1/* SPDX-License-Identifier: GPL-2.0-or-later
2** -*- mode: asm -*-
3**
4** head.S -- This file contains the initial boot code for the
5** Linux/68k kernel.
6**
7** Copyright 1993 by Hamish Macdonald
8**
9** 68040 fixes by Michael Rausch
10** 68060 fixes by Roman Hodek
11** MMU cleanup by Randy Thelen
12** Final MMU cleanup by Roman Zippel
13**
14** Atari support by Andreas Schwab, using ideas of Robert de Vries
15** and Bjoern Brauel
16** VME Support by Richard Hirst
17**
18** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
19** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
20** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
21** 95/11/18 Richard Hirst: Added MVME166 support
22** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
23** Magnum- and FX-alternate ram
24** 98/04/25 Phil Blundell: added HP300 support
25** 1998/08/30 David Kilzer: Added support for font_desc structures
26** for linux-2.1.115
27** 1999/02/11 Richard Zidlicky: added Q40 support (initial version 99/01/01)
28** 2004/05/13 Kars de Jong: Finalised HP300 support
29*/
30
31/*
32 * Linux startup code.
33 *
34 * At this point, the boot loader has:
35 * Disabled interrupts
36 * Disabled caches
37 * Put us in supervisor state.
38 *
39 * The kernel setup code takes the following steps:
40 * . Raise interrupt level
41 * . Set up initial kernel memory mapping.
42 * . This sets up a mapping of the 4M of memory the kernel is located in.
43 * . It also does a mapping of any initial machine specific areas.
44 * . Enable the MMU
45 * . Enable cache memories
46 * . Jump to kernel startup
47 *
48 * Much of the file restructuring was to accomplish:
49 * 1) Remove register dependency through-out the file.
50 * 2) Increase use of subroutines to perform functions
51 * 3) Increase readability of the code
52 *
53 * Of course, readability is a subjective issue, so it will never be
54 * argued that that goal was accomplished. It was merely a goal.
55 * A key way to help make code more readable is to give good
56 * documentation. So, the first thing you will find is exhaustive
57 * write-ups on the structure of the file, and the features of the
58 * functional subroutines.
59 *
60 * General Structure:
61 * ------------------
62 * Without a doubt the single largest chunk of head.S is spent
63 * mapping the kernel and I/O physical space into the logical range
64 * for the kernel.
65 * There are new subroutines and data structures to make MMU
66 * support cleaner and easier to understand.
67 * First, you will find a routine call "mmu_map" which maps
68 * a logical to a physical region for some length given a cache
69 * type on behalf of the caller. This routine makes writing the
70 * actual per-machine specific code very simple.
71 * A central part of the code, but not a subroutine in itself,
72 * is the mmu_init code which is broken down into mapping the kernel
73 * (the same for all machines) and mapping machine-specific I/O
74 * regions.
75 * Also, there will be a description of engaging the MMU and
76 * caches.
77 * You will notice that there is a chunk of code which
78 * can emit the entire MMU mapping of the machine. This is present
79 * only in debug modes and can be very helpful.
80 * Further, there is a new console driver in head.S that is
81 * also only engaged in debug mode. Currently, it's only supported
82 * on the Macintosh class of machines. However, it is hoped that
83 * others will plug-in support for specific machines.
84 *
85 * ######################################################################
86 *
87 * mmu_map
88 * -------
89 * mmu_map was written for two key reasons. First, it was clear
90 * that it was very difficult to read the previous code for mapping
91 * regions of memory. Second, the Macintosh required such extensive
92 * memory allocations that it didn't make sense to propagate the
93 * existing code any further.
94 * mmu_map requires some parameters:
95 *
96 * mmu_map (logical, physical, length, cache_type)
97 *
98 * While this essentially describes the function in the abstract, you'll
99 * find more indepth description of other parameters at the implementation site.
100 *
101 * mmu_get_root_table_entry
102 * ------------------------
103 * mmu_get_ptr_table_entry
104 * -----------------------
105 * mmu_get_page_table_entry
106 * ------------------------
107 *
108 * These routines are used by other mmu routines to get a pointer into
109 * a table, if necessary a new table is allocated. These routines are working
110 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
111 * table needs of course only to be allocated once in mmu_get_root_table_entry,
112 * so that here also some mmu specific initialization is done. The second page
113 * at the start of the kernel (the first page is unmapped later) is used for
114 * the kernel_pg_dir. It must be at a position known at link time (as it's used
115 * to initialize the init task struct) and since it needs special cache
116 * settings, it's the easiest to use this page, the rest of the page is used
117 * for further pointer tables.
118 * mmu_get_page_table_entry allocates always a whole page for page tables, this
119 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
120 * to manage page tables in smaller pieces as nearly all mappings have that
121 * size.
122 *
123 * ######################################################################
124 *
125 *
126 * ######################################################################
127 *
128 * mmu_engage
129 * ----------
130 * Thanks to a small helping routine enabling the mmu got quite simple
131 * and there is only one way left. mmu_engage makes a complete a new mapping
132 * that only includes the absolute necessary to be able to jump to the final
133 * position and to restore the original mapping.
134 * As this code doesn't need a transparent translation register anymore this
135 * means all registers are free to be used by machines that needs them for
136 * other purposes.
137 *
138 * ######################################################################
139 *
140 * mmu_print
141 * ---------
142 * This algorithm will print out the page tables of the system as
143 * appropriate for an 030 or an 040. This is useful for debugging purposes
144 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
145 *
146 * ######################################################################
147 *
148 * console_init
149 * ------------
150 * The console is also able to be turned off. The console in head.S
151 * is specifically for debugging and can be very useful. It is surrounded by
152 * #ifdef / #endif clauses so it doesn't have to ship in known-good
153 * kernels. It's basic algorithm is to determine the size of the screen
154 * (in height/width and bit depth) and then use that information for
155 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
156 * debugging so I can see more good data. But it was trivial to add support
157 * for both fonts, so I included it.
158 * Also, the algorithm for plotting pixels is abstracted so that in
159 * theory other platforms could add support for different kinds of frame
160 * buffers. This could be very useful.
161 *
162 * console_put_penguin
163 * -------------------
164 * An important part of any Linux bring up is the penguin and there's
165 * nothing like getting the Penguin on the screen! This algorithm will work
166 * on any machine for which there is a console_plot_pixel.
167 *
168 * console_scroll
169 * --------------
170 * My hope is that the scroll algorithm does the right thing on the
171 * various platforms, but it wouldn't be hard to add the test conditions
172 * and new code if it doesn't.
173 *
174 * console_putc
175 * -------------
176 *
177 * ######################################################################
178 *
179 * Register usage has greatly simplified within head.S. Every subroutine
180 * saves and restores all registers that it modifies (except it returns a
181 * value in there of course). So the only register that needs to be initialized
182 * is the stack pointer.
183 * All other init code and data is now placed in the init section, so it will
184 * be automatically freed at the end of the kernel initialization.
185 *
186 * ######################################################################
187 *
188 * options
189 * -------
190 * There are many options available in a build of this file. I've
191 * taken the time to describe them here to save you the time of searching
192 * for them and trying to understand what they mean.
193 *
194 * CONFIG_xxx: These are the obvious machine configuration defines created
195 * during configuration. These are defined in autoconf.h.
196 *
197 * CONSOLE_DEBUG: Only supports a Mac frame buffer but could easily be
198 * extended to support other platforms.
199 *
200 * TEST_MMU: This is a test harness for running on any given machine but
201 * getting an MMU dump for another class of machine. The classes of machines
202 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
203 * and any of the models (030, 040, 060, etc.).
204 *
205 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
206 * When head.S boots on Atari, Amiga, Macintosh, and VME
207 * machines. At that point the underlying logic will be
208 * believed to be solid enough to be trusted, and TEST_MMU
209 * can be dropped. Do note that that will clean up the
210 * head.S code significantly as large blocks of #if/#else
211 * clauses can be removed.
212 *
213 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
214 * determing why devices don't appear to work. A test case was to remove
215 * the cacheability of the kernel bits.
216 *
217 * MMU_PRINT: There is a routine built into head.S that can display the
218 * MMU data structures. It outputs its result through the serial_putc
219 * interface. So where ever that winds up driving data, that's where the
220 * mmu struct will appear.
221 *
222 * SERIAL_DEBUG: There are a series of putc() macro statements
223 * scattered through out the code to give progress of status to the
224 * person sitting at the console. This constant determines whether those
225 * are used.
226 *
227 * DEBUG: This is the standard DEBUG flag that can be set for building
228 * the kernel. It has the effect adding additional tests into
229 * the code.
230 *
231 * FONT_6x11:
232 * FONT_8x8:
233 * FONT_8x16:
234 * In theory these could be determined at run time or handed
235 * over by the booter. But, let's be real, it's a fine hard
236 * coded value. (But, you will notice the code is run-time
237 * flexible!) A pointer to the font's struct font_desc
238 * is kept locally in Lconsole_font. It is used to determine
239 * font size information dynamically.
240 *
241 * Atari constants:
242 * USE_PRINTER: Use the printer port for serial debug.
243 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
244 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
245 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
246 *
247 * Macintosh constants:
248 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
249 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
250 */
251
252#include <linux/linkage.h>
253#include <linux/init.h>
254#include <linux/pgtable.h>
255#include <asm/bootinfo.h>
256#include <asm/bootinfo-amiga.h>
257#include <asm/bootinfo-atari.h>
258#include <asm/bootinfo-hp300.h>
259#include <asm/bootinfo-mac.h>
260#include <asm/bootinfo-q40.h>
261#include <asm/bootinfo-virt.h>
262#include <asm/bootinfo-vme.h>
263#include <asm/setup.h>
264#include <asm/entry.h>
265#include <asm/page.h>
266#include <asm/asm-offsets.h>
267#ifdef CONFIG_MAC
268# include <asm/machw.h>
269#endif
270
271#ifdef CONFIG_EARLY_PRINTK
272# define SERIAL_DEBUG
273# if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
274# define CONSOLE_DEBUG
275# endif
276#endif
277
278#undef MMU_PRINT
279#undef MMU_NOCACHE_KERNEL
280#undef DEBUG
281
282/*
283 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
284 * The 8x8 font is harder to read but fits more on the screen.
285 */
286#define FONT_8x8 /* default */
287/* #define FONT_8x16 */ /* 2nd choice */
288/* #define FONT_6x11 */ /* 3rd choice */
289
290.globl kernel_pg_dir
291.globl availmem
292.globl m68k_init_mapped_size
293.globl m68k_pgtable_cachemode
294.globl m68k_supervisor_cachemode
295#ifdef CONFIG_MVME16x
296.globl mvme_bdid
297#endif
298#ifdef CONFIG_Q40
299.globl q40_mem_cptr
300#endif
301
302CPUTYPE_040 = 1 /* indicates an 040 */
303CPUTYPE_060 = 2 /* indicates an 060 */
304CPUTYPE_0460 = 3 /* if either above are set, this is set */
305CPUTYPE_020 = 4 /* indicates an 020 */
306
307/* Translation control register */
308TC_ENABLE = 0x8000
309TC_PAGE8K = 0x4000
310TC_PAGE4K = 0x0000
311
312/* Transparent translation registers */
313TTR_ENABLE = 0x8000 /* enable transparent translation */
314TTR_ANYMODE = 0x4000 /* user and kernel mode access */
315TTR_KERNELMODE = 0x2000 /* only kernel mode access */
316TTR_USERMODE = 0x0000 /* only user mode access */
317TTR_CI = 0x0400 /* inhibit cache */
318TTR_RW = 0x0200 /* read/write mode */
319TTR_RWM = 0x0100 /* read/write mask */
320TTR_FCB2 = 0x0040 /* function code base bit 2 */
321TTR_FCB1 = 0x0020 /* function code base bit 1 */
322TTR_FCB0 = 0x0010 /* function code base bit 0 */
323TTR_FCM2 = 0x0004 /* function code mask bit 2 */
324TTR_FCM1 = 0x0002 /* function code mask bit 1 */
325TTR_FCM0 = 0x0001 /* function code mask bit 0 */
326
327/* Cache Control registers */
328CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
329CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
330CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
331CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
332CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
333CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
334CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
335CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
336CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
337CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
338CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
339CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
340CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
341CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
342CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
343CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
344CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
345CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
346CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
347CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
348CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
349CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
350
351/* Miscellaneous definitions */
352PAGESIZE = 4096
353PAGESHIFT = 12
354
355ROOT_TABLE_SIZE = 128
356PTR_TABLE_SIZE = 128
357PAGE_TABLE_SIZE = 64
358ROOT_INDEX_SHIFT = 25
359PTR_INDEX_SHIFT = 18
360PAGE_INDEX_SHIFT = 12
361
362#ifdef DEBUG
363/* When debugging use readable names for labels */
364#ifdef __STDC__
365#define L(name) .head.S.##name
366#else
367#define L(name) .head.S./**/name
368#endif
369#else
370#ifdef __STDC__
371#define L(name) .L##name
372#else
373#define L(name) .L/**/name
374#endif
375#endif
376
377/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
378#ifndef __INITDATA
379#define __INITDATA .data
380#define __FINIT .previous
381#endif
382
383/* Several macros to make the writing of subroutines easier:
384 * - func_start marks the beginning of the routine which setups the frame
385 * register and saves the registers, it also defines another macro
386 * to automatically restore the registers again.
387 * - func_return marks the end of the routine and simply calls the prepared
388 * macro to restore registers and jump back to the caller.
389 * - func_define generates another macro to automatically put arguments
390 * onto the stack call the subroutine and cleanup the stack again.
391 */
392
393/* Within subroutines these macros can be used to access the arguments
394 * on the stack. With STACK some allocated memory on the stack can be
395 * accessed and ARG0 points to the return address (used by mmu_engage).
396 */
397#define STACK %a6@(stackstart)
398#define ARG0 %a6@(4)
399#define ARG1 %a6@(8)
400#define ARG2 %a6@(12)
401#define ARG3 %a6@(16)
402#define ARG4 %a6@(20)
403
404.macro func_start name,saveregs,stack=0
405L(\name):
406 linkw %a6,#-\stack
407 moveml \saveregs,%sp@-
408.set stackstart,-\stack
409
410.macro func_return_\name
411 moveml %sp@+,\saveregs
412 unlk %a6
413 rts
414.endm
415.endm
416
417.macro func_return name
418 func_return_\name
419.endm
420
421.macro func_call name
422 jbsr L(\name)
423.endm
424
425.macro move_stack nr,arg1,arg2,arg3,arg4
426.if \nr
427 move_stack "(\nr-1)",\arg2,\arg3,\arg4
428 movel \arg1,%sp@-
429.endif
430.endm
431
432.macro func_define name,nr=0
433.macro \name arg1,arg2,arg3,arg4
434 move_stack \nr,\arg1,\arg2,\arg3,\arg4
435 func_call \name
436.if \nr
437 lea %sp@(\nr*4),%sp
438.endif
439.endm
440.endm
441
442func_define mmu_map,4
443func_define mmu_map_tt,4
444func_define mmu_fixup_page_mmu_cache,1
445func_define mmu_temp_map,2
446func_define mmu_engage
447func_define mmu_get_root_table_entry,1
448func_define mmu_get_ptr_table_entry,2
449func_define mmu_get_page_table_entry,2
450func_define mmu_print
451func_define get_new_page
452#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
453func_define set_leds
454#endif
455
456.macro mmu_map_eq arg1,arg2,arg3
457 mmu_map \arg1,\arg1,\arg2,\arg3
458.endm
459
460.macro get_bi_record record
461 pea \record
462 func_call get_bi_record
463 addql #4,%sp
464.endm
465
466func_define serial_putc,1
467func_define console_putc,1
468
469func_define console_init
470func_define console_put_penguin
471func_define console_plot_pixel,3
472func_define console_scroll
473
474.macro putc ch
475#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
476 pea \ch
477#endif
478#ifdef CONSOLE_DEBUG
479 func_call console_putc
480#endif
481#ifdef SERIAL_DEBUG
482 func_call serial_putc
483#endif
484#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
485 addql #4,%sp
486#endif
487.endm
488
489.macro dputc ch
490#ifdef DEBUG
491 putc \ch
492#endif
493.endm
494
495func_define putn,1
496
497.macro dputn nr
498#ifdef DEBUG
499 putn \nr
500#endif
501.endm
502
503.macro puts string
504#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
505 __INITDATA
506.Lstr\@:
507 .string "\string"
508 __FINIT
509 pea %pc@(.Lstr\@)
510 func_call puts
511 addql #4,%sp
512#endif
513.endm
514
515.macro dputs string
516#ifdef DEBUG
517 puts "\string"
518#endif
519.endm
520
521#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
522#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
523#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
524#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
525#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
526#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
527#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
528#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
529#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
530#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
531#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
532#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
533#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
534#define is_not_virt(lab) cmpl &MACH_VIRT,%pc@(m68k_machtype); jne lab
535
536#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
537 jeq 42f; \
538 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
539 jne lab ;\
540 42:\
541
542#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
543#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
544#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
545#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
546#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
547#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
548#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
549
550/* On the HP300 we use the on-board LEDs for debug output before
551 the console is running. Writing a 1 bit turns the corresponding LED
552 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
553.macro leds mask
554#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
555 hasnt_leds(.Lled\@)
556 pea \mask
557 func_call set_leds
558 addql #4,%sp
559.Lled\@:
560#endif
561.endm
562
563__HEAD
564ENTRY(_stext)
565/*
566 * Version numbers of the bootinfo interface
567 * The area from _stext to _start will later be used as kernel pointer table
568 */
569 bras 1f /* Jump over bootinfo version numbers */
570
571 .long BOOTINFOV_MAGIC
572 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
573 .long MACH_ATARI, ATARI_BOOTI_VERSION
574 .long MACH_MVME147, MVME147_BOOTI_VERSION
575 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
576 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
577 .long MACH_MAC, MAC_BOOTI_VERSION
578 .long MACH_Q40, Q40_BOOTI_VERSION
579 .long MACH_HP300, HP300_BOOTI_VERSION
580 .long 0
5811: jra __start
582
583.equ kernel_pg_dir,_stext
584
585.equ .,_stext+PAGESIZE
586
587ENTRY(_start)
588 jra __start
589__INIT
590ENTRY(__start)
591/*
592 * Setup initial stack pointer
593 */
594 lea %pc@(_stext),%sp
595
596/*
597 * Record the CPU and machine type.
598 */
599 get_bi_record BI_MACHTYPE
600 lea %pc@(m68k_machtype),%a1
601 movel %a0@,%a1@
602
603 get_bi_record BI_FPUTYPE
604 lea %pc@(m68k_fputype),%a1
605 movel %a0@,%a1@
606
607 get_bi_record BI_MMUTYPE
608 lea %pc@(m68k_mmutype),%a1
609 movel %a0@,%a1@
610
611 get_bi_record BI_CPUTYPE
612 lea %pc@(m68k_cputype),%a1
613 movel %a0@,%a1@
614
615 leds 0x1
616
617#ifdef CONFIG_MAC
618/*
619 * For Macintosh, we need to determine the display parameters early (at least
620 * while debugging it).
621 */
622
623 is_not_mac(L(test_notmac))
624
625 get_bi_record BI_MAC_VADDR
626 lea %pc@(L(mac_videobase)),%a1
627 movel %a0@,%a1@
628
629 get_bi_record BI_MAC_VDEPTH
630 lea %pc@(L(mac_videodepth)),%a1
631 movel %a0@,%a1@
632
633 get_bi_record BI_MAC_VDIM
634 lea %pc@(L(mac_dimensions)),%a1
635 movel %a0@,%a1@
636
637 get_bi_record BI_MAC_VROW
638 lea %pc@(L(mac_rowbytes)),%a1
639 movel %a0@,%a1@
640
641 get_bi_record BI_MAC_SCCBASE
642 lea %pc@(L(mac_sccbase)),%a1
643 movel %a0@,%a1@
644
645L(test_notmac):
646#endif /* CONFIG_MAC */
647
648#ifdef CONFIG_VIRT
649 is_not_virt(L(test_notvirt))
650
651 get_bi_record BI_VIRT_GF_TTY_BASE
652 lea %pc@(L(virt_gf_tty_base)),%a1
653 movel %a0@,%a1@
654L(test_notvirt):
655#endif /* CONFIG_VIRT */
656
657/*
658 * There are ultimately two pieces of information we want for all kinds of
659 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
660 * and is converted here from a booter type definition to a separate bit
661 * number which allows for the standard is_0x0 macro tests.
662 */
663 movel %pc@(m68k_cputype),%d0
664 /*
665 * Assume it's an 030
666 */
667 clrl %d1
668
669 /*
670 * Test the BootInfo cputype for 060
671 */
672 btst #CPUB_68060,%d0
673 jeq 1f
674 bset #CPUTYPE_060,%d1
675 bset #CPUTYPE_0460,%d1
676 jra 3f
6771:
678 /*
679 * Test the BootInfo cputype for 040
680 */
681 btst #CPUB_68040,%d0
682 jeq 2f
683 bset #CPUTYPE_040,%d1
684 bset #CPUTYPE_0460,%d1
685 jra 3f
6862:
687 /*
688 * Test the BootInfo cputype for 020
689 */
690 btst #CPUB_68020,%d0
691 jeq 3f
692 bset #CPUTYPE_020,%d1
693 jra 3f
6943:
695 /*
696 * Record the cpu type
697 */
698 lea %pc@(L(cputype)),%a0
699 movel %d1,%a0@
700
701 /*
702 * NOTE:
703 *
704 * Now the macros are valid:
705 * is_040_or_060
706 * is_not_040_or_060
707 * is_040
708 * is_060
709 * is_not_060
710 */
711
712 /*
713 * Determine the cache mode for pages holding MMU tables
714 * and for supervisor mode, unused for '020 and '030
715 */
716 clrl %d0
717 clrl %d1
718
719 is_not_040_or_060(L(save_cachetype))
720
721 /*
722 * '040 or '060
723 * d1 := cacheable write-through
724 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
725 * but we have been using write-through since at least 2.0.29 so I
726 * guess it is OK.
727 */
728#ifdef CONFIG_060_WRITETHROUGH
729 /*
730 * If this is a 68060 board using drivers with cache coherency
731 * problems, then supervisor memory accesses need to be write-through
732 * also; otherwise, we want copyback.
733 */
734
735 is_not_060(1f)
736 movel #_PAGE_CACHE040W,%d0
737 jra L(save_cachetype)
738#endif /* CONFIG_060_WRITETHROUGH */
7391:
740 movew #_PAGE_CACHE040,%d0
741
742 movel #_PAGE_CACHE040W,%d1
743
744L(save_cachetype):
745 /* Save cache mode for supervisor mode and page tables
746 */
747 lea %pc@(m68k_supervisor_cachemode),%a0
748 movel %d0,%a0@
749 lea %pc@(m68k_pgtable_cachemode),%a0
750 movel %d1,%a0@
751
752/*
753 * raise interrupt level
754 */
755 movew #0x2700,%sr
756
757/*
758 If running on an Atari, determine the I/O base of the
759 serial port and test if we are running on a Medusa or Hades.
760 This test is necessary here, because on the Hades the serial
761 port is only accessible in the high I/O memory area.
762
763 The test whether it is a Medusa is done by writing to the byte at
764 phys. 0x0. This should result in a bus error on all other machines.
765
766 ...should, but doesn't. The Afterburner040 for the Falcon has the
767 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
768 another test to distinguish Medusa and AB040. This is a
769 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
770 (+AB040), but is in the range where the Medusa always asserts DTACK.
771
772 The test for the Hades is done by reading address 0xb0000000. This
773 should give a bus error on the Medusa.
774 */
775
776#ifdef CONFIG_ATARI
777 is_not_atari(L(notypetest))
778
779 /* get special machine type (Medusa/Hades/AB40) */
780 moveq #0,%d3 /* default if tag doesn't exist */
781 get_bi_record BI_ATARI_MCH_TYPE
782 tstl %d0
783 jbmi 1f
784 movel %a0@,%d3
785 lea %pc@(atari_mch_type),%a0
786 movel %d3,%a0@
7871:
788 /* On the Hades, the iobase must be set up before opening the
789 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
790 moveq #0,%d0
791 cmpl #ATARI_MACH_HADES,%d3
792 jbne 1f
793 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
7941: lea %pc@(L(iobase)),%a0
795 movel %d0,%a0@
796
797L(notypetest):
798#endif
799
800#ifdef CONFIG_VME
801 is_mvme147(L(getvmetype))
802 is_bvme6000(L(getvmetype))
803 is_not_mvme16x(L(gvtdone))
804
805 /* See if the loader has specified the BI_VME_TYPE tag. Recent
806 * versions of VMELILO and TFTPLILO do this. We have to do this
807 * early so we know how to handle console output. If the tag
808 * doesn't exist then we use the Bug for output on MVME16x.
809 */
810L(getvmetype):
811 get_bi_record BI_VME_TYPE
812 tstl %d0
813 jbmi 1f
814 movel %a0@,%d3
815 lea %pc@(vme_brdtype),%a0
816 movel %d3,%a0@
8171:
818#ifdef CONFIG_MVME16x
819 is_not_mvme16x(L(gvtdone))
820
821 /* Need to get the BRD_ID info to differentiate between 162, 167,
822 * etc. This is available as a BI_VME_BRDINFO tag with later
823 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
824 */
825 get_bi_record BI_VME_BRDINFO
826 tstl %d0
827 jpl 1f
828
829 /* Get pointer to board ID data from Bug */
830 movel %d2,%sp@-
831 trap #15
832 .word 0x70 /* trap 0x70 - .BRD_ID */
833 movel %sp@+,%a0
8341:
835 lea %pc@(mvme_bdid),%a1
836 /* Structure is 32 bytes long */
837 movel %a0@+,%a1@+
838 movel %a0@+,%a1@+
839 movel %a0@+,%a1@+
840 movel %a0@+,%a1@+
841 movel %a0@+,%a1@+
842 movel %a0@+,%a1@+
843 movel %a0@+,%a1@+
844 movel %a0@+,%a1@+
845#endif
846
847L(gvtdone):
848
849#endif
850
851#ifdef CONFIG_HP300
852 is_not_hp300(L(nothp))
853
854 /* Get the address of the UART for serial debugging */
855 get_bi_record BI_HP300_UART_ADDR
856 tstl %d0
857 jbmi 1f
858 movel %a0@,%d3
859 lea %pc@(L(uartbase)),%a0
860 movel %d3,%a0@
861 get_bi_record BI_HP300_UART_SCODE
862 tstl %d0
863 jbmi 1f
864 movel %a0@,%d3
865 lea %pc@(L(uart_scode)),%a0
866 movel %d3,%a0@
8671:
868L(nothp):
869#endif
870
871/*
872 * Initialize serial port
873 */
874 jbsr L(serial_init)
875
876/*
877 * Initialize console
878 */
879#ifdef CONFIG_MAC
880 is_not_mac(L(nocon))
881# ifdef CONSOLE_DEBUG
882 console_init
883# ifdef CONFIG_LOGO
884 console_put_penguin
885# endif /* CONFIG_LOGO */
886# endif /* CONSOLE_DEBUG */
887L(nocon):
888#endif /* CONFIG_MAC */
889
890
891 putc '\n'
892 putc 'A'
893 leds 0x2
894 dputn %pc@(L(cputype))
895 dputn %pc@(m68k_supervisor_cachemode)
896 dputn %pc@(m68k_pgtable_cachemode)
897 dputc '\n'
898
899/*
900 * Save physical start address of kernel
901 */
902 lea %pc@(L(phys_kernel_start)),%a0
903 lea %pc@(_stext),%a1
904 subl #_stext,%a1
905 addl #PAGE_OFFSET,%a1
906 movel %a1,%a0@
907
908 putc 'B'
909
910 leds 0x4
911
912/*
913 * mmu_init
914 *
915 * This block of code does what's necessary to map in the various kinds
916 * of machines for execution of Linux.
917 * First map the first 4, 8, or 16 MB of kernel code & data
918 */
919
920 get_bi_record BI_MEMCHUNK
921 movel %a0@(4),%d0
922 movel #16*1024*1024,%d1
923 cmpl %d0,%d1
924 jls 1f
925 lsrl #1,%d1
926 cmpl %d0,%d1
927 jls 1f
928 lsrl #1,%d1
9291:
930 lea %pc@(m68k_init_mapped_size),%a0
931 movel %d1,%a0@
932 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
933 %pc@(m68k_supervisor_cachemode)
934
935 putc 'C'
936
937#ifdef CONFIG_AMIGA
938
939L(mmu_init_amiga):
940
941 is_not_amiga(L(mmu_init_not_amiga))
942/*
943 * mmu_init_amiga
944 */
945
946 putc 'D'
947
948 is_not_040_or_060(1f)
949
950 /*
951 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
952 */
953 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
954 /*
955 * Map the Zorro III I/O space with transparent translation
956 * for frame buffer memory etc.
957 */
958 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
959
960 jbra L(mmu_init_done)
961
9621:
963 /*
964 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
965 */
966 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
967 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
968
969 jbra L(mmu_init_done)
970
971L(mmu_init_not_amiga):
972#endif
973
974#ifdef CONFIG_ATARI
975
976L(mmu_init_atari):
977
978 is_not_atari(L(mmu_init_not_atari))
979
980 putc 'E'
981
982/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
983 the last 16 MB of virtual address space to the first 16 MB (i.e.
984 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
985 needed. I/O ranges are marked non-cachable.
986
987 For the Medusa it is better to map the I/O region transparently
988 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
989 accessible only in the high area.
990
991 On the Hades all I/O registers are only accessible in the high
992 area.
993*/
994
995 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
996 moveq #0,%d0
997 movel %pc@(atari_mch_type),%d3
998 cmpl #ATARI_MACH_MEDUSA,%d3
999 jbeq 2f
1000 cmpl #ATARI_MACH_HADES,%d3
1001 jbne 1f
10022: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10031: movel %d0,%d3
1004
1005 is_040_or_060(L(spata68040))
1006
1007 /* Map everything non-cacheable, though not all parts really
1008 * need to disable caches (crucial only for 0xff8000..0xffffff
1009 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1010 * isn't really used, except for sometimes peeking into the
1011 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1012 * this. */
1013 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1014
1015 jbra L(mmu_init_done)
1016
1017L(spata68040):
1018
1019 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1020
1021 jbra L(mmu_init_done)
1022
1023L(mmu_init_not_atari):
1024#endif
1025
1026#ifdef CONFIG_Q40
1027 is_not_q40(L(notq40))
1028 /*
1029 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1030 * non-cached serialized etc..
1031 * this includes master chip, DAC, RTC and ISA ports
1032 * 0xfe000000-0xfeffffff is for screen and ROM
1033 */
1034
1035 putc 'Q'
1036
1037 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1038 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1039
1040 jbra L(mmu_init_done)
1041
1042L(notq40):
1043#endif
1044
1045#ifdef CONFIG_HP300
1046 is_not_hp300(L(nothp300))
1047
1048 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1049 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1050 * The ROM mapping is needed because the LEDs are mapped there too.
1051 */
1052
1053 is_040(1f)
1054
1055 /*
1056 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1057 */
1058 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1059
1060 jbra L(mmu_init_done)
1061
10621:
1063 /*
1064 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1065 */
1066 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1067
1068 jbra L(mmu_init_done)
1069
1070L(nothp300):
1071#endif /* CONFIG_HP300 */
1072
1073#ifdef CONFIG_MVME147
1074
1075 is_not_mvme147(L(not147))
1076
1077 /*
1078 * On MVME147 we have already created kernel page tables for
1079 * 4MB of RAM at address 0, so now need to do a transparent
1080 * mapping of the top of memory space. Make it 0.5GByte for now,
1081 * so we can access on-board i/o areas.
1082 */
1083
1084 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1085
1086 jbra L(mmu_init_done)
1087
1088L(not147):
1089#endif /* CONFIG_MVME147 */
1090
1091#ifdef CONFIG_MVME16x
1092
1093 is_not_mvme16x(L(not16x))
1094
1095 /*
1096 * On MVME16x we have already created kernel page tables for
1097 * 4MB of RAM at address 0, so now need to do a transparent
1098 * mapping of the top of memory space. Make it 0.5GByte for now.
1099 * Supervisor only access, so transparent mapping doesn't
1100 * clash with User code virtual address space.
1101 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1102 * mapping is needed to allow 167Bug to run.
1103 * IO is in the range 0xfff00000 to 0xfffeffff.
1104 * PROM is 0xff800000->0xffbfffff and SRAM is
1105 * 0xffe00000->0xffe1ffff.
1106 */
1107
1108 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1109
1110 jbra L(mmu_init_done)
1111
1112L(not16x):
1113#endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1114
1115#ifdef CONFIG_BVME6000
1116
1117 is_not_bvme6000(L(not6000))
1118
1119 /*
1120 * On BVME6000 we have already created kernel page tables for
1121 * 4MB of RAM at address 0, so now need to do a transparent
1122 * mapping of the top of memory space. Make it 0.5GByte for now,
1123 * so we can access on-board i/o areas.
1124 * Supervisor only access, so transparent mapping doesn't
1125 * clash with User code virtual address space.
1126 */
1127
1128 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1129
1130 jbra L(mmu_init_done)
1131
1132L(not6000):
1133#endif /* CONFIG_BVME6000 */
1134
1135/*
1136 * mmu_init_mac
1137 *
1138 * The Macintosh mappings are less clear.
1139 *
1140 * Even as of this writing, it is unclear how the
1141 * Macintosh mappings will be done. However, as
1142 * the first author of this code I'm proposing the
1143 * following model:
1144 *
1145 * Map the kernel (that's already done),
1146 * Map the I/O (on most machines that's the
1147 * 0x5000.0000 ... 0x5300.0000 range,
1148 * Map the video frame buffer using as few pages
1149 * as absolutely (this requirement mostly stems from
1150 * the fact that when the frame buffer is at
1151 * 0x0000.0000 then we know there is valid RAM just
1152 * above the screen that we don't want to waste!).
1153 *
1154 * By the way, if the frame buffer is at 0x0000.0000
1155 * then the Macintosh is known as an RBV based Mac.
1156 *
1157 * By the way 2, the code currently maps in a bunch of
1158 * regions. But I'd like to cut that out. (And move most
1159 * of the mappings up into the kernel proper ... or only
1160 * map what's necessary.)
1161 */
1162
1163#ifdef CONFIG_MAC
1164
1165L(mmu_init_mac):
1166
1167 is_not_mac(L(mmu_init_not_mac))
1168
1169 putc 'F'
1170
1171 is_not_040_or_060(1f)
1172
1173 moveq #_PAGE_NOCACHE_S,%d3
1174 jbra 2f
11751:
1176 moveq #_PAGE_NOCACHE030,%d3
11772:
1178 /*
1179 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1180 * we simply map the 4MB that contains the videomem
1181 */
1182
1183 movel #VIDEOMEMMASK,%d0
1184 andl %pc@(L(mac_videobase)),%d0
1185
1186 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1187 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1188 mmu_map_eq #0x40000000,#0x02000000,%d3
1189 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1190 mmu_map_eq #0x50000000,#0x03000000,%d3
1191 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1192 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1193
1194 jbra L(mmu_init_done)
1195
1196L(mmu_init_not_mac):
1197#endif
1198
1199#ifdef CONFIG_SUN3X
1200 is_not_sun3x(L(notsun3x))
1201
1202 /* oh, the pain.. We're gonna want the prom code after
1203 * starting the MMU, so we copy the mappings, translating
1204 * from 8k -> 4k pages as we go.
1205 */
1206
1207 /* copy maps from 0xfee00000 to 0xff000000 */
1208 movel #0xfee00000, %d0
1209 moveq #ROOT_INDEX_SHIFT, %d1
1210 lsrl %d1,%d0
1211 mmu_get_root_table_entry %d0
1212
1213 movel #0xfee00000, %d0
1214 moveq #PTR_INDEX_SHIFT, %d1
1215 lsrl %d1,%d0
1216 andl #PTR_TABLE_SIZE-1, %d0
1217 mmu_get_ptr_table_entry %a0,%d0
1218
1219 movel #0xfee00000, %d0
1220 moveq #PAGE_INDEX_SHIFT, %d1
1221 lsrl %d1,%d0
1222 andl #PAGE_TABLE_SIZE-1, %d0
1223 mmu_get_page_table_entry %a0,%d0
1224
1225 /* this is where the prom page table lives */
1226 movel 0xfefe00d4, %a1
1227 movel %a1@, %a1
1228
1229 movel #((0x200000 >> 13)-1), %d1
1230
12311:
1232 movel %a1@+, %d3
1233 movel %d3,%a0@+
1234 addl #0x1000,%d3
1235 movel %d3,%a0@+
1236
1237 dbra %d1,1b
1238
1239 /* setup tt1 for I/O */
1240 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1241 jbra L(mmu_init_done)
1242
1243L(notsun3x):
1244#endif
1245
1246#ifdef CONFIG_VIRT
1247 is_not_virt(L(novirt))
1248 mmu_map_tt #1,#0xFF000000,#0x01000000,#_PAGE_NOCACHE_S
1249 jbra L(mmu_init_done)
1250L(novirt):
1251#endif
1252
1253#ifdef CONFIG_APOLLO
1254 is_not_apollo(L(notapollo))
1255
1256 putc 'P'
1257 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1258
1259L(notapollo):
1260 jbra L(mmu_init_done)
1261#endif
1262
1263L(mmu_init_done):
1264
1265 putc 'G'
1266 leds 0x8
1267
1268/*
1269 * mmu_fixup
1270 *
1271 * On the 040 class machines, all pages that are used for the
1272 * mmu have to be fixed up. According to Motorola, pages holding mmu
1273 * tables should be non-cacheable on a '040 and write-through on a
1274 * '060. But analysis of the reasons for this, and practical
1275 * experience, showed that write-through also works on a '040.
1276 *
1277 * Allocated memory so far goes from kernel_end to memory_start that
1278 * is used for all kind of tables, for that the cache attributes
1279 * are now fixed.
1280 */
1281L(mmu_fixup):
1282
1283 is_not_040_or_060(L(mmu_fixup_done))
1284
1285#ifdef MMU_NOCACHE_KERNEL
1286 jbra L(mmu_fixup_done)
1287#endif
1288
1289 /* first fix the page at the start of the kernel, that
1290 * contains also kernel_pg_dir.
1291 */
1292 movel %pc@(L(phys_kernel_start)),%d0
1293 subl #PAGE_OFFSET,%d0
1294 lea %pc@(_stext),%a0
1295 subl %d0,%a0
1296 mmu_fixup_page_mmu_cache %a0
1297
1298 movel %pc@(L(kernel_end)),%a0
1299 subl %d0,%a0
1300 movel %pc@(L(memory_start)),%a1
1301 subl %d0,%a1
1302 bra 2f
13031:
1304 mmu_fixup_page_mmu_cache %a0
1305 addw #PAGESIZE,%a0
13062:
1307 cmpl %a0,%a1
1308 jgt 1b
1309
1310L(mmu_fixup_done):
1311
1312#ifdef MMU_PRINT
1313 mmu_print
1314#endif
1315
1316/*
1317 * mmu_engage
1318 *
1319 * This chunk of code performs the gruesome task of engaging the MMU.
1320 * The reason it's gruesome is because when the MMU becomes engaged it
1321 * maps logical addresses to physical addresses. The Program Counter
1322 * register is then passed through the MMU before the next instruction
1323 * is fetched (the instruction following the engage MMU instruction).
1324 * This may mean one of two things:
1325 * 1. The Program Counter falls within the logical address space of
1326 * the kernel of which there are two sub-possibilities:
1327 * A. The PC maps to the correct instruction (logical PC == physical
1328 * code location), or
1329 * B. The PC does not map through and the processor will read some
1330 * data (or instruction) which is not the logically next instr.
1331 * As you can imagine, A is good and B is bad.
1332 * Alternatively,
1333 * 2. The Program Counter does not map through the MMU. The processor
1334 * will take a Bus Error.
1335 * Clearly, 2 is bad.
1336 * It doesn't take a wiz kid to figure you want 1.A.
1337 * This code creates that possibility.
1338 * There are two possible 1.A. states (we now ignore the other above states):
1339 * A. The kernel is located at physical memory addressed the same as
1340 * the logical memory for the kernel, i.e., 0x01000.
1341 * B. The kernel is located some where else. e.g., 0x0400.0000
1342 *
1343 * Under some conditions the Macintosh can look like A or B.
1344 * [A friend and I once noted that Apple hardware engineers should be
1345 * wacked twice each day: once when they show up at work (as in, Whack!,
1346 * "This is for the screwy hardware we know you're going to design today."),
1347 * and also at the end of the day (as in, Whack! "I don't know what
1348 * you designed today, but I'm sure it wasn't good."). -- rst]
1349 *
1350 * This code works on the following premise:
1351 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1352 * then create a mapping for the kernel at logical 0x8000.0000 to
1353 * the physical location of the pc. And, create a transparent
1354 * translation register for the first 16 Meg. Then, after the MMU
1355 * is engaged, the PC can be moved up into the 0x8000.0000 range
1356 * and then the transparent translation can be turned off and then
1357 * the PC can jump to the correct logical location and it will be
1358 * home (finally). This is essentially the code that the Amiga used
1359 * to use. Now, it's generalized for all processors. Which means
1360 * that a fresh (but temporary) mapping has to be created. The mapping
1361 * is made in page 0 (an as of yet unused location -- except for the
1362 * stack!). This temporary mapping will only require 1 pointer table
1363 * and a single page table (it can map 256K).
1364 *
1365 * OK, alternatively, imagine that the Program Counter is not within
1366 * the first 16 Meg. Then, just use Transparent Translation registers
1367 * to do the right thing.
1368 *
1369 * Last, if _start is already at 0x01000, then there's nothing special
1370 * to do (in other words, in a degenerate case of the first case above,
1371 * do nothing).
1372 *
1373 * Let's do it.
1374 *
1375 *
1376 */
1377
1378 putc 'H'
1379
1380 mmu_engage
1381
1382/*
1383 * After this point no new memory is allocated and
1384 * the start of available memory is stored in availmem.
1385 * (The bootmem allocator requires now the physical address.)
1386 */
1387
1388 movel L(memory_start),availmem
1389
1390#ifdef CONFIG_AMIGA
1391 is_not_amiga(1f)
1392 /* fixup the Amiga custom register location before printing */
1393 clrl L(custom)
13941:
1395#endif
1396
1397#ifdef CONFIG_ATARI
1398 is_not_atari(1f)
1399 /* fixup the Atari iobase register location before printing */
1400 movel #0xff000000,L(iobase)
14011:
1402#endif
1403
1404#ifdef CONFIG_MAC
1405 is_not_mac(1f)
1406 movel #~VIDEOMEMMASK,%d0
1407 andl L(mac_videobase),%d0
1408 addl #VIDEOMEMBASE,%d0
1409 movel %d0,L(mac_videobase)
1410#ifdef CONSOLE_DEBUG
1411 movel %pc@(L(phys_kernel_start)),%d0
1412 subl #PAGE_OFFSET,%d0
1413 subl %d0,L(console_font)
1414 subl %d0,L(console_font_data)
1415#endif
1416 orl #0x50000000,L(mac_sccbase)
14171:
1418#endif
1419
1420#ifdef CONFIG_HP300
1421 is_not_hp300(2f)
1422 /*
1423 * Fix up the iobase register to point to the new location of the LEDs.
1424 */
1425 movel #0xf0000000,L(iobase)
1426
1427 /*
1428 * Energise the FPU and caches.
1429 */
1430 is_040(1f)
1431 movel #0x60,0xf05f400c
1432 jbra 2f
1433
1434 /*
1435 * 040: slightly different, apparently.
1436 */
14371: movew #0,0xf05f400e
1438 movew #0x64,0xf05f400e
14392:
1440#endif
1441
1442#ifdef CONFIG_SUN3X
1443 is_not_sun3x(1f)
1444
1445 /* enable copro */
1446 oriw #0x4000,0x61000000
14471:
1448#endif
1449
1450#ifdef CONFIG_APOLLO
1451 is_not_apollo(1f)
1452
1453 /*
1454 * Fix up the iobase before printing
1455 */
1456 movel #0x80000000,L(iobase)
14571:
1458#endif
1459
1460 putc 'I'
1461 leds 0x10
1462
1463/*
1464 * Enable caches
1465 */
1466
1467 is_not_040_or_060(L(cache_not_680460))
1468
1469L(cache680460):
1470 .chip 68040
1471 nop
1472 cpusha %bc
1473 nop
1474
1475 is_060(L(cache68060))
1476
1477 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1478 /* MMU stuff works in copyback mode now, so enable the cache */
1479 movec %d0,%cacr
1480 jra L(cache_done)
1481
1482L(cache68060):
1483 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1484 /* MMU stuff works in copyback mode now, so enable the cache */
1485 movec %d0,%cacr
1486 /* enable superscalar dispatch in PCR */
1487 moveq #1,%d0
1488 .chip 68060
1489 movec %d0,%pcr
1490
1491 jbra L(cache_done)
1492L(cache_not_680460):
1493L(cache68030):
1494 .chip 68030
1495 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1496 movec %d0,%cacr
1497
1498 jra L(cache_done)
1499 .chip 68k
1500L(cache_done):
1501
1502 putc 'J'
1503
1504/*
1505 * Setup initial stack pointer
1506 */
1507 lea init_task,%curptr
1508 lea init_thread_union+THREAD_SIZE,%sp
1509
1510 putc 'K'
1511
1512 subl %a6,%a6 /* clear a6 for gdb */
1513
1514/*
1515 * The new 64bit printf support requires an early exception initialization.
1516 */
1517 jbsr base_trap_init
1518
1519/* jump to the kernel start */
1520
1521 putc '\n'
1522 leds 0x55
1523
1524 jbsr start_kernel
1525
1526/*
1527 * Find a tag record in the bootinfo structure
1528 * The bootinfo structure is located right after the kernel
1529 * Returns: d0: size (-1 if not found)
1530 * a0: data pointer (end-of-records if not found)
1531 */
1532func_start get_bi_record,%d1
1533
1534 movel ARG1,%d0
1535 lea %pc@(_end),%a0
15361: tstw %a0@(BIR_TAG)
1537 jeq 3f
1538 cmpw %a0@(BIR_TAG),%d0
1539 jeq 2f
1540 addw %a0@(BIR_SIZE),%a0
1541 jra 1b
15422: moveq #0,%d0
1543 movew %a0@(BIR_SIZE),%d0
1544 lea %a0@(BIR_DATA),%a0
1545 jra 4f
15463: moveq #-1,%d0
1547 lea %a0@(BIR_SIZE),%a0
15484:
1549func_return get_bi_record
1550
1551
1552/*
1553 * MMU Initialization Begins Here
1554 *
1555 * The structure of the MMU tables on the 68k machines
1556 * is thus:
1557 * Root Table
1558 * Logical addresses are translated through
1559 * a hierarchical translation mechanism where the high-order
1560 * seven bits of the logical address (LA) are used as an
1561 * index into the "root table." Each entry in the root
1562 * table has a bit which specifies if it's a valid pointer to a
1563 * pointer table. Each entry defines a 32Meg range of memory.
1564 * If an entry is invalid then that logical range of 32M is
1565 * invalid and references to that range of memory (when the MMU
1566 * is enabled) will fault. If the entry is valid, then it does
1567 * one of two things. On 040/060 class machines, it points to
1568 * a pointer table which then describes more finely the memory
1569 * within that 32M range. On 020/030 class machines, a technique
1570 * called "early terminating descriptors" are used. This technique
1571 * allows an entire 32Meg to be described by a single entry in the
1572 * root table. Thus, this entry in the root table, contains the
1573 * physical address of the memory or I/O at the logical address
1574 * which the entry represents and it also contains the necessary
1575 * cache bits for this region.
1576 *
1577 * Pointer Tables
1578 * Per the Root Table, there will be one or more
1579 * pointer tables. Each pointer table defines a 32M range.
1580 * Not all of the 32M range need be defined. Again, the next
1581 * seven bits of the logical address are used an index into
1582 * the pointer table to point to page tables (if the pointer
1583 * is valid). There will undoubtedly be more than one
1584 * pointer table for the kernel because each pointer table
1585 * defines a range of only 32M. Valid pointer table entries
1586 * point to page tables, or are early terminating entries
1587 * themselves.
1588 *
1589 * Page Tables
1590 * Per the Pointer Tables, each page table entry points
1591 * to the physical page in memory that supports the logical
1592 * address that translates to the particular index.
1593 *
1594 * In short, the Logical Address gets translated as follows:
1595 * bits 31..26 - index into the Root Table
1596 * bits 25..18 - index into the Pointer Table
1597 * bits 17..12 - index into the Page Table
1598 * bits 11..0 - offset into a particular 4K page
1599 *
1600 * The algorithms which follow do one thing: they abstract
1601 * the MMU hardware. For example, there are three kinds of
1602 * cache settings that are relevant. Either, memory is
1603 * being mapped in which case it is either Kernel Code (or
1604 * the RamDisk) or it is MMU data. On the 030, the MMU data
1605 * option also describes the kernel. Or, I/O is being mapped
1606 * in which case it has its own kind of cache bits. There
1607 * are constants which abstract these notions from the code that
1608 * actually makes the call to map some range of memory.
1609 *
1610 *
1611 *
1612 */
1613
1614#ifdef MMU_PRINT
1615/*
1616 * mmu_print
1617 *
1618 * This algorithm will print out the current MMU mappings.
1619 *
1620 * Input:
1621 * %a5 points to the root table. Everything else is calculated
1622 * from this.
1623 */
1624
1625#define mmu_next_valid 0
1626#define mmu_start_logical 4
1627#define mmu_next_logical 8
1628#define mmu_start_physical 12
1629#define mmu_next_physical 16
1630
1631#define MMU_PRINT_INVALID -1
1632#define MMU_PRINT_VALID 1
1633#define MMU_PRINT_UNINITED 0
1634
1635#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1636
1637func_start mmu_print,%a0-%a6/%d0-%d7
1638
1639 movel %pc@(L(kernel_pgdir_ptr)),%a5
1640 lea %pc@(L(mmu_print_data)),%a0
1641 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1642
1643 is_not_040_or_060(mmu_030_print)
1644
1645mmu_040_print:
1646 puts "\nMMU040\n"
1647 puts "rp:"
1648 putn %a5
1649 putc '\n'
1650#if 0
1651 /*
1652 * The following #if/#endif block is a tight algorithm for dumping the 040
1653 * MMU Map in gory detail. It really isn't that practical unless the
1654 * MMU Map algorithm appears to go awry and you need to debug it at the
1655 * entry per entry level.
1656 */
1657 movel #ROOT_TABLE_SIZE,%d5
1658#if 0
1659 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1660 subql #1,%d5 | they (might) work
1661#endif
16621: tstl %d5
1663 jbeq mmu_print_done
1664 subq #1,%d5
1665 movel %a5@+,%d7
1666 btst #1,%d7
1667 jbeq 1b
1668
16692: putn %d7
1670 andil #0xFFFFFE00,%d7
1671 movel %d7,%a4
1672 movel #PTR_TABLE_SIZE,%d4
1673 putc ' '
16743: tstl %d4
1675 jbeq 11f
1676 subq #1,%d4
1677 movel %a4@+,%d7
1678 btst #1,%d7
1679 jbeq 3b
1680
16814: putn %d7
1682 andil #0xFFFFFF00,%d7
1683 movel %d7,%a3
1684 movel #PAGE_TABLE_SIZE,%d3
16855: movel #8,%d2
16866: tstl %d3
1687 jbeq 31f
1688 subq #1,%d3
1689 movel %a3@+,%d6
1690 btst #0,%d6
1691 jbeq 6b
16927: tstl %d2
1693 jbeq 8f
1694 subq #1,%d2
1695 putc ' '
1696 jbra 91f
16978: putc '\n'
1698 movel #8+1+8+1+1,%d2
16999: putc ' '
1700 dbra %d2,9b
1701 movel #7,%d2
170291: putn %d6
1703 jbra 6b
1704
170531: putc '\n'
1706 movel #8+1,%d2
170732: putc ' '
1708 dbra %d2,32b
1709 jbra 3b
1710
171111: putc '\n'
1712 jbra 1b
1713#endif /* MMU 040 Dumping code that's gory and detailed */
1714
1715 lea %pc@(kernel_pg_dir),%a5
1716 movel %a5,%a0 /* a0 has the address of the root table ptr */
1717 movel #0x00000000,%a4 /* logical address */
1718 moveql #0,%d0
171940:
1720 /* Increment the logical address and preserve in d5 */
1721 movel %a4,%d5
1722 addil #PAGESIZE<<13,%d5
1723 movel %a0@+,%d6
1724 btst #1,%d6
1725 jbne 41f
1726 jbsr mmu_print_tuple_invalidate
1727 jbra 48f
172841:
1729 movel #0,%d1
1730 andil #0xfffffe00,%d6
1731 movel %d6,%a1
173242:
1733 movel %a4,%d5
1734 addil #PAGESIZE<<6,%d5
1735 movel %a1@+,%d6
1736 btst #1,%d6
1737 jbne 43f
1738 jbsr mmu_print_tuple_invalidate
1739 jbra 47f
174043:
1741 movel #0,%d2
1742 andil #0xffffff00,%d6
1743 movel %d6,%a2
174444:
1745 movel %a4,%d5
1746 addil #PAGESIZE,%d5
1747 movel %a2@+,%d6
1748 btst #0,%d6
1749 jbne 45f
1750 jbsr mmu_print_tuple_invalidate
1751 jbra 46f
175245:
1753 moveml %d0-%d1,%sp@-
1754 movel %a4,%d0
1755 movel %d6,%d1
1756 andil #0xfffff4e0,%d1
1757 lea %pc@(mmu_040_print_flags),%a6
1758 jbsr mmu_print_tuple
1759 moveml %sp@+,%d0-%d1
176046:
1761 movel %d5,%a4
1762 addq #1,%d2
1763 cmpib #64,%d2
1764 jbne 44b
176547:
1766 movel %d5,%a4
1767 addq #1,%d1
1768 cmpib #128,%d1
1769 jbne 42b
177048:
1771 movel %d5,%a4 /* move to the next logical address */
1772 addq #1,%d0
1773 cmpib #128,%d0
1774 jbne 40b
1775
1776 .chip 68040
1777 movec %dtt1,%d0
1778 movel %d0,%d1
1779 andiw #0x8000,%d1 /* is it valid ? */
1780 jbeq 1f /* No, bail out */
1781
1782 movel %d0,%d1
1783 andil #0xff000000,%d1 /* Get the address */
1784 putn %d1
1785 puts "=="
1786 putn %d1
1787
1788 movel %d0,%d6
1789 jbsr mmu_040_print_flags_tt
17901:
1791 movec %dtt0,%d0
1792 movel %d0,%d1
1793 andiw #0x8000,%d1 /* is it valid ? */
1794 jbeq 1f /* No, bail out */
1795
1796 movel %d0,%d1
1797 andil #0xff000000,%d1 /* Get the address */
1798 putn %d1
1799 puts "=="
1800 putn %d1
1801
1802 movel %d0,%d6
1803 jbsr mmu_040_print_flags_tt
18041:
1805 .chip 68k
1806
1807 jbra mmu_print_done
1808
1809mmu_040_print_flags:
1810 btstl #10,%d6
1811 putZc(' ','G') /* global bit */
1812 btstl #7,%d6
1813 putZc(' ','S') /* supervisor bit */
1814mmu_040_print_flags_tt:
1815 btstl #6,%d6
1816 jbne 3f
1817 putc 'C'
1818 btstl #5,%d6
1819 putZc('w','c') /* write through or copy-back */
1820 jbra 4f
18213:
1822 putc 'N'
1823 btstl #5,%d6
1824 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
18254:
1826 rts
1827
1828mmu_030_print_flags:
1829 btstl #6,%d6
1830 putZc('C','I') /* write through or copy-back */
1831 rts
1832
1833mmu_030_print:
1834 puts "\nMMU030\n"
1835 puts "\nrp:"
1836 putn %a5
1837 putc '\n'
1838 movel %a5,%d0
1839 andil #0xfffffff0,%d0
1840 movel %d0,%a0
1841 movel #0x00000000,%a4 /* logical address */
1842 movel #0,%d0
184330:
1844 movel %a4,%d5
1845 addil #PAGESIZE<<13,%d5
1846 movel %a0@+,%d6
1847 btst #1,%d6 /* is it a table ptr? */
1848 jbne 31f /* yes */
1849 btst #0,%d6 /* is it early terminating? */
1850 jbeq 1f /* no */
1851 jbsr mmu_030_print_helper
1852 jbra 38f
18531:
1854 jbsr mmu_print_tuple_invalidate
1855 jbra 38f
185631:
1857 movel #0,%d1
1858 andil #0xfffffff0,%d6
1859 movel %d6,%a1
186032:
1861 movel %a4,%d5
1862 addil #PAGESIZE<<6,%d5
1863 movel %a1@+,%d6
1864 btst #1,%d6 /* is it a table ptr? */
1865 jbne 33f /* yes */
1866 btst #0,%d6 /* is it a page descriptor? */
1867 jbeq 1f /* no */
1868 jbsr mmu_030_print_helper
1869 jbra 37f
18701:
1871 jbsr mmu_print_tuple_invalidate
1872 jbra 37f
187333:
1874 movel #0,%d2
1875 andil #0xfffffff0,%d6
1876 movel %d6,%a2
187734:
1878 movel %a4,%d5
1879 addil #PAGESIZE,%d5
1880 movel %a2@+,%d6
1881 btst #0,%d6
1882 jbne 35f
1883 jbsr mmu_print_tuple_invalidate
1884 jbra 36f
188535:
1886 jbsr mmu_030_print_helper
188736:
1888 movel %d5,%a4
1889 addq #1,%d2
1890 cmpib #64,%d2
1891 jbne 34b
189237:
1893 movel %d5,%a4
1894 addq #1,%d1
1895 cmpib #128,%d1
1896 jbne 32b
189738:
1898 movel %d5,%a4 /* move to the next logical address */
1899 addq #1,%d0
1900 cmpib #128,%d0
1901 jbne 30b
1902
1903mmu_print_done:
1904 puts "\n"
1905
1906func_return mmu_print
1907
1908
1909mmu_030_print_helper:
1910 moveml %d0-%d1,%sp@-
1911 movel %a4,%d0
1912 movel %d6,%d1
1913 lea %pc@(mmu_030_print_flags),%a6
1914 jbsr mmu_print_tuple
1915 moveml %sp@+,%d0-%d1
1916 rts
1917
1918mmu_print_tuple_invalidate:
1919 moveml %a0/%d7,%sp@-
1920
1921 lea %pc@(L(mmu_print_data)),%a0
1922 tstl %a0@(mmu_next_valid)
1923 jbmi mmu_print_tuple_invalidate_exit
1924
1925 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1926
1927 putn %a4
1928
1929 puts "##\n"
1930
1931mmu_print_tuple_invalidate_exit:
1932 moveml %sp@+,%a0/%d7
1933 rts
1934
1935
1936mmu_print_tuple:
1937 moveml %d0-%d7/%a0,%sp@-
1938
1939 lea %pc@(L(mmu_print_data)),%a0
1940
1941 tstl %a0@(mmu_next_valid)
1942 jble mmu_print_tuple_print
1943
1944 cmpl %a0@(mmu_next_physical),%d1
1945 jbeq mmu_print_tuple_increment
1946
1947mmu_print_tuple_print:
1948 putn %d0
1949 puts "->"
1950 putn %d1
1951
1952 movel %d1,%d6
1953 jbsr %a6@
1954
1955mmu_print_tuple_record:
1956 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1957
1958 movel %d1,%a0@(mmu_next_physical)
1959
1960mmu_print_tuple_increment:
1961 movel %d5,%d7
1962 subl %a4,%d7
1963 addl %d7,%a0@(mmu_next_physical)
1964
1965mmu_print_tuple_exit:
1966 moveml %sp@+,%d0-%d7/%a0
1967 rts
1968
1969mmu_print_machine_cpu_types:
1970 puts "machine: "
1971
1972 is_not_amiga(1f)
1973 puts "amiga"
1974 jbra 9f
19751:
1976 is_not_atari(2f)
1977 puts "atari"
1978 jbra 9f
19792:
1980 is_not_mac(3f)
1981 puts "macintosh"
1982 jbra 9f
19833: puts "unknown"
19849: putc '\n'
1985
1986 puts "cputype: 0"
1987 is_not_060(1f)
1988 putc '6'
1989 jbra 9f
19901:
1991 is_not_040_or_060(2f)
1992 putc '4'
1993 jbra 9f
19942: putc '3'
19959: putc '0'
1996 putc '\n'
1997
1998 rts
1999#endif /* MMU_PRINT */
2000
2001/*
2002 * mmu_map_tt
2003 *
2004 * This is a specific function which works on all 680x0 machines.
2005 * On 030, 040 & 060 it will attempt to use Transparent Translation
2006 * registers (tt1).
2007 * On 020 it will call the standard mmu_map which will use early
2008 * terminating descriptors.
2009 */
2010func_start mmu_map_tt,%d0/%d1/%a0,4
2011
2012 dputs "mmu_map_tt:"
2013 dputn ARG1
2014 dputn ARG2
2015 dputn ARG3
2016 dputn ARG4
2017 dputc '\n'
2018
2019 is_020(L(do_map))
2020
2021 /* Extract the highest bit set
2022 */
2023 bfffo ARG3{#0,#32},%d1
2024 cmpw #8,%d1
2025 jcc L(do_map)
2026
2027 /* And get the mask
2028 */
2029 moveq #-1,%d0
2030 lsrl %d1,%d0
2031 lsrl #1,%d0
2032
2033 /* Mask the address
2034 */
2035 movel %d0,%d1
2036 notl %d1
2037 andl ARG2,%d1
2038
2039 /* Generate the upper 16bit of the tt register
2040 */
2041 lsrl #8,%d0
2042 orl %d0,%d1
2043 clrw %d1
2044
2045 is_040_or_060(L(mmu_map_tt_040))
2046
2047 /* set 030 specific bits (read/write access for supervisor mode
2048 * (highest function code set, lower two bits masked))
2049 */
2050 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2051 movel ARG4,%d0
2052 btst #6,%d0
2053 jeq 1f
2054 orw #TTR_CI,%d1
2055
20561: lea STACK,%a0
2057 dputn %d1
2058 movel %d1,%a0@
2059 .chip 68030
2060 tstl ARG1
2061 jne 1f
2062 pmove %a0@,%tt0
2063 jra 2f
20641: pmove %a0@,%tt1
20652: .chip 68k
2066 jra L(mmu_map_tt_done)
2067
2068 /* set 040 specific bits
2069 */
2070L(mmu_map_tt_040):
2071 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2072 orl ARG4,%d1
2073 dputn %d1
2074
2075 .chip 68040
2076 tstl ARG1
2077 jne 1f
2078 movec %d1,%itt0
2079 movec %d1,%dtt0
2080 jra 2f
20811: movec %d1,%itt1
2082 movec %d1,%dtt1
20832: .chip 68k
2084
2085 jra L(mmu_map_tt_done)
2086
2087L(do_map):
2088 mmu_map_eq ARG2,ARG3,ARG4
2089
2090L(mmu_map_tt_done):
2091
2092func_return mmu_map_tt
2093
2094/*
2095 * mmu_map
2096 *
2097 * This routine will map a range of memory using a pointer
2098 * table and allocate the pages on the fly from the kernel.
2099 * The pointer table does not have to be already linked into
2100 * the root table, this routine will do that if necessary.
2101 *
2102 * NOTE
2103 * This routine will assert failure and use the serial_putc
2104 * routines in the case of a run-time error. For example,
2105 * if the address is already mapped.
2106 *
2107 * NOTE-2
2108 * This routine will use early terminating descriptors
2109 * where possible for the 68020+68851 and 68030 type
2110 * processors.
2111 */
2112func_start mmu_map,%d0-%d4/%a0-%a4
2113
2114 dputs "\nmmu_map:"
2115 dputn ARG1
2116 dputn ARG2
2117 dputn ARG3
2118 dputn ARG4
2119 dputc '\n'
2120
2121 /* Get logical address and round it down to 256KB
2122 */
2123 movel ARG1,%d0
2124 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2125 movel %d0,%a3
2126
2127 /* Get the end address
2128 */
2129 movel ARG1,%a4
2130 addl ARG3,%a4
2131 subql #1,%a4
2132
2133 /* Get physical address and round it down to 256KB
2134 */
2135 movel ARG2,%d0
2136 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2137 movel %d0,%a2
2138
2139 /* Add page attributes to the physical address
2140 */
2141 movel ARG4,%d0
2142 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2143 addw %d0,%a2
2144
2145 dputn %a2
2146 dputn %a3
2147 dputn %a4
2148
2149 is_not_040_or_060(L(mmu_map_030))
2150
2151 addw #_PAGE_GLOBAL040,%a2
2152/*
2153 * MMU 040 & 060 Support
2154 *
2155 * The MMU usage for the 040 and 060 is different enough from
2156 * the 030 and 68851 that there is separate code. This comment
2157 * block describes the data structures and algorithms built by
2158 * this code.
2159 *
2160 * The 040 does not support early terminating descriptors, as
2161 * the 030 does. Therefore, a third level of table is needed
2162 * for the 040, and that would be the page table. In Linux,
2163 * page tables are allocated directly from the memory above the
2164 * kernel.
2165 *
2166 */
2167
2168L(mmu_map_040):
2169 /* Calculate the offset into the root table
2170 */
2171 movel %a3,%d0
2172 moveq #ROOT_INDEX_SHIFT,%d1
2173 lsrl %d1,%d0
2174 mmu_get_root_table_entry %d0
2175
2176 /* Calculate the offset into the pointer table
2177 */
2178 movel %a3,%d0
2179 moveq #PTR_INDEX_SHIFT,%d1
2180 lsrl %d1,%d0
2181 andl #PTR_TABLE_SIZE-1,%d0
2182 mmu_get_ptr_table_entry %a0,%d0
2183
2184 /* Calculate the offset into the page table
2185 */
2186 movel %a3,%d0
2187 moveq #PAGE_INDEX_SHIFT,%d1
2188 lsrl %d1,%d0
2189 andl #PAGE_TABLE_SIZE-1,%d0
2190 mmu_get_page_table_entry %a0,%d0
2191
2192 /* The page table entry must not no be busy
2193 */
2194 tstl %a0@
2195 jne L(mmu_map_error)
2196
2197 /* Do the mapping and advance the pointers
2198 */
2199 movel %a2,%a0@
22002:
2201 addw #PAGESIZE,%a2
2202 addw #PAGESIZE,%a3
2203
2204 /* Ready with mapping?
2205 */
2206 lea %a3@(-1),%a0
2207 cmpl %a0,%a4
2208 jhi L(mmu_map_040)
2209 jra L(mmu_map_done)
2210
2211L(mmu_map_030):
2212 /* Calculate the offset into the root table
2213 */
2214 movel %a3,%d0
2215 moveq #ROOT_INDEX_SHIFT,%d1
2216 lsrl %d1,%d0
2217 mmu_get_root_table_entry %d0
2218
2219 /* Check if logical address 32MB aligned,
2220 * so we can try to map it once
2221 */
2222 movel %a3,%d0
2223 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2224 jne 1f
2225
2226 /* Is there enough to map for 32MB at once
2227 */
2228 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2229 cmpl %a1,%a4
2230 jcs 1f
2231
2232 addql #1,%a1
2233
2234 /* The root table entry must not no be busy
2235 */
2236 tstl %a0@
2237 jne L(mmu_map_error)
2238
2239 /* Do the mapping and advance the pointers
2240 */
2241 dputs "early term1"
2242 dputn %a2
2243 dputn %a3
2244 dputn %a1
2245 dputc '\n'
2246 movel %a2,%a0@
2247
2248 movel %a1,%a3
2249 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2250 jra L(mmu_mapnext_030)
22511:
2252 /* Calculate the offset into the pointer table
2253 */
2254 movel %a3,%d0
2255 moveq #PTR_INDEX_SHIFT,%d1
2256 lsrl %d1,%d0
2257 andl #PTR_TABLE_SIZE-1,%d0
2258 mmu_get_ptr_table_entry %a0,%d0
2259
2260 /* The pointer table entry must not no be busy
2261 */
2262 tstl %a0@
2263 jne L(mmu_map_error)
2264
2265 /* Do the mapping and advance the pointers
2266 */
2267 dputs "early term2"
2268 dputn %a2
2269 dputn %a3
2270 dputc '\n'
2271 movel %a2,%a0@
2272
2273 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2274 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2275
2276L(mmu_mapnext_030):
2277 /* Ready with mapping?
2278 */
2279 lea %a3@(-1),%a0
2280 cmpl %a0,%a4
2281 jhi L(mmu_map_030)
2282 jra L(mmu_map_done)
2283
2284L(mmu_map_error):
2285
2286 dputs "mmu_map error:"
2287 dputn %a2
2288 dputn %a3
2289 dputc '\n'
2290
2291L(mmu_map_done):
2292
2293func_return mmu_map
2294
2295/*
2296 * mmu_fixup
2297 *
2298 * On the 040 class machines, all pages that are used for the
2299 * mmu have to be fixed up.
2300 */
2301
2302func_start mmu_fixup_page_mmu_cache,%d0/%a0
2303
2304 dputs "mmu_fixup_page_mmu_cache"
2305 dputn ARG1
2306
2307 /* Calculate the offset into the root table
2308 */
2309 movel ARG1,%d0
2310 moveq #ROOT_INDEX_SHIFT,%d1
2311 lsrl %d1,%d0
2312 mmu_get_root_table_entry %d0
2313
2314 /* Calculate the offset into the pointer table
2315 */
2316 movel ARG1,%d0
2317 moveq #PTR_INDEX_SHIFT,%d1
2318 lsrl %d1,%d0
2319 andl #PTR_TABLE_SIZE-1,%d0
2320 mmu_get_ptr_table_entry %a0,%d0
2321
2322 /* Calculate the offset into the page table
2323 */
2324 movel ARG1,%d0
2325 moveq #PAGE_INDEX_SHIFT,%d1
2326 lsrl %d1,%d0
2327 andl #PAGE_TABLE_SIZE-1,%d0
2328 mmu_get_page_table_entry %a0,%d0
2329
2330 movel %a0@,%d0
2331 andil #_CACHEMASK040,%d0
2332 orl %pc@(m68k_pgtable_cachemode),%d0
2333 movel %d0,%a0@
2334
2335 dputc '\n'
2336
2337func_return mmu_fixup_page_mmu_cache
2338
2339/*
2340 * mmu_temp_map
2341 *
2342 * create a temporary mapping to enable the mmu,
2343 * this we don't need any transparation translation tricks.
2344 */
2345
2346func_start mmu_temp_map,%d0/%d1/%a0/%a1
2347
2348 dputs "mmu_temp_map"
2349 dputn ARG1
2350 dputn ARG2
2351 dputc '\n'
2352
2353 lea %pc@(L(temp_mmap_mem)),%a1
2354
2355 /* Calculate the offset in the root table
2356 */
2357 movel ARG2,%d0
2358 moveq #ROOT_INDEX_SHIFT,%d1
2359 lsrl %d1,%d0
2360 mmu_get_root_table_entry %d0
2361
2362 /* Check if the table is temporary allocated, so we have to reuse it
2363 */
2364 movel %a0@,%d0
2365 cmpl %pc@(L(memory_start)),%d0
2366 jcc 1f
2367
2368 /* Temporary allocate a ptr table and insert it into the root table
2369 */
2370 movel %a1@,%d0
2371 addl #PTR_TABLE_SIZE*4,%a1@
2372 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2373 movel %d0,%a0@
2374 dputs " (new)"
23751:
2376 dputn %d0
2377 /* Mask the root table entry for the ptr table
2378 */
2379 andw #-ROOT_TABLE_SIZE,%d0
2380 movel %d0,%a0
2381
2382 /* Calculate the offset into the pointer table
2383 */
2384 movel ARG2,%d0
2385 moveq #PTR_INDEX_SHIFT,%d1
2386 lsrl %d1,%d0
2387 andl #PTR_TABLE_SIZE-1,%d0
2388 lea %a0@(%d0*4),%a0
2389 dputn %a0
2390
2391 /* Check if a temporary page table is already allocated
2392 */
2393 movel %a0@,%d0
2394 jne 1f
2395
2396 /* Temporary allocate a page table and insert it into the ptr table
2397 */
2398 movel %a1@,%d0
2399 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2400 alignment restriction for pointer tables on the '0[46]0. */
2401 addl #512,%a1@
2402 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2403 movel %d0,%a0@
2404 dputs " (new)"
24051:
2406 dputn %d0
2407 /* Mask the ptr table entry for the page table
2408 */
2409 andw #-PTR_TABLE_SIZE,%d0
2410 movel %d0,%a0
2411
2412 /* Calculate the offset into the page table
2413 */
2414 movel ARG2,%d0
2415 moveq #PAGE_INDEX_SHIFT,%d1
2416 lsrl %d1,%d0
2417 andl #PAGE_TABLE_SIZE-1,%d0
2418 lea %a0@(%d0*4),%a0
2419 dputn %a0
2420
2421 /* Insert the address into the page table
2422 */
2423 movel ARG1,%d0
2424 andw #-PAGESIZE,%d0
2425 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2426 movel %d0,%a0@
2427 dputn %d0
2428
2429 dputc '\n'
2430
2431func_return mmu_temp_map
2432
2433func_start mmu_engage,%d0-%d2/%a0-%a3
2434
2435 moveq #ROOT_TABLE_SIZE-1,%d0
2436 /* Temporarily use a different root table. */
2437 lea %pc@(L(kernel_pgdir_ptr)),%a0
2438 movel %a0@,%a2
2439 movel %pc@(L(memory_start)),%a1
2440 movel %a1,%a0@
2441 movel %a2,%a0
24421:
2443 movel %a0@+,%a1@+
2444 dbra %d0,1b
2445
2446 lea %pc@(L(temp_mmap_mem)),%a0
2447 movel %a1,%a0@
2448
2449 movew #PAGESIZE-1,%d0
24501:
2451 clrl %a1@+
2452 dbra %d0,1b
2453
2454 lea %pc@(1b),%a0
2455 movel #1b,%a1
2456 /* Skip temp mappings if phys == virt */
2457 cmpl %a0,%a1
2458 jeq 1f
2459
2460 mmu_temp_map %a0,%a0
2461 mmu_temp_map %a0,%a1
2462
2463 addw #PAGESIZE,%a0
2464 addw #PAGESIZE,%a1
2465 mmu_temp_map %a0,%a0
2466 mmu_temp_map %a0,%a1
24671:
2468 movel %pc@(L(memory_start)),%a3
2469 movel %pc@(L(phys_kernel_start)),%d2
2470
2471 is_not_040_or_060(L(mmu_engage_030))
2472
2473L(mmu_engage_040):
2474 .chip 68040
2475 nop
2476 cinva %bc
2477 nop
2478 pflusha
2479 nop
2480 movec %a3,%srp
2481 movel #TC_ENABLE+TC_PAGE4K,%d0
2482 movec %d0,%tc /* enable the MMU */
2483 jmp 1f:l
24841: nop
2485 movec %a2,%srp
2486 nop
2487 cinva %bc
2488 nop
2489 pflusha
2490 .chip 68k
2491 jra L(mmu_engage_cleanup)
2492
2493L(mmu_engage_030_temp):
2494 .space 12
2495L(mmu_engage_030):
2496 .chip 68030
2497 lea %pc@(L(mmu_engage_030_temp)),%a0
2498 movel #0x80000002,%a0@
2499 movel %a3,%a0@(4)
2500 movel #0x0808,%d0
2501 movec %d0,%cacr
2502 pmove %a0@,%srp
2503 pflusha
2504 /*
2505 * enable,super root enable,4096 byte pages,7 bit root index,
2506 * 7 bit pointer index, 6 bit page table index.
2507 */
2508 movel #0x82c07760,%a0@(8)
2509 pmove %a0@(8),%tc /* enable the MMU */
2510 jmp 1f:l
25111: movel %a2,%a0@(4)
2512 movel #0x0808,%d0
2513 movec %d0,%cacr
2514 pmove %a0@,%srp
2515 pflusha
2516 .chip 68k
2517
2518L(mmu_engage_cleanup):
2519 subl #PAGE_OFFSET,%d2
2520 subl %d2,%a2
2521 movel %a2,L(kernel_pgdir_ptr)
2522 subl %d2,%fp
2523 subl %d2,%sp
2524 subl %d2,ARG0
2525
2526func_return mmu_engage
2527
2528func_start mmu_get_root_table_entry,%d0/%a1
2529
2530#if 0
2531 dputs "mmu_get_root_table_entry:"
2532 dputn ARG1
2533 dputs " ="
2534#endif
2535
2536 movel %pc@(L(kernel_pgdir_ptr)),%a0
2537 tstl %a0
2538 jne 2f
2539
2540 dputs "\nmmu_init:"
2541
2542 /* Find the start of free memory, get_bi_record does this for us,
2543 * as the bootinfo structure is located directly behind the kernel
2544 * we simply search for the last entry.
2545 */
2546 get_bi_record BI_LAST
2547 addw #PAGESIZE-1,%a0
2548 movel %a0,%d0
2549 andw #-PAGESIZE,%d0
2550
2551 dputn %d0
2552
2553 lea %pc@(L(memory_start)),%a0
2554 movel %d0,%a0@
2555 lea %pc@(L(kernel_end)),%a0
2556 movel %d0,%a0@
2557
2558 /* we have to return the first page at _stext since the init code
2559 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2560 * page is used for further ptr tables in get_ptr_table.
2561 */
2562 lea %pc@(_stext),%a0
2563 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2564 movel %a0,%a1@
2565 addl #ROOT_TABLE_SIZE*4,%a1@
2566
2567 lea %pc@(L(mmu_num_pointer_tables)),%a1
2568 addql #1,%a1@
2569
2570 /* clear the page
2571 */
2572 movel %a0,%a1
2573 movew #PAGESIZE/4-1,%d0
25741:
2575 clrl %a1@+
2576 dbra %d0,1b
2577
2578 lea %pc@(L(kernel_pgdir_ptr)),%a1
2579 movel %a0,%a1@
2580
2581 dputn %a0
2582 dputc '\n'
25832:
2584 movel ARG1,%d0
2585 lea %a0@(%d0*4),%a0
2586
2587#if 0
2588 dputn %a0
2589 dputc '\n'
2590#endif
2591
2592func_return mmu_get_root_table_entry
2593
2594
2595
2596func_start mmu_get_ptr_table_entry,%d0/%a1
2597
2598#if 0
2599 dputs "mmu_get_ptr_table_entry:"
2600 dputn ARG1
2601 dputn ARG2
2602 dputs " ="
2603#endif
2604
2605 movel ARG1,%a0
2606 movel %a0@,%d0
2607 jne 2f
2608
2609 /* Keep track of the number of pointer tables we use
2610 */
2611 dputs "\nmmu_get_new_ptr_table:"
2612 lea %pc@(L(mmu_num_pointer_tables)),%a0
2613 movel %a0@,%d0
2614 addql #1,%a0@
2615
2616 /* See if there is a free pointer table in our cache of pointer tables
2617 */
2618 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2619 andw #7,%d0
2620 jne 1f
2621
2622 /* Get a new pointer table page from above the kernel memory
2623 */
2624 get_new_page
2625 movel %a0,%a1@
26261:
2627 /* There is an unused pointer table in our cache... use it
2628 */
2629 movel %a1@,%d0
2630 addl #PTR_TABLE_SIZE*4,%a1@
2631
2632 dputn %d0
2633 dputc '\n'
2634
2635 /* Insert the new pointer table into the root table
2636 */
2637 movel ARG1,%a0
2638 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2639 movel %d0,%a0@
26402:
2641 /* Extract the pointer table entry
2642 */
2643 andw #-PTR_TABLE_SIZE,%d0
2644 movel %d0,%a0
2645 movel ARG2,%d0
2646 lea %a0@(%d0*4),%a0
2647
2648#if 0
2649 dputn %a0
2650 dputc '\n'
2651#endif
2652
2653func_return mmu_get_ptr_table_entry
2654
2655
2656func_start mmu_get_page_table_entry,%d0/%a1
2657
2658#if 0
2659 dputs "mmu_get_page_table_entry:"
2660 dputn ARG1
2661 dputn ARG2
2662 dputs " ="
2663#endif
2664
2665 movel ARG1,%a0
2666 movel %a0@,%d0
2667 jne 2f
2668
2669 /* If the page table entry doesn't exist, we allocate a complete new
2670 * page and use it as one continuous big page table which can cover
2671 * 4MB of memory, nearly almost all mappings have that alignment.
2672 */
2673 get_new_page
2674 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2675
2676 /* align pointer table entry for a page of page tables
2677 */
2678 movel ARG1,%d0
2679 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2680 movel %d0,%a1
2681
2682 /* Insert the page tables into the pointer entries
2683 */
2684 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26851:
2686 movel %a0,%a1@+
2687 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2688 dbra %d0,1b
2689
2690 /* Now we can get the initialized pointer table entry
2691 */
2692 movel ARG1,%a0
2693 movel %a0@,%d0
26942:
2695 /* Extract the page table entry
2696 */
2697 andw #-PAGE_TABLE_SIZE,%d0
2698 movel %d0,%a0
2699 movel ARG2,%d0
2700 lea %a0@(%d0*4),%a0
2701
2702#if 0
2703 dputn %a0
2704 dputc '\n'
2705#endif
2706
2707func_return mmu_get_page_table_entry
2708
2709/*
2710 * get_new_page
2711 *
2712 * Return a new page from the memory start and clear it.
2713 */
2714func_start get_new_page,%d0/%a1
2715
2716 dputs "\nget_new_page:"
2717
2718 /* allocate the page and adjust memory_start
2719 */
2720 lea %pc@(L(memory_start)),%a0
2721 movel %a0@,%a1
2722 addl #PAGESIZE,%a0@
2723
2724 /* clear the new page
2725 */
2726 movel %a1,%a0
2727 movew #PAGESIZE/4-1,%d0
27281:
2729 clrl %a1@+
2730 dbra %d0,1b
2731
2732 dputn %a0
2733 dputc '\n'
2734
2735func_return get_new_page
2736
2737
2738
2739/*
2740 * Debug output support
2741 * Atarians have a choice between the parallel port, the serial port
2742 * from the MFP or a serial port of the SCC
2743 */
2744
2745#ifdef CONFIG_MAC
2746/* You may define either or both of these. */
2747#define MAC_USE_SCC_A /* Modem port */
2748#define MAC_USE_SCC_B /* Printer port */
2749
2750#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2751/* Initialisation table for SCC with 3.6864 MHz PCLK */
2752L(scc_initable_mac):
2753 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2754 .byte 3,0xc0 /* receiver: 8 bpc */
2755 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2756 .byte 10,0 /* NRZ */
2757 .byte 11,0x50 /* use baud rate generator */
2758 .byte 12,1,13,0 /* 38400 baud */
2759 .byte 14,1 /* Baud rate generator enable */
2760 .byte 3,0xc1 /* enable receiver */
2761 .byte 5,0xea /* enable transmitter */
2762 .byte -1
2763 .even
2764#endif
2765#endif /* CONFIG_MAC */
2766
2767#ifdef CONFIG_ATARI
2768/* #define USE_PRINTER */
2769/* #define USE_SCC_B */
2770/* #define USE_SCC_A */
2771#define USE_MFP
2772
2773#if defined(USE_SCC_A) || defined(USE_SCC_B)
2774/* Initialisation table for SCC with 7.9872 MHz PCLK */
2775/* PCLK == 8.0539 gives baud == 9680.1 */
2776L(scc_initable_atari):
2777 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2778 .byte 3,0xc0 /* receiver: 8 bpc */
2779 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2780 .byte 10,0 /* NRZ */
2781 .byte 11,0x50 /* use baud rate generator */
2782 .byte 12,24,13,0 /* 9600 baud */
2783 .byte 14,2,14,3 /* use master clock for BRG, enable */
2784 .byte 3,0xc1 /* enable receiver */
2785 .byte 5,0xea /* enable transmitter */
2786 .byte -1
2787 .even
2788#endif
2789
2790#ifdef USE_PRINTER
2791
2792LPSG_SELECT = 0xff8800
2793LPSG_READ = 0xff8800
2794LPSG_WRITE = 0xff8802
2795LPSG_IO_A = 14
2796LPSG_IO_B = 15
2797LPSG_CONTROL = 7
2798LSTMFP_GPIP = 0xfffa01
2799LSTMFP_DDR = 0xfffa05
2800LSTMFP_IERB = 0xfffa09
2801
2802#elif defined(USE_SCC_B)
2803
2804LSCC_CTRL = 0xff8c85
2805LSCC_DATA = 0xff8c87
2806
2807#elif defined(USE_SCC_A)
2808
2809LSCC_CTRL = 0xff8c81
2810LSCC_DATA = 0xff8c83
2811
2812#elif defined(USE_MFP)
2813
2814LMFP_UCR = 0xfffa29
2815LMFP_TDCDR = 0xfffa1d
2816LMFP_TDDR = 0xfffa25
2817LMFP_TSR = 0xfffa2d
2818LMFP_UDR = 0xfffa2f
2819
2820#endif
2821#endif /* CONFIG_ATARI */
2822
2823/*
2824 * Serial port output support.
2825 */
2826
2827/*
2828 * Initialize serial port hardware
2829 */
2830func_start serial_init,%d0/%d1/%a0/%a1
2831 /*
2832 * Some of the register usage that follows
2833 * CONFIG_AMIGA
2834 * a0 = pointer to boot info record
2835 * d0 = boot info offset
2836 * CONFIG_ATARI
2837 * a0 = address of SCC
2838 * a1 = Liobase address/address of scc_initable_atari
2839 * d0 = init data for serial port
2840 * CONFIG_MAC
2841 * a0 = address of SCC
2842 * a1 = address of scc_initable_mac
2843 * d0 = init data for serial port
2844 */
2845
2846#ifdef CONFIG_AMIGA
2847#define SERIAL_DTR 7
2848#define SERIAL_CNTRL CIABBASE+C_PRA
2849
2850 is_not_amiga(1f)
2851 lea %pc@(L(custom)),%a0
2852 movel #-ZTWOBASE,%a0@
2853 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2854 get_bi_record BI_AMIGA_SERPER
2855 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2856| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
28571:
2858#endif
2859
2860#ifdef CONFIG_ATARI
2861 is_not_atari(4f)
2862 movel %pc@(L(iobase)),%a1
2863#if defined(USE_PRINTER)
2864 bclr #0,%a1@(LSTMFP_IERB)
2865 bclr #0,%a1@(LSTMFP_DDR)
2866 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2867 moveb #0xff,%a1@(LPSG_WRITE)
2868 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2869 clrb %a1@(LPSG_WRITE)
2870 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2871 moveb %a1@(LPSG_READ),%d0
2872 bset #5,%d0
2873 moveb %d0,%a1@(LPSG_WRITE)
2874#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2875 lea %a1@(LSCC_CTRL),%a0
2876 /* Reset SCC register pointer */
2877 moveb %a0@,%d0
2878 /* Reset SCC device: write register pointer then register value */
2879 moveb #9,%a0@
2880 moveb #0xc0,%a0@
2881 /* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2882 /* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2883 movel #32,%d0
28842:
2885 subq #1,%d0
2886 jne 2b
2887 /* Initialize channel */
2888 lea %pc@(L(scc_initable_atari)),%a1
28892: moveb %a1@+,%d0
2890 jmi 3f
2891 moveb %d0,%a0@
2892 moveb %a1@+,%a0@
2893 jra 2b
28943: clrb %a0@
2895#elif defined(USE_MFP)
2896 bclr #1,%a1@(LMFP_TSR)
2897 moveb #0x88,%a1@(LMFP_UCR)
2898 andb #0x70,%a1@(LMFP_TDCDR)
2899 moveb #2,%a1@(LMFP_TDDR)
2900 orb #1,%a1@(LMFP_TDCDR)
2901 bset #1,%a1@(LMFP_TSR)
2902#endif
2903 jra L(serial_init_done)
29044:
2905#endif
2906
2907#ifdef CONFIG_MAC
2908 is_not_mac(L(serial_init_not_mac))
2909#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2910#define mac_scc_cha_b_ctrl_offset 0x0
2911#define mac_scc_cha_a_ctrl_offset 0x2
2912#define mac_scc_cha_b_data_offset 0x4
2913#define mac_scc_cha_a_data_offset 0x6
2914 movel %pc@(L(mac_sccbase)),%a0
2915 /* Reset SCC register pointer */
2916 moveb %a0@(mac_scc_cha_a_ctrl_offset),%d0
2917 /* Reset SCC device: write register pointer then register value */
2918 moveb #9,%a0@(mac_scc_cha_a_ctrl_offset)
2919 moveb #0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2920 /* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2921 /* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2922 movel #35,%d0
29235:
2924 subq #1,%d0
2925 jne 5b
2926#endif
2927#ifdef MAC_USE_SCC_A
2928 /* Initialize channel A */
2929 lea %pc@(L(scc_initable_mac)),%a1
29305: moveb %a1@+,%d0
2931 jmi 6f
2932 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2933 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2934 jra 5b
29356:
2936#endif /* MAC_USE_SCC_A */
2937#ifdef MAC_USE_SCC_B
2938 /* Initialize channel B */
2939 lea %pc@(L(scc_initable_mac)),%a1
29407: moveb %a1@+,%d0
2941 jmi 8f
2942 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2943 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2944 jra 7b
29458:
2946#endif /* MAC_USE_SCC_B */
2947 jra L(serial_init_done)
2948L(serial_init_not_mac):
2949#endif /* CONFIG_MAC */
2950
2951#ifdef CONFIG_Q40
2952 is_not_q40(2f)
2953/* debug output goes into SRAM, so we don't do it unless requested
2954 - check for '%LX$' signature in SRAM */
2955 lea %pc@(q40_mem_cptr),%a1
2956 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2957 move.l #0xff020000,%a1
2958 cmp.b #'%',%a1@
2959 bne 2f /*nodbg*/
2960 addq.w #4,%a1
2961 cmp.b #'L',%a1@
2962 bne 2f /*nodbg*/
2963 addq.w #4,%a1
2964 cmp.b #'X',%a1@
2965 bne 2f /*nodbg*/
2966 addq.w #4,%a1
2967 cmp.b #'$',%a1@
2968 bne 2f /*nodbg*/
2969 /* signature OK */
2970 lea %pc@(L(q40_do_debug)),%a1
2971 tas %a1@
2972/*nodbg: q40_do_debug is 0 by default*/
29732:
2974#endif
2975
2976#ifdef CONFIG_MVME16x
2977 is_not_mvme16x(L(serial_init_not_mvme16x))
2978 moveb #0x10,M167_PCSCCMICR
2979 moveb #0x10,M167_PCSCCTICR
2980 moveb #0x10,M167_PCSCCRICR
2981 jra L(serial_init_done)
2982L(serial_init_not_mvme16x):
2983#endif
2984
2985#ifdef CONFIG_APOLLO
2986/* We count on the PROM initializing SIO1 */
2987#endif
2988
2989#ifdef CONFIG_HP300
2990/* We count on the boot loader initialising the UART */
2991#endif
2992
2993L(serial_init_done):
2994func_return serial_init
2995
2996/*
2997 * Output character on serial port.
2998 */
2999func_start serial_putc,%d0/%d1/%a0/%a1
3000
3001 movel ARG1,%d0
3002 cmpib #'\n',%d0
3003 jbne 1f
3004
3005 /* A little safe recursion is good for the soul */
3006 serial_putc #'\r'
30071:
3008
3009#ifdef CONFIG_AMIGA
3010 is_not_amiga(2f)
3011 andw #0x00ff,%d0
3012 oriw #0x0100,%d0
3013 movel %pc@(L(custom)),%a0
3014 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
30151: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3016 andw #0x2000,%d0
3017 jeq 1b
3018 jra L(serial_putc_done)
30192:
3020#endif
3021
3022#ifdef CONFIG_MAC
3023 is_not_mac(5f)
3024#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3025 movel %pc@(L(mac_sccbase)),%a1
3026#endif
3027#ifdef MAC_USE_SCC_A
30283: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3029 jeq 3b
3030 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3031#endif /* MAC_USE_SCC_A */
3032#ifdef MAC_USE_SCC_B
30334: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3034 jeq 4b
3035 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3036#endif /* MAC_USE_SCC_B */
3037 jra L(serial_putc_done)
30385:
3039#endif /* CONFIG_MAC */
3040
3041#ifdef CONFIG_ATARI
3042 is_not_atari(4f)
3043 movel %pc@(L(iobase)),%a1
3044#if defined(USE_PRINTER)
30453: btst #0,%a1@(LSTMFP_GPIP)
3046 jne 3b
3047 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3048 moveb %d0,%a1@(LPSG_WRITE)
3049 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3050 moveb %a1@(LPSG_READ),%d0
3051 bclr #5,%d0
3052 moveb %d0,%a1@(LPSG_WRITE)
3053 nop
3054 nop
3055 bset #5,%d0
3056 moveb %d0,%a1@(LPSG_WRITE)
3057#elif defined(USE_SCC_A) || defined(USE_SCC_B)
30583: btst #2,%a1@(LSCC_CTRL)
3059 jeq 3b
3060 moveb %d0,%a1@(LSCC_DATA)
3061#elif defined(USE_MFP)
30623: btst #7,%a1@(LMFP_TSR)
3063 jeq 3b
3064 moveb %d0,%a1@(LMFP_UDR)
3065#endif
3066 jra L(serial_putc_done)
30674:
3068#endif /* CONFIG_ATARI */
3069
3070#ifdef CONFIG_MVME147
3071 is_not_mvme147(2f)
30721: btst #2,M147_SCC_CTRL_A
3073 jeq 1b
3074 moveb %d0,M147_SCC_DATA_A
3075 jbra L(serial_putc_done)
30762:
3077#endif
3078
3079#ifdef CONFIG_MVME16x
3080 is_not_mvme16x(2f)
3081 /*
3082 * If the loader gave us a board type then we can use that to
3083 * select an appropriate output routine; otherwise we just use
3084 * the Bug code. If we have to use the Bug that means the Bug
3085 * workspace has to be valid, which means the Bug has to use
3086 * the SRAM, which is non-standard.
3087 */
3088 moveml %d0-%d7/%a2-%a6,%sp@-
3089 movel vme_brdtype,%d1
3090 jeq 1f | No tag - use the Bug
3091 cmpi #VME_TYPE_MVME162,%d1
3092 jeq 6f
3093 cmpi #VME_TYPE_MVME172,%d1
3094 jne 5f
3095 /* 162/172; it's an SCC */
30966: btst #2,M162_SCC_CTRL_A
3097 nop
3098 nop
3099 nop
3100 jeq 6b
3101 moveb #8,M162_SCC_CTRL_A
3102 nop
3103 nop
3104 nop
3105 moveb %d0,M162_SCC_CTRL_A
3106 jra 3f
31075:
3108 /* 166/167/177; it's a CD2401 */
3109 moveb #0,M167_CYCAR
3110 moveb M167_CYIER,%d2
3111 moveb #0x02,M167_CYIER
31127:
3113 btst #5,M167_PCSCCTICR
3114 jeq 7b
3115 moveb M167_PCTPIACKR,%d1
3116 moveb M167_CYLICR,%d1
3117 jeq 8f
3118 moveb #0x08,M167_CYTEOIR
3119 jra 7b
31208:
3121 moveb %d0,M167_CYTDR
3122 moveb #0,M167_CYTEOIR
3123 moveb %d2,M167_CYIER
3124 jra 3f
31251:
3126 moveb %d0,%sp@-
3127 trap #15
3128 .word 0x0020 /* TRAP 0x020 */
31293:
3130 moveml %sp@+,%d0-%d7/%a2-%a6
3131 jbra L(serial_putc_done)
31322:
3133#endif /* CONFIG_MVME16x */
3134
3135#ifdef CONFIG_BVME6000
3136 is_not_bvme6000(2f)
3137 /*
3138 * The BVME6000 machine has a serial port ...
3139 */
31401: btst #2,BVME_SCC_CTRL_A
3141 jeq 1b
3142 moveb %d0,BVME_SCC_DATA_A
3143 jbra L(serial_putc_done)
31442:
3145#endif
3146
3147#ifdef CONFIG_SUN3X
3148 is_not_sun3x(2f)
3149 movel %d0,-(%sp)
3150 movel 0xFEFE0018,%a1
3151 jbsr (%a1)
3152 addq #4,%sp
3153 jbra L(serial_putc_done)
31542:
3155#endif
3156
3157#ifdef CONFIG_Q40
3158 is_not_q40(2f)
3159 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3160 beq 2f
3161 lea %pc@(q40_mem_cptr),%a1
3162 move.l %a1@,%a0
3163 move.b %d0,%a0@
3164 addq.l #4,%a0
3165 move.l %a0,%a1@
3166 jbra L(serial_putc_done)
31672:
3168#endif
3169
3170#ifdef CONFIG_APOLLO
3171 is_not_apollo(2f)
3172 movl %pc@(L(iobase)),%a1
3173 moveb %d0,%a1@(LTHRB0)
31741: moveb %a1@(LSRB0),%d0
3175 andb #0x4,%d0
3176 beq 1b
3177 jbra L(serial_putc_done)
31782:
3179#endif
3180
3181#ifdef CONFIG_HP300
3182 is_not_hp300(3f)
3183 movl %pc@(L(iobase)),%a1
3184 addl %pc@(L(uartbase)),%a1
3185 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3186 jmi 3f /* Unset? Exit */
3187 cmpi #256,%d1 /* APCI scode? */
3188 jeq 2f
31891: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3190 andb #0x20,%d1
3191 beq 1b
3192 moveb %d0,%a1@(DCADATA)
3193 jbra L(serial_putc_done)
31942: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3195 andb #0x20,%d1
3196 beq 2b
3197 moveb %d0,%a1@(APCIDATA)
3198 jbra L(serial_putc_done)
31993:
3200#endif
3201
3202#ifdef CONFIG_VIRT
3203 is_not_virt(1f)
3204
3205 movel L(virt_gf_tty_base),%a1
3206 movel %d0,%a1@(GF_PUT_CHAR)
32071:
3208#endif
3209
3210L(serial_putc_done):
3211func_return serial_putc
3212
3213/*
3214 * Output a string.
3215 */
3216func_start puts,%d0/%a0
3217
3218 movel ARG1,%a0
3219 jra 2f
32201:
3221#ifdef CONSOLE_DEBUG
3222 console_putc %d0
3223#endif
3224#ifdef SERIAL_DEBUG
3225 serial_putc %d0
3226#endif
32272: moveb %a0@+,%d0
3228 jne 1b
3229
3230func_return puts
3231
3232/*
3233 * Output number in hex notation.
3234 */
3235
3236func_start putn,%d0-%d2
3237
3238 putc ' '
3239
3240 movel ARG1,%d0
3241 moveq #7,%d1
32421: roll #4,%d0
3243 move %d0,%d2
3244 andb #0x0f,%d2
3245 addb #'0',%d2
3246 cmpb #'9',%d2
3247 jls 2f
3248 addb #'A'-('9'+1),%d2
32492:
3250#ifdef CONSOLE_DEBUG
3251 console_putc %d2
3252#endif
3253#ifdef SERIAL_DEBUG
3254 serial_putc %d2
3255#endif
3256 dbra %d1,1b
3257
3258func_return putn
3259
3260#ifdef CONFIG_EARLY_PRINTK
3261/*
3262 * This routine takes its parameters on the stack. It then
3263 * turns around and calls the internal routines. This routine
3264 * is used by the boot console.
3265 *
3266 * The calling parameters are:
3267 * void debug_cons_nputs(const char *str, unsigned length)
3268 *
3269 * This routine does NOT understand variable arguments only
3270 * simple strings!
3271 */
3272ENTRY(debug_cons_nputs)
3273 moveml %d0/%d1/%a0,%sp@-
3274 movew %sr,%sp@-
3275 ori #0x0700,%sr
3276 movel %sp@(18),%a0 /* fetch parameter */
3277 movel %sp@(22),%d1 /* fetch parameter */
3278 jra 2f
32791:
3280#ifdef CONSOLE_DEBUG
3281 console_putc %d0
3282#endif
3283#ifdef SERIAL_DEBUG
3284 serial_putc %d0
3285#endif
3286 subq #1,%d1
32872: jeq 3f
3288 moveb %a0@+,%d0
3289 jne 1b
32903:
3291 movew %sp@+,%sr
3292 moveml %sp@+,%d0/%d1/%a0
3293 rts
3294#endif /* CONFIG_EARLY_PRINTK */
3295
3296#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3297func_start set_leds,%d0/%a0
3298 movel ARG1,%d0
3299#ifdef CONFIG_HP300
3300 is_not_hp300(1f)
3301 movel %pc@(L(iobase)),%a0
3302 moveb %d0,%a0@(0x1ffff)
3303 jra 2f
3304#endif
33051:
3306#ifdef CONFIG_APOLLO
3307 movel %pc@(L(iobase)),%a0
3308 lsll #8,%d0
3309 eorw #0xff00,%d0
3310 moveb %d0,%a0@(LCPUCTRL)
3311#endif
33122:
3313func_return set_leds
3314#endif
3315
3316#ifdef CONSOLE_DEBUG
3317/*
3318 * For continuity, see the data alignment
3319 * to which this structure is tied.
3320 */
3321#define Lconsole_struct_cur_column 0
3322#define Lconsole_struct_cur_row 4
3323#define Lconsole_struct_num_columns 8
3324#define Lconsole_struct_num_rows 12
3325#define Lconsole_struct_left_edge 16
3326
3327func_start console_init,%a0-%a4/%d0-%d7
3328 /*
3329 * Some of the register usage that follows
3330 * a0 = pointer to boot_info
3331 * a1 = pointer to screen
3332 * a2 = pointer to console_globals
3333 * d3 = pixel width of screen
3334 * d4 = pixel height of screen
3335 * (d3,d4) ~= (x,y) of a point just below
3336 * and to the right of the screen
3337 * NOT on the screen!
3338 * d5 = number of bytes per scan line
3339 * d6 = number of bytes on the entire screen
3340 */
3341
3342 lea %pc@(L(console_globals)),%a2
3343 movel %pc@(L(mac_videobase)),%a1
3344 movel %pc@(L(mac_rowbytes)),%d5
3345 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3346 movel %d3,%d4
3347 swap %d4 /* -> high byte */
3348 andl #0xffff,%d3 /* d3 = screen width in pixels */
3349 andl #0xffff,%d4 /* d4 = screen height in pixels */
3350
3351 movel %d5,%d6
3352| subl #20,%d6
3353 mulul %d4,%d6 /* scan line bytes x num scan lines */
3354 divul #8,%d6 /* we'll clear 8 bytes at a time */
3355 moveq #-1,%d0 /* Mac_black */
3356 subq #1,%d6
3357
3358L(console_clear_loop):
3359 movel %d0,%a1@+
3360 movel %d0,%a1@+
3361 dbra %d6,L(console_clear_loop)
3362
3363 /* Calculate font size */
3364
3365#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3366 lea %pc@(font_vga_8x8),%a0
3367#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3368 lea %pc@(font_vga_8x16),%a0
3369#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3370 lea %pc@(font_vga_6x11),%a0
3371#elif defined(CONFIG_FONT_8x8) /* default */
3372 lea %pc@(font_vga_8x8),%a0
3373#else /* no compiled-in font */
3374 lea 0,%a0
3375#endif
3376
3377 /*
3378 * At this point we make a shift in register usage
3379 * a1 = address of console_font pointer
3380 */
3381 lea %pc@(L(console_font)),%a1
3382 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3383 tstl %a0
3384 jeq 1f
3385 lea %pc@(L(console_font_data)),%a4
3386 movel %a0@(FONT_DESC_DATA),%d0
3387 subl #L(console_font),%a1
3388 addl %a1,%d0
3389 movel %d0,%a4@
3390
3391 /*
3392 * Calculate global maxs
3393 * Note - we can use either an
3394 * 8 x 16 or 8 x 8 character font
3395 * 6 x 11 also supported
3396 */
3397 /* ASSERT: a0 = contents of Lconsole_font */
3398 movel %d3,%d0 /* screen width in pixels */
3399 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3400
3401 movel %d4,%d1 /* screen height in pixels */
3402 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3403
3404 movel %d0,%a2@(Lconsole_struct_num_columns)
3405 movel %d1,%a2@(Lconsole_struct_num_rows)
3406
3407 /*
3408 * Clear the current row and column
3409 */
3410 clrl %a2@(Lconsole_struct_cur_column)
3411 clrl %a2@(Lconsole_struct_cur_row)
3412 clrl %a2@(Lconsole_struct_left_edge)
3413
3414 /*
3415 * Initialization is complete
3416 */
34171:
3418func_return console_init
3419
3420#ifdef CONFIG_LOGO
3421func_start console_put_penguin,%a0-%a1/%d0-%d7
3422 /*
3423 * Get 'that_penguin' onto the screen in the upper right corner
3424 * penguin is 64 x 74 pixels, align against right edge of screen
3425 */
3426 lea %pc@(L(mac_dimensions)),%a0
3427 movel %a0@,%d0
3428 andil #0xffff,%d0
3429 subil #64,%d0 /* snug up against the right edge */
3430 clrl %d1 /* start at the top */
3431 movel #73,%d7
3432 lea %pc@(L(that_penguin)),%a1
3433L(console_penguin_row):
3434 movel #31,%d6
3435L(console_penguin_pixel_pair):
3436 moveb %a1@,%d2
3437 lsrb #4,%d2
3438 console_plot_pixel %d0,%d1,%d2
3439 addq #1,%d0
3440 moveb %a1@+,%d2
3441 console_plot_pixel %d0,%d1,%d2
3442 addq #1,%d0
3443 dbra %d6,L(console_penguin_pixel_pair)
3444
3445 subil #64,%d0
3446 addq #1,%d1
3447 dbra %d7,L(console_penguin_row)
3448
3449func_return console_put_penguin
3450
3451/* include penguin bitmap */
3452L(that_penguin):
3453#include "../mac/mac_penguin.S"
3454#endif
3455
3456 /*
3457 * Calculate source and destination addresses
3458 * output a1 = dest
3459 * a2 = source
3460 */
3461
3462func_start console_scroll,%a0-%a4/%d0-%d7
3463 lea %pc@(L(mac_videobase)),%a0
3464 movel %a0@,%a1
3465 movel %a1,%a2
3466 lea %pc@(L(mac_rowbytes)),%a0
3467 movel %a0@,%d5
3468 movel %pc@(L(console_font)),%a0
3469 tstl %a0
3470 jeq 1f
3471 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3472 addal %d5,%a2
3473
3474 /*
3475 * Get dimensions
3476 */
3477 lea %pc@(L(mac_dimensions)),%a0
3478 movel %a0@,%d3
3479 movel %d3,%d4
3480 swap %d4
3481 andl #0xffff,%d3 /* d3 = screen width in pixels */
3482 andl #0xffff,%d4 /* d4 = screen height in pixels */
3483
3484 /*
3485 * Calculate number of bytes to move
3486 */
3487 lea %pc@(L(mac_rowbytes)),%a0
3488 movel %a0@,%d6
3489 movel %pc@(L(console_font)),%a0
3490 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3491 mulul %d4,%d6 /* scan line bytes x num scan lines */
3492 divul #32,%d6 /* we'll move 8 longs at a time */
3493 subq #1,%d6
3494
3495L(console_scroll_loop):
3496 movel %a2@+,%a1@+
3497 movel %a2@+,%a1@+
3498 movel %a2@+,%a1@+
3499 movel %a2@+,%a1@+
3500 movel %a2@+,%a1@+
3501 movel %a2@+,%a1@+
3502 movel %a2@+,%a1@+
3503 movel %a2@+,%a1@+
3504 dbra %d6,L(console_scroll_loop)
3505
3506 lea %pc@(L(mac_rowbytes)),%a0
3507 movel %a0@,%d6
3508 movel %pc@(L(console_font)),%a0
3509 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3510 divul #32,%d6 /* we'll move 8 words at a time */
3511 subq #1,%d6
3512
3513 moveq #-1,%d0
3514L(console_scroll_clear_loop):
3515 movel %d0,%a1@+
3516 movel %d0,%a1@+
3517 movel %d0,%a1@+
3518 movel %d0,%a1@+
3519 movel %d0,%a1@+
3520 movel %d0,%a1@+
3521 movel %d0,%a1@+
3522 movel %d0,%a1@+
3523 dbra %d6,L(console_scroll_clear_loop)
3524
35251:
3526func_return console_scroll
3527
3528
3529func_start console_putc,%a0/%a1/%d0-%d7
3530
3531 is_not_mac(L(console_exit))
3532 tstl %pc@(L(console_font))
3533 jeq L(console_exit)
3534
3535 /* Output character in d7 on console.
3536 */
3537 movel ARG1,%d7
3538 cmpib #'\n',%d7
3539 jbne 1f
3540
3541 /* A little safe recursion is good for the soul */
3542 console_putc #'\r'
35431:
3544 lea %pc@(L(console_globals)),%a0
3545
3546 cmpib #10,%d7
3547 jne L(console_not_lf)
3548 movel %a0@(Lconsole_struct_cur_row),%d0
3549 addil #1,%d0
3550 movel %d0,%a0@(Lconsole_struct_cur_row)
3551 movel %a0@(Lconsole_struct_num_rows),%d1
3552 cmpl %d1,%d0
3553 jcs 1f
3554 subil #1,%d0
3555 movel %d0,%a0@(Lconsole_struct_cur_row)
3556 console_scroll
35571:
3558 jra L(console_exit)
3559
3560L(console_not_lf):
3561 cmpib #13,%d7
3562 jne L(console_not_cr)
3563 clrl %a0@(Lconsole_struct_cur_column)
3564 jra L(console_exit)
3565
3566L(console_not_cr):
3567 cmpib #1,%d7
3568 jne L(console_not_home)
3569 clrl %a0@(Lconsole_struct_cur_row)
3570 clrl %a0@(Lconsole_struct_cur_column)
3571 jra L(console_exit)
3572
3573/*
3574 * At this point we know that the %d7 character is going to be
3575 * rendered on the screen. Register usage is -
3576 * a0 = pointer to console globals
3577 * a1 = font data
3578 * d0 = cursor column
3579 * d1 = cursor row to draw the character
3580 * d7 = character number
3581 */
3582L(console_not_home):
3583 movel %a0@(Lconsole_struct_cur_column),%d0
3584 addql #1,%a0@(Lconsole_struct_cur_column)
3585 movel %a0@(Lconsole_struct_num_columns),%d1
3586 cmpl %d1,%d0
3587 jcs 1f
3588 console_putc #'\n' /* recursion is OK! */
35891:
3590 movel %a0@(Lconsole_struct_cur_row),%d1
3591
3592 /*
3593 * At this point we make a shift in register usage
3594 * a0 = address of pointer to font data (fbcon_font_desc)
3595 */
3596 movel %pc@(L(console_font)),%a0
3597 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3598 andl #0x000000ff,%d7
3599 /* ASSERT: a0 = contents of Lconsole_font */
3600 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3601 addl %d7,%a1 /* a1 = points to char image */
3602
3603 /*
3604 * At this point we make a shift in register usage
3605 * d0 = pixel coordinate, x
3606 * d1 = pixel coordinate, y
3607 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3608 * d3 = font scan line data (8 pixels)
3609 * d6 = count down for the font's pixel width (8)
3610 * d7 = count down for the font's pixel count in height
3611 */
3612 /* ASSERT: a0 = contents of Lconsole_font */
3613 mulul %a0@(FONT_DESC_WIDTH),%d0
3614 mulul %a0@(FONT_DESC_HEIGHT),%d1
3615 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3616 subq #1,%d7
3617L(console_read_char_scanline):
3618 moveb %a1@+,%d3
3619
3620 /* ASSERT: a0 = contents of Lconsole_font */
3621 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3622 subql #1,%d6
3623
3624L(console_do_font_scanline):
3625 lslb #1,%d3
3626 scsb %d2 /* convert 1 bit into a byte */
3627 console_plot_pixel %d0,%d1,%d2
3628 addq #1,%d0
3629 dbra %d6,L(console_do_font_scanline)
3630
3631 /* ASSERT: a0 = contents of Lconsole_font */
3632 subl %a0@(FONT_DESC_WIDTH),%d0
3633 addq #1,%d1
3634 dbra %d7,L(console_read_char_scanline)
3635
3636L(console_exit):
3637func_return console_putc
3638
3639 /*
3640 * Input:
3641 * d0 = x coordinate
3642 * d1 = y coordinate
3643 * d2 = (bit 0) 1/0 for white/black (!)
3644 * All registers are preserved
3645 */
3646func_start console_plot_pixel,%a0-%a1/%d0-%d4
3647
3648 movel %pc@(L(mac_videobase)),%a1
3649 movel %pc@(L(mac_videodepth)),%d3
3650 movel ARG1,%d0
3651 movel ARG2,%d1
3652 mulul %pc@(L(mac_rowbytes)),%d1
3653 movel ARG3,%d2
3654
3655 /*
3656 * Register usage:
3657 * d0 = x coord becomes byte offset into frame buffer
3658 * d1 = y coord
3659 * d2 = black or white (0/1)
3660 * d3 = video depth
3661 * d4 = temp of x (d0) for many bit depths
3662 */
3663L(test_1bit):
3664 cmpb #1,%d3
3665 jbne L(test_2bit)
3666 movel %d0,%d4 /* we need the low order 3 bits! */
3667 divul #8,%d0
3668 addal %d0,%a1
3669 addal %d1,%a1
3670 andb #7,%d4
3671 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3672 andb #1,%d2
3673 jbne L(white_1)
3674 bsetb %d4,%a1@
3675 jbra L(console_plot_pixel_exit)
3676L(white_1):
3677 bclrb %d4,%a1@
3678 jbra L(console_plot_pixel_exit)
3679
3680L(test_2bit):
3681 cmpb #2,%d3
3682 jbne L(test_4bit)
3683 movel %d0,%d4 /* we need the low order 2 bits! */
3684 divul #4,%d0
3685 addal %d0,%a1
3686 addal %d1,%a1
3687 andb #3,%d4
3688 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3689 lsll #1,%d4 /* ! */
3690 andb #1,%d2
3691 jbne L(white_2)
3692 bsetb %d4,%a1@
3693 addq #1,%d4
3694 bsetb %d4,%a1@
3695 jbra L(console_plot_pixel_exit)
3696L(white_2):
3697 bclrb %d4,%a1@
3698 addq #1,%d4
3699 bclrb %d4,%a1@
3700 jbra L(console_plot_pixel_exit)
3701
3702L(test_4bit):
3703 cmpb #4,%d3
3704 jbne L(test_8bit)
3705 movel %d0,%d4 /* we need the low order bit! */
3706 divul #2,%d0
3707 addal %d0,%a1
3708 addal %d1,%a1
3709 andb #1,%d4
3710 eorb #1,%d4
3711 lsll #2,%d4 /* ! */
3712 andb #1,%d2
3713 jbne L(white_4)
3714 bsetb %d4,%a1@
3715 addq #1,%d4
3716 bsetb %d4,%a1@
3717 addq #1,%d4
3718 bsetb %d4,%a1@
3719 addq #1,%d4
3720 bsetb %d4,%a1@
3721 jbra L(console_plot_pixel_exit)
3722L(white_4):
3723 bclrb %d4,%a1@
3724 addq #1,%d4
3725 bclrb %d4,%a1@
3726 addq #1,%d4
3727 bclrb %d4,%a1@
3728 addq #1,%d4
3729 bclrb %d4,%a1@
3730 jbra L(console_plot_pixel_exit)
3731
3732L(test_8bit):
3733 cmpb #8,%d3
3734 jbne L(test_16bit)
3735 addal %d0,%a1
3736 addal %d1,%a1
3737 andb #1,%d2
3738 jbne L(white_8)
3739 moveb #0xff,%a1@
3740 jbra L(console_plot_pixel_exit)
3741L(white_8):
3742 clrb %a1@
3743 jbra L(console_plot_pixel_exit)
3744
3745L(test_16bit):
3746 cmpb #16,%d3
3747 jbne L(console_plot_pixel_exit)
3748 addal %d0,%a1
3749 addal %d0,%a1
3750 addal %d1,%a1
3751 andb #1,%d2
3752 jbne L(white_16)
3753 clrw %a1@
3754 jbra L(console_plot_pixel_exit)
3755L(white_16):
3756 movew #0x0fff,%a1@
3757 jbra L(console_plot_pixel_exit)
3758
3759L(console_plot_pixel_exit):
3760func_return console_plot_pixel
3761#endif /* CONSOLE_DEBUG */
3762
3763
3764__INITDATA
3765 .align 4
3766
3767m68k_init_mapped_size:
3768 .long 0
3769
3770#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3771 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3772L(custom):
3773L(iobase):
3774 .long 0
3775#endif
3776
3777#ifdef CONSOLE_DEBUG
3778L(console_globals):
3779 .long 0 /* cursor column */
3780 .long 0 /* cursor row */
3781 .long 0 /* max num columns */
3782 .long 0 /* max num rows */
3783 .long 0 /* left edge */
3784L(console_font):
3785 .long 0 /* pointer to console font (struct font_desc) */
3786L(console_font_data):
3787 .long 0 /* pointer to console font data */
3788#endif /* CONSOLE_DEBUG */
3789
3790#if defined(MMU_PRINT)
3791L(mmu_print_data):
3792 .long 0 /* valid flag */
3793 .long 0 /* start logical */
3794 .long 0 /* next logical */
3795 .long 0 /* start physical */
3796 .long 0 /* next physical */
3797#endif /* MMU_PRINT */
3798
3799L(cputype):
3800 .long 0
3801L(mmu_cached_pointer_tables):
3802 .long 0
3803L(mmu_num_pointer_tables):
3804 .long 0
3805L(phys_kernel_start):
3806 .long 0
3807L(kernel_end):
3808 .long 0
3809L(memory_start):
3810 .long 0
3811L(kernel_pgdir_ptr):
3812 .long 0
3813L(temp_mmap_mem):
3814 .long 0
3815
3816#if defined (CONFIG_MVME147)
3817M147_SCC_CTRL_A = 0xfffe3002
3818M147_SCC_DATA_A = 0xfffe3003
3819#endif
3820
3821#if defined (CONFIG_MVME16x)
3822M162_SCC_CTRL_A = 0xfff45005
3823M167_CYCAR = 0xfff450ee
3824M167_CYIER = 0xfff45011
3825M167_CYLICR = 0xfff45026
3826M167_CYTEOIR = 0xfff45085
3827M167_CYTDR = 0xfff450f8
3828M167_PCSCCMICR = 0xfff4201d
3829M167_PCSCCTICR = 0xfff4201e
3830M167_PCSCCRICR = 0xfff4201f
3831M167_PCTPIACKR = 0xfff42025
3832#endif
3833
3834#if defined (CONFIG_BVME6000)
3835BVME_SCC_CTRL_A = 0xffb0000b
3836BVME_SCC_DATA_A = 0xffb0000f
3837#endif
3838
3839#if defined(CONFIG_MAC)
3840L(mac_videobase):
3841 .long 0
3842L(mac_videodepth):
3843 .long 0
3844L(mac_dimensions):
3845 .long 0
3846L(mac_rowbytes):
3847 .long 0
3848L(mac_sccbase):
3849 .long 0
3850#endif /* CONFIG_MAC */
3851
3852#if defined (CONFIG_APOLLO)
3853LSRB0 = 0x10412
3854LTHRB0 = 0x10416
3855LCPUCTRL = 0x10100
3856#endif
3857
3858#if defined(CONFIG_HP300)
3859DCADATA = 0x11
3860DCALSR = 0x1b
3861APCIDATA = 0x00
3862APCILSR = 0x14
3863L(uartbase):
3864 .long 0
3865L(uart_scode):
3866 .long -1
3867#endif
3868
3869__FINIT
3870 .data
3871 .align 4
3872
3873availmem:
3874 .long 0
3875m68k_pgtable_cachemode:
3876 .long 0
3877m68k_supervisor_cachemode:
3878 .long 0
3879#if defined(CONFIG_MVME16x)
3880mvme_bdid:
3881 .long 0,0,0,0,0,0,0,0
3882#endif
3883#if defined(CONFIG_Q40)
3884q40_mem_cptr:
3885 .long 0
3886L(q40_do_debug):
3887 .long 0
3888#endif
3889
3890#if defined(CONFIG_VIRT)
3891GF_PUT_CHAR = 0x00
3892L(virt_gf_tty_base):
3893 .long 0
3894#endif /* CONFIG_VIRT */
3895

source code of linux/arch/m68k/kernel/head.S