| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * PowerNV Platform dependent EEH operations |
| 4 | * |
| 5 | * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. |
| 6 | */ |
| 7 | |
| 8 | #include <linux/atomic.h> |
| 9 | #include <linux/debugfs.h> |
| 10 | #include <linux/delay.h> |
| 11 | #include <linux/export.h> |
| 12 | #include <linux/init.h> |
| 13 | #include <linux/interrupt.h> |
| 14 | #include <linux/irqdomain.h> |
| 15 | #include <linux/list.h> |
| 16 | #include <linux/msi.h> |
| 17 | #include <linux/of.h> |
| 18 | #include <linux/pci.h> |
| 19 | #include <linux/proc_fs.h> |
| 20 | #include <linux/rbtree.h> |
| 21 | #include <linux/sched.h> |
| 22 | #include <linux/seq_file.h> |
| 23 | #include <linux/spinlock.h> |
| 24 | |
| 25 | #include <asm/eeh.h> |
| 26 | #include <asm/eeh_event.h> |
| 27 | #include <asm/firmware.h> |
| 28 | #include <asm/io.h> |
| 29 | #include <asm/iommu.h> |
| 30 | #include <asm/machdep.h> |
| 31 | #include <asm/msi_bitmap.h> |
| 32 | #include <asm/opal.h> |
| 33 | #include <asm/ppc-pci.h> |
| 34 | #include <asm/pnv-pci.h> |
| 35 | |
| 36 | #include "powernv.h" |
| 37 | #include "pci.h" |
| 38 | #include "../../../../drivers/pci/pci.h" |
| 39 | |
| 40 | static int eeh_event_irq = -EINVAL; |
| 41 | |
| 42 | static void pnv_pcibios_bus_add_device(struct pci_dev *pdev) |
| 43 | { |
| 44 | dev_dbg(&pdev->dev, "EEH: Setting up device\n" ); |
| 45 | eeh_probe_device(pdev); |
| 46 | } |
| 47 | |
| 48 | static irqreturn_t pnv_eeh_event(int irq, void *data) |
| 49 | { |
| 50 | /* |
| 51 | * We simply send a special EEH event if EEH has been |
| 52 | * enabled. We don't care about EEH events until we've |
| 53 | * finished processing the outstanding ones. Event processing |
| 54 | * gets unmasked in next_error() if EEH is enabled. |
| 55 | */ |
| 56 | disable_irq_nosync(irq); |
| 57 | |
| 58 | if (eeh_enabled()) |
| 59 | eeh_send_failure_event(NULL); |
| 60 | |
| 61 | return IRQ_HANDLED; |
| 62 | } |
| 63 | |
| 64 | #ifdef CONFIG_DEBUG_FS |
| 65 | static ssize_t pnv_eeh_ei_write(struct file *filp, |
| 66 | const char __user *user_buf, |
| 67 | size_t count, loff_t *ppos) |
| 68 | { |
| 69 | struct pci_controller *hose = filp->private_data; |
| 70 | struct eeh_pe *pe; |
| 71 | int pe_no, type, func; |
| 72 | unsigned long addr, mask; |
| 73 | char buf[50]; |
| 74 | int ret; |
| 75 | |
| 76 | if (!eeh_ops || !eeh_ops->err_inject) |
| 77 | return -ENXIO; |
| 78 | |
| 79 | /* Copy over argument buffer */ |
| 80 | ret = simple_write_to_buffer(to: buf, available: sizeof(buf), ppos, from: user_buf, count); |
| 81 | if (!ret) |
| 82 | return -EFAULT; |
| 83 | |
| 84 | /* Retrieve parameters */ |
| 85 | ret = sscanf(buf, "%x:%x:%x:%lx:%lx" , |
| 86 | &pe_no, &type, &func, &addr, &mask); |
| 87 | if (ret != 5) |
| 88 | return -EINVAL; |
| 89 | |
| 90 | /* Retrieve PE */ |
| 91 | pe = eeh_pe_get(hose, pe_no); |
| 92 | if (!pe) |
| 93 | return -ENODEV; |
| 94 | |
| 95 | /* Do error injection */ |
| 96 | ret = eeh_ops->err_inject(pe, type, func, addr, mask); |
| 97 | return ret < 0 ? ret : count; |
| 98 | } |
| 99 | |
| 100 | static const struct file_operations pnv_eeh_ei_fops = { |
| 101 | .open = simple_open, |
| 102 | .write = pnv_eeh_ei_write, |
| 103 | }; |
| 104 | |
| 105 | static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val) |
| 106 | { |
| 107 | struct pci_controller *hose = data; |
| 108 | struct pnv_phb *phb = hose->private_data; |
| 109 | |
| 110 | out_be64(phb->regs + offset, val); |
| 111 | return 0; |
| 112 | } |
| 113 | |
| 114 | static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val) |
| 115 | { |
| 116 | struct pci_controller *hose = data; |
| 117 | struct pnv_phb *phb = hose->private_data; |
| 118 | |
| 119 | *val = in_be64(phb->regs + offset); |
| 120 | return 0; |
| 121 | } |
| 122 | |
| 123 | #define PNV_EEH_DBGFS_ENTRY(name, reg) \ |
| 124 | static int pnv_eeh_dbgfs_set_##name(void *data, u64 val) \ |
| 125 | { \ |
| 126 | return pnv_eeh_dbgfs_set(data, reg, val); \ |
| 127 | } \ |
| 128 | \ |
| 129 | static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val) \ |
| 130 | { \ |
| 131 | return pnv_eeh_dbgfs_get(data, reg, val); \ |
| 132 | } \ |
| 133 | \ |
| 134 | DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name, \ |
| 135 | pnv_eeh_dbgfs_get_##name, \ |
| 136 | pnv_eeh_dbgfs_set_##name, \ |
| 137 | "0x%llx\n") |
| 138 | |
| 139 | PNV_EEH_DBGFS_ENTRY(outb, 0xD10); |
| 140 | PNV_EEH_DBGFS_ENTRY(inbA, 0xD90); |
| 141 | PNV_EEH_DBGFS_ENTRY(inbB, 0xE10); |
| 142 | |
| 143 | #endif /* CONFIG_DEBUG_FS */ |
| 144 | |
| 145 | static void pnv_eeh_enable_phbs(void) |
| 146 | { |
| 147 | struct pci_controller *hose; |
| 148 | struct pnv_phb *phb; |
| 149 | |
| 150 | list_for_each_entry(hose, &hose_list, list_node) { |
| 151 | phb = hose->private_data; |
| 152 | /* |
| 153 | * If EEH is enabled, we're going to rely on that. |
| 154 | * Otherwise, we restore to conventional mechanism |
| 155 | * to clear frozen PE during PCI config access. |
| 156 | */ |
| 157 | if (eeh_enabled()) |
| 158 | phb->flags |= PNV_PHB_FLAG_EEH; |
| 159 | else |
| 160 | phb->flags &= ~PNV_PHB_FLAG_EEH; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | /** |
| 165 | * pnv_eeh_post_init - EEH platform dependent post initialization |
| 166 | * |
| 167 | * EEH platform dependent post initialization on powernv. When |
| 168 | * the function is called, the EEH PEs and devices should have |
| 169 | * been built. If the I/O cache staff has been built, EEH is |
| 170 | * ready to supply service. |
| 171 | */ |
| 172 | int pnv_eeh_post_init(void) |
| 173 | { |
| 174 | struct pci_controller *hose; |
| 175 | struct pnv_phb *phb; |
| 176 | int ret = 0; |
| 177 | |
| 178 | eeh_show_enabled(); |
| 179 | |
| 180 | /* Register OPAL event notifier */ |
| 181 | eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR)); |
| 182 | if (eeh_event_irq < 0) { |
| 183 | pr_err("%s: Can't register OPAL event interrupt (%d)\n" , |
| 184 | __func__, eeh_event_irq); |
| 185 | return eeh_event_irq; |
| 186 | } |
| 187 | |
| 188 | ret = request_irq(irq: eeh_event_irq, handler: pnv_eeh_event, |
| 189 | flags: IRQ_TYPE_LEVEL_HIGH, name: "opal-eeh" , NULL); |
| 190 | if (ret < 0) { |
| 191 | irq_dispose_mapping(virq: eeh_event_irq); |
| 192 | pr_err("%s: Can't request OPAL event interrupt (%d)\n" , |
| 193 | __func__, eeh_event_irq); |
| 194 | return ret; |
| 195 | } |
| 196 | |
| 197 | if (!eeh_enabled()) |
| 198 | disable_irq(irq: eeh_event_irq); |
| 199 | |
| 200 | pnv_eeh_enable_phbs(); |
| 201 | |
| 202 | list_for_each_entry(hose, &hose_list, list_node) { |
| 203 | phb = hose->private_data; |
| 204 | |
| 205 | /* Create debugfs entries */ |
| 206 | #ifdef CONFIG_DEBUG_FS |
| 207 | if (phb->has_dbgfs || !phb->dbgfs) |
| 208 | continue; |
| 209 | |
| 210 | phb->has_dbgfs = 1; |
| 211 | debugfs_create_file("err_injct" , 0200, |
| 212 | phb->dbgfs, hose, |
| 213 | &pnv_eeh_ei_fops); |
| 214 | |
| 215 | debugfs_create_file("err_injct_outbound" , 0600, |
| 216 | phb->dbgfs, hose, |
| 217 | &pnv_eeh_dbgfs_ops_outb); |
| 218 | debugfs_create_file("err_injct_inboundA" , 0600, |
| 219 | phb->dbgfs, hose, |
| 220 | &pnv_eeh_dbgfs_ops_inbA); |
| 221 | debugfs_create_file("err_injct_inboundB" , 0600, |
| 222 | phb->dbgfs, hose, |
| 223 | &pnv_eeh_dbgfs_ops_inbB); |
| 224 | #endif /* CONFIG_DEBUG_FS */ |
| 225 | } |
| 226 | |
| 227 | return ret; |
| 228 | } |
| 229 | |
| 230 | static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap) |
| 231 | { |
| 232 | int pos = PCI_CAPABILITY_LIST; |
| 233 | int cnt = 48; /* Maximal number of capabilities */ |
| 234 | u32 status, id; |
| 235 | |
| 236 | if (!pdn) |
| 237 | return 0; |
| 238 | |
| 239 | /* Check if the device supports capabilities */ |
| 240 | pnv_pci_cfg_read(pdn, PCI_STATUS, size: 2, val: &status); |
| 241 | if (!(status & PCI_STATUS_CAP_LIST)) |
| 242 | return 0; |
| 243 | |
| 244 | while (cnt--) { |
| 245 | pnv_pci_cfg_read(pdn, where: pos, size: 1, val: &pos); |
| 246 | if (pos < 0x40) |
| 247 | break; |
| 248 | |
| 249 | pos &= ~3; |
| 250 | pnv_pci_cfg_read(pdn, where: pos + PCI_CAP_LIST_ID, size: 1, val: &id); |
| 251 | if (id == 0xff) |
| 252 | break; |
| 253 | |
| 254 | /* Found */ |
| 255 | if (id == cap) |
| 256 | return pos; |
| 257 | |
| 258 | /* Next one */ |
| 259 | pos += PCI_CAP_LIST_NEXT; |
| 260 | } |
| 261 | |
| 262 | return 0; |
| 263 | } |
| 264 | |
| 265 | static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap) |
| 266 | { |
| 267 | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| 268 | u32 ; |
| 269 | int pos = 256, ttl = (4096 - 256) / 8; |
| 270 | |
| 271 | if (!edev || !edev->pcie_cap) |
| 272 | return 0; |
| 273 | if (pnv_pci_cfg_read(pdn, where: pos, size: 4, val: &header) != PCIBIOS_SUCCESSFUL) |
| 274 | return 0; |
| 275 | else if (!header) |
| 276 | return 0; |
| 277 | |
| 278 | while (ttl-- > 0) { |
| 279 | if (PCI_EXT_CAP_ID(header) == cap && pos) |
| 280 | return pos; |
| 281 | |
| 282 | pos = PCI_EXT_CAP_NEXT(header); |
| 283 | if (pos < 256) |
| 284 | break; |
| 285 | |
| 286 | if (pnv_pci_cfg_read(pdn, where: pos, size: 4, val: &header) != PCIBIOS_SUCCESSFUL) |
| 287 | break; |
| 288 | } |
| 289 | |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | static struct eeh_pe *pnv_eeh_get_upstream_pe(struct pci_dev *pdev) |
| 294 | { |
| 295 | struct pci_controller *hose = pdev->bus->sysdata; |
| 296 | struct pnv_phb *phb = hose->private_data; |
| 297 | struct pci_dev *parent = pdev->bus->self; |
| 298 | |
| 299 | #ifdef CONFIG_PCI_IOV |
| 300 | /* for VFs we use the PF's PE as the upstream PE */ |
| 301 | if (pdev->is_virtfn) |
| 302 | parent = pdev->physfn; |
| 303 | #endif |
| 304 | |
| 305 | /* otherwise use the PE of our parent bridge */ |
| 306 | if (parent) { |
| 307 | struct pnv_ioda_pe *ioda_pe = pnv_ioda_get_pe(dev: parent); |
| 308 | |
| 309 | return eeh_pe_get(phb->hose, ioda_pe->pe_number); |
| 310 | } |
| 311 | |
| 312 | return NULL; |
| 313 | } |
| 314 | |
| 315 | /** |
| 316 | * pnv_eeh_probe - Do probe on PCI device |
| 317 | * @pdev: pci_dev to probe |
| 318 | * |
| 319 | * Create, or find the existing, eeh_dev for this pci_dev. |
| 320 | */ |
| 321 | static struct eeh_dev *pnv_eeh_probe(struct pci_dev *pdev) |
| 322 | { |
| 323 | struct pci_dn *pdn = pci_get_pdn(pdev); |
| 324 | struct pci_controller *hose = pdn->phb; |
| 325 | struct pnv_phb *phb = hose->private_data; |
| 326 | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| 327 | struct eeh_pe *upstream_pe; |
| 328 | uint32_t pcie_flags; |
| 329 | int ret; |
| 330 | int config_addr = (pdn->busno << 8) | (pdn->devfn); |
| 331 | |
| 332 | /* |
| 333 | * When probing the root bridge, which doesn't have any |
| 334 | * subordinate PCI devices. We don't have OF node for |
| 335 | * the root bridge. So it's not reasonable to continue |
| 336 | * the probing. |
| 337 | */ |
| 338 | if (!edev || edev->pe) |
| 339 | return NULL; |
| 340 | |
| 341 | /* already configured? */ |
| 342 | if (edev->pdev) { |
| 343 | pr_debug("%s: found existing edev for %04x:%02x:%02x.%01x\n" , |
| 344 | __func__, hose->global_number, config_addr >> 8, |
| 345 | PCI_SLOT(config_addr), PCI_FUNC(config_addr)); |
| 346 | return edev; |
| 347 | } |
| 348 | |
| 349 | /* Skip for PCI-ISA bridge */ |
| 350 | if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) |
| 351 | return NULL; |
| 352 | |
| 353 | eeh_edev_dbg(edev, "Probing device\n" ); |
| 354 | |
| 355 | /* Initialize eeh device */ |
| 356 | edev->mode &= 0xFFFFFF00; |
| 357 | edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); |
| 358 | edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP); |
| 359 | edev->af_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF); |
| 360 | edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); |
| 361 | if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { |
| 362 | edev->mode |= EEH_DEV_BRIDGE; |
| 363 | if (edev->pcie_cap) { |
| 364 | pnv_pci_cfg_read(pdn, where: edev->pcie_cap + PCI_EXP_FLAGS, |
| 365 | size: 2, val: &pcie_flags); |
| 366 | pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; |
| 367 | if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) |
| 368 | edev->mode |= EEH_DEV_ROOT_PORT; |
| 369 | else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) |
| 370 | edev->mode |= EEH_DEV_DS_PORT; |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | edev->pe_config_addr = phb->ioda.pe_rmap[config_addr]; |
| 375 | |
| 376 | upstream_pe = pnv_eeh_get_upstream_pe(pdev); |
| 377 | |
| 378 | /* Create PE */ |
| 379 | ret = eeh_pe_tree_insert(edev, upstream_pe); |
| 380 | if (ret) { |
| 381 | eeh_edev_warn(edev, "Failed to add device to PE (code %d)\n" , ret); |
| 382 | return NULL; |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * If the PE contains any one of following adapters, the |
| 387 | * PCI config space can't be accessed when dumping EEH log. |
| 388 | * Otherwise, we will run into fenced PHB caused by shortage |
| 389 | * of outbound credits in the adapter. The PCI config access |
| 390 | * should be blocked until PE reset. MMIO access is dropped |
| 391 | * by hardware certainly. In order to drop PCI config requests, |
| 392 | * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which |
| 393 | * will be checked in the backend for PE state retrieval. If |
| 394 | * the PE becomes frozen for the first time and the flag has |
| 395 | * been set for the PE, we will set EEH_PE_CFG_BLOCKED for |
| 396 | * that PE to block its config space. |
| 397 | * |
| 398 | * Broadcom BCM5718 2-ports NICs (14e4:1656) |
| 399 | * Broadcom Austin 4-ports NICs (14e4:1657) |
| 400 | * Broadcom Shiner 4-ports 1G NICs (14e4:168a) |
| 401 | * Broadcom Shiner 2-ports 10G NICs (14e4:168e) |
| 402 | */ |
| 403 | if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && |
| 404 | pdn->device_id == 0x1656) || |
| 405 | (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && |
| 406 | pdn->device_id == 0x1657) || |
| 407 | (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && |
| 408 | pdn->device_id == 0x168a) || |
| 409 | (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && |
| 410 | pdn->device_id == 0x168e)) |
| 411 | edev->pe->state |= EEH_PE_CFG_RESTRICTED; |
| 412 | |
| 413 | /* |
| 414 | * Cache the PE primary bus, which can't be fetched when |
| 415 | * full hotplug is in progress. In that case, all child |
| 416 | * PCI devices of the PE are expected to be removed prior |
| 417 | * to PE reset. |
| 418 | */ |
| 419 | if (!(edev->pe->state & EEH_PE_PRI_BUS)) { |
| 420 | edev->pe->bus = pci_find_bus(domain: hose->global_number, |
| 421 | busnr: pdn->busno); |
| 422 | if (edev->pe->bus) |
| 423 | edev->pe->state |= EEH_PE_PRI_BUS; |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * Enable EEH explicitly so that we will do EEH check |
| 428 | * while accessing I/O stuff |
| 429 | */ |
| 430 | if (!eeh_has_flag(EEH_ENABLED)) { |
| 431 | enable_irq(irq: eeh_event_irq); |
| 432 | pnv_eeh_enable_phbs(); |
| 433 | eeh_add_flag(EEH_ENABLED); |
| 434 | } |
| 435 | |
| 436 | /* Save memory bars */ |
| 437 | eeh_save_bars(edev); |
| 438 | |
| 439 | eeh_edev_dbg(edev, "EEH enabled on device\n" ); |
| 440 | |
| 441 | return edev; |
| 442 | } |
| 443 | |
| 444 | /** |
| 445 | * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable |
| 446 | * @pe: EEH PE |
| 447 | * @option: operation to be issued |
| 448 | * |
| 449 | * The function is used to control the EEH functionality globally. |
| 450 | * Currently, following options are support according to PAPR: |
| 451 | * Enable EEH, Disable EEH, Enable MMIO and Enable DMA |
| 452 | */ |
| 453 | static int pnv_eeh_set_option(struct eeh_pe *pe, int option) |
| 454 | { |
| 455 | struct pci_controller *hose = pe->phb; |
| 456 | struct pnv_phb *phb = hose->private_data; |
| 457 | bool freeze_pe = false; |
| 458 | int opt; |
| 459 | s64 rc; |
| 460 | |
| 461 | switch (option) { |
| 462 | case EEH_OPT_DISABLE: |
| 463 | return -EPERM; |
| 464 | case EEH_OPT_ENABLE: |
| 465 | return 0; |
| 466 | case EEH_OPT_THAW_MMIO: |
| 467 | opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO; |
| 468 | break; |
| 469 | case EEH_OPT_THAW_DMA: |
| 470 | opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA; |
| 471 | break; |
| 472 | case EEH_OPT_FREEZE_PE: |
| 473 | freeze_pe = true; |
| 474 | opt = OPAL_EEH_ACTION_SET_FREEZE_ALL; |
| 475 | break; |
| 476 | default: |
| 477 | pr_warn("%s: Invalid option %d\n" , __func__, option); |
| 478 | return -EINVAL; |
| 479 | } |
| 480 | |
| 481 | /* Freeze master and slave PEs if PHB supports compound PEs */ |
| 482 | if (freeze_pe) { |
| 483 | if (phb->freeze_pe) { |
| 484 | phb->freeze_pe(phb, pe->addr); |
| 485 | return 0; |
| 486 | } |
| 487 | |
| 488 | rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt); |
| 489 | if (rc != OPAL_SUCCESS) { |
| 490 | pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n" , |
| 491 | __func__, rc, phb->hose->global_number, |
| 492 | pe->addr); |
| 493 | return -EIO; |
| 494 | } |
| 495 | |
| 496 | return 0; |
| 497 | } |
| 498 | |
| 499 | /* Unfreeze master and slave PEs if PHB supports */ |
| 500 | if (phb->unfreeze_pe) |
| 501 | return phb->unfreeze_pe(phb, pe->addr, opt); |
| 502 | |
| 503 | rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt); |
| 504 | if (rc != OPAL_SUCCESS) { |
| 505 | pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n" , |
| 506 | __func__, rc, option, phb->hose->global_number, |
| 507 | pe->addr); |
| 508 | return -EIO; |
| 509 | } |
| 510 | |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | static void pnv_eeh_get_phb_diag(struct eeh_pe *pe) |
| 515 | { |
| 516 | struct pnv_phb *phb = pe->phb->private_data; |
| 517 | s64 rc; |
| 518 | |
| 519 | rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data, |
| 520 | phb->diag_data_size); |
| 521 | if (rc != OPAL_SUCCESS) |
| 522 | pr_warn("%s: Failure %lld getting PHB#%x diag-data\n" , |
| 523 | __func__, rc, pe->phb->global_number); |
| 524 | } |
| 525 | |
| 526 | static int pnv_eeh_get_phb_state(struct eeh_pe *pe) |
| 527 | { |
| 528 | struct pnv_phb *phb = pe->phb->private_data; |
| 529 | u8 fstate = 0; |
| 530 | __be16 pcierr = 0; |
| 531 | s64 rc; |
| 532 | int result = 0; |
| 533 | |
| 534 | rc = opal_pci_eeh_freeze_status(phb->opal_id, |
| 535 | pe->addr, |
| 536 | &fstate, |
| 537 | &pcierr, |
| 538 | NULL); |
| 539 | if (rc != OPAL_SUCCESS) { |
| 540 | pr_warn("%s: Failure %lld getting PHB#%x state\n" , |
| 541 | __func__, rc, phb->hose->global_number); |
| 542 | return EEH_STATE_NOT_SUPPORT; |
| 543 | } |
| 544 | |
| 545 | /* |
| 546 | * Check PHB state. If the PHB is frozen for the |
| 547 | * first time, to dump the PHB diag-data. |
| 548 | */ |
| 549 | if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { |
| 550 | result = (EEH_STATE_MMIO_ACTIVE | |
| 551 | EEH_STATE_DMA_ACTIVE | |
| 552 | EEH_STATE_MMIO_ENABLED | |
| 553 | EEH_STATE_DMA_ENABLED); |
| 554 | } else if (!(pe->state & EEH_PE_ISOLATED)) { |
| 555 | eeh_pe_mark_isolated(pe); |
| 556 | pnv_eeh_get_phb_diag(pe); |
| 557 | |
| 558 | if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) |
| 559 | pnv_pci_dump_phb_diag_data(hose: pe->phb, log_buff: pe->data); |
| 560 | } |
| 561 | |
| 562 | return result; |
| 563 | } |
| 564 | |
| 565 | static int pnv_eeh_get_pe_state(struct eeh_pe *pe) |
| 566 | { |
| 567 | struct pnv_phb *phb = pe->phb->private_data; |
| 568 | u8 fstate = 0; |
| 569 | __be16 pcierr = 0; |
| 570 | s64 rc; |
| 571 | int result; |
| 572 | |
| 573 | /* |
| 574 | * We don't clobber hardware frozen state until PE |
| 575 | * reset is completed. In order to keep EEH core |
| 576 | * moving forward, we have to return operational |
| 577 | * state during PE reset. |
| 578 | */ |
| 579 | if (pe->state & EEH_PE_RESET) { |
| 580 | result = (EEH_STATE_MMIO_ACTIVE | |
| 581 | EEH_STATE_DMA_ACTIVE | |
| 582 | EEH_STATE_MMIO_ENABLED | |
| 583 | EEH_STATE_DMA_ENABLED); |
| 584 | return result; |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * Fetch PE state from hardware. If the PHB |
| 589 | * supports compound PE, let it handle that. |
| 590 | */ |
| 591 | if (phb->get_pe_state) { |
| 592 | fstate = phb->get_pe_state(phb, pe->addr); |
| 593 | } else { |
| 594 | rc = opal_pci_eeh_freeze_status(phb->opal_id, |
| 595 | pe->addr, |
| 596 | &fstate, |
| 597 | &pcierr, |
| 598 | NULL); |
| 599 | if (rc != OPAL_SUCCESS) { |
| 600 | pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n" , |
| 601 | __func__, rc, phb->hose->global_number, |
| 602 | pe->addr); |
| 603 | return EEH_STATE_NOT_SUPPORT; |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | /* Figure out state */ |
| 608 | switch (fstate) { |
| 609 | case OPAL_EEH_STOPPED_NOT_FROZEN: |
| 610 | result = (EEH_STATE_MMIO_ACTIVE | |
| 611 | EEH_STATE_DMA_ACTIVE | |
| 612 | EEH_STATE_MMIO_ENABLED | |
| 613 | EEH_STATE_DMA_ENABLED); |
| 614 | break; |
| 615 | case OPAL_EEH_STOPPED_MMIO_FREEZE: |
| 616 | result = (EEH_STATE_DMA_ACTIVE | |
| 617 | EEH_STATE_DMA_ENABLED); |
| 618 | break; |
| 619 | case OPAL_EEH_STOPPED_DMA_FREEZE: |
| 620 | result = (EEH_STATE_MMIO_ACTIVE | |
| 621 | EEH_STATE_MMIO_ENABLED); |
| 622 | break; |
| 623 | case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: |
| 624 | result = 0; |
| 625 | break; |
| 626 | case OPAL_EEH_STOPPED_RESET: |
| 627 | result = EEH_STATE_RESET_ACTIVE; |
| 628 | break; |
| 629 | case OPAL_EEH_STOPPED_TEMP_UNAVAIL: |
| 630 | result = EEH_STATE_UNAVAILABLE; |
| 631 | break; |
| 632 | case OPAL_EEH_STOPPED_PERM_UNAVAIL: |
| 633 | result = EEH_STATE_NOT_SUPPORT; |
| 634 | break; |
| 635 | default: |
| 636 | result = EEH_STATE_NOT_SUPPORT; |
| 637 | pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n" , |
| 638 | __func__, phb->hose->global_number, |
| 639 | pe->addr, fstate); |
| 640 | } |
| 641 | |
| 642 | /* |
| 643 | * If PHB supports compound PE, to freeze all |
| 644 | * slave PEs for consistency. |
| 645 | * |
| 646 | * If the PE is switching to frozen state for the |
| 647 | * first time, to dump the PHB diag-data. |
| 648 | */ |
| 649 | if (!(result & EEH_STATE_NOT_SUPPORT) && |
| 650 | !(result & EEH_STATE_UNAVAILABLE) && |
| 651 | !(result & EEH_STATE_MMIO_ACTIVE) && |
| 652 | !(result & EEH_STATE_DMA_ACTIVE) && |
| 653 | !(pe->state & EEH_PE_ISOLATED)) { |
| 654 | if (phb->freeze_pe) |
| 655 | phb->freeze_pe(phb, pe->addr); |
| 656 | |
| 657 | eeh_pe_mark_isolated(pe); |
| 658 | pnv_eeh_get_phb_diag(pe); |
| 659 | |
| 660 | if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) |
| 661 | pnv_pci_dump_phb_diag_data(hose: pe->phb, log_buff: pe->data); |
| 662 | } |
| 663 | |
| 664 | return result; |
| 665 | } |
| 666 | |
| 667 | /** |
| 668 | * pnv_eeh_get_state - Retrieve PE state |
| 669 | * @pe: EEH PE |
| 670 | * @delay: delay while PE state is temporarily unavailable |
| 671 | * |
| 672 | * Retrieve the state of the specified PE. For IODA-compitable |
| 673 | * platform, it should be retrieved from IODA table. Therefore, |
| 674 | * we prefer passing down to hardware implementation to handle |
| 675 | * it. |
| 676 | */ |
| 677 | static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay) |
| 678 | { |
| 679 | int ret; |
| 680 | |
| 681 | if (pe->type & EEH_PE_PHB) |
| 682 | ret = pnv_eeh_get_phb_state(pe); |
| 683 | else |
| 684 | ret = pnv_eeh_get_pe_state(pe); |
| 685 | |
| 686 | if (!delay) |
| 687 | return ret; |
| 688 | |
| 689 | /* |
| 690 | * If the PE state is temporarily unavailable, |
| 691 | * to inform the EEH core delay for default |
| 692 | * period (1 second) |
| 693 | */ |
| 694 | *delay = 0; |
| 695 | if (ret & EEH_STATE_UNAVAILABLE) |
| 696 | *delay = 1000; |
| 697 | |
| 698 | return ret; |
| 699 | } |
| 700 | |
| 701 | static s64 pnv_eeh_poll(unsigned long id) |
| 702 | { |
| 703 | s64 rc = OPAL_HARDWARE; |
| 704 | |
| 705 | while (1) { |
| 706 | rc = opal_pci_poll(id); |
| 707 | if (rc <= 0) |
| 708 | break; |
| 709 | |
| 710 | if (system_state < SYSTEM_RUNNING) |
| 711 | udelay(usec: 1000 * rc); |
| 712 | else |
| 713 | msleep(msecs: rc); |
| 714 | } |
| 715 | |
| 716 | return rc; |
| 717 | } |
| 718 | |
| 719 | int pnv_eeh_phb_reset(struct pci_controller *hose, int option) |
| 720 | { |
| 721 | struct pnv_phb *phb = hose->private_data; |
| 722 | s64 rc = OPAL_HARDWARE; |
| 723 | |
| 724 | pr_debug("%s: Reset PHB#%x, option=%d\n" , |
| 725 | __func__, hose->global_number, option); |
| 726 | |
| 727 | /* Issue PHB complete reset request */ |
| 728 | if (option == EEH_RESET_FUNDAMENTAL || |
| 729 | option == EEH_RESET_HOT) |
| 730 | rc = opal_pci_reset(phb->opal_id, |
| 731 | OPAL_RESET_PHB_COMPLETE, |
| 732 | OPAL_ASSERT_RESET); |
| 733 | else if (option == EEH_RESET_DEACTIVATE) |
| 734 | rc = opal_pci_reset(phb->opal_id, |
| 735 | OPAL_RESET_PHB_COMPLETE, |
| 736 | OPAL_DEASSERT_RESET); |
| 737 | if (rc < 0) |
| 738 | goto out; |
| 739 | |
| 740 | /* |
| 741 | * Poll state of the PHB until the request is done |
| 742 | * successfully. The PHB reset is usually PHB complete |
| 743 | * reset followed by hot reset on root bus. So we also |
| 744 | * need the PCI bus settlement delay. |
| 745 | */ |
| 746 | if (rc > 0) |
| 747 | rc = pnv_eeh_poll(id: phb->opal_id); |
| 748 | if (option == EEH_RESET_DEACTIVATE) { |
| 749 | if (system_state < SYSTEM_RUNNING) |
| 750 | udelay(1000 * EEH_PE_RST_SETTLE_TIME); |
| 751 | else |
| 752 | msleep(EEH_PE_RST_SETTLE_TIME); |
| 753 | } |
| 754 | out: |
| 755 | if (rc != OPAL_SUCCESS) |
| 756 | return -EIO; |
| 757 | |
| 758 | return 0; |
| 759 | } |
| 760 | |
| 761 | static int pnv_eeh_root_reset(struct pci_controller *hose, int option) |
| 762 | { |
| 763 | struct pnv_phb *phb = hose->private_data; |
| 764 | s64 rc = OPAL_HARDWARE; |
| 765 | |
| 766 | pr_debug("%s: Reset PHB#%x, option=%d\n" , |
| 767 | __func__, hose->global_number, option); |
| 768 | |
| 769 | /* |
| 770 | * During the reset deassert time, we needn't care |
| 771 | * the reset scope because the firmware does nothing |
| 772 | * for fundamental or hot reset during deassert phase. |
| 773 | */ |
| 774 | if (option == EEH_RESET_FUNDAMENTAL) |
| 775 | rc = opal_pci_reset(phb->opal_id, |
| 776 | OPAL_RESET_PCI_FUNDAMENTAL, |
| 777 | OPAL_ASSERT_RESET); |
| 778 | else if (option == EEH_RESET_HOT) |
| 779 | rc = opal_pci_reset(phb->opal_id, |
| 780 | OPAL_RESET_PCI_HOT, |
| 781 | OPAL_ASSERT_RESET); |
| 782 | else if (option == EEH_RESET_DEACTIVATE) |
| 783 | rc = opal_pci_reset(phb->opal_id, |
| 784 | OPAL_RESET_PCI_HOT, |
| 785 | OPAL_DEASSERT_RESET); |
| 786 | if (rc < 0) |
| 787 | goto out; |
| 788 | |
| 789 | /* Poll state of the PHB until the request is done */ |
| 790 | if (rc > 0) |
| 791 | rc = pnv_eeh_poll(id: phb->opal_id); |
| 792 | if (option == EEH_RESET_DEACTIVATE) |
| 793 | msleep(EEH_PE_RST_SETTLE_TIME); |
| 794 | out: |
| 795 | if (rc != OPAL_SUCCESS) |
| 796 | return -EIO; |
| 797 | |
| 798 | return 0; |
| 799 | } |
| 800 | |
| 801 | static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option) |
| 802 | { |
| 803 | struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); |
| 804 | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| 805 | int aer = edev ? edev->aer_cap : 0; |
| 806 | u32 ctrl; |
| 807 | |
| 808 | pr_debug("%s: Secondary Reset PCI bus %04x:%02x with option %d\n" , |
| 809 | __func__, pci_domain_nr(dev->bus), |
| 810 | dev->bus->number, option); |
| 811 | |
| 812 | switch (option) { |
| 813 | case EEH_RESET_FUNDAMENTAL: |
| 814 | case EEH_RESET_HOT: |
| 815 | /* Don't report linkDown event */ |
| 816 | if (aer) { |
| 817 | eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK, |
| 818 | 4, &ctrl); |
| 819 | ctrl |= PCI_ERR_UNC_SURPDN; |
| 820 | eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK, |
| 821 | 4, ctrl); |
| 822 | } |
| 823 | |
| 824 | eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl); |
| 825 | ctrl |= PCI_BRIDGE_CTL_BUS_RESET; |
| 826 | eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl); |
| 827 | |
| 828 | msleep(EEH_PE_RST_HOLD_TIME); |
| 829 | break; |
| 830 | case EEH_RESET_DEACTIVATE: |
| 831 | eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl); |
| 832 | ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; |
| 833 | eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl); |
| 834 | |
| 835 | msleep(EEH_PE_RST_SETTLE_TIME); |
| 836 | |
| 837 | /* Continue reporting linkDown event */ |
| 838 | if (aer) { |
| 839 | eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK, |
| 840 | 4, &ctrl); |
| 841 | ctrl &= ~PCI_ERR_UNC_SURPDN; |
| 842 | eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK, |
| 843 | 4, ctrl); |
| 844 | } |
| 845 | |
| 846 | break; |
| 847 | } |
| 848 | |
| 849 | return 0; |
| 850 | } |
| 851 | |
| 852 | static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option) |
| 853 | { |
| 854 | struct pci_controller *hose = pci_bus_to_host(pdev->bus); |
| 855 | struct pnv_phb *phb = hose->private_data; |
| 856 | struct device_node *dn = pci_device_to_OF_node(pdev); |
| 857 | uint64_t id = PCI_SLOT_ID(phb->opal_id, pci_dev_id(dev: pdev)); |
| 858 | uint8_t scope; |
| 859 | int64_t rc; |
| 860 | |
| 861 | /* Hot reset to the bus if firmware cannot handle */ |
| 862 | if (!dn || !of_property_present(np: dn, propname: "ibm,reset-by-firmware" )) |
| 863 | return __pnv_eeh_bridge_reset(dev: pdev, option); |
| 864 | |
| 865 | pr_debug("%s: FW reset PCI bus %04x:%02x with option %d\n" , |
| 866 | __func__, pci_domain_nr(pdev->bus), |
| 867 | pdev->bus->number, option); |
| 868 | |
| 869 | switch (option) { |
| 870 | case EEH_RESET_FUNDAMENTAL: |
| 871 | scope = OPAL_RESET_PCI_FUNDAMENTAL; |
| 872 | break; |
| 873 | case EEH_RESET_HOT: |
| 874 | scope = OPAL_RESET_PCI_HOT; |
| 875 | break; |
| 876 | case EEH_RESET_DEACTIVATE: |
| 877 | return 0; |
| 878 | default: |
| 879 | dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n" , |
| 880 | __func__, option); |
| 881 | return -EINVAL; |
| 882 | } |
| 883 | |
| 884 | rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET); |
| 885 | if (rc <= OPAL_SUCCESS) |
| 886 | goto out; |
| 887 | |
| 888 | rc = pnv_eeh_poll(id); |
| 889 | out: |
| 890 | return (rc == OPAL_SUCCESS) ? 0 : -EIO; |
| 891 | } |
| 892 | |
| 893 | void pnv_pci_reset_secondary_bus(struct pci_dev *dev) |
| 894 | { |
| 895 | struct pci_controller *hose; |
| 896 | |
| 897 | if (pci_is_root_bus(pbus: dev->bus)) { |
| 898 | hose = pci_bus_to_host(dev->bus); |
| 899 | pnv_eeh_root_reset(hose, EEH_RESET_HOT); |
| 900 | pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); |
| 901 | } else { |
| 902 | pnv_eeh_bridge_reset(dev, EEH_RESET_HOT); |
| 903 | pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type, |
| 908 | int pos, u16 mask) |
| 909 | { |
| 910 | struct eeh_dev *edev = pdn->edev; |
| 911 | int i, status = 0; |
| 912 | |
| 913 | /* Wait for Transaction Pending bit to be cleared */ |
| 914 | for (i = 0; i < 4; i++) { |
| 915 | eeh_ops->read_config(edev, pos, 2, &status); |
| 916 | if (!(status & mask)) |
| 917 | return; |
| 918 | |
| 919 | msleep(msecs: (1 << i) * 100); |
| 920 | } |
| 921 | |
| 922 | pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n" , |
| 923 | __func__, type, |
| 924 | pdn->phb->global_number, pdn->busno, |
| 925 | PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); |
| 926 | } |
| 927 | |
| 928 | static int pnv_eeh_do_flr(struct pci_dn *pdn, int option) |
| 929 | { |
| 930 | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| 931 | u32 reg = 0; |
| 932 | |
| 933 | if (WARN_ON(!edev->pcie_cap)) |
| 934 | return -ENOTTY; |
| 935 | |
| 936 | eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCAP, 4, ®); |
| 937 | if (!(reg & PCI_EXP_DEVCAP_FLR)) |
| 938 | return -ENOTTY; |
| 939 | |
| 940 | switch (option) { |
| 941 | case EEH_RESET_HOT: |
| 942 | case EEH_RESET_FUNDAMENTAL: |
| 943 | pnv_eeh_wait_for_pending(pdn, type: "" , |
| 944 | pos: edev->pcie_cap + PCI_EXP_DEVSTA, |
| 945 | PCI_EXP_DEVSTA_TRPND); |
| 946 | eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, |
| 947 | 4, ®); |
| 948 | reg |= PCI_EXP_DEVCTL_BCR_FLR; |
| 949 | eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, |
| 950 | 4, reg); |
| 951 | msleep(EEH_PE_RST_HOLD_TIME); |
| 952 | break; |
| 953 | case EEH_RESET_DEACTIVATE: |
| 954 | eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, |
| 955 | 4, ®); |
| 956 | reg &= ~PCI_EXP_DEVCTL_BCR_FLR; |
| 957 | eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, |
| 958 | 4, reg); |
| 959 | msleep(EEH_PE_RST_SETTLE_TIME); |
| 960 | break; |
| 961 | } |
| 962 | |
| 963 | return 0; |
| 964 | } |
| 965 | |
| 966 | static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option) |
| 967 | { |
| 968 | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| 969 | u32 cap = 0; |
| 970 | |
| 971 | if (WARN_ON(!edev->af_cap)) |
| 972 | return -ENOTTY; |
| 973 | |
| 974 | eeh_ops->read_config(edev, edev->af_cap + PCI_AF_CAP, 1, &cap); |
| 975 | if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) |
| 976 | return -ENOTTY; |
| 977 | |
| 978 | switch (option) { |
| 979 | case EEH_RESET_HOT: |
| 980 | case EEH_RESET_FUNDAMENTAL: |
| 981 | /* |
| 982 | * Wait for Transaction Pending bit to clear. A word-aligned |
| 983 | * test is used, so we use the control offset rather than status |
| 984 | * and shift the test bit to match. |
| 985 | */ |
| 986 | pnv_eeh_wait_for_pending(pdn, type: "AF" , |
| 987 | pos: edev->af_cap + PCI_AF_CTRL, |
| 988 | PCI_AF_STATUS_TP << 8); |
| 989 | eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, |
| 990 | 1, PCI_AF_CTRL_FLR); |
| 991 | msleep(EEH_PE_RST_HOLD_TIME); |
| 992 | break; |
| 993 | case EEH_RESET_DEACTIVATE: |
| 994 | eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, 1, 0); |
| 995 | msleep(EEH_PE_RST_SETTLE_TIME); |
| 996 | break; |
| 997 | } |
| 998 | |
| 999 | return 0; |
| 1000 | } |
| 1001 | |
| 1002 | static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option) |
| 1003 | { |
| 1004 | struct eeh_dev *edev; |
| 1005 | struct pci_dn *pdn; |
| 1006 | int ret; |
| 1007 | |
| 1008 | /* The VF PE should have only one child device */ |
| 1009 | edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); |
| 1010 | pdn = eeh_dev_to_pdn(edev); |
| 1011 | if (!pdn) |
| 1012 | return -ENXIO; |
| 1013 | |
| 1014 | ret = pnv_eeh_do_flr(pdn, option); |
| 1015 | if (!ret) |
| 1016 | return ret; |
| 1017 | |
| 1018 | return pnv_eeh_do_af_flr(pdn, option); |
| 1019 | } |
| 1020 | |
| 1021 | /** |
| 1022 | * pnv_eeh_reset - Reset the specified PE |
| 1023 | * @pe: EEH PE |
| 1024 | * @option: reset option |
| 1025 | * |
| 1026 | * Do reset on the indicated PE. For PCI bus sensitive PE, |
| 1027 | * we need to reset the parent p2p bridge. The PHB has to |
| 1028 | * be reinitialized if the p2p bridge is root bridge. For |
| 1029 | * PCI device sensitive PE, we will try to reset the device |
| 1030 | * through FLR. For now, we don't have OPAL APIs to do HARD |
| 1031 | * reset yet, so all reset would be SOFT (HOT) reset. |
| 1032 | */ |
| 1033 | static int pnv_eeh_reset(struct eeh_pe *pe, int option) |
| 1034 | { |
| 1035 | struct pci_controller *hose = pe->phb; |
| 1036 | struct pnv_phb *phb; |
| 1037 | struct pci_bus *bus; |
| 1038 | int64_t rc; |
| 1039 | |
| 1040 | /* |
| 1041 | * For PHB reset, we always have complete reset. For those PEs whose |
| 1042 | * primary bus derived from root complex (root bus) or root port |
| 1043 | * (usually bus#1), we apply hot or fundamental reset on the root port. |
| 1044 | * For other PEs, we always have hot reset on the PE primary bus. |
| 1045 | * |
| 1046 | * Here, we have different design to pHyp, which always clear the |
| 1047 | * frozen state during PE reset. However, the good idea here from |
| 1048 | * benh is to keep frozen state before we get PE reset done completely |
| 1049 | * (until BAR restore). With the frozen state, HW drops illegal IO |
| 1050 | * or MMIO access, which can incur recursive frozen PE during PE |
| 1051 | * reset. The side effect is that EEH core has to clear the frozen |
| 1052 | * state explicitly after BAR restore. |
| 1053 | */ |
| 1054 | if (pe->type & EEH_PE_PHB) |
| 1055 | return pnv_eeh_phb_reset(hose, option); |
| 1056 | |
| 1057 | /* |
| 1058 | * The frozen PE might be caused by PAPR error injection |
| 1059 | * registers, which are expected to be cleared after hitting |
| 1060 | * frozen PE as stated in the hardware spec. Unfortunately, |
| 1061 | * that's not true on P7IOC. So we have to clear it manually |
| 1062 | * to avoid recursive EEH errors during recovery. |
| 1063 | */ |
| 1064 | phb = hose->private_data; |
| 1065 | if (phb->model == PNV_PHB_MODEL_P7IOC && |
| 1066 | (option == EEH_RESET_HOT || |
| 1067 | option == EEH_RESET_FUNDAMENTAL)) { |
| 1068 | rc = opal_pci_reset(phb->opal_id, |
| 1069 | OPAL_RESET_PHB_ERROR, |
| 1070 | OPAL_ASSERT_RESET); |
| 1071 | if (rc != OPAL_SUCCESS) { |
| 1072 | pr_warn("%s: Failure %lld clearing error injection registers\n" , |
| 1073 | __func__, rc); |
| 1074 | return -EIO; |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | if (pe->type & EEH_PE_VF) |
| 1079 | return pnv_eeh_reset_vf_pe(pe, option); |
| 1080 | |
| 1081 | bus = eeh_pe_bus_get(pe); |
| 1082 | if (!bus) { |
| 1083 | pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n" , |
| 1084 | __func__, pe->phb->global_number, pe->addr); |
| 1085 | return -EIO; |
| 1086 | } |
| 1087 | |
| 1088 | if (pci_is_root_bus(pbus: bus)) |
| 1089 | return pnv_eeh_root_reset(hose, option); |
| 1090 | |
| 1091 | /* |
| 1092 | * For hot resets try use the generic PCI error recovery reset |
| 1093 | * functions. These correctly handles the case where the secondary |
| 1094 | * bus is behind a hotplug slot and it will use the slot provided |
| 1095 | * reset methods to prevent spurious hotplug events during the reset. |
| 1096 | * |
| 1097 | * Fundamental resets need to be handled internally to EEH since the |
| 1098 | * PCI core doesn't really have a concept of a fundamental reset, |
| 1099 | * mainly because there's no standard way to generate one. Only a |
| 1100 | * few devices require an FRESET so it should be fine. |
| 1101 | */ |
| 1102 | if (option != EEH_RESET_FUNDAMENTAL) { |
| 1103 | /* |
| 1104 | * NB: Skiboot and pnv_eeh_bridge_reset() also no-op the |
| 1105 | * de-assert step. It's like the OPAL reset API was |
| 1106 | * poorly designed or something... |
| 1107 | */ |
| 1108 | if (option == EEH_RESET_DEACTIVATE) |
| 1109 | return 0; |
| 1110 | |
| 1111 | rc = pci_bus_error_reset(dev: bus->self); |
| 1112 | if (!rc) |
| 1113 | return 0; |
| 1114 | } |
| 1115 | |
| 1116 | /* otherwise, use the generic bridge reset. this might call into FW */ |
| 1117 | if (pci_is_root_bus(pbus: bus->parent)) |
| 1118 | return pnv_eeh_root_reset(hose, option); |
| 1119 | return pnv_eeh_bridge_reset(pdev: bus->self, option); |
| 1120 | } |
| 1121 | |
| 1122 | /** |
| 1123 | * pnv_eeh_get_log - Retrieve error log |
| 1124 | * @pe: EEH PE |
| 1125 | * @severity: temporary or permanent error log |
| 1126 | * @drv_log: driver log to be combined with retrieved error log |
| 1127 | * @len: length of driver log |
| 1128 | * |
| 1129 | * Retrieve the temporary or permanent error from the PE. |
| 1130 | */ |
| 1131 | static int pnv_eeh_get_log(struct eeh_pe *pe, int severity, |
| 1132 | char *drv_log, unsigned long len) |
| 1133 | { |
| 1134 | if (!eeh_has_flag(EEH_EARLY_DUMP_LOG)) |
| 1135 | pnv_pci_dump_phb_diag_data(hose: pe->phb, log_buff: pe->data); |
| 1136 | |
| 1137 | return 0; |
| 1138 | } |
| 1139 | |
| 1140 | /** |
| 1141 | * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE |
| 1142 | * @pe: EEH PE |
| 1143 | * |
| 1144 | * The function will be called to reconfigure the bridges included |
| 1145 | * in the specified PE so that the mulfunctional PE would be recovered |
| 1146 | * again. |
| 1147 | */ |
| 1148 | static int pnv_eeh_configure_bridge(struct eeh_pe *pe) |
| 1149 | { |
| 1150 | return 0; |
| 1151 | } |
| 1152 | |
| 1153 | /** |
| 1154 | * pnv_pe_err_inject - Inject specified error to the indicated PE |
| 1155 | * @pe: the indicated PE |
| 1156 | * @type: error type |
| 1157 | * @func: specific error type |
| 1158 | * @addr: address |
| 1159 | * @mask: address mask |
| 1160 | * |
| 1161 | * The routine is called to inject specified error, which is |
| 1162 | * determined by @type and @func, to the indicated PE for |
| 1163 | * testing purpose. |
| 1164 | */ |
| 1165 | static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func, |
| 1166 | unsigned long addr, unsigned long mask) |
| 1167 | { |
| 1168 | struct pci_controller *hose = pe->phb; |
| 1169 | struct pnv_phb *phb = hose->private_data; |
| 1170 | s64 rc; |
| 1171 | |
| 1172 | if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR && |
| 1173 | type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) { |
| 1174 | pr_warn("%s: Invalid error type %d\n" , |
| 1175 | __func__, type); |
| 1176 | return -ERANGE; |
| 1177 | } |
| 1178 | |
| 1179 | if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR || |
| 1180 | func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) { |
| 1181 | pr_warn("%s: Invalid error function %d\n" , |
| 1182 | __func__, func); |
| 1183 | return -ERANGE; |
| 1184 | } |
| 1185 | |
| 1186 | /* Firmware supports error injection ? */ |
| 1187 | if (!opal_check_token(OPAL_PCI_ERR_INJECT)) { |
| 1188 | pr_warn("%s: Firmware doesn't support error injection\n" , |
| 1189 | __func__); |
| 1190 | return -ENXIO; |
| 1191 | } |
| 1192 | |
| 1193 | /* Do error injection */ |
| 1194 | rc = opal_pci_err_inject(phb->opal_id, pe->addr, |
| 1195 | type, func, addr, mask); |
| 1196 | if (rc != OPAL_SUCCESS) { |
| 1197 | pr_warn("%s: Failure %lld injecting error " |
| 1198 | "%d-%d to PHB#%x-PE#%x\n" , |
| 1199 | __func__, rc, type, func, |
| 1200 | hose->global_number, pe->addr); |
| 1201 | return -EIO; |
| 1202 | } |
| 1203 | |
| 1204 | return 0; |
| 1205 | } |
| 1206 | |
| 1207 | static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn) |
| 1208 | { |
| 1209 | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| 1210 | |
| 1211 | if (!edev || !edev->pe) |
| 1212 | return false; |
| 1213 | |
| 1214 | /* |
| 1215 | * We will issue FLR or AF FLR to all VFs, which are contained |
| 1216 | * in VF PE. It relies on the EEH PCI config accessors. So we |
| 1217 | * can't block them during the window. |
| 1218 | */ |
| 1219 | if (edev->physfn && (edev->pe->state & EEH_PE_RESET)) |
| 1220 | return false; |
| 1221 | |
| 1222 | if (edev->pe->state & EEH_PE_CFG_BLOCKED) |
| 1223 | return true; |
| 1224 | |
| 1225 | return false; |
| 1226 | } |
| 1227 | |
| 1228 | static int pnv_eeh_read_config(struct eeh_dev *edev, |
| 1229 | int where, int size, u32 *val) |
| 1230 | { |
| 1231 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 1232 | |
| 1233 | if (!pdn) |
| 1234 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 1235 | |
| 1236 | if (pnv_eeh_cfg_blocked(pdn)) { |
| 1237 | *val = 0xFFFFFFFF; |
| 1238 | return PCIBIOS_SET_FAILED; |
| 1239 | } |
| 1240 | |
| 1241 | return pnv_pci_cfg_read(pdn, where, size, val); |
| 1242 | } |
| 1243 | |
| 1244 | static int pnv_eeh_write_config(struct eeh_dev *edev, |
| 1245 | int where, int size, u32 val) |
| 1246 | { |
| 1247 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 1248 | |
| 1249 | if (!pdn) |
| 1250 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 1251 | |
| 1252 | if (pnv_eeh_cfg_blocked(pdn)) |
| 1253 | return PCIBIOS_SET_FAILED; |
| 1254 | |
| 1255 | return pnv_pci_cfg_write(pdn, where, size, val); |
| 1256 | } |
| 1257 | |
| 1258 | static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data) |
| 1259 | { |
| 1260 | /* GEM */ |
| 1261 | if (data->gemXfir || data->gemRfir || |
| 1262 | data->gemRirqfir || data->gemMask || data->gemRwof) |
| 1263 | pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n" , |
| 1264 | be64_to_cpu(data->gemXfir), |
| 1265 | be64_to_cpu(data->gemRfir), |
| 1266 | be64_to_cpu(data->gemRirqfir), |
| 1267 | be64_to_cpu(data->gemMask), |
| 1268 | be64_to_cpu(data->gemRwof)); |
| 1269 | |
| 1270 | /* LEM */ |
| 1271 | if (data->lemFir || data->lemErrMask || |
| 1272 | data->lemAction0 || data->lemAction1 || data->lemWof) |
| 1273 | pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n" , |
| 1274 | be64_to_cpu(data->lemFir), |
| 1275 | be64_to_cpu(data->lemErrMask), |
| 1276 | be64_to_cpu(data->lemAction0), |
| 1277 | be64_to_cpu(data->lemAction1), |
| 1278 | be64_to_cpu(data->lemWof)); |
| 1279 | } |
| 1280 | |
| 1281 | static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose) |
| 1282 | { |
| 1283 | struct pnv_phb *phb = hose->private_data; |
| 1284 | struct OpalIoP7IOCErrorData *data = |
| 1285 | (struct OpalIoP7IOCErrorData*)phb->diag_data; |
| 1286 | long rc; |
| 1287 | |
| 1288 | rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); |
| 1289 | if (rc != OPAL_SUCCESS) { |
| 1290 | pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n" , |
| 1291 | __func__, phb->hub_id, rc); |
| 1292 | return; |
| 1293 | } |
| 1294 | |
| 1295 | switch (be16_to_cpu(data->type)) { |
| 1296 | case OPAL_P7IOC_DIAG_TYPE_RGC: |
| 1297 | pr_info("P7IOC diag-data for RGC\n\n" ); |
| 1298 | pnv_eeh_dump_hub_diag_common(data); |
| 1299 | if (data->rgc.rgcStatus || data->rgc.rgcLdcp) |
| 1300 | pr_info(" RGC: %016llx %016llx\n" , |
| 1301 | be64_to_cpu(data->rgc.rgcStatus), |
| 1302 | be64_to_cpu(data->rgc.rgcLdcp)); |
| 1303 | break; |
| 1304 | case OPAL_P7IOC_DIAG_TYPE_BI: |
| 1305 | pr_info("P7IOC diag-data for BI %s\n\n" , |
| 1306 | data->bi.biDownbound ? "Downbound" : "Upbound" ); |
| 1307 | pnv_eeh_dump_hub_diag_common(data); |
| 1308 | if (data->bi.biLdcp0 || data->bi.biLdcp1 || |
| 1309 | data->bi.biLdcp2 || data->bi.biFenceStatus) |
| 1310 | pr_info(" BI: %016llx %016llx %016llx %016llx\n" , |
| 1311 | be64_to_cpu(data->bi.biLdcp0), |
| 1312 | be64_to_cpu(data->bi.biLdcp1), |
| 1313 | be64_to_cpu(data->bi.biLdcp2), |
| 1314 | be64_to_cpu(data->bi.biFenceStatus)); |
| 1315 | break; |
| 1316 | case OPAL_P7IOC_DIAG_TYPE_CI: |
| 1317 | pr_info("P7IOC diag-data for CI Port %d\n\n" , |
| 1318 | data->ci.ciPort); |
| 1319 | pnv_eeh_dump_hub_diag_common(data); |
| 1320 | if (data->ci.ciPortStatus || data->ci.ciPortLdcp) |
| 1321 | pr_info(" CI: %016llx %016llx\n" , |
| 1322 | be64_to_cpu(data->ci.ciPortStatus), |
| 1323 | be64_to_cpu(data->ci.ciPortLdcp)); |
| 1324 | break; |
| 1325 | case OPAL_P7IOC_DIAG_TYPE_MISC: |
| 1326 | pr_info("P7IOC diag-data for MISC\n\n" ); |
| 1327 | pnv_eeh_dump_hub_diag_common(data); |
| 1328 | break; |
| 1329 | case OPAL_P7IOC_DIAG_TYPE_I2C: |
| 1330 | pr_info("P7IOC diag-data for I2C\n\n" ); |
| 1331 | pnv_eeh_dump_hub_diag_common(data); |
| 1332 | break; |
| 1333 | default: |
| 1334 | pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n" , |
| 1335 | __func__, phb->hub_id, data->type); |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | static int pnv_eeh_get_pe(struct pci_controller *hose, |
| 1340 | u16 pe_no, struct eeh_pe **pe) |
| 1341 | { |
| 1342 | struct pnv_phb *phb = hose->private_data; |
| 1343 | struct pnv_ioda_pe *pnv_pe; |
| 1344 | struct eeh_pe *dev_pe; |
| 1345 | |
| 1346 | /* |
| 1347 | * If PHB supports compound PE, to fetch |
| 1348 | * the master PE because slave PE is invisible |
| 1349 | * to EEH core. |
| 1350 | */ |
| 1351 | pnv_pe = &phb->ioda.pe_array[pe_no]; |
| 1352 | if (pnv_pe->flags & PNV_IODA_PE_SLAVE) { |
| 1353 | pnv_pe = pnv_pe->master; |
| 1354 | WARN_ON(!pnv_pe || |
| 1355 | !(pnv_pe->flags & PNV_IODA_PE_MASTER)); |
| 1356 | pe_no = pnv_pe->pe_number; |
| 1357 | } |
| 1358 | |
| 1359 | /* Find the PE according to PE# */ |
| 1360 | dev_pe = eeh_pe_get(hose, pe_no); |
| 1361 | if (!dev_pe) |
| 1362 | return -EEXIST; |
| 1363 | |
| 1364 | /* Freeze the (compound) PE */ |
| 1365 | *pe = dev_pe; |
| 1366 | if (!(dev_pe->state & EEH_PE_ISOLATED)) |
| 1367 | phb->freeze_pe(phb, pe_no); |
| 1368 | |
| 1369 | /* |
| 1370 | * At this point, we're sure the (compound) PE should |
| 1371 | * have been frozen. However, we still need poke until |
| 1372 | * hitting the frozen PE on top level. |
| 1373 | */ |
| 1374 | dev_pe = dev_pe->parent; |
| 1375 | while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) { |
| 1376 | int ret; |
| 1377 | ret = eeh_ops->get_state(dev_pe, NULL); |
| 1378 | if (ret <= 0 || eeh_state_active(ret)) { |
| 1379 | dev_pe = dev_pe->parent; |
| 1380 | continue; |
| 1381 | } |
| 1382 | |
| 1383 | /* Frozen parent PE */ |
| 1384 | *pe = dev_pe; |
| 1385 | if (!(dev_pe->state & EEH_PE_ISOLATED)) |
| 1386 | phb->freeze_pe(phb, dev_pe->addr); |
| 1387 | |
| 1388 | /* Next one */ |
| 1389 | dev_pe = dev_pe->parent; |
| 1390 | } |
| 1391 | |
| 1392 | return 0; |
| 1393 | } |
| 1394 | |
| 1395 | /** |
| 1396 | * pnv_eeh_next_error - Retrieve next EEH error to handle |
| 1397 | * @pe: Affected PE |
| 1398 | * |
| 1399 | * The function is expected to be called by EEH core while it gets |
| 1400 | * special EEH event (without binding PE). The function calls to |
| 1401 | * OPAL APIs for next error to handle. The informational error is |
| 1402 | * handled internally by platform. However, the dead IOC, dead PHB, |
| 1403 | * fenced PHB and frozen PE should be handled by EEH core eventually. |
| 1404 | */ |
| 1405 | static int pnv_eeh_next_error(struct eeh_pe **pe) |
| 1406 | { |
| 1407 | struct pci_controller *hose; |
| 1408 | struct pnv_phb *phb; |
| 1409 | struct eeh_pe *phb_pe, *parent_pe; |
| 1410 | __be64 frozen_pe_no; |
| 1411 | __be16 err_type, severity; |
| 1412 | long rc; |
| 1413 | int state, ret = EEH_NEXT_ERR_NONE; |
| 1414 | |
| 1415 | /* |
| 1416 | * While running here, it's safe to purge the event queue. The |
| 1417 | * event should still be masked. |
| 1418 | */ |
| 1419 | eeh_remove_event(NULL, false); |
| 1420 | |
| 1421 | list_for_each_entry(hose, &hose_list, list_node) { |
| 1422 | /* |
| 1423 | * If the subordinate PCI buses of the PHB has been |
| 1424 | * removed or is exactly under error recovery, we |
| 1425 | * needn't take care of it any more. |
| 1426 | */ |
| 1427 | phb = hose->private_data; |
| 1428 | phb_pe = eeh_phb_pe_get(hose); |
| 1429 | if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) |
| 1430 | continue; |
| 1431 | |
| 1432 | rc = opal_pci_next_error(phb->opal_id, |
| 1433 | &frozen_pe_no, &err_type, &severity); |
| 1434 | if (rc != OPAL_SUCCESS) { |
| 1435 | pr_devel("%s: Invalid return value on " |
| 1436 | "PHB#%x (0x%lx) from opal_pci_next_error" , |
| 1437 | __func__, hose->global_number, rc); |
| 1438 | continue; |
| 1439 | } |
| 1440 | |
| 1441 | /* If the PHB doesn't have error, stop processing */ |
| 1442 | if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || |
| 1443 | be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { |
| 1444 | pr_devel("%s: No error found on PHB#%x\n" , |
| 1445 | __func__, hose->global_number); |
| 1446 | continue; |
| 1447 | } |
| 1448 | |
| 1449 | /* |
| 1450 | * Processing the error. We're expecting the error with |
| 1451 | * highest priority reported upon multiple errors on the |
| 1452 | * specific PHB. |
| 1453 | */ |
| 1454 | pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n" , |
| 1455 | __func__, be16_to_cpu(err_type), |
| 1456 | be16_to_cpu(severity), be64_to_cpu(frozen_pe_no), |
| 1457 | hose->global_number); |
| 1458 | switch (be16_to_cpu(err_type)) { |
| 1459 | case OPAL_EEH_IOC_ERROR: |
| 1460 | if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { |
| 1461 | pr_err("EEH: dead IOC detected\n" ); |
| 1462 | ret = EEH_NEXT_ERR_DEAD_IOC; |
| 1463 | } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { |
| 1464 | pr_info("EEH: IOC informative error " |
| 1465 | "detected\n" ); |
| 1466 | pnv_eeh_get_and_dump_hub_diag(hose); |
| 1467 | ret = EEH_NEXT_ERR_NONE; |
| 1468 | } |
| 1469 | |
| 1470 | break; |
| 1471 | case OPAL_EEH_PHB_ERROR: |
| 1472 | if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { |
| 1473 | *pe = phb_pe; |
| 1474 | pr_err("EEH: dead PHB#%x detected, " |
| 1475 | "location: %s\n" , |
| 1476 | hose->global_number, |
| 1477 | eeh_pe_loc_get(phb_pe)); |
| 1478 | ret = EEH_NEXT_ERR_DEAD_PHB; |
| 1479 | } else if (be16_to_cpu(severity) == |
| 1480 | OPAL_EEH_SEV_PHB_FENCED) { |
| 1481 | *pe = phb_pe; |
| 1482 | pr_err("EEH: Fenced PHB#%x detected, " |
| 1483 | "location: %s\n" , |
| 1484 | hose->global_number, |
| 1485 | eeh_pe_loc_get(phb_pe)); |
| 1486 | ret = EEH_NEXT_ERR_FENCED_PHB; |
| 1487 | } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { |
| 1488 | pr_info("EEH: PHB#%x informative error " |
| 1489 | "detected, location: %s\n" , |
| 1490 | hose->global_number, |
| 1491 | eeh_pe_loc_get(phb_pe)); |
| 1492 | pnv_eeh_get_phb_diag(phb_pe); |
| 1493 | pnv_pci_dump_phb_diag_data(hose, phb_pe->data); |
| 1494 | ret = EEH_NEXT_ERR_NONE; |
| 1495 | } |
| 1496 | |
| 1497 | break; |
| 1498 | case OPAL_EEH_PE_ERROR: |
| 1499 | /* |
| 1500 | * If we can't find the corresponding PE, we |
| 1501 | * just try to unfreeze. |
| 1502 | */ |
| 1503 | if (pnv_eeh_get_pe(hose, |
| 1504 | be64_to_cpu(frozen_pe_no), pe)) { |
| 1505 | pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n" , |
| 1506 | hose->global_number, be64_to_cpu(frozen_pe_no)); |
| 1507 | pr_info("EEH: PHB location: %s\n" , |
| 1508 | eeh_pe_loc_get(phb_pe)); |
| 1509 | |
| 1510 | /* Dump PHB diag-data */ |
| 1511 | rc = opal_pci_get_phb_diag_data2(phb->opal_id, |
| 1512 | phb->diag_data, phb->diag_data_size); |
| 1513 | if (rc == OPAL_SUCCESS) |
| 1514 | pnv_pci_dump_phb_diag_data(hose, |
| 1515 | phb->diag_data); |
| 1516 | |
| 1517 | /* Try best to clear it */ |
| 1518 | opal_pci_eeh_freeze_clear(phb->opal_id, |
| 1519 | be64_to_cpu(frozen_pe_no), |
| 1520 | OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); |
| 1521 | ret = EEH_NEXT_ERR_NONE; |
| 1522 | } else if ((*pe)->state & EEH_PE_ISOLATED || |
| 1523 | eeh_pe_passed(*pe)) { |
| 1524 | ret = EEH_NEXT_ERR_NONE; |
| 1525 | } else { |
| 1526 | pr_err("EEH: Frozen PE#%x " |
| 1527 | "on PHB#%x detected\n" , |
| 1528 | (*pe)->addr, |
| 1529 | (*pe)->phb->global_number); |
| 1530 | pr_err("EEH: PE location: %s, " |
| 1531 | "PHB location: %s\n" , |
| 1532 | eeh_pe_loc_get(*pe), |
| 1533 | eeh_pe_loc_get(phb_pe)); |
| 1534 | ret = EEH_NEXT_ERR_FROZEN_PE; |
| 1535 | } |
| 1536 | |
| 1537 | break; |
| 1538 | default: |
| 1539 | pr_warn("%s: Unexpected error type %d\n" , |
| 1540 | __func__, be16_to_cpu(err_type)); |
| 1541 | } |
| 1542 | |
| 1543 | /* |
| 1544 | * EEH core will try recover from fenced PHB or |
| 1545 | * frozen PE. In the time for frozen PE, EEH core |
| 1546 | * enable IO path for that before collecting logs, |
| 1547 | * but it ruins the site. So we have to dump the |
| 1548 | * log in advance here. |
| 1549 | */ |
| 1550 | if ((ret == EEH_NEXT_ERR_FROZEN_PE || |
| 1551 | ret == EEH_NEXT_ERR_FENCED_PHB) && |
| 1552 | !((*pe)->state & EEH_PE_ISOLATED)) { |
| 1553 | eeh_pe_mark_isolated(*pe); |
| 1554 | pnv_eeh_get_phb_diag(*pe); |
| 1555 | |
| 1556 | if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) |
| 1557 | pnv_pci_dump_phb_diag_data((*pe)->phb, |
| 1558 | (*pe)->data); |
| 1559 | } |
| 1560 | |
| 1561 | /* |
| 1562 | * We probably have the frozen parent PE out there and |
| 1563 | * we need have to handle frozen parent PE firstly. |
| 1564 | */ |
| 1565 | if (ret == EEH_NEXT_ERR_FROZEN_PE) { |
| 1566 | parent_pe = (*pe)->parent; |
| 1567 | while (parent_pe) { |
| 1568 | /* Hit the ceiling ? */ |
| 1569 | if (parent_pe->type & EEH_PE_PHB) |
| 1570 | break; |
| 1571 | |
| 1572 | /* Frozen parent PE ? */ |
| 1573 | state = eeh_ops->get_state(parent_pe, NULL); |
| 1574 | if (state > 0 && !eeh_state_active(state)) |
| 1575 | *pe = parent_pe; |
| 1576 | |
| 1577 | /* Next parent level */ |
| 1578 | parent_pe = parent_pe->parent; |
| 1579 | } |
| 1580 | |
| 1581 | /* We possibly migrate to another PE */ |
| 1582 | eeh_pe_mark_isolated(*pe); |
| 1583 | } |
| 1584 | |
| 1585 | /* |
| 1586 | * If we have no errors on the specific PHB or only |
| 1587 | * informative error there, we continue poking it. |
| 1588 | * Otherwise, we need actions to be taken by upper |
| 1589 | * layer. |
| 1590 | */ |
| 1591 | if (ret > EEH_NEXT_ERR_INF) |
| 1592 | break; |
| 1593 | } |
| 1594 | |
| 1595 | /* Unmask the event */ |
| 1596 | if (ret == EEH_NEXT_ERR_NONE && eeh_enabled()) |
| 1597 | enable_irq(irq: eeh_event_irq); |
| 1598 | |
| 1599 | return ret; |
| 1600 | } |
| 1601 | |
| 1602 | static int pnv_eeh_restore_config(struct eeh_dev *edev) |
| 1603 | { |
| 1604 | struct pnv_phb *phb; |
| 1605 | s64 ret = 0; |
| 1606 | |
| 1607 | if (!edev) |
| 1608 | return -EEXIST; |
| 1609 | |
| 1610 | if (edev->physfn) |
| 1611 | return 0; |
| 1612 | |
| 1613 | phb = edev->controller->private_data; |
| 1614 | ret = opal_pci_reinit(phb->opal_id, |
| 1615 | OPAL_REINIT_PCI_DEV, edev->bdfn); |
| 1616 | |
| 1617 | if (ret) { |
| 1618 | pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n" , |
| 1619 | __func__, edev->bdfn, ret); |
| 1620 | return -EIO; |
| 1621 | } |
| 1622 | |
| 1623 | return ret; |
| 1624 | } |
| 1625 | |
| 1626 | static struct eeh_ops pnv_eeh_ops = { |
| 1627 | .name = "powernv" , |
| 1628 | .probe = pnv_eeh_probe, |
| 1629 | .set_option = pnv_eeh_set_option, |
| 1630 | .get_state = pnv_eeh_get_state, |
| 1631 | .reset = pnv_eeh_reset, |
| 1632 | .get_log = pnv_eeh_get_log, |
| 1633 | .configure_bridge = pnv_eeh_configure_bridge, |
| 1634 | .err_inject = pnv_eeh_err_inject, |
| 1635 | .read_config = pnv_eeh_read_config, |
| 1636 | .write_config = pnv_eeh_write_config, |
| 1637 | .next_error = pnv_eeh_next_error, |
| 1638 | .restore_config = pnv_eeh_restore_config, |
| 1639 | .notify_resume = NULL |
| 1640 | }; |
| 1641 | |
| 1642 | /** |
| 1643 | * eeh_powernv_init - Register platform dependent EEH operations |
| 1644 | * |
| 1645 | * EEH initialization on powernv platform. This function should be |
| 1646 | * called before any EEH related functions. |
| 1647 | */ |
| 1648 | static int __init eeh_powernv_init(void) |
| 1649 | { |
| 1650 | int max_diag_size = PNV_PCI_DIAG_BUF_SIZE; |
| 1651 | struct pci_controller *hose; |
| 1652 | struct pnv_phb *phb; |
| 1653 | int ret = -EINVAL; |
| 1654 | |
| 1655 | if (!firmware_has_feature(FW_FEATURE_OPAL)) { |
| 1656 | pr_warn("%s: OPAL is required !\n" , __func__); |
| 1657 | return -EINVAL; |
| 1658 | } |
| 1659 | |
| 1660 | /* Set probe mode */ |
| 1661 | eeh_add_flag(EEH_PROBE_MODE_DEV); |
| 1662 | |
| 1663 | /* |
| 1664 | * P7IOC blocks PCI config access to frozen PE, but PHB3 |
| 1665 | * doesn't do that. So we have to selectively enable I/O |
| 1666 | * prior to collecting error log. |
| 1667 | */ |
| 1668 | list_for_each_entry(hose, &hose_list, list_node) { |
| 1669 | phb = hose->private_data; |
| 1670 | |
| 1671 | if (phb->model == PNV_PHB_MODEL_P7IOC) |
| 1672 | eeh_add_flag(EEH_ENABLE_IO_FOR_LOG); |
| 1673 | |
| 1674 | if (phb->diag_data_size > max_diag_size) |
| 1675 | max_diag_size = phb->diag_data_size; |
| 1676 | |
| 1677 | break; |
| 1678 | } |
| 1679 | |
| 1680 | /* |
| 1681 | * eeh_init() allocates the eeh_pe and its aux data buf so the |
| 1682 | * size needs to be set before calling eeh_init(). |
| 1683 | */ |
| 1684 | eeh_set_pe_aux_size(max_diag_size); |
| 1685 | ppc_md.pcibios_bus_add_device = pnv_pcibios_bus_add_device; |
| 1686 | |
| 1687 | ret = eeh_init(&pnv_eeh_ops); |
| 1688 | if (!ret) |
| 1689 | pr_info("EEH: PowerNV platform initialized\n" ); |
| 1690 | else |
| 1691 | pr_info("EEH: Failed to initialize PowerNV platform (%d)\n" , ret); |
| 1692 | |
| 1693 | return ret; |
| 1694 | } |
| 1695 | machine_arch_initcall(powernv, eeh_powernv_init); |
| 1696 | |