metadata" parasite. |
1596 | if (key == QStringLiteral("gimp-comment" )) { |
1597 | value.replace(before: '\0', after: QByteArray()); |
1598 | image.setText(QStringLiteral(META_KEY_COMMENT), value: QString::fromUtf8(ba: value)); |
1599 | continue; |
1600 | } |
1601 | |
1602 | // "gimp-image-metadata" |
1603 | // Saved by GIMP 2.10.30 but it is not mentioned in the specification. |
1604 | // It is an XML block with the properties set using GIMP. |
1605 | if (key == QStringLiteral("gimp-image-metadata" )) { |
1606 | // NOTE: I arbitrary defined the metadata "XML:org.gimp.xml" because it seems |
1607 | // a GIMP proprietary XML format (no xmlns defined) |
1608 | value.replace(before: '\0', after: QByteArray()); |
1609 | image.setText(QStringLiteral(META_KEY_XML_GIMP), value: QString::fromUtf8(ba: value)); |
1610 | continue; |
1611 | } |
1612 | |
1613 | #if 0 // Unable to generate it using latest GIMP version |
1614 | // "gimp-metadata" (IMAGE, PERSISTENT) |
1615 | // The metadata associated with the image, serialized as one XMP |
1616 | // packet. This metadata includes the contents of any XMP, EXIF |
1617 | // and IPTC blocks from the original image, as well as |
1618 | // user-specified values such as image comment, copyright, |
1619 | // license, etc. |
1620 | if (key == QStringLiteral("gimp-metadata" )) { |
1621 | // NOTE: "XML:com.adobe.xmp" is the meta set by Qt reader when an |
1622 | // XMP packet is found (e.g. when reading a PNG saved by Photoshop). |
1623 | // I reused the same key because some programs could search for it. |
1624 | value.replace('\0', QByteArray()); |
1625 | image.setText(QStringLiteral(META_KEY_XMP_ADOBE), QString::fromUtf8(value)); |
1626 | continue; |
1627 | } |
1628 | #endif |
1629 | } |
1630 | |
1631 | #ifdef DISABLE_IMAGE_PROFILE |
1632 | // final colorspace checks |
1633 | if (!image.colorSpace().isValid()) { |
1634 | switch (xcf_image.header.precision) { |
1635 | case XCFImageFormat::GIMP_PRECISION_HALF_LINEAR: |
1636 | case XCFImageFormat::GIMP_PRECISION_FLOAT_LINEAR: |
1637 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_LINEAR: |
1638 | case XCFImageFormat::GIMP_PRECISION_U8_LINEAR: |
1639 | case XCFImageFormat::GIMP_PRECISION_U16_LINEAR: |
1640 | case XCFImageFormat::GIMP_PRECISION_U32_LINEAR: |
1641 | image.setColorSpace(QColorSpace::SRgbLinear); |
1642 | break; |
1643 | default: |
1644 | image.setColorSpace(QColorSpace::SRgb); |
1645 | break; |
1646 | } |
1647 | } |
1648 | #endif |
1649 | } |
1650 | |
1651 | /*! |
1652 | * Copy the bytes from the tile buffer into the image tile QImage, taking into |
1653 | * account all the myriad different modes. |
1654 | * \param layer layer containing the tile buffer and the image tile matrix. |
1655 | * \param i column index of current tile. |
1656 | * \param j row index of current tile. |
1657 | */ |
1658 | bool XCFImageFormat::assignImageBytes(Layer &layer, uint i, uint j, const GimpPrecision &precision) |
1659 | { |
1660 | QImage &image = layer.image_tiles[j][i]; |
1661 | |
1662 | const uchar *tile = layer.tile; |
1663 | const int width = image.width(); |
1664 | const int height = image.height(); |
1665 | const int bytesPerLine = image.bytesPerLine(); |
1666 | uchar *bits = image.bits(); |
1667 | |
1668 | // Handle the special cases |
1669 | if (layer.type == GRAYA_GIMAGE || layer.type == GRAY_GIMAGE || layer.type == INDEXEDA_GIMAGE) { |
1670 | auto bpc = bytesPerChannel(precision); |
1671 | for (int y = 0; y < height; y++) { |
1672 | uchar *dataPtr = bits + y * bytesPerLine; |
1673 | uchar *alphaPtr = nullptr; |
1674 | if (layer.alpha_tiles.size() > j && layer.alpha_tiles.at(i: j).size() > i) { |
1675 | QImage &alphaTile = layer.alpha_tiles[j][i]; |
1676 | if (alphaTile.width() >= width && alphaTile.height() > y) { |
1677 | alphaPtr = alphaTile.scanLine(y); |
1678 | } |
1679 | } |
1680 | if (bpc == 4) { |
1681 | #ifdef USE_FLOAT_IMAGES |
1682 | if (precision < GimpPrecision::GIMP_PRECISION_HALF_LINEAR) { |
1683 | for (int x = 0; x < width; x++) { |
1684 | auto src = reinterpret_cast<const quint16 *>(tile); |
1685 | *dataPtr++ = qFromBigEndian<quint16>(source: src[0]) / 257; |
1686 | if (alphaPtr) { |
1687 | *alphaPtr++ = qFromBigEndian<quint16>(source: src[1]) / 257; |
1688 | tile += sizeof(quint16) * 2; |
1689 | } else { |
1690 | tile += sizeof(quint16); |
1691 | } |
1692 | } |
1693 | } else { |
1694 | for (int x = 0; x < width; x++) { |
1695 | auto src = reinterpret_cast<const float *>(tile); |
1696 | *dataPtr++ = qFromBigEndian<float>(source: src[0]) * 255; |
1697 | if (alphaPtr) { |
1698 | *alphaPtr++ = qFromBigEndian<float>(source: src[1]) * 255; |
1699 | tile += sizeof(float) * 2; |
1700 | } else { |
1701 | tile += sizeof(float); |
1702 | } |
1703 | } |
1704 | } |
1705 | #else |
1706 | for (int x = 0; x < width; x++) { |
1707 | auto src = (const quint16 *)tile; |
1708 | *dataPtr++ = qFromBigEndian<quint16>(src[0]) / 257; |
1709 | if (alphaPtr) { |
1710 | *alphaPtr++ = qFromBigEndian<quint16>(src[1]) / 257; |
1711 | tile += sizeof(quint16) * 2; |
1712 | } else { |
1713 | tile += sizeof(quint16); |
1714 | } |
1715 | } |
1716 | #endif |
1717 | } else if (bpc == 2) { |
1718 | #ifdef USE_FLOAT_IMAGES |
1719 | if (precision < GimpPrecision::GIMP_PRECISION_HALF_LINEAR) { |
1720 | for (int x = 0; x < width; x++) { |
1721 | auto src = reinterpret_cast<const quint16 *>(tile); |
1722 | *dataPtr++ = qFromBigEndian<quint16>(source: src[0]) / 257; |
1723 | if (alphaPtr) |
1724 | *alphaPtr++ = qFromBigEndian<quint16>(source: src[1]) / 257; |
1725 | tile += sizeof(QRgb); |
1726 | } |
1727 | } else { |
1728 | for (int x = 0; x < width; x++) { |
1729 | auto src = reinterpret_cast<const qfloat16 *>(tile); |
1730 | *dataPtr++ = qFromBigEndian<qfloat16>(source: src[0]) * 255; |
1731 | if (alphaPtr) |
1732 | *alphaPtr++ = qFromBigEndian<qfloat16>(source: src[1]) * 255; |
1733 | tile += sizeof(QRgb); |
1734 | } |
1735 | } |
1736 | #else |
1737 | for (int x = 0; x < width; x++) { |
1738 | auto src = reinterpret_cast<const quint16 *>(tile); |
1739 | *dataPtr++ = qFromBigEndian<quint16>(src[0]) / 257; |
1740 | if (alphaPtr) |
1741 | *alphaPtr++ = qFromBigEndian<quint16>(src[1]) / 257; |
1742 | tile += sizeof(QRgb); |
1743 | } |
1744 | #endif |
1745 | } else { |
1746 | for (int x = 0; x < width; x++) { |
1747 | if (tile[0] < image.colorCount()) |
1748 | *dataPtr++ = tile[0]; |
1749 | if (alphaPtr) |
1750 | *alphaPtr++ = tile[1]; |
1751 | tile += sizeof(QRgb); |
1752 | } |
1753 | } |
1754 | } |
1755 | return true; |
1756 | } |
1757 | |
1758 | switch (image.format()) { |
1759 | case QImage::Format_RGBX8888: |
1760 | for (int y = 0; y < height; y++) { |
1761 | uchar *dataPtr = image.scanLine(y); |
1762 | for (int x = 0; x < width * 4; x += 4, tile += 4) { |
1763 | dataPtr[x + 0] = tile[0]; |
1764 | dataPtr[x + 1] = tile[1]; |
1765 | dataPtr[x + 2] = tile[2]; |
1766 | dataPtr[x + 3] = 255; |
1767 | } |
1768 | } |
1769 | break; |
1770 | case QImage::Format_RGBA8888: |
1771 | for (int y = 0; y < height; y++) { |
1772 | const size_t bpl = width * 4; |
1773 | memcpy(dest: image.scanLine(y), src: tile + y * bpl, n: bpl); |
1774 | } |
1775 | break; |
1776 | case QImage::Format_RGBX64: |
1777 | for (int y = 0; y < height; y++) { |
1778 | quint16 *dataPtr = reinterpret_cast<quint16 *>(image.scanLine(y)); |
1779 | const size_t bpl = width * sizeof(QRgba64); |
1780 | const quint16 *src = reinterpret_cast<const quint16 *>(tile + y * bpl); |
1781 | for (int x = 0; x < width * 4; x += 4) { |
1782 | dataPtr[x + 0] = qFromBigEndian(source: src[x + 0]); |
1783 | dataPtr[x + 1] = qFromBigEndian(source: src[x + 1]); |
1784 | dataPtr[x + 2] = qFromBigEndian(source: src[x + 2]); |
1785 | dataPtr[x + 3] = 65535; |
1786 | } |
1787 | } |
1788 | break; |
1789 | #ifdef USE_FLOAT_IMAGES |
1790 | case QImage::Format_RGBX16FPx4: |
1791 | for (int y = 0; y < height; y++) { |
1792 | qfloat16 *dataPtr = reinterpret_cast<qfloat16 *>(image.scanLine(y)); |
1793 | const qfloat16 *src = reinterpret_cast<const qfloat16 *>(tile + y * width * sizeof(QRgbaFloat16)); |
1794 | for (int x = 0; x < width * 4; x += 4) { |
1795 | dataPtr[x + 0] = qFromBigEndian(source: src[x + 0]); |
1796 | dataPtr[x + 1] = qFromBigEndian(source: src[x + 1]); |
1797 | dataPtr[x + 2] = qFromBigEndian(source: src[x + 2]); |
1798 | dataPtr[x + 3] = qfloat16(1); |
1799 | } |
1800 | } |
1801 | break; |
1802 | case QImage::Format_RGBA16FPx4: |
1803 | static_assert(sizeof(QRgbaFloat16) == sizeof(QRgba64), "Different sizes for float and int 16 bit pixels" ); |
1804 | #endif |
1805 | case QImage::Format_RGBA64: |
1806 | for (int y = 0; y < height; y++) { |
1807 | const size_t bpl = width * sizeof(QRgba64); |
1808 | qFromBigEndian<qint16>(source: tile + y * bpl, count: width * 4, dest: image.scanLine(y)); |
1809 | } |
1810 | break; |
1811 | #ifdef USE_FLOAT_IMAGES |
1812 | case QImage::Format_RGBA32FPx4: |
1813 | for (int y = 0; y < height; y++) { |
1814 | const size_t bpl = width * sizeof(QRgbaFloat32); |
1815 | qFromBigEndian<qint32>(source: tile + y * bpl, count: width * 4, dest: image.scanLine(y)); |
1816 | } |
1817 | break; |
1818 | case QImage::Format_RGBX32FPx4: |
1819 | for (int y = 0; y < height; y++) { |
1820 | float *dataPtr = reinterpret_cast<float *>(image.scanLine(y)); |
1821 | const float *src = reinterpret_cast<const float *>(tile + y * width * sizeof(QRgbaFloat32)); |
1822 | for (int x = 0; x < width * 4; x += 4) { |
1823 | dataPtr[x + 0] = qFromBigEndian(source: src[x + 0]); |
1824 | dataPtr[x + 1] = qFromBigEndian(source: src[x + 1]); |
1825 | dataPtr[x + 2] = qFromBigEndian(source: src[x + 2]); |
1826 | dataPtr[x + 3] = 1.f; |
1827 | } |
1828 | } |
1829 | break; |
1830 | #endif |
1831 | case QImage::Format_Indexed8: |
1832 | for (int y = 0; y < height; y++) { |
1833 | uchar *dataPtr = bits + y * bytesPerLine; |
1834 | for (int x = 0; x < width; x++) { |
1835 | *dataPtr++ = tile[0]; |
1836 | tile += sizeof(QRgb); |
1837 | } |
1838 | } |
1839 | break; |
1840 | default: |
1841 | qCWarning(XCFPLUGIN) << "Unhandled image format" << image.format() << "and/or layer type" << layer.type; |
1842 | return false; |
1843 | } |
1844 | |
1845 | return true; |
1846 | } |
1847 | |
1848 | /*! |
1849 | * The GIMP stores images in a "mipmap"-like hierarchy. As far as the QImage |
1850 | * is concerned, however, only the top level (i.e., the full resolution image) |
1851 | * is used. |
1852 | * \param xcf_io the data stream connected to the XCF image. |
1853 | * \param layer the layer to collect the image. |
1854 | * \return true if there were no I/O errors. |
1855 | */ |
1856 | bool XCFImageFormat::loadHierarchy(QDataStream &xcf_io, Layer &layer, const GimpPrecision precision) |
1857 | { |
1858 | qint32 width; |
1859 | qint32 height; |
1860 | quint32 bpp; |
1861 | |
1862 | xcf_io >> width >> height >> bpp; |
1863 | const qint64 offset = readOffsetPtr(stream&: xcf_io); |
1864 | |
1865 | qCDebug(XCFPLUGIN) << "width" << width << "height" << height << "bpp" << bpp << "offset" << offset; |
1866 | |
1867 | if (offset < 0) { |
1868 | qCDebug(XCFPLUGIN) << "XCF: negative hierarchy offset" ; |
1869 | return false; |
1870 | } |
1871 | |
1872 | const bool isMask = layer.assignBytes == assignMaskBytes; |
1873 | |
1874 | // make sure bpp is correct and complain if it is not |
1875 | switch (layer.type) { |
1876 | case RGB_GIMAGE: |
1877 | if (bpp != 3 * bytesPerChannel(precision)) { |
1878 | qCDebug(XCFPLUGIN) << "Found layer of type RGB but with bpp != 3" << bpp; |
1879 | |
1880 | if (!isMask) { |
1881 | return false; |
1882 | } |
1883 | } |
1884 | break; |
1885 | case RGBA_GIMAGE: |
1886 | if (bpp != 4 * bytesPerChannel(precision)) { |
1887 | qCDebug(XCFPLUGIN) << "Found layer of type RGBA but with bpp != 4, got" << bpp << "bpp" ; |
1888 | |
1889 | if (!isMask) { |
1890 | return false; |
1891 | } |
1892 | } |
1893 | break; |
1894 | case GRAY_GIMAGE: |
1895 | if (bpp != 1 * bytesPerChannel(precision)) { |
1896 | qCDebug(XCFPLUGIN) << "Found layer of type Gray but with bpp != 1" << bpp; |
1897 | return false; |
1898 | } |
1899 | break; |
1900 | case GRAYA_GIMAGE: |
1901 | if (bpp != 2 * bytesPerChannel(precision)) { |
1902 | qCDebug(XCFPLUGIN) << "Found layer of type Gray+Alpha but with bpp != 2" << bpp; |
1903 | |
1904 | if (!isMask) { |
1905 | return false; |
1906 | } |
1907 | } |
1908 | break; |
1909 | case INDEXED_GIMAGE: |
1910 | if (bpp != 1 * bytesPerChannel(precision)) { |
1911 | qCDebug(XCFPLUGIN) << "Found layer of type Indexed but with bpp != 1" << bpp; |
1912 | return false; |
1913 | } |
1914 | break; |
1915 | case INDEXEDA_GIMAGE: |
1916 | if (bpp != 2 * bytesPerChannel(precision)) { |
1917 | qCDebug(XCFPLUGIN) << "Found layer of type Indexed+Alpha but with bpp != 2" << bpp; |
1918 | |
1919 | if (!isMask) { |
1920 | return false; |
1921 | } |
1922 | } |
1923 | break; |
1924 | } |
1925 | |
1926 | if (bpp > 4 * bytesPerChannel(precision)) { |
1927 | qCDebug(XCFPLUGIN) << "bpp is" << bpp << "We don't support layers with bpp > 4" ; |
1928 | return false; |
1929 | } |
1930 | |
1931 | // GIMP stores images in a "mipmap"-like format (multiple levels of |
1932 | // increasingly lower resolution). Only the top level is used here, |
1933 | // however. |
1934 | |
1935 | quint32 junk; |
1936 | do { |
1937 | xcf_io >> junk; |
1938 | |
1939 | if (xcf_io.device()->atEnd()) { |
1940 | qCDebug(XCFPLUGIN) << "XCF: read failure on layer " << layer.name << " level offsets" ; |
1941 | return false; |
1942 | } |
1943 | } while (junk != 0); |
1944 | |
1945 | qint64 saved_pos = xcf_io.device()->pos(); |
1946 | |
1947 | xcf_io.device()->seek(pos: offset); |
1948 | if (!loadLevel(xcf_io, layer, bpp, precision)) { |
1949 | return false; |
1950 | } |
1951 | |
1952 | xcf_io.device()->seek(pos: saved_pos); |
1953 | return true; |
1954 | } |
1955 | |
1956 | template<typename SourceFormat> |
1957 | static bool convertFloatTo16Bit(uchar *output, quint64 outputSize, uchar *input) |
1958 | { |
1959 | SourceFormat *source = (SourceFormat *)(input); |
1960 | for (quint64 offset = 0; offset < outputSize; offset++) { |
1961 | (reinterpret_cast<uint16_t *>(output))[offset] = qToBigEndian(source: quint16(qBound(0., qFromBigEndian<SourceFormat>(source[offset]) * 65535. + 0.5, 65535.))); |
1962 | } |
1963 | return true; |
1964 | } |
1965 | |
1966 | /*! |
1967 | * Load one level of the image hierarchy (but only the top level is ever used). |
1968 | * \param xcf_io the data stream connected to the XCF image. |
1969 | * \param layer the layer to collect the image. |
1970 | * \param bpp the number of bytes in a pixel. |
1971 | * \return true if there were no I/O errors. |
1972 | * \sa loadTileRLE(). |
1973 | */ |
1974 | bool XCFImageFormat::loadLevel(QDataStream &xcf_io, Layer &layer, qint32 bpp, const GimpPrecision precision) |
1975 | { |
1976 | auto bpc = bytesPerChannel(precision); |
1977 | if ((bpc == 0) || (bpp % bpc)) { |
1978 | qCDebug(XCFPLUGIN) << "XCF: the stream seems corrupted" ; |
1979 | return false; |
1980 | } |
1981 | |
1982 | qint32 width; |
1983 | qint32 height; |
1984 | |
1985 | xcf_io >> width >> height; |
1986 | qint64 offset = readOffsetPtr(stream&: xcf_io); |
1987 | |
1988 | if (offset < 0) { |
1989 | qCDebug(XCFPLUGIN) << "XCF: negative level offset" ; |
1990 | return false; |
1991 | } |
1992 | |
1993 | if (offset == 0) { |
1994 | // offset 0 with rowsxcols != 0 is probably an error since it means we have tiles |
1995 | // without data but just clear the bits for now instead of returning false |
1996 | for (uint j = 0; j < layer.nrows; j++) { |
1997 | for (uint i = 0; i < layer.ncols; i++) { |
1998 | layer.image_tiles[j][i].fill(color: Qt::transparent); |
1999 | if (layer.type == GRAYA_GIMAGE || layer.type == INDEXEDA_GIMAGE) { |
2000 | layer.alpha_tiles[j][i].fill(color: Qt::transparent); |
2001 | } |
2002 | } |
2003 | } |
2004 | return true; |
2005 | } |
2006 | |
2007 | bool needConvert = true; |
2008 | switch (precision) { |
2009 | #ifdef USE_FLOAT_IMAGES |
2010 | case GIMP_PRECISION_HALF_LINEAR: |
2011 | case GIMP_PRECISION_HALF_NON_LINEAR: |
2012 | case GIMP_PRECISION_HALF_PERCEPTUAL: |
2013 | case GIMP_PRECISION_FLOAT_LINEAR: |
2014 | case GIMP_PRECISION_FLOAT_NON_LINEAR: |
2015 | case GIMP_PRECISION_FLOAT_PERCEPTUAL: |
2016 | #endif |
2017 | case GIMP_PRECISION_U8_LINEAR: |
2018 | case GIMP_PRECISION_U8_NON_LINEAR: |
2019 | case GIMP_PRECISION_U8_PERCEPTUAL: |
2020 | case GIMP_PRECISION_U16_LINEAR: |
2021 | case GIMP_PRECISION_U16_NON_LINEAR: |
2022 | case GIMP_PRECISION_U16_PERCEPTUAL: |
2023 | needConvert = false; |
2024 | break; |
2025 | default: |
2026 | break; |
2027 | } |
2028 | |
2029 | const uint blockSize = TILE_WIDTH * TILE_HEIGHT * bpp * 1.5; |
2030 | |
2031 | QList<uchar> buffer; |
2032 | if (needConvert) { |
2033 | buffer.resize(size: blockSize * (bpp == 2 ? 2 : 1)); |
2034 | } |
2035 | for (uint j = 0; j < layer.nrows; j++) { |
2036 | for (uint i = 0; i < layer.ncols; i++) { |
2037 | if (offset == 0) { |
2038 | qCDebug(XCFPLUGIN) << "XCF: incorrect number of tiles in layer " << layer.name; |
2039 | return false; |
2040 | } |
2041 | |
2042 | qint64 saved_pos = xcf_io.device()->pos(); |
2043 | qint64 offset2 = readOffsetPtr(stream&: xcf_io); |
2044 | |
2045 | if (offset2 < 0) { |
2046 | qCDebug(XCFPLUGIN) << "XCF: negative level offset" ; |
2047 | return false; |
2048 | } |
2049 | |
2050 | // Evidently, RLE can occasionally expand a tile instead of compressing it! |
2051 | if (offset2 == 0) { |
2052 | offset2 = offset + blockSize; |
2053 | } |
2054 | |
2055 | xcf_io.device()->seek(pos: offset); |
2056 | qint64 bytesParsed = 0; |
2057 | |
2058 | switch (layer.compression) { |
2059 | case COMPRESS_NONE: { |
2060 | if (xcf_io.version() > 11 || size_t(bpp) > sizeof(QRgba64)) { |
2061 | qCDebug(XCFPLUGIN) << "Component reading not supported yet" ; |
2062 | return false; |
2063 | } |
2064 | const int data_size = bpp * TILE_WIDTH * TILE_HEIGHT; |
2065 | if (data_size > int(blockSize)) { |
2066 | qCDebug(XCFPLUGIN) << "Tile data too big, we can only fit" << sizeof(layer.tile) << "but need" << data_size; |
2067 | return false; |
2068 | } |
2069 | int dataRead = xcf_io.readRawData(reinterpret_cast<char *>(layer.tile), len: data_size); |
2070 | if (dataRead < data_size) { |
2071 | qCDebug(XCFPLUGIN) << "short read, expected" << data_size << "got" << dataRead; |
2072 | return false; |
2073 | } |
2074 | bytesParsed = dataRead; |
2075 | break; |
2076 | } |
2077 | case COMPRESS_RLE: { |
2078 | int size = layer.image_tiles[j][i].width() * layer.image_tiles[j][i].height(); |
2079 | const uint data_size = size * bpp; |
2080 | if (needConvert) { |
2081 | if (data_size >= unsigned(buffer.size())) { |
2082 | qCDebug(XCFPLUGIN) << "Tile data too big, we can only fit" << buffer.size() << "but need" << data_size; |
2083 | return false; |
2084 | } |
2085 | } else { |
2086 | if (data_size > sizeof(layer.tile)) { |
2087 | qCDebug(XCFPLUGIN) << "Tile data too big, we can only fit" << sizeof(layer.tile) << "but need" << data_size; |
2088 | return false; |
2089 | } |
2090 | if (blockSize > sizeof(layer.tile)) { |
2091 | qCWarning(XCFPLUGIN) << "Too small tiles" << sizeof(layer.tile) << "this image requires" << blockSize << sizeof(QRgba64) << bpp; |
2092 | return false; |
2093 | } |
2094 | } |
2095 | if (!loadTileRLE(xcf_io, tile: needConvert ? buffer.data() : layer.tile, size, data_length: offset2 - offset, bpp, bytesParsed: &bytesParsed)) { |
2096 | qCDebug(XCFPLUGIN) << "Failed to read RLE" ; |
2097 | return false; |
2098 | } |
2099 | break; |
2100 | } |
2101 | default: |
2102 | qCDebug(XCFPLUGIN) << "Unhandled compression" << layer.compression; |
2103 | return false; |
2104 | } |
2105 | |
2106 | if (needConvert) { |
2107 | if (bytesParsed > buffer.size()) { |
2108 | qCDebug(XCFPLUGIN) << "Invalid number of bytes parsed" << bytesParsed << buffer.size(); |
2109 | return false; |
2110 | } |
2111 | |
2112 | switch (precision) { |
2113 | case GIMP_PRECISION_U32_LINEAR: |
2114 | case GIMP_PRECISION_U32_NON_LINEAR: |
2115 | case GIMP_PRECISION_U32_PERCEPTUAL: { |
2116 | quint32 *source = reinterpret_cast<quint32 *>(buffer.data()); |
2117 | for (quint64 offset = 0, len = buffer.size() / sizeof(quint32); offset < len; ++offset) { |
2118 | (reinterpret_cast<quint16 *>(layer.tile))[offset] = qToBigEndian<quint16>(source: qFromBigEndian(source: source[offset]) / 65537); |
2119 | } |
2120 | break; |
2121 | } |
2122 | #ifndef USE_FLOAT_IMAGES |
2123 | case GIMP_PRECISION_HALF_LINEAR: |
2124 | case GIMP_PRECISION_HALF_NON_LINEAR: |
2125 | case GIMP_PRECISION_HALF_PERCEPTUAL: |
2126 | convertFloatTo16Bit<qfloat16>(layer.tile, buffer.size() / sizeof(qfloat16), buffer.data()); |
2127 | break; |
2128 | case GIMP_PRECISION_FLOAT_LINEAR: |
2129 | case GIMP_PRECISION_FLOAT_NON_LINEAR: |
2130 | case GIMP_PRECISION_FLOAT_PERCEPTUAL: |
2131 | convertFloatTo16Bit<float>(layer.tile, buffer.size() / sizeof(float), buffer.data()); |
2132 | break; |
2133 | case GIMP_PRECISION_DOUBLE_LINEAR: |
2134 | case GIMP_PRECISION_DOUBLE_NON_LINEAR: |
2135 | case GIMP_PRECISION_DOUBLE_PERCEPTUAL: |
2136 | convertFloatTo16Bit<double>(layer.tile, buffer.size() / sizeof(double), buffer.data()); |
2137 | break; |
2138 | #else |
2139 | case GIMP_PRECISION_DOUBLE_LINEAR: |
2140 | case GIMP_PRECISION_DOUBLE_NON_LINEAR: |
2141 | case GIMP_PRECISION_DOUBLE_PERCEPTUAL: { |
2142 | double *source = reinterpret_cast<double *>(buffer.data()); |
2143 | for (quint64 offset = 0, len = buffer.size() / sizeof(double); offset < len; ++offset) { |
2144 | (reinterpret_cast<float *>(layer.tile))[offset] = qToBigEndian<float>(source: float(qFromBigEndian(source: source[offset]))); |
2145 | } |
2146 | break; |
2147 | } |
2148 | #endif |
2149 | default: |
2150 | qCWarning(XCFPLUGIN) << "Unsupported precision" << precision; |
2151 | return false; |
2152 | } |
2153 | } |
2154 | |
2155 | // The bytes in the layer tile are juggled differently depending on |
2156 | // the target QImage. The caller has set layer.assignBytes to the |
2157 | // appropriate routine. |
2158 | if (!layer.assignBytes(layer, i, j, precision)) { |
2159 | return false; |
2160 | } |
2161 | |
2162 | xcf_io.device()->seek(pos: saved_pos); |
2163 | offset = readOffsetPtr(stream&: xcf_io); |
2164 | |
2165 | if (offset < 0) { |
2166 | qCDebug(XCFPLUGIN) << "XCF: negative level offset" ; |
2167 | return false; |
2168 | } |
2169 | } |
2170 | } |
2171 | |
2172 | return true; |
2173 | } |
2174 | |
2175 | /*! |
2176 | * A layer can have a one channel image which is used as a mask. |
2177 | * \param xcf_io the data stream connected to the XCF image. |
2178 | * \param layer the layer to collect the mask image. |
2179 | * \return true if there were no I/O errors. |
2180 | */ |
2181 | bool XCFImageFormat::loadMask(QDataStream &xcf_io, Layer &layer, const GimpPrecision precision) |
2182 | { |
2183 | qint32 width; |
2184 | qint32 height; |
2185 | char *name; |
2186 | |
2187 | xcf_io >> width >> height >> name; |
2188 | |
2189 | delete[] name; |
2190 | |
2191 | if (!loadChannelProperties(xcf_io, layer)) { |
2192 | return false; |
2193 | } |
2194 | |
2195 | const qint64 hierarchy_offset = readOffsetPtr(stream&: xcf_io); |
2196 | |
2197 | if (hierarchy_offset < 0) { |
2198 | qCDebug(XCFPLUGIN) << "XCF: negative mask hierarchy_offset" ; |
2199 | return false; |
2200 | } |
2201 | |
2202 | xcf_io.device()->seek(pos: hierarchy_offset); |
2203 | layer.assignBytes = assignMaskBytes; |
2204 | |
2205 | if (!loadHierarchy(xcf_io, layer, precision)) { |
2206 | return false; |
2207 | } |
2208 | |
2209 | return true; |
2210 | } |
2211 | |
2212 | /*! |
2213 | * This is the routine for which all the other code is simply |
2214 | * infrastructure. Read the image bytes out of the file and |
2215 | * store them in the tile buffer. This is passed a full 32-bit deep |
2216 | * buffer, even if bpp is smaller. The caller can figure out what to |
2217 | * do with the bytes. |
2218 | * |
2219 | * The tile is stored in "channels", i.e. the red component of all |
2220 | * pixels, then the green component of all pixels, then blue then |
2221 | * alpha, or, for indexed images, the color indices of all pixels then |
2222 | * the alpha of all pixels. |
2223 | * |
2224 | * The data is compressed with "run length encoding". Some simple data |
2225 | * integrity checks are made. |
2226 | * |
2227 | * \param xcf_io the data stream connected to the XCF image. |
2228 | * \param tile the buffer to expand the RLE into. |
2229 | * \param image_size number of bytes expected to be in the image tile. |
2230 | * \param data_length number of bytes expected in the RLE. |
2231 | * \param bpp number of bytes per pixel. |
2232 | * \return true if there were no I/O errors and no obvious corruption of |
2233 | * the RLE data. |
2234 | */ |
2235 | bool XCFImageFormat::loadTileRLE(QDataStream &xcf_io, uchar *tile, int image_size, int data_length, qint32 bpp, qint64 *bytesParsed) |
2236 | { |
2237 | uchar *data = tile; |
2238 | |
2239 | uchar *xcfdata; |
2240 | uchar *xcfodata; |
2241 | uchar *xcfdatalimit; |
2242 | |
2243 | int step = sizeof(QRgb); |
2244 | switch (bpp) { |
2245 | case 1: |
2246 | case 2: |
2247 | case 3: |
2248 | case 4: |
2249 | step = sizeof(QRgb); |
2250 | break; |
2251 | case 6: |
2252 | case 8: |
2253 | step = sizeof(QRgb) * 2; |
2254 | break; |
2255 | case 12: |
2256 | case 16: |
2257 | step = sizeof(QRgb) * 4; |
2258 | break; |
2259 | default: |
2260 | qCDebug(XCFPLUGIN) << "XCF: unhandled bit depth" << bpp; |
2261 | return false; |
2262 | } |
2263 | |
2264 | if (data_length < 0 || data_length > int(TILE_WIDTH * TILE_HEIGHT * step * 1.5)) { |
2265 | qCDebug(XCFPLUGIN) << "XCF: invalid tile data length" << data_length; |
2266 | return false; |
2267 | } |
2268 | |
2269 | xcfdata = xcfodata = new uchar[data_length]; |
2270 | |
2271 | const int dataRead = xcf_io.readRawData((char *)xcfdata, len: data_length); |
2272 | if (dataRead <= 0) { |
2273 | delete[] xcfodata; |
2274 | qCDebug(XCFPLUGIN) << "XCF: read failure on tile" << dataRead; |
2275 | return false; |
2276 | } |
2277 | |
2278 | if (dataRead < data_length) { |
2279 | memset(s: &xcfdata[dataRead], c: 0, n: data_length - dataRead); |
2280 | } |
2281 | |
2282 | if (!xcf_io.device()->isOpen()) { |
2283 | delete[] xcfodata; |
2284 | qCDebug(XCFPLUGIN) << "XCF: read failure on tile" ; |
2285 | return false; |
2286 | } |
2287 | |
2288 | xcfdatalimit = &xcfodata[data_length - 1]; |
2289 | |
2290 | for (int i = 0; i < bpp; ++i) { |
2291 | data = tile + i; |
2292 | |
2293 | int size = image_size; |
2294 | |
2295 | while (size > 0) { |
2296 | if (xcfdata > xcfdatalimit) { |
2297 | goto bogus_rle; |
2298 | } |
2299 | |
2300 | uchar val = *xcfdata++; |
2301 | uint length = val; |
2302 | |
2303 | if (length >= 128) { |
2304 | length = 255 - (length - 1); |
2305 | if (length == 128) { |
2306 | if (xcfdata >= xcfdatalimit) { |
2307 | goto bogus_rle; |
2308 | } |
2309 | |
2310 | length = (*xcfdata << 8) + xcfdata[1]; |
2311 | |
2312 | xcfdata += 2; |
2313 | } |
2314 | |
2315 | size -= length; |
2316 | |
2317 | if (size < 0) { |
2318 | goto bogus_rle; |
2319 | } |
2320 | |
2321 | if (&xcfdata[length - 1] > xcfdatalimit) { |
2322 | goto bogus_rle; |
2323 | } |
2324 | |
2325 | while (length-- > 0) { |
2326 | *data = *xcfdata++; |
2327 | data += step; |
2328 | } |
2329 | } else { |
2330 | length += 1; |
2331 | if (length == 128) { |
2332 | if (xcfdata >= xcfdatalimit) { |
2333 | goto bogus_rle; |
2334 | } |
2335 | |
2336 | length = (*xcfdata << 8) + xcfdata[1]; |
2337 | xcfdata += 2; |
2338 | } |
2339 | |
2340 | size -= length; |
2341 | |
2342 | if (size < 0) { |
2343 | goto bogus_rle; |
2344 | } |
2345 | |
2346 | if (xcfdata > xcfdatalimit) { |
2347 | goto bogus_rle; |
2348 | } |
2349 | |
2350 | qintptr totalLength = qintptr(data - tile) + length * step; |
2351 | if (totalLength >= image_size * step * 1.5) { |
2352 | qCDebug(XCFPLUGIN) << "Ran out of space when trying to unpack image, over:" << totalLength - image_size << totalLength << image_size |
2353 | << length; |
2354 | goto bogus_rle; |
2355 | } |
2356 | |
2357 | val = *xcfdata++; |
2358 | |
2359 | while (length-- > 0) { |
2360 | *data = val; |
2361 | data += step; |
2362 | } |
2363 | } |
2364 | } |
2365 | } |
2366 | *bytesParsed = qintptr(data - tile); |
2367 | |
2368 | delete[] xcfodata; |
2369 | return true; |
2370 | |
2371 | bogus_rle: |
2372 | |
2373 | qCDebug(XCFPLUGIN) << "The run length encoding could not be decoded properly" ; |
2374 | delete[] xcfodata; |
2375 | return false; |
2376 | } |
2377 | |
2378 | /*! |
2379 | * An XCF file can contain an arbitrary number of properties associated |
2380 | * with a channel. Note that this routine only reads mask channel properties. |
2381 | * \param xcf_io the data stream connected to the XCF image. |
2382 | * \param layer layer containing the mask channel to collect the properties. |
2383 | * \return true if there were no I/O errors. |
2384 | */ |
2385 | bool XCFImageFormat::loadChannelProperties(QDataStream &xcf_io, Layer &layer) |
2386 | { |
2387 | while (true) { |
2388 | PropType type; |
2389 | QByteArray bytes; |
2390 | quint32 rawType; |
2391 | |
2392 | if (!loadProperty(xcf_io, type, bytes, rawType)) { |
2393 | qCDebug(XCFPLUGIN) << "XCF: error loading channel properties" ; |
2394 | return false; |
2395 | } |
2396 | |
2397 | QDataStream property(bytes); |
2398 | |
2399 | switch (type) { |
2400 | case PROP_END: |
2401 | return true; |
2402 | |
2403 | case PROP_OPACITY: |
2404 | property >> layer.mask_channel.opacity; |
2405 | layer.mask_channel.opacity = std::min(a: layer.mask_channel.opacity, b: 255u); |
2406 | break; |
2407 | |
2408 | case PROP_FLOAT_OPACITY: |
2409 | // For some reason QDataStream isn't able to read the float (tried |
2410 | // setting the endianness manually) |
2411 | if (bytes.size() == 4) { |
2412 | layer.mask_channel.opacityFloat = qFromBigEndian(source: *reinterpret_cast<float *>(bytes.data())); |
2413 | } else { |
2414 | qCDebug(XCFPLUGIN) << "XCF: Invalid data size for float:" << bytes.size(); |
2415 | } |
2416 | break; |
2417 | |
2418 | case PROP_VISIBLE: |
2419 | property >> layer.mask_channel.visible; |
2420 | break; |
2421 | |
2422 | case PROP_SHOW_MASKED: |
2423 | property >> layer.mask_channel.show_masked; |
2424 | break; |
2425 | |
2426 | case PROP_COLOR: |
2427 | property >> layer.mask_channel.red >> layer.mask_channel.green >> layer.mask_channel.blue; |
2428 | break; |
2429 | |
2430 | case PROP_FLOAT_COLOR: |
2431 | property >> layer.mask_channel.redF >> layer.mask_channel.greenF >> layer.mask_channel.blueF; |
2432 | break; |
2433 | |
2434 | case PROP_TATTOO: |
2435 | property >> layer.mask_channel.tattoo; |
2436 | break; |
2437 | |
2438 | // Only used in edit mode |
2439 | case PROP_LINKED: |
2440 | break; |
2441 | |
2442 | // Just for organization in the UI, doesn't influence rendering |
2443 | case PROP_COLOR_TAG: |
2444 | break; |
2445 | |
2446 | // We don't support editing, so for now just ignore locking |
2447 | case PROP_LOCK_CONTENT: |
2448 | case PROP_LOCK_POSITION: |
2449 | break; |
2450 | |
2451 | default: |
2452 | qCDebug(XCFPLUGIN) << "XCF: unimplemented channel property " << type << "(" << rawType << ")" |
2453 | << ", size " << bytes.size(); |
2454 | break; |
2455 | } |
2456 | } |
2457 | } |
2458 | |
2459 | /*! |
2460 | * Copy the bytes from the tile buffer into the mask tile QImage. |
2461 | * \param layer layer containing the tile buffer and the mask tile matrix. |
2462 | * \param i column index of current tile. |
2463 | * \param j row index of current tile. |
2464 | */ |
2465 | bool XCFImageFormat::assignMaskBytes(Layer &layer, uint i, uint j, const GimpPrecision &precision) |
2466 | { |
2467 | QImage &image = layer.mask_tiles[j][i]; |
2468 | if (image.depth() != 8) { |
2469 | qCWarning(XCFPLUGIN) << "invalid bytes per pixel, we only do 8 bit masks" << image.depth(); |
2470 | return false; |
2471 | } |
2472 | |
2473 | uchar *tile = layer.tile; |
2474 | const int width = image.width(); |
2475 | const int height = image.height(); |
2476 | const int bytesPerLine = image.bytesPerLine(); |
2477 | uchar *bits = image.bits(); |
2478 | auto bpc = bytesPerChannel(precision); |
2479 | |
2480 | // mask management is a house of cards: the mask is always treated as 8 bit by the plugin |
2481 | // (I don't want to twist the code) so it needs a conversion here. |
2482 | // If previously converted the step is the type size, otherwise is the one set in loadTileRLE(). |
2483 | for (int y = 0; y < height; y++) { |
2484 | uchar *dataPtr = bits + y * bytesPerLine; |
2485 | #ifdef USE_FLOAT_IMAGES |
2486 | if (bpc == 4) { |
2487 | if (precision < GimpPrecision::GIMP_PRECISION_HALF_LINEAR) { |
2488 | for (int x = 0; x < width; x++) { |
2489 | *dataPtr++ = qFromBigEndian<quint16>(source: *reinterpret_cast<const quint16 *>(tile)) / 257; |
2490 | tile += sizeof(quint16); // was converted to 16 bits in loadLevel() |
2491 | } |
2492 | } else { |
2493 | for (int x = 0; x < width; x++) { |
2494 | *dataPtr++ = qFromBigEndian<float>(source: *reinterpret_cast<const float *>(tile)) * 255; |
2495 | tile += sizeof(QRgb); // yeah! see loadTileRLE() |
2496 | } |
2497 | } |
2498 | } else if (bpc == 2) { |
2499 | // when not converted, the step of a |
2500 | if (precision < GimpPrecision::GIMP_PRECISION_HALF_LINEAR) { |
2501 | for (int x = 0; x < width; x++) { |
2502 | *dataPtr++ = qFromBigEndian<quint16>(source: *reinterpret_cast<const quint16 *>(tile)) / 257; |
2503 | tile += sizeof(QRgb); // yeah! see loadTileRLE() |
2504 | } |
2505 | } else { |
2506 | for (int x = 0; x < width; x++) { |
2507 | *dataPtr++ = qFromBigEndian<qfloat16>(source: *reinterpret_cast<const qfloat16 *>(tile)) * 255; |
2508 | tile += sizeof(QRgb); // yeah! see loadTileRLE() |
2509 | } |
2510 | } |
2511 | } |
2512 | #else |
2513 | if (bpc == 2) { |
2514 | for (int x = 0; x < width; x++) { |
2515 | *dataPtr++ = qFromBigEndian<quint16>(*reinterpret_cast<const quint16 *>(tile)) / 257; |
2516 | tile += sizeof(QRgb); // yeah! see loadTileRLE() / loadLevel() |
2517 | } |
2518 | } else if (bpc == 4) { |
2519 | for (int x = 0; x < width; x++) { |
2520 | *dataPtr++ = qFromBigEndian<quint16>(*reinterpret_cast<const quint16 *>(tile)) / 257; |
2521 | tile += sizeof(quint16); // was converted to 16 bits in loadLevel() |
2522 | } |
2523 | } |
2524 | #endif |
2525 | else { |
2526 | for (int x = 0; x < width; x++) { |
2527 | *dataPtr++ = tile[0]; |
2528 | tile += sizeof(QRgb); // yeah! see loadTileRLE() |
2529 | } |
2530 | } |
2531 | } |
2532 | |
2533 | return true; |
2534 | } |
2535 | |
2536 | /*! |
2537 | * Construct the QImage which will eventually be returned to the QImage |
2538 | * loader. |
2539 | * |
2540 | * There are a couple of situations which require that the QImage is not |
2541 | * exactly the same as The GIMP's representation. The full table is: |
2542 | * \verbatim |
2543 | * Grayscale opaque : 8 bpp indexed |
2544 | * Grayscale translucent : 32 bpp + alpha |
2545 | * Indexed opaque : 1 bpp if num_colors <= 2 |
2546 | * : 8 bpp indexed otherwise |
2547 | * Indexed translucent : 8 bpp indexed + alpha if num_colors < 256 |
2548 | * : 32 bpp + alpha otherwise |
2549 | * RGB opaque : 32 bpp |
2550 | * RGBA translucent : 32 bpp + alpha |
2551 | * \endverbatim |
2552 | * Whether the image is translucent or not is determined by the bottom layer's |
2553 | * alpha channel. However, even if the bottom layer lacks an alpha channel, |
2554 | * it can still have an opacity < 1. In this case, the QImage is promoted |
2555 | * to 32-bit. (Note this is different from the output from the GIMP image |
2556 | * exporter, which seems to ignore this attribute.) |
2557 | * |
2558 | * Independently, higher layers can be translucent, but the background of |
2559 | * the image will not show through if the bottom layer is opaque. |
2560 | * |
2561 | * For indexed images, translucency is an all or nothing effect. |
2562 | * \param xcf_image contains image info and bottom-most layer. |
2563 | */ |
2564 | bool XCFImageFormat::initializeImage(XCFImage &xcf_image) |
2565 | { |
2566 | // (Aliases to make the code look a little better.) |
2567 | Layer &layer(xcf_image.layer); |
2568 | QImage &image(xcf_image.image); |
2569 | |
2570 | switch (layer.type) { |
2571 | case GRAY_GIMAGE: |
2572 | if (layer.opacity == OPAQUE_OPACITY) { |
2573 | image = imageAlloc(width: xcf_image.header.width, height: xcf_image.header.height, format: QImage::Format_Indexed8); |
2574 | image.setColorCount(256); |
2575 | if (image.isNull()) { |
2576 | return false; |
2577 | } |
2578 | setGrayPalette(image); |
2579 | image.fill(pixel: 255); |
2580 | break; |
2581 | } // else, fall through to 32-bit representation |
2582 | Q_FALLTHROUGH(); |
2583 | case GRAYA_GIMAGE: |
2584 | case RGB_GIMAGE: |
2585 | case RGBA_GIMAGE: |
2586 | image = imageAlloc(width: xcf_image.header.width, height: xcf_image.header.height, format: xcf_image.qimageFormat()); |
2587 | if (image.isNull()) { |
2588 | return false; |
2589 | } |
2590 | if (image.hasAlphaChannel()) { |
2591 | image.fill(color: Qt::transparent); |
2592 | } else { |
2593 | image.fill(color: Qt::white); |
2594 | } |
2595 | break; |
2596 | |
2597 | case INDEXED_GIMAGE: |
2598 | // As noted in the table above, there are quite a few combinations |
2599 | // which are possible with indexed images, depending on the |
2600 | // presence of transparency (note: not translucency, which is not |
2601 | // supported by The GIMP for indexed images) and the number of |
2602 | // individual colors. |
2603 | |
2604 | // Note: Qt treats a bitmap with a Black and White color palette |
2605 | // as a mask, so only the "on" bits are drawn, regardless of the |
2606 | // order color table entries. Otherwise (i.e., at least one of the |
2607 | // color table entries is not black or white), it obeys the one- |
2608 | // or two-color palette. Have to ask about this... |
2609 | |
2610 | if (xcf_image.num_colors <= 2) { |
2611 | image = imageAlloc(width: xcf_image.header.width, height: xcf_image.header.height, format: QImage::Format_MonoLSB); |
2612 | image.setColorCount(xcf_image.num_colors); |
2613 | if (image.isNull()) { |
2614 | return false; |
2615 | } |
2616 | image.fill(pixel: 0); |
2617 | setPalette(xcf_image, image); |
2618 | } else if (xcf_image.num_colors <= 256) { |
2619 | image = imageAlloc(width: xcf_image.header.width, height: xcf_image.header.height, format: QImage::Format_Indexed8); |
2620 | image.setColorCount(xcf_image.num_colors); |
2621 | if (image.isNull()) { |
2622 | return false; |
2623 | } |
2624 | image.fill(pixel: 0); |
2625 | setPalette(xcf_image, image); |
2626 | } |
2627 | break; |
2628 | |
2629 | case INDEXEDA_GIMAGE: |
2630 | if (xcf_image.num_colors == 1) { |
2631 | // Plenty(!) of room to add a transparent color |
2632 | xcf_image.num_colors++; |
2633 | xcf_image.palette.resize(size: xcf_image.num_colors); |
2634 | xcf_image.palette[1] = xcf_image.palette[0]; |
2635 | xcf_image.palette[0] = qRgba(r: 255, g: 255, b: 255, a: 0); |
2636 | |
2637 | image = imageAlloc(width: xcf_image.header.width, height: xcf_image.header.height, format: QImage::Format_MonoLSB); |
2638 | image.setColorCount(xcf_image.num_colors); |
2639 | if (image.isNull()) { |
2640 | return false; |
2641 | } |
2642 | image.fill(pixel: 0); |
2643 | setPalette(xcf_image, image); |
2644 | } else if (xcf_image.num_colors < 256) { |
2645 | // Plenty of room to add a transparent color |
2646 | xcf_image.num_colors++; |
2647 | xcf_image.palette.resize(size: xcf_image.num_colors); |
2648 | for (int c = xcf_image.num_colors - 1; c >= 1; c--) { |
2649 | xcf_image.palette[c] = xcf_image.palette[c - 1]; |
2650 | } |
2651 | |
2652 | xcf_image.palette[0] = qRgba(r: 255, g: 255, b: 255, a: 0); |
2653 | image = imageAlloc(width: xcf_image.header.width, height: xcf_image.header.height, format: QImage::Format_Indexed8); |
2654 | image.setColorCount(xcf_image.num_colors); |
2655 | if (image.isNull()) { |
2656 | return false; |
2657 | } |
2658 | image.fill(pixel: 0); |
2659 | setPalette(xcf_image, image); |
2660 | } else { |
2661 | // No room for a transparent color, so this has to be promoted to |
2662 | // true color. (There is no equivalent PNG representation output |
2663 | // from The GIMP as of v1.2.) |
2664 | image = imageAlloc(width: xcf_image.header.width, height: xcf_image.header.height, format: QImage::Format_ARGB32); |
2665 | if (image.isNull()) { |
2666 | return false; |
2667 | } |
2668 | image.fill(pixel: qRgba(r: 255, g: 255, b: 255, a: 0)); |
2669 | } |
2670 | break; |
2671 | } |
2672 | if (image.format() != xcf_image.qimageFormat()) { |
2673 | qCWarning(XCFPLUGIN) << "Selected wrong format:" << image.format() << "expected" << layer.qimageFormat(precision: xcf_image.header.precision); |
2674 | return false; |
2675 | } |
2676 | |
2677 | // The final profile should be the one in the Parasite |
2678 | // NOTE: if not set here, the colorSpace is aet in setImageParasites() (if no one defined in the parasites) |
2679 | #ifndef DISABLE_IMAGE_PROFILE |
2680 | switch (xcf_image.header.precision) { |
2681 | case XCFImageFormat::GIMP_PRECISION_HALF_LINEAR: |
2682 | case XCFImageFormat::GIMP_PRECISION_FLOAT_LINEAR: |
2683 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_LINEAR: |
2684 | case XCFImageFormat::GIMP_PRECISION_U8_LINEAR: |
2685 | case XCFImageFormat::GIMP_PRECISION_U16_LINEAR: |
2686 | case XCFImageFormat::GIMP_PRECISION_U32_LINEAR: |
2687 | image.setColorSpace(QColorSpace::SRgbLinear); |
2688 | break; |
2689 | case XCFImageFormat::GIMP_PRECISION_HALF_NON_LINEAR: |
2690 | case XCFImageFormat::GIMP_PRECISION_FLOAT_NON_LINEAR: |
2691 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_NON_LINEAR: |
2692 | case XCFImageFormat::GIMP_PRECISION_U8_NON_LINEAR: |
2693 | case XCFImageFormat::GIMP_PRECISION_U16_NON_LINEAR: |
2694 | case XCFImageFormat::GIMP_PRECISION_U32_NON_LINEAR: |
2695 | image.setColorSpace(QColorSpace::SRgb); |
2696 | break; |
2697 | case XCFImageFormat::GIMP_PRECISION_HALF_PERCEPTUAL: |
2698 | case XCFImageFormat::GIMP_PRECISION_FLOAT_PERCEPTUAL: |
2699 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_PERCEPTUAL: |
2700 | case XCFImageFormat::GIMP_PRECISION_U8_PERCEPTUAL: |
2701 | case XCFImageFormat::GIMP_PRECISION_U16_PERCEPTUAL: |
2702 | case XCFImageFormat::GIMP_PRECISION_U32_PERCEPTUAL: |
2703 | image.setColorSpace(QColorSpace::SRgb); |
2704 | break; |
2705 | } |
2706 | #endif |
2707 | |
2708 | if (xcf_image.x_resolution > 0 && xcf_image.y_resolution > 0) { |
2709 | const float dpmx = xcf_image.x_resolution * INCHESPERMETER; |
2710 | if (dpmx > float(std::numeric_limits<int>::max())) { |
2711 | return false; |
2712 | } |
2713 | const float dpmy = xcf_image.y_resolution * INCHESPERMETER; |
2714 | if (dpmy > float(std::numeric_limits<int>::max())) { |
2715 | return false; |
2716 | } |
2717 | image.setDotsPerMeterX((int)dpmx); |
2718 | image.setDotsPerMeterY((int)dpmy); |
2719 | } |
2720 | return true; |
2721 | } |
2722 | |
2723 | /*! |
2724 | * Copy a layer into an image, taking account of the manifold modes. The |
2725 | * contents of the image are replaced. |
2726 | * \param xcf_image contains the layer and image to be replaced. |
2727 | */ |
2728 | void XCFImageFormat::copyLayerToImage(XCFImage &xcf_image) |
2729 | { |
2730 | Layer &layer(xcf_image.layer); |
2731 | QImage &image(xcf_image.image); |
2732 | PixelCopyOperation copy = nullptr; |
2733 | |
2734 | switch (layer.type) { |
2735 | case RGB_GIMAGE: |
2736 | case RGBA_GIMAGE: |
2737 | copy = copyRGBToRGB; |
2738 | break; |
2739 | case GRAY_GIMAGE: |
2740 | if (layer.opacity == OPAQUE_OPACITY) { |
2741 | copy = copyGrayToGray; |
2742 | } else { |
2743 | copy = copyGrayToRGB; |
2744 | } |
2745 | break; |
2746 | case GRAYA_GIMAGE: |
2747 | copy = copyGrayAToRGB; |
2748 | break; |
2749 | case INDEXED_GIMAGE: |
2750 | copy = copyIndexedToIndexed; |
2751 | break; |
2752 | case INDEXEDA_GIMAGE: |
2753 | if (xcf_image.image.depth() <= 8) { |
2754 | copy = copyIndexedAToIndexed; |
2755 | } else { |
2756 | copy = copyIndexedAToRGB; |
2757 | } |
2758 | } |
2759 | |
2760 | if (!copy) { |
2761 | return; |
2762 | } |
2763 | |
2764 | // For each tile... |
2765 | |
2766 | for (uint j = 0; j < layer.nrows; j++) { |
2767 | qint32 y = qint32(j * TILE_HEIGHT); |
2768 | |
2769 | for (uint i = 0; i < layer.ncols; i++) { |
2770 | qint32 x = qint32(i * TILE_WIDTH); |
2771 | |
2772 | // This seems the best place to apply the dissolve because it |
2773 | // depends on the global position of each tile's |
2774 | // pixels. Apparently it's the only mode which can apply to a |
2775 | // single layer. |
2776 | |
2777 | if (layer.mode == GIMP_LAYER_MODE_DISSOLVE) { |
2778 | if (!random_table_initialized) { |
2779 | initializeRandomTable(); |
2780 | random_table_initialized = true; |
2781 | } |
2782 | if (layer.type == RGBA_GIMAGE) { |
2783 | dissolveRGBPixels(image&: layer.image_tiles[j][i], x, y); |
2784 | } |
2785 | |
2786 | else if (layer.type == GRAYA_GIMAGE) { |
2787 | dissolveAlphaPixels(image&: layer.alpha_tiles[j][i], x, y); |
2788 | } |
2789 | } |
2790 | |
2791 | // Shortcut for common case |
2792 | if (copy == copyRGBToRGB && layer.apply_mask != 1) { |
2793 | QPainter painter(&image); |
2794 | painter.setOpacity(layer.opacity / 255.0); |
2795 | painter.setCompositionMode(QPainter::CompositionMode_Source); |
2796 | if (x + layer.x_offset < MAX_IMAGE_WIDTH && |
2797 | y + layer.y_offset < MAX_IMAGE_HEIGHT) { |
2798 | painter.drawImage(x: x + layer.x_offset, y: y + layer.y_offset, image: layer.image_tiles[j][i]); |
2799 | } |
2800 | continue; |
2801 | } |
2802 | |
2803 | for (int l = 0; l < layer.image_tiles[j][i].height(); l++) { |
2804 | for (int k = 0; k < layer.image_tiles[j][i].width(); k++) { |
2805 | int m = x + k + layer.x_offset; |
2806 | int n = y + l + layer.y_offset; |
2807 | |
2808 | if (m < 0 || m >= image.width() || n < 0 || n >= image.height()) { |
2809 | continue; |
2810 | } |
2811 | |
2812 | (*copy)(layer, i, j, k, l, image, m, n); |
2813 | } |
2814 | } |
2815 | } |
2816 | } |
2817 | } |
2818 | |
2819 | /*! |
2820 | * Copy an RGB pixel from the layer to the RGB image. Straight-forward. |
2821 | * The only thing this has to take account of is the opacity of the |
2822 | * layer. Evidently, the GIMP exporter itself does not actually do this. |
2823 | * \param layer source layer. |
2824 | * \param i x tile index. |
2825 | * \param j y tile index. |
2826 | * \param k x pixel index of tile i,j. |
2827 | * \param l y pixel index of tile i,j. |
2828 | * \param image destination image. |
2829 | * \param m x pixel of destination image. |
2830 | * \param n y pixel of destination image. |
2831 | */ |
2832 | void XCFImageFormat::copyRGBToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
2833 | { |
2834 | if (image.depth() == 32) { |
2835 | QRgb src = layer.image_tiles[j][i].pixel(x: k, y: l); |
2836 | uchar src_a = layer.opacity; |
2837 | |
2838 | if (layer.type == RGBA_GIMAGE) { |
2839 | src_a = INT_MULT(a: src_a, b: qAlpha(rgb: src)); |
2840 | } |
2841 | |
2842 | // Apply the mask (if any) |
2843 | |
2844 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
2845 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
2846 | } |
2847 | |
2848 | image.setPixel(x: m, y: n, index_or_rgb: qRgba(rgb: src, a: src_a)); |
2849 | } else if (image.depth() == 64) { |
2850 | QRgba64 src = layer.image_tiles[j][i].pixelColor(x: k, y: l).rgba64(); |
2851 | quint16 src_a = layer.opacity; |
2852 | |
2853 | if (layer.type == RGBA_GIMAGE) { |
2854 | src_a = INT_MULT(a: src_a, b: qAlpha(rgb: src)); |
2855 | } |
2856 | |
2857 | // Apply the mask (if any) |
2858 | |
2859 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
2860 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
2861 | } |
2862 | src.setAlpha(src_a); |
2863 | |
2864 | image.setPixel(x: m, y: n, index_or_rgb: src); |
2865 | } |
2866 | } |
2867 | |
2868 | /*! |
2869 | * Copy a Gray pixel from the layer to the Gray image. Straight-forward. |
2870 | * \param layer source layer. |
2871 | * \param i x tile index. |
2872 | * \param j y tile index. |
2873 | * \param k x pixel index of tile i,j. |
2874 | * \param l y pixel index of tile i,j. |
2875 | * \param image destination image. |
2876 | * \param m x pixel of destination image. |
2877 | * \param n y pixel of destination image. |
2878 | */ |
2879 | void XCFImageFormat::copyGrayToGray(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
2880 | { |
2881 | int src = layer.image_tiles[j][i].pixelIndex(x: k, y: l); |
2882 | image.setPixel(x: m, y: n, index_or_rgb: src); |
2883 | } |
2884 | |
2885 | /*! |
2886 | * Copy a Gray pixel from the layer to an RGB image. Straight-forward. |
2887 | * The only thing this has to take account of is the opacity of the |
2888 | * layer. Evidently, the GIMP exporter itself does not actually do this. |
2889 | * \param layer source layer. |
2890 | * \param i x tile index. |
2891 | * \param j y tile index. |
2892 | * \param k x pixel index of tile i,j. |
2893 | * \param l y pixel index of tile i,j. |
2894 | * \param image destination image. |
2895 | * \param m x pixel of destination image. |
2896 | * \param n y pixel of destination image. |
2897 | */ |
2898 | void XCFImageFormat::copyGrayToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
2899 | { |
2900 | QRgb src = layer.image_tiles[j][i].pixel(x: k, y: l); |
2901 | uchar src_a = layer.opacity; |
2902 | image.setPixel(x: m, y: n, index_or_rgb: qRgba(rgb: src, a: src_a)); |
2903 | } |
2904 | |
2905 | /*! |
2906 | * Copy a GrayA pixel from the layer to an RGB image. Straight-forward. |
2907 | * The only thing this has to take account of is the opacity of the |
2908 | * layer. Evidently, the GIMP exporter itself does not actually do this. |
2909 | * \param layer source layer. |
2910 | * \param i x tile index. |
2911 | * \param j y tile index. |
2912 | * \param k x pixel index of tile i,j. |
2913 | * \param l y pixel index of tile i,j. |
2914 | * \param image destination image. |
2915 | * \param m x pixel of destination image. |
2916 | * \param n y pixel of destination image. |
2917 | */ |
2918 | void XCFImageFormat::copyGrayAToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
2919 | { |
2920 | QRgb src = layer.image_tiles[j][i].pixel(x: k, y: l); |
2921 | uchar src_a = layer.alpha_tiles[j][i].pixelIndex(x: k, y: l); |
2922 | src_a = INT_MULT(a: src_a, b: layer.opacity); |
2923 | |
2924 | // Apply the mask (if any) |
2925 | |
2926 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
2927 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
2928 | } |
2929 | |
2930 | image.setPixel(x: m, y: n, index_or_rgb: qRgba(rgb: src, a: src_a)); |
2931 | } |
2932 | |
2933 | /*! |
2934 | * Copy an Indexed pixel from the layer to the Indexed image. Straight-forward. |
2935 | * \param layer source layer. |
2936 | * \param i x tile index. |
2937 | * \param j y tile index. |
2938 | * \param k x pixel index of tile i,j. |
2939 | * \param l y pixel index of tile i,j. |
2940 | * \param image destination image. |
2941 | * \param m x pixel of destination image. |
2942 | * \param n y pixel of destination image. |
2943 | */ |
2944 | void XCFImageFormat::copyIndexedToIndexed(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
2945 | { |
2946 | int src = layer.image_tiles[j][i].pixelIndex(x: k, y: l); |
2947 | image.setPixel(x: m, y: n, index_or_rgb: src); |
2948 | } |
2949 | |
2950 | /*! |
2951 | * Copy an IndexedA pixel from the layer to the Indexed image. Straight-forward. |
2952 | * \param layer source layer. |
2953 | * \param i x tile index. |
2954 | * \param j y tile index. |
2955 | * \param k x pixel index of tile i,j. |
2956 | * \param l y pixel index of tile i,j. |
2957 | * \param image destination image. |
2958 | * \param m x pixel of destination image. |
2959 | * \param n y pixel of destination image. |
2960 | */ |
2961 | void XCFImageFormat::copyIndexedAToIndexed(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
2962 | { |
2963 | uchar src = layer.image_tiles[j][i].pixelIndex(x: k, y: l); |
2964 | uchar src_a = layer.alpha_tiles[j][i].pixelIndex(x: k, y: l); |
2965 | src_a = INT_MULT(a: src_a, b: layer.opacity); |
2966 | |
2967 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
2968 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
2969 | } |
2970 | |
2971 | if (src_a > 127) { |
2972 | src++; |
2973 | } else { |
2974 | src = 0; |
2975 | } |
2976 | |
2977 | image.setPixel(x: m, y: n, index_or_rgb: src); |
2978 | } |
2979 | |
2980 | /*! |
2981 | * Copy an IndexedA pixel from the layer to an RGB image. Straight-forward. |
2982 | * The only thing this has to take account of is the opacity of the |
2983 | * layer. Evidently, the GIMP exporter itself does not actually do this. |
2984 | * \param layer source layer. |
2985 | * \param i x tile index. |
2986 | * \param j y tile index. |
2987 | * \param k x pixel index of tile i,j. |
2988 | * \param l y pixel index of tile i,j. |
2989 | * \param image destination image. |
2990 | * \param m x pixel of destination image. |
2991 | * \param n y pixel of destination image. |
2992 | */ |
2993 | void XCFImageFormat::copyIndexedAToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
2994 | { |
2995 | QRgb src = layer.image_tiles[j][i].pixel(x: k, y: l); |
2996 | uchar src_a = layer.alpha_tiles[j][i].pixelIndex(x: k, y: l); |
2997 | src_a = INT_MULT(a: src_a, b: layer.opacity); |
2998 | |
2999 | // Apply the mask (if any) |
3000 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
3001 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
3002 | } |
3003 | |
3004 | // This is what appears in the GIMP window |
3005 | if (src_a <= 127) { |
3006 | src_a = 0; |
3007 | } else { |
3008 | src_a = OPAQUE_OPACITY; |
3009 | } |
3010 | |
3011 | image.setPixel(x: m, y: n, index_or_rgb: qRgba(rgb: src, a: src_a)); |
3012 | } |
3013 | |
3014 | /*! |
3015 | * Merge a layer into an image, taking account of the manifold modes. |
3016 | * \param xcf_image contains the layer and image to merge. |
3017 | */ |
3018 | void XCFImageFormat::mergeLayerIntoImage(XCFImage &xcf_image) |
3019 | { |
3020 | Layer &layer(xcf_image.layer); |
3021 | QImage &image(xcf_image.image); |
3022 | |
3023 | PixelMergeOperation merge = nullptr; |
3024 | |
3025 | if (!layer.opacity) { |
3026 | return; // don't bother doing anything |
3027 | } |
3028 | |
3029 | if (layer.blendSpace == XCFImageFormat::AutoColorSpace) { |
3030 | qCDebug(XCFPLUGIN) << "Auto blend space, defaulting to RgbLinearSpace (same as Gimp when writing this)" ; |
3031 | layer.blendSpace = XCFImageFormat::RgbLinearSpace; |
3032 | } |
3033 | |
3034 | if (layer.blendSpace != XCFImageFormat::RgbLinearSpace) { |
3035 | qCDebug(XCFPLUGIN) << "Unimplemented blend color space" << layer.blendSpace; |
3036 | } |
3037 | qCDebug(XCFPLUGIN) << "Blend color space" << layer.blendSpace; |
3038 | |
3039 | if (layer.compositeSpace == XCFImageFormat::AutoColorSpace) { |
3040 | qCDebug(XCFPLUGIN) << "Auto composite space, defaulting to RgbLinearSpace (same as Gimp when writing this)" ; |
3041 | layer.compositeSpace = XCFImageFormat::RgbLinearSpace; |
3042 | } |
3043 | |
3044 | if (layer.compositeSpace != XCFImageFormat::RgbLinearSpace) { |
3045 | qCDebug(XCFPLUGIN) << "Unimplemented composite color space" << layer.compositeSpace; |
3046 | } |
3047 | if (layer.compositeMode != XCFImageFormat::CompositeUnion) { |
3048 | qCDebug(XCFPLUGIN) << "Unhandled composite mode" << layer.compositeMode; |
3049 | } |
3050 | |
3051 | switch (layer.type) { |
3052 | case RGB_GIMAGE: |
3053 | case RGBA_GIMAGE: |
3054 | merge = mergeRGBToRGB; |
3055 | break; |
3056 | case GRAY_GIMAGE: |
3057 | if (layer.opacity == OPAQUE_OPACITY && xcf_image.image.depth() <= 8) { |
3058 | merge = mergeGrayToGray; |
3059 | } else { |
3060 | merge = mergeGrayToRGB; |
3061 | } |
3062 | break; |
3063 | case GRAYA_GIMAGE: |
3064 | if (xcf_image.image.depth() <= 8) { |
3065 | merge = mergeGrayAToGray; |
3066 | } else { |
3067 | merge = mergeGrayAToRGB; |
3068 | } |
3069 | break; |
3070 | case INDEXED_GIMAGE: |
3071 | merge = mergeIndexedToIndexed; |
3072 | break; |
3073 | case INDEXEDA_GIMAGE: |
3074 | if (xcf_image.image.depth() <= 8) { |
3075 | merge = mergeIndexedAToIndexed; |
3076 | } else { |
3077 | merge = mergeIndexedAToRGB; |
3078 | } |
3079 | } |
3080 | |
3081 | if (!merge) { |
3082 | return; |
3083 | } |
3084 | |
3085 | if (merge == mergeRGBToRGB && layer.apply_mask != 1) { |
3086 | int painterMode = -1; |
3087 | switch (layer.mode) { |
3088 | case GIMP_LAYER_MODE_NORMAL: |
3089 | case GIMP_LAYER_MODE_NORMAL_LEGACY: |
3090 | painterMode = QPainter::CompositionMode_SourceOver; |
3091 | break; |
3092 | case GIMP_LAYER_MODE_MULTIPLY: |
3093 | case GIMP_LAYER_MODE_MULTIPLY_LEGACY: |
3094 | painterMode = QPainter::CompositionMode_Multiply; |
3095 | break; |
3096 | case GIMP_LAYER_MODE_SCREEN: |
3097 | case GIMP_LAYER_MODE_SCREEN_LEGACY: |
3098 | painterMode = QPainter::CompositionMode_Screen; |
3099 | break; |
3100 | case GIMP_LAYER_MODE_OVERLAY: |
3101 | case GIMP_LAYER_MODE_OVERLAY_LEGACY: |
3102 | painterMode = QPainter::CompositionMode_Overlay; |
3103 | break; |
3104 | case GIMP_LAYER_MODE_DIFFERENCE: |
3105 | case GIMP_LAYER_MODE_DIFFERENCE_LEGACY: |
3106 | painterMode = QPainter::CompositionMode_Difference; |
3107 | break; |
3108 | case GIMP_LAYER_MODE_DARKEN_ONLY: |
3109 | case GIMP_LAYER_MODE_DARKEN_ONLY_LEGACY: |
3110 | painterMode = QPainter::CompositionMode_Darken; |
3111 | break; |
3112 | case GIMP_LAYER_MODE_LIGHTEN_ONLY: |
3113 | case GIMP_LAYER_MODE_LIGHTEN_ONLY_LEGACY: |
3114 | painterMode = QPainter::CompositionMode_Lighten; |
3115 | break; |
3116 | case GIMP_LAYER_MODE_DODGE: |
3117 | case GIMP_LAYER_MODE_DODGE_LEGACY: |
3118 | painterMode = QPainter::CompositionMode_ColorDodge; |
3119 | break; |
3120 | case GIMP_LAYER_MODE_BURN: |
3121 | case GIMP_LAYER_MODE_BURN_LEGACY: |
3122 | painterMode = QPainter::CompositionMode_ColorBurn; |
3123 | break; |
3124 | case GIMP_LAYER_MODE_HARDLIGHT: |
3125 | case GIMP_LAYER_MODE_HARDLIGHT_LEGACY: |
3126 | painterMode = QPainter::CompositionMode_HardLight; |
3127 | break; |
3128 | case GIMP_LAYER_MODE_SOFTLIGHT: |
3129 | case GIMP_LAYER_MODE_SOFTLIGHT_LEGACY: |
3130 | painterMode = QPainter::CompositionMode_SoftLight; |
3131 | break; |
3132 | case GIMP_LAYER_MODE_ADDITION: |
3133 | case GIMP_LAYER_MODE_ADDITION_LEGACY: |
3134 | painterMode = QPainter::CompositionMode_Plus; |
3135 | break; |
3136 | case GIMP_LAYER_MODE_EXCLUSION: |
3137 | painterMode = QPainter::CompositionMode_Exclusion; |
3138 | break; |
3139 | |
3140 | // Not bothered to find what the QPainter equivalent is, or there is none |
3141 | case GIMP_LAYER_MODE_GRAIN_EXTRACT: |
3142 | case GIMP_LAYER_MODE_GRAIN_EXTRACT_LEGACY: |
3143 | case GIMP_LAYER_MODE_GRAIN_MERGE: |
3144 | case GIMP_LAYER_MODE_GRAIN_MERGE_LEGACY: |
3145 | case GIMP_LAYER_MODE_COLOR_ERASE: |
3146 | case GIMP_LAYER_MODE_COLOR_ERASE_LEGACY: |
3147 | case GIMP_LAYER_MODE_LCH_HUE: |
3148 | case GIMP_LAYER_MODE_LCH_CHROMA: |
3149 | case GIMP_LAYER_MODE_LCH_COLOR: |
3150 | case GIMP_LAYER_MODE_LCH_LIGHTNESS: |
3151 | case GIMP_LAYER_MODE_BEHIND: |
3152 | case GIMP_LAYER_MODE_BEHIND_LEGACY: |
3153 | case GIMP_LAYER_MODE_SUBTRACT: |
3154 | case GIMP_LAYER_MODE_SUBTRACT_LEGACY: |
3155 | case GIMP_LAYER_MODE_HSV_HUE: |
3156 | case GIMP_LAYER_MODE_HSV_SATURATION: |
3157 | case GIMP_LAYER_MODE_HSL_COLOR: |
3158 | case GIMP_LAYER_MODE_HSV_VALUE: |
3159 | case GIMP_LAYER_MODE_DIVIDE: |
3160 | case GIMP_LAYER_MODE_VIVID_LIGHT: |
3161 | case GIMP_LAYER_MODE_PIN_LIGHT: |
3162 | case GIMP_LAYER_MODE_LINEAR_LIGHT: |
3163 | case GIMP_LAYER_MODE_HARD_MIX: |
3164 | case GIMP_LAYER_MODE_LINEAR_BURN: |
3165 | case GIMP_LAYER_MODE_LUMA_DARKEN_ONLY: |
3166 | case GIMP_LAYER_MODE_LUMA_LIGHTEN_ONLY: |
3167 | case GIMP_LAYER_MODE_LUMINANCE: |
3168 | case GIMP_LAYER_MODE_ERASE: |
3169 | case GIMP_LAYER_MODE_MERGE: |
3170 | case GIMP_LAYER_MODE_SPLIT: |
3171 | case GIMP_LAYER_MODE_PASS_THROUGH: |
3172 | case GIMP_LAYER_MODE_HSV_HUE_LEGACY: |
3173 | case GIMP_LAYER_MODE_HSV_SATURATION_LEGACY: |
3174 | case GIMP_LAYER_MODE_HSL_COLOR_LEGACY: |
3175 | case GIMP_LAYER_MODE_HSV_VALUE_LEGACY: |
3176 | case GIMP_LAYER_MODE_DIVIDE_LEGACY: |
3177 | qCDebug(XCFPLUGIN) << "No QPainter equivalent to" << layer.mode; |
3178 | break; |
3179 | |
3180 | // Special |
3181 | case GIMP_LAYER_MODE_DISSOLVE: |
3182 | case GIMP_LAYER_MODE_COUNT: |
3183 | break; |
3184 | } |
3185 | |
3186 | if (painterMode != -1) { |
3187 | QPainter painter(&image); |
3188 | painter.setOpacity(layer.opacity / 255.0); |
3189 | painter.setCompositionMode(QPainter::CompositionMode(painterMode)); |
3190 | qCDebug(XCFPLUGIN) << "Using QPainter for mode" << layer.mode; |
3191 | |
3192 | for (uint j = 0; j < layer.nrows; j++) { |
3193 | qint32 y = qint32(j * TILE_HEIGHT); |
3194 | |
3195 | for (uint i = 0; i < layer.ncols; i++) { |
3196 | qint32 x = qint32(i * TILE_WIDTH); |
3197 | |
3198 | QImage &tile = layer.image_tiles[j][i]; |
3199 | if (x + layer.x_offset < MAX_IMAGE_WIDTH && |
3200 | y + layer.y_offset < MAX_IMAGE_HEIGHT) { |
3201 | painter.drawImage(x: x + layer.x_offset, y: y + layer.y_offset, image: tile); |
3202 | } |
3203 | } |
3204 | } |
3205 | |
3206 | return; |
3207 | } |
3208 | } |
3209 | |
3210 | #ifndef DISABLE_IMAGE_PROFILE_CONV // The final profile should be the one in the Parasite |
3211 | if (layer.compositeSpace == XCFImageFormat::RgbPerceptualSpace && image.colorSpace() != QColorSpace::SRgb) { |
3212 | qCDebug(XCFPLUGIN) << "Converting to composite color space" << layer.compositeSpace; |
3213 | image.convertToColorSpace(QColorSpace::SRgb); |
3214 | } |
3215 | if (layer.compositeSpace == XCFImageFormat::RgbLinearSpace && image.colorSpace() != QColorSpace::SRgbLinear) { |
3216 | qCDebug(XCFPLUGIN) << "Converting to composite color space" << layer.compositeSpace; |
3217 | image.convertToColorSpace(QColorSpace::SRgbLinear); |
3218 | } |
3219 | #endif |
3220 | |
3221 | for (uint j = 0; j < layer.nrows; j++) { |
3222 | qint32 y = qint32(j * TILE_HEIGHT); |
3223 | |
3224 | for (uint i = 0; i < layer.ncols; i++) { |
3225 | qint32 x = qint32(i * TILE_WIDTH); |
3226 | |
3227 | // This seems the best place to apply the dissolve because it |
3228 | // depends on the global position of each tile's |
3229 | // pixels. Apparently it's the only mode which can apply to a |
3230 | // single layer. |
3231 | |
3232 | if (layer.mode == GIMP_LAYER_MODE_DISSOLVE) { |
3233 | if (!random_table_initialized) { |
3234 | initializeRandomTable(); |
3235 | random_table_initialized = true; |
3236 | } |
3237 | if (layer.type == RGBA_GIMAGE) { |
3238 | dissolveRGBPixels(image&: layer.image_tiles[j][i], x, y); |
3239 | } |
3240 | |
3241 | else if (layer.type == GRAYA_GIMAGE) { |
3242 | dissolveAlphaPixels(image&: layer.alpha_tiles[j][i], x, y); |
3243 | } |
3244 | } |
3245 | |
3246 | // Shortcut for common case |
3247 | if (merge == mergeRGBToRGB && layer.apply_mask != 1 && layer.mode == GIMP_LAYER_MODE_NORMAL_LEGACY) { |
3248 | QPainter painter(&image); |
3249 | painter.setOpacity(layer.opacity / 255.0); |
3250 | painter.setCompositionMode(QPainter::CompositionMode_SourceOver); |
3251 | if (x + layer.x_offset < MAX_IMAGE_WIDTH && |
3252 | y + layer.y_offset < MAX_IMAGE_HEIGHT) { |
3253 | painter.drawImage(x: x + layer.x_offset, y: y + layer.y_offset, image: layer.image_tiles[j][i]); |
3254 | } |
3255 | continue; |
3256 | } |
3257 | |
3258 | #ifndef DISABLE_TILE_PROFILE_CONV // not sure about that: left as old plugin |
3259 | QImage &tile = layer.image_tiles[j][i]; |
3260 | if (layer.compositeSpace == XCFImageFormat::RgbPerceptualSpace && tile.colorSpace() != QColorSpace::SRgb) { |
3261 | tile.convertToColorSpace(QColorSpace::SRgb); |
3262 | } |
3263 | if (layer.compositeSpace == XCFImageFormat::RgbLinearSpace && tile.colorSpace() != QColorSpace::SRgbLinear) { |
3264 | tile.convertToColorSpace(QColorSpace::SRgbLinear); |
3265 | } |
3266 | #endif |
3267 | |
3268 | for (int l = 0; l < layer.image_tiles[j][i].height(); l++) { |
3269 | for (int k = 0; k < layer.image_tiles[j][i].width(); k++) { |
3270 | int m = x + k + layer.x_offset; |
3271 | int n = y + l + layer.y_offset; |
3272 | |
3273 | if (m < 0 || m >= image.width() || n < 0 || n >= image.height()) { |
3274 | continue; |
3275 | } |
3276 | |
3277 | if (!(*merge)(layer, i, j, k, l, image, m, n)) { |
3278 | return; |
3279 | } |
3280 | } |
3281 | } |
3282 | } |
3283 | } |
3284 | } |
3285 | |
3286 | /*! |
3287 | * Merge an RGB pixel from the layer to the RGB image. Straight-forward. |
3288 | * The only thing this has to take account of is the opacity of the |
3289 | * layer. Evidently, the GIMP exporter itself does not actually do this. |
3290 | * \param layer source layer. |
3291 | * \param i x tile index. |
3292 | * \param j y tile index. |
3293 | * \param k x pixel index of tile i,j. |
3294 | * \param l y pixel index of tile i,j. |
3295 | * \param image destination image. |
3296 | * \param m x pixel of destination image. |
3297 | * \param n y pixel of destination image. |
3298 | */ |
3299 | bool XCFImageFormat::mergeRGBToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
3300 | { |
3301 | QRgb src = layer.image_tiles[j][i].pixel(x: k, y: l); |
3302 | QRgb dst = image.pixel(x: m, y: n); |
3303 | |
3304 | uchar src_r = qRed(rgb: src); |
3305 | uchar src_g = qGreen(rgb: src); |
3306 | uchar src_b = qBlue(rgb: src); |
3307 | uchar src_a = qAlpha(rgb: src); |
3308 | |
3309 | uchar dst_r = qRed(rgb: dst); |
3310 | uchar dst_g = qGreen(rgb: dst); |
3311 | uchar dst_b = qBlue(rgb: dst); |
3312 | uchar dst_a = qAlpha(rgb: dst); |
3313 | |
3314 | if (!src_a) { |
3315 | return false; // nothing to merge |
3316 | } |
3317 | |
3318 | switch (layer.mode) { |
3319 | case GIMP_LAYER_MODE_NORMAL: |
3320 | case GIMP_LAYER_MODE_NORMAL_LEGACY: |
3321 | break; |
3322 | case GIMP_LAYER_MODE_MULTIPLY: |
3323 | case GIMP_LAYER_MODE_MULTIPLY_LEGACY: |
3324 | src_r = INT_MULT(a: src_r, b: dst_r); |
3325 | src_g = INT_MULT(a: src_g, b: dst_g); |
3326 | src_b = INT_MULT(a: src_b, b: dst_b); |
3327 | src_a = qMin(a: src_a, b: dst_a); |
3328 | break; |
3329 | case GIMP_LAYER_MODE_DIVIDE: |
3330 | case GIMP_LAYER_MODE_DIVIDE_LEGACY: |
3331 | src_r = qMin(a: (dst_r * 256) / (1 + src_r), b: 255); |
3332 | src_g = qMin(a: (dst_g * 256) / (1 + src_g), b: 255); |
3333 | src_b = qMin(a: (dst_b * 256) / (1 + src_b), b: 255); |
3334 | src_a = qMin(a: src_a, b: dst_a); |
3335 | break; |
3336 | case GIMP_LAYER_MODE_SCREEN: |
3337 | case GIMP_LAYER_MODE_SCREEN_LEGACY: |
3338 | src_r = 255 - INT_MULT(a: 255 - dst_r, b: 255 - src_r); |
3339 | src_g = 255 - INT_MULT(a: 255 - dst_g, b: 255 - src_g); |
3340 | src_b = 255 - INT_MULT(a: 255 - dst_b, b: 255 - src_b); |
3341 | src_a = qMin(a: src_a, b: dst_a); |
3342 | break; |
3343 | case GIMP_LAYER_MODE_OVERLAY: |
3344 | case GIMP_LAYER_MODE_OVERLAY_LEGACY: |
3345 | src_r = INT_MULT(a: dst_r, b: dst_r + INT_MULT(a: 2 * src_r, b: 255 - dst_r)); |
3346 | src_g = INT_MULT(a: dst_g, b: dst_g + INT_MULT(a: 2 * src_g, b: 255 - dst_g)); |
3347 | src_b = INT_MULT(a: dst_b, b: dst_b + INT_MULT(a: 2 * src_b, b: 255 - dst_b)); |
3348 | src_a = qMin(a: src_a, b: dst_a); |
3349 | break; |
3350 | case GIMP_LAYER_MODE_DIFFERENCE: |
3351 | case GIMP_LAYER_MODE_DIFFERENCE_LEGACY: |
3352 | src_r = dst_r > src_r ? dst_r - src_r : src_r - dst_r; |
3353 | src_g = dst_g > src_g ? dst_g - src_g : src_g - dst_g; |
3354 | src_b = dst_b > src_b ? dst_b - src_b : src_b - dst_b; |
3355 | src_a = qMin(a: src_a, b: dst_a); |
3356 | break; |
3357 | case GIMP_LAYER_MODE_ADDITION: |
3358 | case GIMP_LAYER_MODE_ADDITION_LEGACY: |
3359 | src_r = add_lut(a: dst_r, b: src_r); |
3360 | src_g = add_lut(a: dst_g, b: src_g); |
3361 | src_b = add_lut(a: dst_b, b: src_b); |
3362 | src_a = qMin(a: src_a, b: dst_a); |
3363 | break; |
3364 | case GIMP_LAYER_MODE_SUBTRACT: |
3365 | case GIMP_LAYER_MODE_SUBTRACT_LEGACY: |
3366 | src_r = dst_r > src_r ? dst_r - src_r : 0; |
3367 | src_g = dst_g > src_g ? dst_g - src_g : 0; |
3368 | src_b = dst_b > src_b ? dst_b - src_b : 0; |
3369 | src_a = qMin(a: src_a, b: dst_a); |
3370 | break; |
3371 | case GIMP_LAYER_MODE_DARKEN_ONLY: |
3372 | case GIMP_LAYER_MODE_DARKEN_ONLY_LEGACY: |
3373 | src_r = dst_r < src_r ? dst_r : src_r; |
3374 | src_g = dst_g < src_g ? dst_g : src_g; |
3375 | src_b = dst_b < src_b ? dst_b : src_b; |
3376 | src_a = qMin(a: src_a, b: dst_a); |
3377 | break; |
3378 | case GIMP_LAYER_MODE_LIGHTEN_ONLY: |
3379 | case GIMP_LAYER_MODE_LIGHTEN_ONLY_LEGACY: |
3380 | src_r = dst_r < src_r ? src_r : dst_r; |
3381 | src_g = dst_g < src_g ? src_g : dst_g; |
3382 | src_b = dst_b < src_b ? src_b : dst_b; |
3383 | src_a = qMin(a: src_a, b: dst_a); |
3384 | break; |
3385 | case GIMP_LAYER_MODE_HSV_HUE: |
3386 | case GIMP_LAYER_MODE_HSV_HUE_LEGACY: { |
3387 | uchar new_r = dst_r; |
3388 | uchar new_g = dst_g; |
3389 | uchar new_b = dst_b; |
3390 | |
3391 | RGBTOHSV(red&: src_r, green&: src_g, blue&: src_b); |
3392 | RGBTOHSV(red&: new_r, green&: new_g, blue&: new_b); |
3393 | |
3394 | new_r = src_r; |
3395 | |
3396 | HSVTORGB(hue&: new_r, saturation&: new_g, value&: new_b); |
3397 | |
3398 | src_r = new_r; |
3399 | src_g = new_g; |
3400 | src_b = new_b; |
3401 | src_a = qMin(a: src_a, b: dst_a); |
3402 | } break; |
3403 | case GIMP_LAYER_MODE_HSV_SATURATION: |
3404 | case GIMP_LAYER_MODE_HSV_SATURATION_LEGACY: { |
3405 | uchar new_r = dst_r; |
3406 | uchar new_g = dst_g; |
3407 | uchar new_b = dst_b; |
3408 | |
3409 | RGBTOHSV(red&: src_r, green&: src_g, blue&: src_b); |
3410 | RGBTOHSV(red&: new_r, green&: new_g, blue&: new_b); |
3411 | |
3412 | new_g = src_g; |
3413 | |
3414 | HSVTORGB(hue&: new_r, saturation&: new_g, value&: new_b); |
3415 | |
3416 | src_r = new_r; |
3417 | src_g = new_g; |
3418 | src_b = new_b; |
3419 | src_a = qMin(a: src_a, b: dst_a); |
3420 | } break; |
3421 | case GIMP_LAYER_MODE_HSV_VALUE: |
3422 | case GIMP_LAYER_MODE_HSV_VALUE_LEGACY: { |
3423 | uchar new_r = dst_r; |
3424 | uchar new_g = dst_g; |
3425 | uchar new_b = dst_b; |
3426 | |
3427 | RGBTOHSV(red&: src_r, green&: src_g, blue&: src_b); |
3428 | RGBTOHSV(red&: new_r, green&: new_g, blue&: new_b); |
3429 | |
3430 | new_b = src_b; |
3431 | |
3432 | HSVTORGB(hue&: new_r, saturation&: new_g, value&: new_b); |
3433 | |
3434 | src_r = new_r; |
3435 | src_g = new_g; |
3436 | src_b = new_b; |
3437 | src_a = qMin(a: src_a, b: dst_a); |
3438 | } break; |
3439 | case GIMP_LAYER_MODE_HSL_COLOR: |
3440 | case GIMP_LAYER_MODE_HSL_COLOR_LEGACY: { |
3441 | uchar new_r = dst_r; |
3442 | uchar new_g = dst_g; |
3443 | uchar new_b = dst_b; |
3444 | |
3445 | RGBTOHLS(red&: src_r, green&: src_g, blue&: src_b); |
3446 | RGBTOHLS(red&: new_r, green&: new_g, blue&: new_b); |
3447 | |
3448 | new_r = src_r; |
3449 | new_b = src_b; |
3450 | |
3451 | HLSTORGB(hue&: new_r, lightness&: new_g, saturation&: new_b); |
3452 | |
3453 | src_r = new_r; |
3454 | src_g = new_g; |
3455 | src_b = new_b; |
3456 | src_a = qMin(a: src_a, b: dst_a); |
3457 | } break; |
3458 | case GIMP_LAYER_MODE_DODGE: |
3459 | case GIMP_LAYER_MODE_DODGE_LEGACY: { |
3460 | uint tmp; |
3461 | |
3462 | tmp = dst_r << 8; |
3463 | tmp /= 256 - src_r; |
3464 | src_r = (uchar)qMin(a: tmp, b: 255u); |
3465 | |
3466 | tmp = dst_g << 8; |
3467 | tmp /= 256 - src_g; |
3468 | src_g = (uchar)qMin(a: tmp, b: 255u); |
3469 | |
3470 | tmp = dst_b << 8; |
3471 | tmp /= 256 - src_b; |
3472 | src_b = (uchar)qMin(a: tmp, b: 255u); |
3473 | |
3474 | src_a = qMin(a: src_a, b: dst_a); |
3475 | } break; |
3476 | case GIMP_LAYER_MODE_BURN: |
3477 | case GIMP_LAYER_MODE_BURN_LEGACY: { |
3478 | uint tmp; |
3479 | |
3480 | tmp = (255 - dst_r) << 8; |
3481 | tmp /= src_r + 1; |
3482 | src_r = (uchar)qMin(a: tmp, b: 255u); |
3483 | src_r = 255 - src_r; |
3484 | |
3485 | tmp = (255 - dst_g) << 8; |
3486 | tmp /= src_g + 1; |
3487 | src_g = (uchar)qMin(a: tmp, b: 255u); |
3488 | src_g = 255 - src_g; |
3489 | |
3490 | tmp = (255 - dst_b) << 8; |
3491 | tmp /= src_b + 1; |
3492 | src_b = (uchar)qMin(a: tmp, b: 255u); |
3493 | src_b = 255 - src_b; |
3494 | |
3495 | src_a = qMin(a: src_a, b: dst_a); |
3496 | } break; |
3497 | case GIMP_LAYER_MODE_HARDLIGHT: |
3498 | case GIMP_LAYER_MODE_HARDLIGHT_LEGACY: { |
3499 | uint tmp; |
3500 | if (src_r > 128) { |
3501 | tmp = ((int)255 - dst_r) * ((int)255 - ((src_r - 128) << 1)); |
3502 | src_r = (uchar)qMin(a: 255 - (tmp >> 8), b: 255u); |
3503 | } else { |
3504 | tmp = (int)dst_r * ((int)src_r << 1); |
3505 | src_r = (uchar)qMin(a: tmp >> 8, b: 255u); |
3506 | } |
3507 | |
3508 | if (src_g > 128) { |
3509 | tmp = ((int)255 - dst_g) * ((int)255 - ((src_g - 128) << 1)); |
3510 | src_g = (uchar)qMin(a: 255 - (tmp >> 8), b: 255u); |
3511 | } else { |
3512 | tmp = (int)dst_g * ((int)src_g << 1); |
3513 | src_g = (uchar)qMin(a: tmp >> 8, b: 255u); |
3514 | } |
3515 | |
3516 | if (src_b > 128) { |
3517 | tmp = ((int)255 - dst_b) * ((int)255 - ((src_b - 128) << 1)); |
3518 | src_b = (uchar)qMin(a: 255 - (tmp >> 8), b: 255u); |
3519 | } else { |
3520 | tmp = (int)dst_b * ((int)src_b << 1); |
3521 | src_b = (uchar)qMin(a: tmp >> 8, b: 255u); |
3522 | } |
3523 | src_a = qMin(a: src_a, b: dst_a); |
3524 | } break; |
3525 | case GIMP_LAYER_MODE_SOFTLIGHT: |
3526 | case GIMP_LAYER_MODE_SOFTLIGHT_LEGACY: { |
3527 | uint tmpS; |
3528 | uint tmpM; |
3529 | |
3530 | tmpM = INT_MULT(a: dst_r, b: src_r); |
3531 | tmpS = 255 - INT_MULT(a: (255 - dst_r), b: (255 - src_r)); |
3532 | src_r = INT_MULT(a: (255 - dst_r), b: tmpM) + INT_MULT(a: dst_r, b: tmpS); |
3533 | |
3534 | tmpM = INT_MULT(a: dst_g, b: src_g); |
3535 | tmpS = 255 - INT_MULT(a: (255 - dst_g), b: (255 - src_g)); |
3536 | src_g = INT_MULT(a: (255 - dst_g), b: tmpM) + INT_MULT(a: dst_g, b: tmpS); |
3537 | |
3538 | tmpM = INT_MULT(a: dst_b, b: src_b); |
3539 | tmpS = 255 - INT_MULT(a: (255 - dst_b), b: (255 - src_b)); |
3540 | src_b = INT_MULT(a: (255 - dst_b), b: tmpM) + INT_MULT(a: dst_b, b: tmpS); |
3541 | |
3542 | src_a = qMin(a: src_a, b: dst_a); |
3543 | } break; |
3544 | case GIMP_LAYER_MODE_GRAIN_EXTRACT: |
3545 | case GIMP_LAYER_MODE_GRAIN_EXTRACT_LEGACY: { |
3546 | int tmp; |
3547 | |
3548 | tmp = dst_r - src_r + 128; |
3549 | tmp = qMin(a: tmp, b: 255); |
3550 | tmp = qMax(a: tmp, b: 0); |
3551 | src_r = (uchar)tmp; |
3552 | |
3553 | tmp = dst_g - src_g + 128; |
3554 | tmp = qMin(a: tmp, b: 255); |
3555 | tmp = qMax(a: tmp, b: 0); |
3556 | src_g = (uchar)tmp; |
3557 | |
3558 | tmp = dst_b - src_b + 128; |
3559 | tmp = qMin(a: tmp, b: 255); |
3560 | tmp = qMax(a: tmp, b: 0); |
3561 | src_b = (uchar)tmp; |
3562 | |
3563 | src_a = qMin(a: src_a, b: dst_a); |
3564 | } break; |
3565 | case GIMP_LAYER_MODE_GRAIN_MERGE: |
3566 | case GIMP_LAYER_MODE_GRAIN_MERGE_LEGACY: { |
3567 | int tmp; |
3568 | |
3569 | tmp = dst_r + src_r - 128; |
3570 | tmp = qMin(a: tmp, b: 255); |
3571 | tmp = qMax(a: tmp, b: 0); |
3572 | src_r = (uchar)tmp; |
3573 | |
3574 | tmp = dst_g + src_g - 128; |
3575 | tmp = qMin(a: tmp, b: 255); |
3576 | tmp = qMax(a: tmp, b: 0); |
3577 | src_g = (uchar)tmp; |
3578 | |
3579 | tmp = dst_b + src_b - 128; |
3580 | tmp = qMin(a: tmp, b: 255); |
3581 | tmp = qMax(a: tmp, b: 0); |
3582 | src_b = (uchar)tmp; |
3583 | |
3584 | src_a = qMin(a: src_a, b: dst_a); |
3585 | } break; |
3586 | case GIMP_LAYER_MODE_LINEAR_LIGHT: { |
3587 | if (src_r <= 128) { |
3588 | src_r = qBound(min: 0, val: dst_r + 2 * src_r - 255, max: 255); |
3589 | } else { |
3590 | src_r = qBound(min: 0, val: dst_r + 2 * (src_r - 128), max: 255); |
3591 | } |
3592 | if (src_g <= 128) { |
3593 | src_g = qBound(min: 0, val: dst_g + 2 * src_g - 255, max: 255); |
3594 | } else { |
3595 | src_g = qBound(min: 0, val: dst_g + 2 * (src_g - 127), max: 255); |
3596 | } |
3597 | if (src_b <= 128) { |
3598 | src_b = qBound(min: 0, val: dst_b + 2 * src_b - 255, max: 255); |
3599 | } else { |
3600 | src_b = qBound(min: 0, val: dst_b + 2 * (src_b - 127), max: 255); |
3601 | } |
3602 | } break; |
3603 | case GIMP_LAYER_MODE_VIVID_LIGHT: { |
3604 | // From http://www.simplefilter.de/en/basics/mixmods.html |
3605 | float A[3]; |
3606 | A[0] = src_r / 255.; |
3607 | A[1] = src_g / 255.; |
3608 | A[2] = src_b / 255.; |
3609 | float B[3]; |
3610 | B[0] = dst_r / 255.; |
3611 | B[1] = dst_g / 255.; |
3612 | B[2] = dst_b / 255.; |
3613 | float C[3]{}; |
3614 | for (int i = 0; i < 3; i++) { |
3615 | if (A[i] <= 0.5f) { |
3616 | if (A[i] > 0.f) { |
3617 | C[i] = 1.f - (1.f - B[i]) / (2.f * A[i]); |
3618 | } |
3619 | } else { |
3620 | if (A[i] < 1.f) { |
3621 | C[i] = B[i] / (2.f * (1.f - A[i])); |
3622 | } |
3623 | } |
3624 | } |
3625 | src_r = qBound(min: 0.f, val: C[0] * 255.f, max: 255.f); |
3626 | src_g = qBound(min: 0.f, val: C[1] * 255.f, max: 255.f); |
3627 | src_b = qBound(min: 0.f, val: C[2] * 255.f, max: 255.f); |
3628 | } break; |
3629 | default: |
3630 | qCWarning(XCFPLUGIN) << "Unhandled mode" << layer.mode; |
3631 | return false; |
3632 | } |
3633 | |
3634 | src_a = INT_MULT(a: src_a, b: layer.opacity); |
3635 | |
3636 | // Apply the mask (if any) |
3637 | |
3638 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
3639 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
3640 | } |
3641 | |
3642 | uchar new_r; |
3643 | uchar new_g; |
3644 | uchar new_b; |
3645 | uchar new_a; |
3646 | new_a = dst_a + INT_MULT(a: OPAQUE_OPACITY - dst_a, b: src_a); |
3647 | |
3648 | const float src_ratio = new_a == 0 ? 1.0 : (float)src_a / new_a; |
3649 | float dst_ratio = 1.0 - src_ratio; |
3650 | |
3651 | new_r = (uchar)(src_ratio * src_r + dst_ratio * dst_r + EPSILON); |
3652 | new_g = (uchar)(src_ratio * src_g + dst_ratio * dst_g + EPSILON); |
3653 | new_b = (uchar)(src_ratio * src_b + dst_ratio * dst_b + EPSILON); |
3654 | |
3655 | if (!modeAffectsSourceAlpha(type: layer.mode)) { |
3656 | new_a = dst_a; |
3657 | } |
3658 | |
3659 | image.setPixel(x: m, y: n, index_or_rgb: qRgba(r: new_r, g: new_g, b: new_b, a: new_a)); |
3660 | return true; |
3661 | } |
3662 | |
3663 | /*! |
3664 | * Merge a Gray pixel from the layer to the Gray image. Straight-forward. |
3665 | * \param layer source layer. |
3666 | * \param i x tile index. |
3667 | * \param j y tile index. |
3668 | * \param k x pixel index of tile i,j. |
3669 | * \param l y pixel index of tile i,j. |
3670 | * \param image destination image. |
3671 | * \param m x pixel of destination image. |
3672 | * \param n y pixel of destination image. |
3673 | */ |
3674 | bool XCFImageFormat::mergeGrayToGray(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
3675 | { |
3676 | int src = layer.image_tiles[j][i].pixelIndex(x: k, y: l); |
3677 | image.setPixel(x: m, y: n, index_or_rgb: src); |
3678 | return true; |
3679 | } |
3680 | |
3681 | /*! |
3682 | * Merge a GrayA pixel from the layer to the Gray image. Straight-forward. |
3683 | * \param layer source layer. |
3684 | * \param i x tile index. |
3685 | * \param j y tile index. |
3686 | * \param k x pixel index of tile i,j. |
3687 | * \param l y pixel index of tile i,j. |
3688 | * \param image destination image. |
3689 | * \param m x pixel of destination image. |
3690 | * \param n y pixel of destination image. |
3691 | */ |
3692 | bool XCFImageFormat::mergeGrayAToGray(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
3693 | { |
3694 | int src = qGray(rgb: layer.image_tiles[j][i].pixel(x: k, y: l)); |
3695 | int dst = image.pixelIndex(x: m, y: n); |
3696 | |
3697 | uchar src_a = layer.alpha_tiles[j][i].pixelIndex(x: k, y: l); |
3698 | |
3699 | if (!src_a) { |
3700 | return false; // nothing to merge |
3701 | } |
3702 | |
3703 | switch (layer.mode) { |
3704 | case GIMP_LAYER_MODE_MULTIPLY: |
3705 | case GIMP_LAYER_MODE_MULTIPLY_LEGACY: { |
3706 | src = INT_MULT(a: src, b: dst); |
3707 | } break; |
3708 | case GIMP_LAYER_MODE_DIVIDE: |
3709 | case GIMP_LAYER_MODE_DIVIDE_LEGACY: { |
3710 | src = qMin(a: (dst * 256) / (1 + src), b: 255); |
3711 | } break; |
3712 | case GIMP_LAYER_MODE_SCREEN: |
3713 | case GIMP_LAYER_MODE_SCREEN_LEGACY: { |
3714 | src = 255 - INT_MULT(a: 255 - dst, b: 255 - src); |
3715 | } break; |
3716 | case GIMP_LAYER_MODE_OVERLAY: |
3717 | case GIMP_LAYER_MODE_OVERLAY_LEGACY: { |
3718 | src = INT_MULT(a: dst, b: dst + INT_MULT(a: 2 * src, b: 255 - dst)); |
3719 | } break; |
3720 | case GIMP_LAYER_MODE_DIFFERENCE: |
3721 | case GIMP_LAYER_MODE_DIFFERENCE_LEGACY: { |
3722 | src = dst > src ? dst - src : src - dst; |
3723 | } break; |
3724 | case GIMP_LAYER_MODE_ADDITION: |
3725 | case GIMP_LAYER_MODE_ADDITION_LEGACY: { |
3726 | src = add_lut(a: dst, b: src); |
3727 | } break; |
3728 | case GIMP_LAYER_MODE_SUBTRACT: |
3729 | case GIMP_LAYER_MODE_SUBTRACT_LEGACY: { |
3730 | src = dst > src ? dst - src : 0; |
3731 | } break; |
3732 | case GIMP_LAYER_MODE_DARKEN_ONLY: |
3733 | case GIMP_LAYER_MODE_DARKEN_ONLY_LEGACY: { |
3734 | src = dst < src ? dst : src; |
3735 | } break; |
3736 | case GIMP_LAYER_MODE_LIGHTEN_ONLY: |
3737 | case GIMP_LAYER_MODE_LIGHTEN_ONLY_LEGACY: { |
3738 | src = dst < src ? src : dst; |
3739 | } break; |
3740 | case GIMP_LAYER_MODE_DODGE: |
3741 | case GIMP_LAYER_MODE_DODGE_LEGACY: { |
3742 | uint tmp = dst << 8; |
3743 | tmp /= 256 - src; |
3744 | src = (uchar)qMin(a: tmp, b: 255u); |
3745 | } break; |
3746 | case GIMP_LAYER_MODE_BURN: |
3747 | case GIMP_LAYER_MODE_BURN_LEGACY: { |
3748 | uint tmp = (255 - dst) << 8; |
3749 | tmp /= src + 1; |
3750 | src = (uchar)qMin(a: tmp, b: 255u); |
3751 | src = 255 - src; |
3752 | } break; |
3753 | case GIMP_LAYER_MODE_HARDLIGHT: |
3754 | case GIMP_LAYER_MODE_HARDLIGHT_LEGACY: { |
3755 | uint tmp; |
3756 | if (src > 128) { |
3757 | tmp = ((int)255 - dst) * ((int)255 - ((src - 128) << 1)); |
3758 | src = (uchar)qMin(a: 255 - (tmp >> 8), b: 255u); |
3759 | } else { |
3760 | tmp = (int)dst * ((int)src << 1); |
3761 | src = (uchar)qMin(a: tmp >> 8, b: 255u); |
3762 | } |
3763 | } break; |
3764 | case GIMP_LAYER_MODE_SOFTLIGHT: |
3765 | case GIMP_LAYER_MODE_SOFTLIGHT_LEGACY: { |
3766 | uint tmpS; |
3767 | uint tmpM; |
3768 | |
3769 | tmpM = INT_MULT(a: dst, b: src); |
3770 | tmpS = 255 - INT_MULT(a: (255 - dst), b: (255 - src)); |
3771 | src = INT_MULT(a: (255 - dst), b: tmpM) + INT_MULT(a: dst, b: tmpS); |
3772 | |
3773 | } break; |
3774 | case GIMP_LAYER_MODE_GRAIN_EXTRACT: |
3775 | case GIMP_LAYER_MODE_GRAIN_EXTRACT_LEGACY: { |
3776 | int tmp; |
3777 | |
3778 | tmp = dst - src + 128; |
3779 | tmp = qMin(a: tmp, b: 255); |
3780 | tmp = qMax(a: tmp, b: 0); |
3781 | |
3782 | src = (uchar)tmp; |
3783 | } break; |
3784 | case GIMP_LAYER_MODE_GRAIN_MERGE: |
3785 | case GIMP_LAYER_MODE_GRAIN_MERGE_LEGACY: { |
3786 | int tmp; |
3787 | |
3788 | tmp = dst + src - 128; |
3789 | tmp = qMin(a: tmp, b: 255); |
3790 | tmp = qMax(a: tmp, b: 0); |
3791 | |
3792 | src = (uchar)tmp; |
3793 | } break; |
3794 | default: |
3795 | qCWarning(XCFPLUGIN) << "Unhandled mode" << layer.mode; |
3796 | return false; |
3797 | } |
3798 | |
3799 | src_a = INT_MULT(a: src_a, b: layer.opacity); |
3800 | |
3801 | // Apply the mask (if any) |
3802 | |
3803 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
3804 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
3805 | } |
3806 | |
3807 | uchar new_a = OPAQUE_OPACITY; |
3808 | |
3809 | const float src_ratio = new_a == 0 ? 1.0 : (float)src_a / new_a; |
3810 | float dst_ratio = 1.0 - src_ratio; |
3811 | |
3812 | uchar new_g = (uchar)(src_ratio * src + dst_ratio * dst + EPSILON); |
3813 | |
3814 | image.setPixel(x: m, y: n, index_or_rgb: new_g); |
3815 | return true; |
3816 | } |
3817 | |
3818 | /*! |
3819 | * Merge a Gray pixel from the layer to an RGB image. Straight-forward. |
3820 | * The only thing this has to take account of is the opacity of the |
3821 | * layer. Evidently, the GIMP exporter itself does not actually do this. |
3822 | * \param layer source layer. |
3823 | * \param i x tile index. |
3824 | * \param j y tile index. |
3825 | * \param k x pixel index of tile i,j. |
3826 | * \param l y pixel index of tile i,j. |
3827 | * \param image destination image. |
3828 | * \param m x pixel of destination image. |
3829 | * \param n y pixel of destination image. |
3830 | */ |
3831 | bool XCFImageFormat::mergeGrayToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
3832 | { |
3833 | QRgb src = layer.image_tiles[j][i].pixel(x: k, y: l); |
3834 | uchar src_a = layer.opacity; |
3835 | image.setPixel(x: m, y: n, index_or_rgb: qRgba(rgb: src, a: src_a)); |
3836 | return true; |
3837 | } |
3838 | |
3839 | /*! |
3840 | * Merge a GrayA pixel from the layer to an RGB image. Straight-forward. |
3841 | * The only thing this has to take account of is the opacity of the |
3842 | * layer. Evidently, the GIMP exporter itself does not actually do this. |
3843 | * \param layer source layer. |
3844 | * \param i x tile index. |
3845 | * \param j y tile index. |
3846 | * \param k x pixel index of tile i,j. |
3847 | * \param l y pixel index of tile i,j. |
3848 | * \param image destination image. |
3849 | * \param m x pixel of destination image. |
3850 | * \param n y pixel of destination image. |
3851 | */ |
3852 | bool XCFImageFormat::mergeGrayAToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
3853 | { |
3854 | int src = qGray(rgb: layer.image_tiles[j][i].pixel(x: k, y: l)); |
3855 | int dst = qGray(rgb: image.pixel(x: m, y: n)); |
3856 | |
3857 | uchar src_a = layer.alpha_tiles[j][i].pixelIndex(x: k, y: l); |
3858 | uchar dst_a = qAlpha(rgb: image.pixel(x: m, y: n)); |
3859 | |
3860 | if (!src_a) { |
3861 | return false; // nothing to merge |
3862 | } |
3863 | |
3864 | switch (layer.mode) { |
3865 | case GIMP_LAYER_MODE_NORMAL: |
3866 | case GIMP_LAYER_MODE_NORMAL_LEGACY: |
3867 | break; |
3868 | case GIMP_LAYER_MODE_MULTIPLY: |
3869 | case GIMP_LAYER_MODE_MULTIPLY_LEGACY: { |
3870 | src = INT_MULT(a: src, b: dst); |
3871 | src_a = qMin(a: src_a, b: dst_a); |
3872 | } break; |
3873 | case GIMP_LAYER_MODE_DIVIDE: |
3874 | case GIMP_LAYER_MODE_DIVIDE_LEGACY: { |
3875 | src = qMin(a: (dst * 256) / (1 + src), b: 255); |
3876 | src_a = qMin(a: src_a, b: dst_a); |
3877 | } break; |
3878 | case GIMP_LAYER_MODE_SCREEN: |
3879 | case GIMP_LAYER_MODE_SCREEN_LEGACY: { |
3880 | src = 255 - INT_MULT(a: 255 - dst, b: 255 - src); |
3881 | src_a = qMin(a: src_a, b: dst_a); |
3882 | } break; |
3883 | case GIMP_LAYER_MODE_OVERLAY: |
3884 | case GIMP_LAYER_MODE_OVERLAY_LEGACY: { |
3885 | src = INT_MULT(a: dst, b: dst + INT_MULT(a: 2 * src, b: 255 - dst)); |
3886 | src_a = qMin(a: src_a, b: dst_a); |
3887 | } break; |
3888 | case GIMP_LAYER_MODE_DIFFERENCE: |
3889 | case GIMP_LAYER_MODE_DIFFERENCE_LEGACY: { |
3890 | src = dst > src ? dst - src : src - dst; |
3891 | src_a = qMin(a: src_a, b: dst_a); |
3892 | } break; |
3893 | case GIMP_LAYER_MODE_ADDITION: |
3894 | case GIMP_LAYER_MODE_ADDITION_LEGACY: { |
3895 | src = add_lut(a: dst, b: src); |
3896 | src_a = qMin(a: src_a, b: dst_a); |
3897 | } break; |
3898 | case GIMP_LAYER_MODE_SUBTRACT: |
3899 | case GIMP_LAYER_MODE_SUBTRACT_LEGACY: { |
3900 | src = dst > src ? dst - src : 0; |
3901 | src_a = qMin(a: src_a, b: dst_a); |
3902 | } break; |
3903 | case GIMP_LAYER_MODE_DARKEN_ONLY: |
3904 | case GIMP_LAYER_MODE_DARKEN_ONLY_LEGACY: { |
3905 | src = dst < src ? dst : src; |
3906 | src_a = qMin(a: src_a, b: dst_a); |
3907 | } break; |
3908 | case GIMP_LAYER_MODE_LIGHTEN_ONLY: |
3909 | case GIMP_LAYER_MODE_LIGHTEN_ONLY_LEGACY: { |
3910 | src = dst < src ? src : dst; |
3911 | src_a = qMin(a: src_a, b: dst_a); |
3912 | } break; |
3913 | case GIMP_LAYER_MODE_DODGE: |
3914 | case GIMP_LAYER_MODE_DODGE_LEGACY: { |
3915 | uint tmp = dst << 8; |
3916 | tmp /= 256 - src; |
3917 | src = (uchar)qMin(a: tmp, b: 255u); |
3918 | src_a = qMin(a: src_a, b: dst_a); |
3919 | } break; |
3920 | case GIMP_LAYER_MODE_BURN: |
3921 | case GIMP_LAYER_MODE_BURN_LEGACY: { |
3922 | uint tmp = (255 - dst) << 8; |
3923 | tmp /= src + 1; |
3924 | src = (uchar)qMin(a: tmp, b: 255u); |
3925 | src = 255 - src; |
3926 | src_a = qMin(a: src_a, b: dst_a); |
3927 | } break; |
3928 | case GIMP_LAYER_MODE_HARDLIGHT: |
3929 | case GIMP_LAYER_MODE_HARDLIGHT_LEGACY: { |
3930 | uint tmp; |
3931 | if (src > 128) { |
3932 | tmp = ((int)255 - dst) * ((int)255 - ((src - 128) << 1)); |
3933 | src = (uchar)qMin(a: 255 - (tmp >> 8), b: 255u); |
3934 | } else { |
3935 | tmp = (int)dst * ((int)src << 1); |
3936 | src = (uchar)qMin(a: tmp >> 8, b: 255u); |
3937 | } |
3938 | src_a = qMin(a: src_a, b: dst_a); |
3939 | } break; |
3940 | case GIMP_LAYER_MODE_SOFTLIGHT: |
3941 | case GIMP_LAYER_MODE_SOFTLIGHT_LEGACY: { |
3942 | uint tmpS; |
3943 | uint tmpM; |
3944 | |
3945 | tmpM = INT_MULT(a: dst, b: src); |
3946 | tmpS = 255 - INT_MULT(a: (255 - dst), b: (255 - src)); |
3947 | src = INT_MULT(a: (255 - dst), b: tmpM) + INT_MULT(a: dst, b: tmpS); |
3948 | |
3949 | src_a = qMin(a: src_a, b: dst_a); |
3950 | } break; |
3951 | case GIMP_LAYER_MODE_GRAIN_EXTRACT: |
3952 | case GIMP_LAYER_MODE_GRAIN_EXTRACT_LEGACY: { |
3953 | int tmp; |
3954 | |
3955 | tmp = dst - src + 128; |
3956 | tmp = qMin(a: tmp, b: 255); |
3957 | tmp = qMax(a: tmp, b: 0); |
3958 | |
3959 | src = (uchar)tmp; |
3960 | src_a = qMin(a: src_a, b: dst_a); |
3961 | } break; |
3962 | case GIMP_LAYER_MODE_GRAIN_MERGE: |
3963 | case GIMP_LAYER_MODE_GRAIN_MERGE_LEGACY: { |
3964 | int tmp; |
3965 | |
3966 | tmp = dst + src - 128; |
3967 | tmp = qMin(a: tmp, b: 255); |
3968 | tmp = qMax(a: tmp, b: 0); |
3969 | |
3970 | src = (uchar)tmp; |
3971 | src_a = qMin(a: src_a, b: dst_a); |
3972 | } break; |
3973 | default: |
3974 | qCWarning(XCFPLUGIN) << "Unhandled mode" << layer.mode; |
3975 | return false; |
3976 | } |
3977 | |
3978 | src_a = INT_MULT(a: src_a, b: layer.opacity); |
3979 | |
3980 | // Apply the mask (if any) |
3981 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
3982 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
3983 | } |
3984 | |
3985 | uchar new_a = dst_a + INT_MULT(a: OPAQUE_OPACITY - dst_a, b: src_a); |
3986 | |
3987 | const float src_ratio = new_a == 0 ? 1.0 : (float)src_a / new_a; |
3988 | float dst_ratio = 1.0 - src_ratio; |
3989 | |
3990 | uchar new_g = (uchar)(src_ratio * src + dst_ratio * dst + EPSILON); |
3991 | |
3992 | if (!modeAffectsSourceAlpha(type: layer.mode)) { |
3993 | new_a = dst_a; |
3994 | } |
3995 | |
3996 | image.setPixel(x: m, y: n, index_or_rgb: qRgba(r: new_g, g: new_g, b: new_g, a: new_a)); |
3997 | return true; |
3998 | } |
3999 | |
4000 | /*! |
4001 | * Merge an Indexed pixel from the layer to the Indexed image. Straight-forward. |
4002 | * \param layer source layer. |
4003 | * \param i x tile index. |
4004 | * \param j y tile index. |
4005 | * \param k x pixel index of tile i,j. |
4006 | * \param l y pixel index of tile i,j. |
4007 | * \param image destination image. |
4008 | * \param m x pixel of destination image. |
4009 | * \param n y pixel of destination image. |
4010 | */ |
4011 | bool XCFImageFormat::mergeIndexedToIndexed(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
4012 | { |
4013 | int src = layer.image_tiles[j][i].pixelIndex(x: k, y: l); |
4014 | image.setPixel(x: m, y: n, index_or_rgb: src); |
4015 | return true; |
4016 | } |
4017 | |
4018 | /*! |
4019 | * Merge an IndexedA pixel from the layer to the Indexed image. Straight-forward. |
4020 | * \param layer source layer. |
4021 | * \param i x tile index. |
4022 | * \param j y tile index. |
4023 | * \param k x pixel index of tile i,j. |
4024 | * \param l y pixel index of tile i,j. |
4025 | * \param image destination image. |
4026 | * \param m x pixel of destination image. |
4027 | * \param n y pixel of destination image. |
4028 | */ |
4029 | bool XCFImageFormat::mergeIndexedAToIndexed(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
4030 | { |
4031 | uchar src = layer.image_tiles[j][i].pixelIndex(x: k, y: l); |
4032 | uchar src_a = layer.alpha_tiles[j][i].pixelIndex(x: k, y: l); |
4033 | src_a = INT_MULT(a: src_a, b: layer.opacity); |
4034 | |
4035 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
4036 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
4037 | } |
4038 | |
4039 | if (src_a > 127) { |
4040 | src++; |
4041 | image.setPixel(x: m, y: n, index_or_rgb: src); |
4042 | } |
4043 | return true; |
4044 | } |
4045 | |
4046 | /*! |
4047 | * Merge an IndexedA pixel from the layer to an RGB image. Straight-forward. |
4048 | * The only thing this has to take account of is the opacity of the |
4049 | * layer. Evidently, the GIMP exporter itself does not actually do this. |
4050 | * \param layer source layer. |
4051 | * \param i x tile index. |
4052 | * \param j y tile index. |
4053 | * \param k x pixel index of tile i,j. |
4054 | * \param l y pixel index of tile i,j. |
4055 | * \param image destination image. |
4056 | * \param m x pixel of destination image. |
4057 | * \param n y pixel of destination image. |
4058 | */ |
4059 | bool XCFImageFormat::mergeIndexedAToRGB(const Layer &layer, uint i, uint j, int k, int l, QImage &image, int m, int n) |
4060 | { |
4061 | QRgb src = layer.image_tiles[j][i].pixel(x: k, y: l); |
4062 | uchar src_a = layer.alpha_tiles[j][i].pixelIndex(x: k, y: l); |
4063 | src_a = INT_MULT(a: src_a, b: layer.opacity); |
4064 | |
4065 | // Apply the mask (if any) |
4066 | if (layer.apply_mask == 1 && layer.mask_tiles.size() > (int)j && layer.mask_tiles[j].size() > (int)i) { |
4067 | src_a = INT_MULT(a: src_a, b: layer.mask_tiles[j][i].pixelIndex(x: k, y: l)); |
4068 | } |
4069 | |
4070 | // This is what appears in the GIMP window |
4071 | if (src_a <= 127) { |
4072 | src_a = 0; |
4073 | } else { |
4074 | src_a = OPAQUE_OPACITY; |
4075 | } |
4076 | |
4077 | image.setPixel(x: m, y: n, index_or_rgb: qRgba(rgb: src, a: src_a)); |
4078 | return true; |
4079 | } |
4080 | |
4081 | /*! |
4082 | * Dissolving pixels: pick a random number between 0 and 255. If the pixel's |
4083 | * alpha is less than that, make it transparent. |
4084 | * \param image the image tile to dissolve. |
4085 | * \param x the global x position of the tile. |
4086 | * \param y the global y position of the tile. |
4087 | */ |
4088 | void XCFImageFormat::dissolveRGBPixels(QImage &image, int x, int y) |
4089 | { |
4090 | // The apparently spurious rand() calls are to wind the random |
4091 | // numbers up to the same point for each tile. |
4092 | |
4093 | for (int l = 0; l < image.height(); l++) { |
4094 | unsigned int next = randomTable.values[(l + y) % RANDOM_TABLE_SIZE]; |
4095 | |
4096 | for (int k = 0; k < x; k++) { |
4097 | RandomTable::rand_r(seed: &next); |
4098 | } |
4099 | |
4100 | for (int k = 0; k < image.width(); k++) { |
4101 | int rand_val = RandomTable::rand_r(seed: &next) & 0xff; |
4102 | QRgb pixel = image.pixel(x: k, y: l); |
4103 | |
4104 | if (rand_val > qAlpha(rgb: pixel)) { |
4105 | image.setPixel(x: k, y: l, index_or_rgb: qRgba(rgb: pixel, a: 0)); |
4106 | } |
4107 | } |
4108 | } |
4109 | } |
4110 | |
4111 | /*! |
4112 | * Dissolving pixels: pick a random number between 0 and 255. If the pixel's |
4113 | * alpha is less than that, make it transparent. This routine works for |
4114 | * the GRAYA and INDEXEDA image types where the pixel alpha's are stored |
4115 | * separately from the pixel themselves. |
4116 | * \param image the alpha tile to dissolve. |
4117 | * \param x the global x position of the tile. |
4118 | * \param y the global y position of the tile. |
4119 | */ |
4120 | void XCFImageFormat::dissolveAlphaPixels(QImage &image, int x, int y) |
4121 | { |
4122 | // The apparently spurious rand() calls are to wind the random |
4123 | // numbers up to the same point for each tile. |
4124 | |
4125 | for (int l = 0; l < image.height(); l++) { |
4126 | unsigned int next = randomTable.values[(l + y) % RANDOM_TABLE_SIZE]; |
4127 | |
4128 | for (int k = 0; k < x; k++) { |
4129 | RandomTable::rand_r(seed: &next); |
4130 | } |
4131 | |
4132 | for (int k = 0; k < image.width(); k++) { |
4133 | int rand_val = RandomTable::rand_r(seed: &next) & 0xff; |
4134 | uchar alpha = image.pixelIndex(x: k, y: l); |
4135 | |
4136 | if (rand_val > alpha) { |
4137 | image.setPixel(x: k, y: l, index_or_rgb: 0); |
4138 | } |
4139 | } |
4140 | } |
4141 | } |
4142 | |
4143 | /////////////////////////////////////////////////////////////////////////////// |
4144 | |
4145 | XCFHandler::XCFHandler() |
4146 | { |
4147 | } |
4148 | |
4149 | bool XCFHandler::canRead() const |
4150 | { |
4151 | if (canRead(device: device())) { |
4152 | setFormat("xcf" ); |
4153 | return true; |
4154 | } |
4155 | return false; |
4156 | } |
4157 | |
4158 | bool XCFHandler::read(QImage *image) |
4159 | { |
4160 | XCFImageFormat xcfif; |
4161 | auto ok = xcfif.readXCF(device: device(), outImage: image); |
4162 | m_imageSize = image->size(); |
4163 | return ok; |
4164 | } |
4165 | |
4166 | bool XCFHandler::write(const QImage &) |
4167 | { |
4168 | return false; |
4169 | } |
4170 | |
4171 | bool XCFHandler::supportsOption(ImageOption option) const |
4172 | { |
4173 | if (option == QImageIOHandler::Size) |
4174 | return true; |
4175 | return false; |
4176 | } |
4177 | |
4178 | QVariant XCFHandler::option(ImageOption option) const |
4179 | { |
4180 | QVariant v; |
4181 | |
4182 | if (option == QImageIOHandler::Size) { |
4183 | if (!m_imageSize.isEmpty()) { |
4184 | return m_imageSize; |
4185 | } |
4186 | /* |
4187 | * The image structure always starts at offset 0 in the XCF file. |
4188 | * byte[9] "gimp xcf " File type identification |
4189 | * byte[4] version XCF version |
4190 | * "file": version 0 |
4191 | * "v001": version 1 |
4192 | * "v002": version 2 |
4193 | * "v003": version 3 |
4194 | * byte 0 Zero marks the end of the version tag. |
4195 | * uint32 width Width of canvas |
4196 | * uint32 height Height of canvas |
4197 | */ |
4198 | else if (auto d = device()) { |
4199 | // transactions works on both random and sequential devices |
4200 | d->startTransaction(); |
4201 | auto ba9 = d->read(maxlen: 9); // "gimp xcf " |
4202 | auto ba5 = d->read(maxlen: 4+1); // version + null terminator |
4203 | auto ba = d->read(maxlen: 8); // width and height |
4204 | d->rollbackTransaction(); |
4205 | if (ba9 == QByteArray("gimp xcf " ) && ba5.size() == 5) { |
4206 | QDataStream ds(ba); |
4207 | quint32 width; |
4208 | ds >> width; |
4209 | quint32 height; |
4210 | ds >> height; |
4211 | if (ds.status() == QDataStream::Ok) |
4212 | v = QVariant::fromValue(value: QSize(width, height)); |
4213 | } |
4214 | } |
4215 | } |
4216 | |
4217 | return v; |
4218 | } |
4219 | |
4220 | bool XCFHandler::canRead(QIODevice *device) |
4221 | { |
4222 | if (!device) { |
4223 | qCDebug(XCFPLUGIN) << "XCFHandler::canRead() called with no device" ; |
4224 | return false; |
4225 | } |
4226 | if (device->isSequential()) { |
4227 | return false; |
4228 | } |
4229 | |
4230 | const qint64 oldPos = device->pos(); |
4231 | |
4232 | QDataStream ds(device); |
4233 | XCFImageFormat::XCFImage::Header ; |
4234 | bool failed = !XCFImageFormat::readXCFHeader(xcf_io&: ds, header: &header); |
4235 | ds.setDevice(nullptr); |
4236 | |
4237 | device->seek(pos: oldPos); |
4238 | if (failed) { |
4239 | return false; |
4240 | } |
4241 | |
4242 | switch (header.precision) { |
4243 | case XCFImageFormat::GIMP_PRECISION_HALF_LINEAR: |
4244 | case XCFImageFormat::GIMP_PRECISION_HALF_NON_LINEAR: |
4245 | case XCFImageFormat::GIMP_PRECISION_HALF_PERCEPTUAL: |
4246 | case XCFImageFormat::GIMP_PRECISION_FLOAT_LINEAR: |
4247 | case XCFImageFormat::GIMP_PRECISION_FLOAT_NON_LINEAR: |
4248 | case XCFImageFormat::GIMP_PRECISION_FLOAT_PERCEPTUAL: |
4249 | case XCFImageFormat::GIMP_PRECISION_U8_LINEAR: |
4250 | case XCFImageFormat::GIMP_PRECISION_U8_NON_LINEAR: |
4251 | case XCFImageFormat::GIMP_PRECISION_U8_PERCEPTUAL: |
4252 | case XCFImageFormat::GIMP_PRECISION_U16_LINEAR: |
4253 | case XCFImageFormat::GIMP_PRECISION_U16_NON_LINEAR: |
4254 | case XCFImageFormat::GIMP_PRECISION_U16_PERCEPTUAL: |
4255 | case XCFImageFormat::GIMP_PRECISION_U32_LINEAR: |
4256 | case XCFImageFormat::GIMP_PRECISION_U32_NON_LINEAR: |
4257 | case XCFImageFormat::GIMP_PRECISION_U32_PERCEPTUAL: |
4258 | break; |
4259 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_LINEAR: |
4260 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_NON_LINEAR: |
4261 | case XCFImageFormat::GIMP_PRECISION_DOUBLE_PERCEPTUAL: |
4262 | default: |
4263 | qCDebug(XCFPLUGIN) << "unsupported precision" << header.precision; |
4264 | return false; |
4265 | } |
4266 | |
4267 | return true; |
4268 | } |
4269 | |
4270 | QImageIOPlugin::Capabilities XCFPlugin::capabilities(QIODevice *device, const QByteArray &format) const |
4271 | { |
4272 | if (format == "xcf" ) { |
4273 | return Capabilities(CanRead); |
4274 | } |
4275 | if (!format.isEmpty()) { |
4276 | return {}; |
4277 | } |
4278 | if (!device->isOpen()) { |
4279 | return {}; |
4280 | } |
4281 | |
4282 | Capabilities cap; |
4283 | if (device->isReadable() && XCFHandler::canRead(device)) { |
4284 | cap |= CanRead; |
4285 | } |
4286 | return cap; |
4287 | } |
4288 | |
4289 | QImageIOHandler *XCFPlugin::create(QIODevice *device, const QByteArray &format) const |
4290 | { |
4291 | QImageIOHandler *handler = new XCFHandler; |
4292 | handler->setDevice(device); |
4293 | handler->setFormat(format); |
4294 | return handler; |
4295 | } |
4296 | |
4297 | // Just so I can get enum values printed |
4298 | #include "xcf.moc" |
4299 | |
4300 | #include "moc_xcf_p.cpp" |
4301 | |