1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry: Define exception entry points.
20 */
21#include <linux/export.h>
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls. The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries. There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax system call number
70 * rcx return address
71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi arg0
73 * rsi arg1
74 * rdx arg2
75 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8 arg4
77 * r9 arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88 UNWIND_HINT_ENTRY
89 ENDBR
90
91 swapgs
92 /* tss.sp2 is scratch space. */
93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98 ANNOTATE_NOENDBR
99
100 /* Construct struct pt_regs on stack */
101 pushq $__USER_DS /* pt_regs->ss */
102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
103 pushq %r11 /* pt_regs->flags */
104 pushq $__USER_CS /* pt_regs->cs */
105 pushq %rcx /* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107 pushq %rax /* pt_regs->orig_ax */
108
109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111 /* IRQs are off. */
112 movq %rsp, %rdi
113 /* Sign extend the lower 32bit as syscall numbers are treated as int */
114 movslq %eax, %rsi
115
116 /* clobbers %rax, make sure it is after saving the syscall nr */
117 IBRS_ENTER
118 UNTRAIN_RET
119 CLEAR_BRANCH_HISTORY
120
121 call do_syscall_64 /* returns with IRQs disabled */
122
123 /*
124 * Try to use SYSRET instead of IRET if we're returning to
125 * a completely clean 64-bit userspace context. If we're not,
126 * go to the slow exit path.
127 * In the Xen PV case we must use iret anyway.
128 */
129
130 ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
131 "jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
132
133 /*
134 * We win! This label is here just for ease of understanding
135 * perf profiles. Nothing jumps here.
136 */
137syscall_return_via_sysret:
138 IBRS_EXIT
139 POP_REGS pop_rdi=0
140
141 /*
142 * Now all regs are restored except RSP and RDI.
143 * Save old stack pointer and switch to trampoline stack.
144 */
145 movq %rsp, %rdi
146 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
147 UNWIND_HINT_END_OF_STACK
148
149 pushq RSP-RDI(%rdi) /* RSP */
150 pushq (%rdi) /* RDI */
151
152 /*
153 * We are on the trampoline stack. All regs except RDI are live.
154 * We can do future final exit work right here.
155 */
156 STACKLEAK_ERASE_NOCLOBBER
157
158 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
159
160 popq %rdi
161 popq %rsp
162SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
163 ANNOTATE_NOENDBR
164 swapgs
165 CLEAR_CPU_BUFFERS
166 sysretq
167SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
168 ANNOTATE_NOENDBR
169 int3
170SYM_CODE_END(entry_SYSCALL_64)
171
172/*
173 * %rdi: prev task
174 * %rsi: next task
175 */
176.pushsection .text, "ax"
177SYM_FUNC_START(__switch_to_asm)
178 ANNOTATE_NOENDBR
179 /*
180 * Save callee-saved registers
181 * This must match the order in inactive_task_frame
182 */
183 pushq %rbp
184 pushq %rbx
185 pushq %r12
186 pushq %r13
187 pushq %r14
188 pushq %r15
189
190 /* switch stack */
191 movq %rsp, TASK_threadsp(%rdi)
192 movq TASK_threadsp(%rsi), %rsp
193
194#ifdef CONFIG_STACKPROTECTOR
195 movq TASK_stack_canary(%rsi), %rbx
196 movq %rbx, PER_CPU_VAR(__stack_chk_guard)
197#endif
198
199 /*
200 * When switching from a shallower to a deeper call stack
201 * the RSB may either underflow or use entries populated
202 * with userspace addresses. On CPUs where those concerns
203 * exist, overwrite the RSB with entries which capture
204 * speculative execution to prevent attack.
205 */
206 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
207
208 /* restore callee-saved registers */
209 popq %r15
210 popq %r14
211 popq %r13
212 popq %r12
213 popq %rbx
214 popq %rbp
215
216 jmp __switch_to
217SYM_FUNC_END(__switch_to_asm)
218.popsection
219
220/*
221 * A newly forked process directly context switches into this address.
222 *
223 * rax: prev task we switched from
224 * rbx: kernel thread func (NULL for user thread)
225 * r12: kernel thread arg
226 */
227.pushsection .text, "ax"
228SYM_CODE_START(ret_from_fork_asm)
229 /*
230 * This is the start of the kernel stack; even through there's a
231 * register set at the top, the regset isn't necessarily coherent
232 * (consider kthreads) and one cannot unwind further.
233 *
234 * This ensures stack unwinds of kernel threads terminate in a known
235 * good state.
236 */
237 UNWIND_HINT_END_OF_STACK
238 ANNOTATE_NOENDBR // copy_thread
239 CALL_DEPTH_ACCOUNT
240
241 movq %rax, %rdi /* prev */
242 movq %rsp, %rsi /* regs */
243 movq %rbx, %rdx /* fn */
244 movq %r12, %rcx /* fn_arg */
245 call ret_from_fork
246
247 /*
248 * Set the stack state to what is expected for the target function
249 * -- at this point the register set should be a valid user set
250 * and unwind should work normally.
251 */
252 UNWIND_HINT_REGS
253
254#ifdef CONFIG_X86_FRED
255 ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \
256 "jmp asm_fred_exit_user", X86_FEATURE_FRED
257#else
258 jmp swapgs_restore_regs_and_return_to_usermode
259#endif
260SYM_CODE_END(ret_from_fork_asm)
261.popsection
262
263.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
264#ifdef CONFIG_DEBUG_ENTRY
265 pushq %rax
266 SAVE_FLAGS
267 testl $X86_EFLAGS_IF, %eax
268 jz .Lokay_\@
269 ud2
270.Lokay_\@:
271 popq %rax
272#endif
273.endm
274
275SYM_CODE_START(xen_error_entry)
276 ANNOTATE_NOENDBR
277 UNWIND_HINT_FUNC
278 PUSH_AND_CLEAR_REGS save_ret=1
279 ENCODE_FRAME_POINTER 8
280 UNTRAIN_RET_FROM_CALL
281 RET
282SYM_CODE_END(xen_error_entry)
283
284/**
285 * idtentry_body - Macro to emit code calling the C function
286 * @cfunc: C function to be called
287 * @has_error_code: Hardware pushed error code on stack
288 */
289.macro idtentry_body cfunc has_error_code:req
290
291 /*
292 * Call error_entry() and switch to the task stack if from userspace.
293 *
294 * When in XENPV, it is already in the task stack, and it can't fault
295 * for native_iret() nor native_load_gs_index() since XENPV uses its
296 * own pvops for IRET and load_gs_index(). And it doesn't need to
297 * switch the CR3. So it can skip invoking error_entry().
298 */
299 ALTERNATIVE "call error_entry; movq %rax, %rsp", \
300 "call xen_error_entry", X86_FEATURE_XENPV
301
302 ENCODE_FRAME_POINTER
303 UNWIND_HINT_REGS
304
305 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/
306
307 .if \has_error_code == 1
308 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
309 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
310 .endif
311
312 /* For some configurations \cfunc ends up being a noreturn. */
313 ANNOTATE_REACHABLE
314 call \cfunc
315
316 jmp error_return
317.endm
318
319/**
320 * idtentry - Macro to generate entry stubs for simple IDT entries
321 * @vector: Vector number
322 * @asmsym: ASM symbol for the entry point
323 * @cfunc: C function to be called
324 * @has_error_code: Hardware pushed error code on stack
325 *
326 * The macro emits code to set up the kernel context for straight forward
327 * and simple IDT entries. No IST stack, no paranoid entry checks.
328 */
329.macro idtentry vector asmsym cfunc has_error_code:req
330SYM_CODE_START(\asmsym)
331
332 .if \vector == X86_TRAP_BP
333 /* #BP advances %rip to the next instruction */
334 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
335 .else
336 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
337 .endif
338
339 ENDBR
340 ASM_CLAC
341 cld
342
343 .if \has_error_code == 0
344 pushq $-1 /* ORIG_RAX: no syscall to restart */
345 .endif
346
347 .if \vector == X86_TRAP_BP
348 /*
349 * If coming from kernel space, create a 6-word gap to allow the
350 * int3 handler to emulate a call instruction.
351 */
352 testb $3, CS-ORIG_RAX(%rsp)
353 jnz .Lfrom_usermode_no_gap_\@
354 .rept 6
355 pushq 5*8(%rsp)
356 .endr
357 UNWIND_HINT_IRET_REGS offset=8
358.Lfrom_usermode_no_gap_\@:
359 .endif
360
361 idtentry_body \cfunc \has_error_code
362
363_ASM_NOKPROBE(\asmsym)
364SYM_CODE_END(\asmsym)
365.endm
366
367/*
368 * Interrupt entry/exit.
369 *
370 + The interrupt stubs push (vector) onto the stack, which is the error_code
371 * position of idtentry exceptions, and jump to one of the two idtentry points
372 * (common/spurious).
373 *
374 * common_interrupt is a hotpath, align it to a cache line
375 */
376.macro idtentry_irq vector cfunc
377 .p2align CONFIG_X86_L1_CACHE_SHIFT
378 idtentry \vector asm_\cfunc \cfunc has_error_code=1
379.endm
380
381/**
382 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
383 * @vector: Vector number
384 * @asmsym: ASM symbol for the entry point
385 * @cfunc: C function to be called
386 *
387 * The macro emits code to set up the kernel context for #MC and #DB
388 *
389 * If the entry comes from user space it uses the normal entry path
390 * including the return to user space work and preemption checks on
391 * exit.
392 *
393 * If hits in kernel mode then it needs to go through the paranoid
394 * entry as the exception can hit any random state. No preemption
395 * check on exit to keep the paranoid path simple.
396 */
397.macro idtentry_mce_db vector asmsym cfunc
398SYM_CODE_START(\asmsym)
399 UNWIND_HINT_IRET_ENTRY
400 ENDBR
401 ASM_CLAC
402 cld
403
404 pushq $-1 /* ORIG_RAX: no syscall to restart */
405
406 /*
407 * If the entry is from userspace, switch stacks and treat it as
408 * a normal entry.
409 */
410 testb $3, CS-ORIG_RAX(%rsp)
411 jnz .Lfrom_usermode_switch_stack_\@
412
413 /* paranoid_entry returns GS information for paranoid_exit in EBX. */
414 call paranoid_entry
415
416 UNWIND_HINT_REGS
417
418 movq %rsp, %rdi /* pt_regs pointer */
419
420 call \cfunc
421
422 jmp paranoid_exit
423
424 /* Switch to the regular task stack and use the noist entry point */
425.Lfrom_usermode_switch_stack_\@:
426 idtentry_body noist_\cfunc, has_error_code=0
427
428_ASM_NOKPROBE(\asmsym)
429SYM_CODE_END(\asmsym)
430.endm
431
432#ifdef CONFIG_AMD_MEM_ENCRYPT
433/**
434 * idtentry_vc - Macro to generate entry stub for #VC
435 * @vector: Vector number
436 * @asmsym: ASM symbol for the entry point
437 * @cfunc: C function to be called
438 *
439 * The macro emits code to set up the kernel context for #VC. The #VC handler
440 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
441 *
442 * To make this work the #VC entry code tries its best to pretend it doesn't use
443 * an IST stack by switching to the task stack if coming from user-space (which
444 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
445 * entered from kernel-mode.
446 *
447 * If entered from kernel-mode the return stack is validated first, and if it is
448 * not safe to use (e.g. because it points to the entry stack) the #VC handler
449 * will switch to a fall-back stack (VC2) and call a special handler function.
450 *
451 * The macro is only used for one vector, but it is planned to be extended in
452 * the future for the #HV exception.
453 */
454.macro idtentry_vc vector asmsym cfunc
455SYM_CODE_START(\asmsym)
456 UNWIND_HINT_IRET_ENTRY
457 ENDBR
458 ASM_CLAC
459 cld
460
461 /*
462 * If the entry is from userspace, switch stacks and treat it as
463 * a normal entry.
464 */
465 testb $3, CS-ORIG_RAX(%rsp)
466 jnz .Lfrom_usermode_switch_stack_\@
467
468 /*
469 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
470 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
471 */
472 call paranoid_entry
473
474 UNWIND_HINT_REGS
475
476 /*
477 * Switch off the IST stack to make it free for nested exceptions. The
478 * vc_switch_off_ist() function will switch back to the interrupted
479 * stack if it is safe to do so. If not it switches to the VC fall-back
480 * stack.
481 */
482 movq %rsp, %rdi /* pt_regs pointer */
483 call vc_switch_off_ist
484 movq %rax, %rsp /* Switch to new stack */
485
486 ENCODE_FRAME_POINTER
487 UNWIND_HINT_REGS
488
489 /* Update pt_regs */
490 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
491 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
492
493 movq %rsp, %rdi /* pt_regs pointer */
494
495 call kernel_\cfunc
496
497 /*
498 * No need to switch back to the IST stack. The current stack is either
499 * identical to the stack in the IRET frame or the VC fall-back stack,
500 * so it is definitely mapped even with PTI enabled.
501 */
502 jmp paranoid_exit
503
504 /* Switch to the regular task stack */
505.Lfrom_usermode_switch_stack_\@:
506 idtentry_body user_\cfunc, has_error_code=1
507
508_ASM_NOKPROBE(\asmsym)
509SYM_CODE_END(\asmsym)
510.endm
511#endif
512
513/*
514 * Double fault entry. Straight paranoid. No checks from which context
515 * this comes because for the espfix induced #DF this would do the wrong
516 * thing.
517 */
518.macro idtentry_df vector asmsym cfunc
519SYM_CODE_START(\asmsym)
520 UNWIND_HINT_IRET_ENTRY offset=8
521 ENDBR
522 ASM_CLAC
523 cld
524
525 /* paranoid_entry returns GS information for paranoid_exit in EBX. */
526 call paranoid_entry
527 UNWIND_HINT_REGS
528
529 movq %rsp, %rdi /* pt_regs pointer into first argument */
530 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
531 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
532
533 /* For some configurations \cfunc ends up being a noreturn. */
534 ANNOTATE_REACHABLE
535 call \cfunc
536
537 jmp paranoid_exit
538
539_ASM_NOKPROBE(\asmsym)
540SYM_CODE_END(\asmsym)
541.endm
542
543/*
544 * Include the defines which emit the idt entries which are shared
545 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
546 * so the stacktrace boundary checks work.
547 */
548 __ALIGN
549 .globl __irqentry_text_start
550__irqentry_text_start:
551
552#include <asm/idtentry.h>
553
554 __ALIGN
555 .globl __irqentry_text_end
556__irqentry_text_end:
557 ANNOTATE_NOENDBR
558
559SYM_CODE_START_LOCAL(common_interrupt_return)
560SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
561 IBRS_EXIT
562#ifdef CONFIG_XEN_PV
563 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
564#endif
565#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
566 ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI
567#endif
568
569 STACKLEAK_ERASE
570 POP_REGS
571 add $8, %rsp /* orig_ax */
572 UNWIND_HINT_IRET_REGS
573
574.Lswapgs_and_iret:
575 swapgs
576 CLEAR_CPU_BUFFERS
577 /* Assert that the IRET frame indicates user mode. */
578 testb $3, 8(%rsp)
579 jnz .Lnative_iret
580 ud2
581
582#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
583.Lpti_restore_regs_and_return_to_usermode:
584 POP_REGS pop_rdi=0
585
586 /*
587 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
588 * Save old stack pointer and switch to trampoline stack.
589 */
590 movq %rsp, %rdi
591 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
592 UNWIND_HINT_END_OF_STACK
593
594 /* Copy the IRET frame to the trampoline stack. */
595 pushq 6*8(%rdi) /* SS */
596 pushq 5*8(%rdi) /* RSP */
597 pushq 4*8(%rdi) /* EFLAGS */
598 pushq 3*8(%rdi) /* CS */
599 pushq 2*8(%rdi) /* RIP */
600
601 /* Push user RDI on the trampoline stack. */
602 pushq (%rdi)
603
604 /*
605 * We are on the trampoline stack. All regs except RDI are live.
606 * We can do future final exit work right here.
607 */
608 STACKLEAK_ERASE_NOCLOBBER
609
610 push %rax
611 SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax
612 pop %rax
613
614 /* Restore RDI. */
615 popq %rdi
616 jmp .Lswapgs_and_iret
617#endif
618
619SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
620#ifdef CONFIG_DEBUG_ENTRY
621 /* Assert that pt_regs indicates kernel mode. */
622 testb $3, CS(%rsp)
623 jz 1f
624 ud2
6251:
626#endif
627 POP_REGS
628 addq $8, %rsp /* skip regs->orig_ax */
629 /*
630 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
631 * when returning from IPI handler.
632 */
633#ifdef CONFIG_XEN_PV
634SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
635 ANNOTATE_NOENDBR
636 .byte 0xe9
637 .long .Lnative_iret - (. + 4)
638#endif
639
640.Lnative_iret:
641 UNWIND_HINT_IRET_REGS
642 /*
643 * Are we returning to a stack segment from the LDT? Note: in
644 * 64-bit mode SS:RSP on the exception stack is always valid.
645 */
646#ifdef CONFIG_X86_ESPFIX64
647 testb $4, (SS-RIP)(%rsp)
648 jnz native_irq_return_ldt
649#endif
650
651SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
652 ANNOTATE_NOENDBR // exc_double_fault
653 /*
654 * This may fault. Non-paranoid faults on return to userspace are
655 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
656 * Double-faults due to espfix64 are handled in exc_double_fault.
657 * Other faults here are fatal.
658 */
659 iretq
660
661#ifdef CONFIG_X86_ESPFIX64
662native_irq_return_ldt:
663 /*
664 * We are running with user GSBASE. All GPRs contain their user
665 * values. We have a percpu ESPFIX stack that is eight slots
666 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
667 * of the ESPFIX stack.
668 *
669 * We clobber RAX and RDI in this code. We stash RDI on the
670 * normal stack and RAX on the ESPFIX stack.
671 *
672 * The ESPFIX stack layout we set up looks like this:
673 *
674 * --- top of ESPFIX stack ---
675 * SS
676 * RSP
677 * RFLAGS
678 * CS
679 * RIP <-- RSP points here when we're done
680 * RAX <-- espfix_waddr points here
681 * --- bottom of ESPFIX stack ---
682 */
683
684 pushq %rdi /* Stash user RDI */
685 swapgs /* to kernel GS */
686 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
687
688 movq PER_CPU_VAR(espfix_waddr), %rdi
689 movq %rax, (0*8)(%rdi) /* user RAX */
690 movq (1*8)(%rsp), %rax /* user RIP */
691 movq %rax, (1*8)(%rdi)
692 movq (2*8)(%rsp), %rax /* user CS */
693 movq %rax, (2*8)(%rdi)
694 movq (3*8)(%rsp), %rax /* user RFLAGS */
695 movq %rax, (3*8)(%rdi)
696 movq (5*8)(%rsp), %rax /* user SS */
697 movq %rax, (5*8)(%rdi)
698 movq (4*8)(%rsp), %rax /* user RSP */
699 movq %rax, (4*8)(%rdi)
700 /* Now RAX == RSP. */
701
702 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
703
704 /*
705 * espfix_stack[31:16] == 0. The page tables are set up such that
706 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
707 * espfix_waddr for any X. That is, there are 65536 RO aliases of
708 * the same page. Set up RSP so that RSP[31:16] contains the
709 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
710 * still points to an RO alias of the ESPFIX stack.
711 */
712 orq PER_CPU_VAR(espfix_stack), %rax
713
714 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
715 swapgs /* to user GS */
716 popq %rdi /* Restore user RDI */
717
718 movq %rax, %rsp
719 UNWIND_HINT_IRET_REGS offset=8
720
721 /*
722 * At this point, we cannot write to the stack any more, but we can
723 * still read.
724 */
725 popq %rax /* Restore user RAX */
726
727 CLEAR_CPU_BUFFERS
728
729 /*
730 * RSP now points to an ordinary IRET frame, except that the page
731 * is read-only and RSP[31:16] are preloaded with the userspace
732 * values. We can now IRET back to userspace.
733 */
734 jmp native_irq_return_iret
735#endif
736SYM_CODE_END(common_interrupt_return)
737_ASM_NOKPROBE(common_interrupt_return)
738
739/*
740 * Reload gs selector with exception handling
741 * di: new selector
742 *
743 * Is in entry.text as it shouldn't be instrumented.
744 */
745SYM_FUNC_START(asm_load_gs_index)
746 ANNOTATE_NOENDBR
747 FRAME_BEGIN
748 swapgs
749.Lgs_change:
750 ANNOTATE_NOENDBR // error_entry
751 movl %edi, %gs
7522: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
753 swapgs
754 FRAME_END
755 RET
756
757 /* running with kernelgs */
758.Lbad_gs:
759 swapgs /* switch back to user gs */
760.macro ZAP_GS
761 /* This can't be a string because the preprocessor needs to see it. */
762 movl $__USER_DS, %eax
763 movl %eax, %gs
764.endm
765 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
766 xorl %eax, %eax
767 movl %eax, %gs
768 jmp 2b
769
770 _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
771
772SYM_FUNC_END(asm_load_gs_index)
773EXPORT_SYMBOL(asm_load_gs_index)
774
775#ifdef CONFIG_XEN_PV
776/*
777 * A note on the "critical region" in our callback handler.
778 * We want to avoid stacking callback handlers due to events occurring
779 * during handling of the last event. To do this, we keep events disabled
780 * until we've done all processing. HOWEVER, we must enable events before
781 * popping the stack frame (can't be done atomically) and so it would still
782 * be possible to get enough handler activations to overflow the stack.
783 * Although unlikely, bugs of that kind are hard to track down, so we'd
784 * like to avoid the possibility.
785 * So, on entry to the handler we detect whether we interrupted an
786 * existing activation in its critical region -- if so, we pop the current
787 * activation and restart the handler using the previous one.
788 *
789 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
790 */
791 __FUNC_ALIGN
792SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
793
794/*
795 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
796 * see the correct pointer to the pt_regs
797 */
798 UNWIND_HINT_FUNC
799 movq %rdi, %rsp /* we don't return, adjust the stack frame */
800 UNWIND_HINT_REGS
801
802 call xen_pv_evtchn_do_upcall
803
804 jmp error_return
805SYM_CODE_END(exc_xen_hypervisor_callback)
806
807/*
808 * Hypervisor uses this for application faults while it executes.
809 * We get here for two reasons:
810 * 1. Fault while reloading DS, ES, FS or GS
811 * 2. Fault while executing IRET
812 * Category 1 we do not need to fix up as Xen has already reloaded all segment
813 * registers that could be reloaded and zeroed the others.
814 * Category 2 we fix up by killing the current process. We cannot use the
815 * normal Linux return path in this case because if we use the IRET hypercall
816 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
817 * We distinguish between categories by comparing each saved segment register
818 * with its current contents: any discrepancy means we in category 1.
819 */
820 __FUNC_ALIGN
821SYM_CODE_START_NOALIGN(xen_failsafe_callback)
822 UNWIND_HINT_UNDEFINED
823 ENDBR
824 movl %ds, %ecx
825 cmpw %cx, 0x10(%rsp)
826 jne 1f
827 movl %es, %ecx
828 cmpw %cx, 0x18(%rsp)
829 jne 1f
830 movl %fs, %ecx
831 cmpw %cx, 0x20(%rsp)
832 jne 1f
833 movl %gs, %ecx
834 cmpw %cx, 0x28(%rsp)
835 jne 1f
836 /* All segments match their saved values => Category 2 (Bad IRET). */
837 movq (%rsp), %rcx
838 movq 8(%rsp), %r11
839 addq $0x30, %rsp
840 pushq $0 /* RIP */
841 UNWIND_HINT_IRET_REGS offset=8
842 jmp asm_exc_general_protection
8431: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
844 movq (%rsp), %rcx
845 movq 8(%rsp), %r11
846 addq $0x30, %rsp
847 UNWIND_HINT_IRET_REGS
848 pushq $-1 /* orig_ax = -1 => not a system call */
849 PUSH_AND_CLEAR_REGS
850 ENCODE_FRAME_POINTER
851 jmp error_return
852SYM_CODE_END(xen_failsafe_callback)
853#endif /* CONFIG_XEN_PV */
854
855/*
856 * Save all registers in pt_regs. Return GSBASE related information
857 * in EBX depending on the availability of the FSGSBASE instructions:
858 *
859 * FSGSBASE R/EBX
860 * N 0 -> SWAPGS on exit
861 * 1 -> no SWAPGS on exit
862 *
863 * Y GSBASE value at entry, must be restored in paranoid_exit
864 *
865 * R14 - old CR3
866 * R15 - old SPEC_CTRL
867 */
868SYM_CODE_START(paranoid_entry)
869 ANNOTATE_NOENDBR
870 UNWIND_HINT_FUNC
871 PUSH_AND_CLEAR_REGS save_ret=1
872 ENCODE_FRAME_POINTER 8
873
874 /*
875 * Always stash CR3 in %r14. This value will be restored,
876 * verbatim, at exit. Needed if paranoid_entry interrupted
877 * another entry that already switched to the user CR3 value
878 * but has not yet returned to userspace.
879 *
880 * This is also why CS (stashed in the "iret frame" by the
881 * hardware at entry) can not be used: this may be a return
882 * to kernel code, but with a user CR3 value.
883 *
884 * Switching CR3 does not depend on kernel GSBASE so it can
885 * be done before switching to the kernel GSBASE. This is
886 * required for FSGSBASE because the kernel GSBASE has to
887 * be retrieved from a kernel internal table.
888 */
889 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
890
891 /*
892 * Handling GSBASE depends on the availability of FSGSBASE.
893 *
894 * Without FSGSBASE the kernel enforces that negative GSBASE
895 * values indicate kernel GSBASE. With FSGSBASE no assumptions
896 * can be made about the GSBASE value when entering from user
897 * space.
898 */
899 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
900
901 /*
902 * Read the current GSBASE and store it in %rbx unconditionally,
903 * retrieve and set the current CPUs kernel GSBASE. The stored value
904 * has to be restored in paranoid_exit unconditionally.
905 *
906 * The unconditional write to GS base below ensures that no subsequent
907 * loads based on a mispredicted GS base can happen, therefore no LFENCE
908 * is needed here.
909 */
910 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
911 jmp .Lparanoid_gsbase_done
912
913.Lparanoid_entry_checkgs:
914 /* EBX = 1 -> kernel GSBASE active, no restore required */
915 movl $1, %ebx
916
917 /*
918 * The kernel-enforced convention is a negative GSBASE indicates
919 * a kernel value. No SWAPGS needed on entry and exit.
920 */
921 movl $MSR_GS_BASE, %ecx
922 rdmsr
923 testl %edx, %edx
924 js .Lparanoid_kernel_gsbase
925
926 /* EBX = 0 -> SWAPGS required on exit */
927 xorl %ebx, %ebx
928 swapgs
929.Lparanoid_kernel_gsbase:
930 FENCE_SWAPGS_KERNEL_ENTRY
931.Lparanoid_gsbase_done:
932
933 /*
934 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
935 * CR3 above, keep the old value in a callee saved register.
936 */
937 IBRS_ENTER save_reg=%r15
938 UNTRAIN_RET_FROM_CALL
939
940 RET
941SYM_CODE_END(paranoid_entry)
942
943/*
944 * "Paranoid" exit path from exception stack. This is invoked
945 * only on return from non-NMI IST interrupts that came
946 * from kernel space.
947 *
948 * We may be returning to very strange contexts (e.g. very early
949 * in syscall entry), so checking for preemption here would
950 * be complicated. Fortunately, there's no good reason to try
951 * to handle preemption here.
952 *
953 * R/EBX contains the GSBASE related information depending on the
954 * availability of the FSGSBASE instructions:
955 *
956 * FSGSBASE R/EBX
957 * N 0 -> SWAPGS on exit
958 * 1 -> no SWAPGS on exit
959 *
960 * Y User space GSBASE, must be restored unconditionally
961 *
962 * R14 - old CR3
963 * R15 - old SPEC_CTRL
964 */
965SYM_CODE_START_LOCAL(paranoid_exit)
966 UNWIND_HINT_REGS
967
968 /*
969 * Must restore IBRS state before both CR3 and %GS since we need access
970 * to the per-CPU x86_spec_ctrl_shadow variable.
971 */
972 IBRS_EXIT save_reg=%r15
973
974 /*
975 * The order of operations is important. PARANOID_RESTORE_CR3 requires
976 * kernel GSBASE.
977 *
978 * NB to anyone to try to optimize this code: this code does
979 * not execute at all for exceptions from user mode. Those
980 * exceptions go through error_return instead.
981 */
982 PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14
983
984 /* Handle the three GSBASE cases */
985 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
986
987 /* With FSGSBASE enabled, unconditionally restore GSBASE */
988 wrgsbase %rbx
989 jmp restore_regs_and_return_to_kernel
990
991.Lparanoid_exit_checkgs:
992 /* On non-FSGSBASE systems, conditionally do SWAPGS */
993 testl %ebx, %ebx
994 jnz restore_regs_and_return_to_kernel
995
996 /* We are returning to a context with user GSBASE */
997 swapgs
998 jmp restore_regs_and_return_to_kernel
999SYM_CODE_END(paranoid_exit)
1000
1001/*
1002 * Switch GS and CR3 if needed.
1003 */
1004SYM_CODE_START(error_entry)
1005 ANNOTATE_NOENDBR
1006 UNWIND_HINT_FUNC
1007
1008 PUSH_AND_CLEAR_REGS save_ret=1
1009 ENCODE_FRAME_POINTER 8
1010
1011 testb $3, CS+8(%rsp)
1012 jz .Lerror_kernelspace
1013
1014 /*
1015 * We entered from user mode or we're pretending to have entered
1016 * from user mode due to an IRET fault.
1017 */
1018 swapgs
1019 FENCE_SWAPGS_USER_ENTRY
1020 /* We have user CR3. Change to kernel CR3. */
1021 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1022 IBRS_ENTER
1023 UNTRAIN_RET_FROM_CALL
1024
1025 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */
1026 /* Put us onto the real thread stack. */
1027 jmp sync_regs
1028
1029 /*
1030 * There are two places in the kernel that can potentially fault with
1031 * usergs. Handle them here. B stepping K8s sometimes report a
1032 * truncated RIP for IRET exceptions returning to compat mode. Check
1033 * for these here too.
1034 */
1035.Lerror_kernelspace:
1036 leaq native_irq_return_iret(%rip), %rcx
1037 cmpq %rcx, RIP+8(%rsp)
1038 je .Lerror_bad_iret
1039 movl %ecx, %eax /* zero extend */
1040 cmpq %rax, RIP+8(%rsp)
1041 je .Lbstep_iret
1042 cmpq $.Lgs_change, RIP+8(%rsp)
1043 jne .Lerror_entry_done_lfence
1044
1045 /*
1046 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1047 * gsbase and proceed. We'll fix up the exception and land in
1048 * .Lgs_change's error handler with kernel gsbase.
1049 */
1050 swapgs
1051
1052 /*
1053 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1054 * kernel or user gsbase.
1055 */
1056.Lerror_entry_done_lfence:
1057 FENCE_SWAPGS_KERNEL_ENTRY
1058 CALL_DEPTH_ACCOUNT
1059 leaq 8(%rsp), %rax /* return pt_regs pointer */
1060 VALIDATE_UNRET_END
1061 RET
1062
1063.Lbstep_iret:
1064 /* Fix truncated RIP */
1065 movq %rcx, RIP+8(%rsp)
1066 /* fall through */
1067
1068.Lerror_bad_iret:
1069 /*
1070 * We came from an IRET to user mode, so we have user
1071 * gsbase and CR3. Switch to kernel gsbase and CR3:
1072 */
1073 swapgs
1074 FENCE_SWAPGS_USER_ENTRY
1075 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1076 IBRS_ENTER
1077 UNTRAIN_RET_FROM_CALL
1078
1079 /*
1080 * Pretend that the exception came from user mode: set up pt_regs
1081 * as if we faulted immediately after IRET.
1082 */
1083 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */
1084 call fixup_bad_iret
1085 mov %rax, %rdi
1086 jmp sync_regs
1087SYM_CODE_END(error_entry)
1088
1089SYM_CODE_START_LOCAL(error_return)
1090 UNWIND_HINT_REGS
1091 DEBUG_ENTRY_ASSERT_IRQS_OFF
1092 testb $3, CS(%rsp)
1093 jz restore_regs_and_return_to_kernel
1094 jmp swapgs_restore_regs_and_return_to_usermode
1095SYM_CODE_END(error_return)
1096
1097/*
1098 * Runs on exception stack. Xen PV does not go through this path at all,
1099 * so we can use real assembly here.
1100 *
1101 * Registers:
1102 * %r14: Used to save/restore the CR3 of the interrupted context
1103 * when MITIGATION_PAGE_TABLE_ISOLATION is in use. Do not clobber.
1104 */
1105SYM_CODE_START(asm_exc_nmi)
1106 UNWIND_HINT_IRET_ENTRY
1107 ENDBR
1108
1109 /*
1110 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1111 * the iretq it performs will take us out of NMI context.
1112 * This means that we can have nested NMIs where the next
1113 * NMI is using the top of the stack of the previous NMI. We
1114 * can't let it execute because the nested NMI will corrupt the
1115 * stack of the previous NMI. NMI handlers are not re-entrant
1116 * anyway.
1117 *
1118 * To handle this case we do the following:
1119 * Check a special location on the stack that contains a
1120 * variable that is set when NMIs are executing.
1121 * The interrupted task's stack is also checked to see if it
1122 * is an NMI stack.
1123 * If the variable is not set and the stack is not the NMI
1124 * stack then:
1125 * o Set the special variable on the stack
1126 * o Copy the interrupt frame into an "outermost" location on the
1127 * stack
1128 * o Copy the interrupt frame into an "iret" location on the stack
1129 * o Continue processing the NMI
1130 * If the variable is set or the previous stack is the NMI stack:
1131 * o Modify the "iret" location to jump to the repeat_nmi
1132 * o return back to the first NMI
1133 *
1134 * Now on exit of the first NMI, we first clear the stack variable
1135 * The NMI stack will tell any nested NMIs at that point that it is
1136 * nested. Then we pop the stack normally with iret, and if there was
1137 * a nested NMI that updated the copy interrupt stack frame, a
1138 * jump will be made to the repeat_nmi code that will handle the second
1139 * NMI.
1140 *
1141 * However, espfix prevents us from directly returning to userspace
1142 * with a single IRET instruction. Similarly, IRET to user mode
1143 * can fault. We therefore handle NMIs from user space like
1144 * other IST entries.
1145 */
1146
1147 ASM_CLAC
1148 cld
1149
1150 /* Use %rdx as our temp variable throughout */
1151 pushq %rdx
1152
1153 testb $3, CS-RIP+8(%rsp)
1154 jz .Lnmi_from_kernel
1155
1156 /*
1157 * NMI from user mode. We need to run on the thread stack, but we
1158 * can't go through the normal entry paths: NMIs are masked, and
1159 * we don't want to enable interrupts, because then we'll end
1160 * up in an awkward situation in which IRQs are on but NMIs
1161 * are off.
1162 *
1163 * We also must not push anything to the stack before switching
1164 * stacks lest we corrupt the "NMI executing" variable.
1165 */
1166
1167 swapgs
1168 FENCE_SWAPGS_USER_ENTRY
1169 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1170 movq %rsp, %rdx
1171 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1172 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1173 pushq 5*8(%rdx) /* pt_regs->ss */
1174 pushq 4*8(%rdx) /* pt_regs->rsp */
1175 pushq 3*8(%rdx) /* pt_regs->flags */
1176 pushq 2*8(%rdx) /* pt_regs->cs */
1177 pushq 1*8(%rdx) /* pt_regs->rip */
1178 UNWIND_HINT_IRET_REGS
1179 pushq $-1 /* pt_regs->orig_ax */
1180 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1181 ENCODE_FRAME_POINTER
1182
1183 IBRS_ENTER
1184 UNTRAIN_RET
1185
1186 /*
1187 * At this point we no longer need to worry about stack damage
1188 * due to nesting -- we're on the normal thread stack and we're
1189 * done with the NMI stack.
1190 */
1191
1192 movq %rsp, %rdi
1193 call exc_nmi
1194
1195 /*
1196 * Return back to user mode. We must *not* do the normal exit
1197 * work, because we don't want to enable interrupts.
1198 */
1199 jmp swapgs_restore_regs_and_return_to_usermode
1200
1201.Lnmi_from_kernel:
1202 /*
1203 * Here's what our stack frame will look like:
1204 * +---------------------------------------------------------+
1205 * | original SS |
1206 * | original Return RSP |
1207 * | original RFLAGS |
1208 * | original CS |
1209 * | original RIP |
1210 * +---------------------------------------------------------+
1211 * | temp storage for rdx |
1212 * +---------------------------------------------------------+
1213 * | "NMI executing" variable |
1214 * +---------------------------------------------------------+
1215 * | iret SS } Copied from "outermost" frame |
1216 * | iret Return RSP } on each loop iteration; overwritten |
1217 * | iret RFLAGS } by a nested NMI to force another |
1218 * | iret CS } iteration if needed. |
1219 * | iret RIP } |
1220 * +---------------------------------------------------------+
1221 * | outermost SS } initialized in first_nmi; |
1222 * | outermost Return RSP } will not be changed before |
1223 * | outermost RFLAGS } NMI processing is done. |
1224 * | outermost CS } Copied to "iret" frame on each |
1225 * | outermost RIP } iteration. |
1226 * +---------------------------------------------------------+
1227 * | pt_regs |
1228 * +---------------------------------------------------------+
1229 *
1230 * The "original" frame is used by hardware. Before re-enabling
1231 * NMIs, we need to be done with it, and we need to leave enough
1232 * space for the asm code here.
1233 *
1234 * We return by executing IRET while RSP points to the "iret" frame.
1235 * That will either return for real or it will loop back into NMI
1236 * processing.
1237 *
1238 * The "outermost" frame is copied to the "iret" frame on each
1239 * iteration of the loop, so each iteration starts with the "iret"
1240 * frame pointing to the final return target.
1241 */
1242
1243 /*
1244 * Determine whether we're a nested NMI.
1245 *
1246 * If we interrupted kernel code between repeat_nmi and
1247 * end_repeat_nmi, then we are a nested NMI. We must not
1248 * modify the "iret" frame because it's being written by
1249 * the outer NMI. That's okay; the outer NMI handler is
1250 * about to call exc_nmi() anyway, so we can just resume
1251 * the outer NMI.
1252 */
1253
1254 movq $repeat_nmi, %rdx
1255 cmpq 8(%rsp), %rdx
1256 ja 1f
1257 movq $end_repeat_nmi, %rdx
1258 cmpq 8(%rsp), %rdx
1259 ja nested_nmi_out
12601:
1261
1262 /*
1263 * Now check "NMI executing". If it's set, then we're nested.
1264 * This will not detect if we interrupted an outer NMI just
1265 * before IRET.
1266 */
1267 cmpl $1, -8(%rsp)
1268 je nested_nmi
1269
1270 /*
1271 * Now test if the previous stack was an NMI stack. This covers
1272 * the case where we interrupt an outer NMI after it clears
1273 * "NMI executing" but before IRET. We need to be careful, though:
1274 * there is one case in which RSP could point to the NMI stack
1275 * despite there being no NMI active: naughty userspace controls
1276 * RSP at the very beginning of the SYSCALL targets. We can
1277 * pull a fast one on naughty userspace, though: we program
1278 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1279 * if it controls the kernel's RSP. We set DF before we clear
1280 * "NMI executing".
1281 */
1282 lea 6*8(%rsp), %rdx
1283 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1284 cmpq %rdx, 4*8(%rsp)
1285 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1286 ja first_nmi
1287
1288 subq $EXCEPTION_STKSZ, %rdx
1289 cmpq %rdx, 4*8(%rsp)
1290 /* If it is below the NMI stack, it is a normal NMI */
1291 jb first_nmi
1292
1293 /* Ah, it is within the NMI stack. */
1294
1295 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1296 jz first_nmi /* RSP was user controlled. */
1297
1298 /* This is a nested NMI. */
1299
1300nested_nmi:
1301 /*
1302 * Modify the "iret" frame to point to repeat_nmi, forcing another
1303 * iteration of NMI handling.
1304 */
1305 subq $8, %rsp
1306 leaq -10*8(%rsp), %rdx
1307 pushq $__KERNEL_DS
1308 pushq %rdx
1309 pushfq
1310 pushq $__KERNEL_CS
1311 pushq $repeat_nmi
1312
1313 /* Put stack back */
1314 addq $(6*8), %rsp
1315
1316nested_nmi_out:
1317 popq %rdx
1318
1319 /* We are returning to kernel mode, so this cannot result in a fault. */
1320 iretq
1321
1322first_nmi:
1323 /* Restore rdx. */
1324 movq (%rsp), %rdx
1325
1326 /* Make room for "NMI executing". */
1327 pushq $0
1328
1329 /* Leave room for the "iret" frame */
1330 subq $(5*8), %rsp
1331
1332 /* Copy the "original" frame to the "outermost" frame */
1333 .rept 5
1334 pushq 11*8(%rsp)
1335 .endr
1336 UNWIND_HINT_IRET_REGS
1337
1338 /* Everything up to here is safe from nested NMIs */
1339
1340#ifdef CONFIG_DEBUG_ENTRY
1341 /*
1342 * For ease of testing, unmask NMIs right away. Disabled by
1343 * default because IRET is very expensive.
1344 */
1345 pushq $0 /* SS */
1346 pushq %rsp /* RSP (minus 8 because of the previous push) */
1347 addq $8, (%rsp) /* Fix up RSP */
1348 pushfq /* RFLAGS */
1349 pushq $__KERNEL_CS /* CS */
1350 pushq $1f /* RIP */
1351 iretq /* continues at repeat_nmi below */
1352 UNWIND_HINT_IRET_REGS
13531:
1354#endif
1355
1356repeat_nmi:
1357 ANNOTATE_NOENDBR // this code
1358 /*
1359 * If there was a nested NMI, the first NMI's iret will return
1360 * here. But NMIs are still enabled and we can take another
1361 * nested NMI. The nested NMI checks the interrupted RIP to see
1362 * if it is between repeat_nmi and end_repeat_nmi, and if so
1363 * it will just return, as we are about to repeat an NMI anyway.
1364 * This makes it safe to copy to the stack frame that a nested
1365 * NMI will update.
1366 *
1367 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1368 * we're repeating an NMI, gsbase has the same value that it had on
1369 * the first iteration. paranoid_entry will load the kernel
1370 * gsbase if needed before we call exc_nmi(). "NMI executing"
1371 * is zero.
1372 */
1373 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1374
1375 /*
1376 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1377 * here must not modify the "iret" frame while we're writing to
1378 * it or it will end up containing garbage.
1379 */
1380 addq $(10*8), %rsp
1381 .rept 5
1382 pushq -6*8(%rsp)
1383 .endr
1384 subq $(5*8), %rsp
1385end_repeat_nmi:
1386 ANNOTATE_NOENDBR // this code
1387
1388 /*
1389 * Everything below this point can be preempted by a nested NMI.
1390 * If this happens, then the inner NMI will change the "iret"
1391 * frame to point back to repeat_nmi.
1392 */
1393 pushq $-1 /* ORIG_RAX: no syscall to restart */
1394
1395 /*
1396 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1397 * as we should not be calling schedule in NMI context.
1398 * Even with normal interrupts enabled. An NMI should not be
1399 * setting NEED_RESCHED or anything that normal interrupts and
1400 * exceptions might do.
1401 */
1402 call paranoid_entry
1403 UNWIND_HINT_REGS
1404
1405 movq %rsp, %rdi
1406 call exc_nmi
1407
1408 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1409 IBRS_EXIT save_reg=%r15
1410
1411 PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1412
1413 /*
1414 * The above invocation of paranoid_entry stored the GSBASE
1415 * related information in R/EBX depending on the availability
1416 * of FSGSBASE.
1417 *
1418 * If FSGSBASE is enabled, restore the saved GSBASE value
1419 * unconditionally, otherwise take the conditional SWAPGS path.
1420 */
1421 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1422
1423 wrgsbase %rbx
1424 jmp nmi_restore
1425
1426nmi_no_fsgsbase:
1427 /* EBX == 0 -> invoke SWAPGS */
1428 testl %ebx, %ebx
1429 jnz nmi_restore
1430
1431nmi_swapgs:
1432 swapgs
1433
1434nmi_restore:
1435 POP_REGS
1436
1437 /*
1438 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1439 * at the "iret" frame.
1440 */
1441 addq $6*8, %rsp
1442
1443 /*
1444 * Clear "NMI executing". Set DF first so that we can easily
1445 * distinguish the remaining code between here and IRET from
1446 * the SYSCALL entry and exit paths.
1447 *
1448 * We arguably should just inspect RIP instead, but I (Andy) wrote
1449 * this code when I had the misapprehension that Xen PV supported
1450 * NMIs, and Xen PV would break that approach.
1451 */
1452 std
1453 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1454
1455 /*
1456 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like
1457 * NMI in kernel after user state is restored. For an unprivileged user
1458 * these conditions are hard to meet.
1459 */
1460
1461 /*
1462 * iretq reads the "iret" frame and exits the NMI stack in a
1463 * single instruction. We are returning to kernel mode, so this
1464 * cannot result in a fault. Similarly, we don't need to worry
1465 * about espfix64 on the way back to kernel mode.
1466 */
1467 iretq
1468SYM_CODE_END(asm_exc_nmi)
1469
1470/*
1471 * This handles SYSCALL from 32-bit code. There is no way to program
1472 * MSRs to fully disable 32-bit SYSCALL.
1473 */
1474SYM_CODE_START(entry_SYSCALL32_ignore)
1475 UNWIND_HINT_END_OF_STACK
1476 ENDBR
1477 mov $-ENOSYS, %eax
1478 CLEAR_CPU_BUFFERS
1479 sysretl
1480SYM_CODE_END(entry_SYSCALL32_ignore)
1481
1482.pushsection .text, "ax"
1483 __FUNC_ALIGN
1484SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1485 UNWIND_HINT_FUNC
1486 /* Prevent any naive code from trying to unwind to our caller. */
1487 xorl %ebp, %ebp
1488
1489 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1490 leaq -PTREGS_SIZE(%rax), %rsp
1491 UNWIND_HINT_REGS
1492
1493 call make_task_dead
1494SYM_CODE_END(rewind_stack_and_make_dead)
1495.popsection
1496
1497/*
1498 * This sequence executes branches in order to remove user branch information
1499 * from the branch history tracker in the Branch Predictor, therefore removing
1500 * user influence on subsequent BTB lookups.
1501 *
1502 * It should be used on parts prior to Alder Lake. Newer parts should use the
1503 * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being
1504 * virtualized on newer hardware the VMM should protect against BHI attacks by
1505 * setting BHI_DIS_S for the guests.
1506 *
1507 * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging
1508 * and not clearing the branch history. The call tree looks like:
1509 *
1510 * call 1
1511 * call 2
1512 * call 2
1513 * call 2
1514 * call 2
1515 * call 2
1516 * ret
1517 * ret
1518 * ret
1519 * ret
1520 * ret
1521 * ret
1522 *
1523 * This means that the stack is non-constant and ORC can't unwind it with %rsp
1524 * alone. Therefore we unconditionally set up the frame pointer, which allows
1525 * ORC to unwind properly.
1526 *
1527 * The alignment is for performance and not for safety, and may be safely
1528 * refactored in the future if needed. The .skips are for safety, to ensure
1529 * that all RETs are in the second half of a cacheline to mitigate Indirect
1530 * Target Selection, rather than taking the slowpath via its_return_thunk.
1531 */
1532SYM_FUNC_START(clear_bhb_loop)
1533 ANNOTATE_NOENDBR
1534 push %rbp
1535 mov %rsp, %rbp
1536 movl $5, %ecx
1537 ANNOTATE_INTRA_FUNCTION_CALL
1538 call 1f
1539 jmp 5f
1540 .align 64, 0xcc
1541 /*
1542 * Shift instructions so that the RET is in the upper half of the
1543 * cacheline and don't take the slowpath to its_return_thunk.
1544 */
1545 .skip 32 - (.Lret1 - 1f), 0xcc
1546 ANNOTATE_INTRA_FUNCTION_CALL
15471: call 2f
1548.Lret1: RET
1549 .align 64, 0xcc
1550 /*
1551 * As above shift instructions for RET at .Lret2 as well.
1552 *
1553 * This should be ideally be: .skip 32 - (.Lret2 - 2f), 0xcc
1554 * but some Clang versions (e.g. 18) don't like this.
1555 */
1556 .skip 32 - 18, 0xcc
15572: movl $5, %eax
15583: jmp 4f
1559 nop
15604: sub $1, %eax
1561 jnz 3b
1562 sub $1, %ecx
1563 jnz 1b
1564.Lret2: RET
15655: lfence
1566 pop %rbp
1567 RET
1568SYM_FUNC_END(clear_bhb_loop)
1569EXPORT_SYMBOL_GPL(clear_bhb_loop)
1570STACK_FRAME_NON_STANDARD(clear_bhb_loop)
1571

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/arch/x86/entry/entry_64.S