1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Cell Broadband Engine Performance Monitor
4 *
5 * (C) Copyright IBM Corporation 2001,2006
6 *
7 * Author:
8 * David Erb (djerb@us.ibm.com)
9 * Kevin Corry (kevcorry@us.ibm.com)
10 */
11
12#include <linux/interrupt.h>
13#include <linux/irqdomain.h>
14#include <linux/types.h>
15#include <linux/export.h>
16#include <asm/io.h>
17#include <asm/irq_regs.h>
18#include <asm/machdep.h>
19#include <asm/pmc.h>
20#include <asm/reg.h>
21#include <asm/spu.h>
22#include <asm/cell-regs.h>
23
24#include "interrupt.h"
25
26/*
27 * When writing to write-only mmio addresses, save a shadow copy. All of the
28 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
29 * pmd_regs.
30 */
31
32#define WRITE_WO_MMIO(reg, x) \
33 do { \
34 u32 _x = (x); \
35 struct cbe_pmd_regs __iomem *pmd_regs; \
36 struct cbe_pmd_shadow_regs *shadow_regs; \
37 pmd_regs = cbe_get_cpu_pmd_regs(cpu); \
38 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
39 out_be64(&(pmd_regs->reg), (((u64)_x) << 32)); \
40 shadow_regs->reg = _x; \
41 } while (0)
42
43#define READ_SHADOW_REG(val, reg) \
44 do { \
45 struct cbe_pmd_shadow_regs *shadow_regs; \
46 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
47 (val) = shadow_regs->reg; \
48 } while (0)
49
50#define READ_MMIO_UPPER32(val, reg) \
51 do { \
52 struct cbe_pmd_regs __iomem *pmd_regs; \
53 pmd_regs = cbe_get_cpu_pmd_regs(cpu); \
54 (val) = (u32)(in_be64(&pmd_regs->reg) >> 32); \
55 } while (0)
56
57/*
58 * Physical counter registers.
59 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
60 */
61
62u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
63{
64 u32 val_in_latch, val = 0;
65
66 if (phys_ctr < NR_PHYS_CTRS) {
67 READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
68
69 /* Read the latch or the actual counter, whichever is newer. */
70 if (val_in_latch & (1 << phys_ctr)) {
71 READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
72 } else {
73 READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
74 }
75 }
76
77 return val;
78}
79EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
80
81void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
82{
83 struct cbe_pmd_shadow_regs *shadow_regs;
84 u32 pm_ctrl;
85
86 if (phys_ctr < NR_PHYS_CTRS) {
87 /* Writing to a counter only writes to a hardware latch.
88 * The new value is not propagated to the actual counter
89 * until the performance monitor is enabled.
90 */
91 WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
92
93 pm_ctrl = cbe_read_pm(cpu, pm_control);
94 if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
95 /* The counters are already active, so we need to
96 * rewrite the pm_control register to "re-enable"
97 * the PMU.
98 */
99 cbe_write_pm(cpu, pm_control, pm_ctrl);
100 } else {
101 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
102 shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
103 }
104 }
105}
106EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
107
108/*
109 * "Logical" counter registers.
110 * These will read/write 16-bits or 32-bits depending on the
111 * current size of the counter. Counters 4 - 7 are always 16-bit.
112 */
113
114u32 cbe_read_ctr(u32 cpu, u32 ctr)
115{
116 u32 val;
117 u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
118
119 val = cbe_read_phys_ctr(cpu, phys_ctr);
120
121 if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
122 val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
123
124 return val;
125}
126EXPORT_SYMBOL_GPL(cbe_read_ctr);
127
128void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
129{
130 u32 phys_ctr;
131 u32 phys_val;
132
133 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
134
135 if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
136 phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
137
138 if (ctr < NR_PHYS_CTRS)
139 val = (val << 16) | (phys_val & 0xffff);
140 else
141 val = (val & 0xffff) | (phys_val & 0xffff0000);
142 }
143
144 cbe_write_phys_ctr(cpu, phys_ctr, val);
145}
146EXPORT_SYMBOL_GPL(cbe_write_ctr);
147
148/*
149 * Counter-control registers.
150 * Each "logical" counter has a corresponding control register.
151 */
152
153u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
154{
155 u32 pm07_control = 0;
156
157 if (ctr < NR_CTRS)
158 READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
159
160 return pm07_control;
161}
162EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
163
164void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
165{
166 if (ctr < NR_CTRS)
167 WRITE_WO_MMIO(pm07_control[ctr], val);
168}
169EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
170
171/*
172 * Other PMU control registers. Most of these are write-only.
173 */
174
175u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
176{
177 u32 val = 0;
178
179 switch (reg) {
180 case group_control:
181 READ_SHADOW_REG(val, group_control);
182 break;
183
184 case debug_bus_control:
185 READ_SHADOW_REG(val, debug_bus_control);
186 break;
187
188 case trace_address:
189 READ_MMIO_UPPER32(val, trace_address);
190 break;
191
192 case ext_tr_timer:
193 READ_SHADOW_REG(val, ext_tr_timer);
194 break;
195
196 case pm_status:
197 READ_MMIO_UPPER32(val, pm_status);
198 break;
199
200 case pm_control:
201 READ_SHADOW_REG(val, pm_control);
202 break;
203
204 case pm_interval:
205 READ_MMIO_UPPER32(val, pm_interval);
206 break;
207
208 case pm_start_stop:
209 READ_SHADOW_REG(val, pm_start_stop);
210 break;
211 }
212
213 return val;
214}
215EXPORT_SYMBOL_GPL(cbe_read_pm);
216
217void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
218{
219 switch (reg) {
220 case group_control:
221 WRITE_WO_MMIO(group_control, val);
222 break;
223
224 case debug_bus_control:
225 WRITE_WO_MMIO(debug_bus_control, val);
226 break;
227
228 case trace_address:
229 WRITE_WO_MMIO(trace_address, val);
230 break;
231
232 case ext_tr_timer:
233 WRITE_WO_MMIO(ext_tr_timer, val);
234 break;
235
236 case pm_status:
237 WRITE_WO_MMIO(pm_status, val);
238 break;
239
240 case pm_control:
241 WRITE_WO_MMIO(pm_control, val);
242 break;
243
244 case pm_interval:
245 WRITE_WO_MMIO(pm_interval, val);
246 break;
247
248 case pm_start_stop:
249 WRITE_WO_MMIO(pm_start_stop, val);
250 break;
251 }
252}
253EXPORT_SYMBOL_GPL(cbe_write_pm);
254
255/*
256 * Get/set the size of a physical counter to either 16 or 32 bits.
257 */
258
259u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
260{
261 u32 pm_ctrl, size = 0;
262
263 if (phys_ctr < NR_PHYS_CTRS) {
264 pm_ctrl = cbe_read_pm(cpu, pm_control);
265 size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
266 }
267
268 return size;
269}
270EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
271
272void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
273{
274 u32 pm_ctrl;
275
276 if (phys_ctr < NR_PHYS_CTRS) {
277 pm_ctrl = cbe_read_pm(cpu, pm_control);
278 switch (ctr_size) {
279 case 16:
280 pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
281 break;
282
283 case 32:
284 pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
285 break;
286 }
287 cbe_write_pm(cpu, pm_control, pm_ctrl);
288 }
289}
290EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
291
292/*
293 * Enable/disable the entire performance monitoring unit.
294 * When we enable the PMU, all pending writes to counters get committed.
295 */
296
297void cbe_enable_pm(u32 cpu)
298{
299 struct cbe_pmd_shadow_regs *shadow_regs;
300 u32 pm_ctrl;
301
302 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
303 shadow_regs->counter_value_in_latch = 0;
304
305 pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
306 cbe_write_pm(cpu, pm_control, pm_ctrl);
307}
308EXPORT_SYMBOL_GPL(cbe_enable_pm);
309
310void cbe_disable_pm(u32 cpu)
311{
312 u32 pm_ctrl;
313 pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
314 cbe_write_pm(cpu, pm_control, pm_ctrl);
315}
316EXPORT_SYMBOL_GPL(cbe_disable_pm);
317
318/*
319 * Reading from the trace_buffer.
320 * The trace buffer is two 64-bit registers. Reading from
321 * the second half automatically increments the trace_address.
322 */
323
324void cbe_read_trace_buffer(u32 cpu, u64 *buf)
325{
326 struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
327
328 *buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
329 *buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
330}
331EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
332
333/*
334 * Enabling/disabling interrupts for the entire performance monitoring unit.
335 */
336
337u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
338{
339 /* Reading pm_status clears the interrupt bits. */
340 return cbe_read_pm(cpu, pm_status);
341}
342EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
343
344void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
345{
346 /* Set which node and thread will handle the next interrupt. */
347 iic_set_interrupt_routing(cpu, thread, priority: 0);
348
349 /* Enable the interrupt bits in the pm_status register. */
350 if (mask)
351 cbe_write_pm(cpu, pm_status, mask);
352}
353EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
354
355void cbe_disable_pm_interrupts(u32 cpu)
356{
357 cbe_get_and_clear_pm_interrupts(cpu);
358 cbe_write_pm(cpu, pm_status, 0);
359}
360EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
361
362static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
363{
364 perf_irq(get_irq_regs());
365 return IRQ_HANDLED;
366}
367
368static int __init cbe_init_pm_irq(void)
369{
370 unsigned int irq;
371 int rc, node;
372
373 for_each_online_node(node) {
374 irq = irq_create_mapping(NULL, hwirq: IIC_IRQ_IOEX_PMI |
375 (node << IIC_IRQ_NODE_SHIFT));
376 if (!irq) {
377 printk("ERROR: Unable to allocate irq for node %d\n",
378 node);
379 return -EINVAL;
380 }
381
382 rc = request_irq(irq, handler: cbe_pm_irq,
383 flags: 0, name: "cbe-pmu-0", NULL);
384 if (rc) {
385 printk("ERROR: Request for irq on node %d failed\n",
386 node);
387 return rc;
388 }
389 }
390
391 return 0;
392}
393machine_arch_initcall(cell, cbe_init_pm_irq);
394
395void cbe_sync_irq(int node)
396{
397 unsigned int irq;
398
399 irq = irq_find_mapping(NULL,
400 hwirq: IIC_IRQ_IOEX_PMI
401 | (node << IIC_IRQ_NODE_SHIFT));
402
403 if (!irq) {
404 printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
405 "for node %d\n", irq, node);
406 return;
407 }
408
409 synchronize_irq(irq);
410}
411EXPORT_SYMBOL_GPL(cbe_sync_irq);
412
413

source code of linux/arch/powerpc/platforms/cell/pmu.c